1
|
Hosoda Y, Goda A, Yanagisawa Y, Miura Y, Nakamaru R, Funabashi S, Tashiro M, Nishi T, Takeuchi S, Soejima K, Kohno T. Prediction of left ventricular reverse remodeling in patients with heart failure with reduced ejection fraction using cardiopulmonary exercise testing. J Cardiol 2025:S0914-5087(25)00021-8. [PMID: 39921051 DOI: 10.1016/j.jjcc.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND With advances in the treatment of heart failure with reduced ejection fraction (HFrEF), the prediction of left ventricular reverse remodeling (LVRR) has become increasingly important. Cardiopulmonary exercise testing (CPET) is a non-invasive test recommended for prognostic risk assessment in HFrEF; however, it is not known whether it predicts LVRR. We aimed to investigate whether the parameters obtained from CPET are useful in predicting LVRR in HFrEF. METHODS We retrospectively evaluated 230 consecutive patients with HFrEF [left ventricular ejection fraction (LVEF) ≤40 %] hospitalized for acute heart failure (59 ± 14 years, 78 % males) who underwent CPET before discharge. We investigated whether the CPET parameters, peak oxygen consumption (VO2), and the minute ventilation (VE) vs. carbon dioxide production (VCO2) slope could predict LVRR within 1 year (LVEF >50 %). RESULTS Among 230 patients, 89 (39 %) exhibited LVRR. In multivariable logistic analysis, higher peak VO2 [odds ratio (OR): 1.13, 95 % confidence interval (CI): 1.05-1.22, p < 0.001] and lower VE vs. VCO2 slope (OR: 0.95, 95 % CI: 0.91-0.98, p < 0.001) were independently associated with LVRR. In receiver operating characteristic curve analysis, peak VO2 [area under the curve (AUC): 0.657, p < 0.001, optimal cut-off: 15.5 mL/min/kg] and VE vs. VCO2 slope (AUC: 0.663, p < 0.001, optimal cut-off: 35.8) were significant predictors of LVRR. Moreover, combining the peak VO2 and VE vs. VCO2 slope improved the predictive value (AUC: 0.682). CONCLUSIONS CPET is a valuable test for the non-invasive detection of LVRR. The combination of peak VO2 and the VE vs. VCO2 slope is useful for predicting LVRR among hospitalized patients with HFrEF receiving pharmacological treatment.
Collapse
Affiliation(s)
| | - Ayumi Goda
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan.
| | - Yoshiaki Yanagisawa
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Yusuke Miura
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Ryo Nakamaru
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Sayaka Funabashi
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Mika Tashiro
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Tomoko Nishi
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Shinsuke Takeuchi
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Kyoko Soejima
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Takashi Kohno
- Department of Cardiovascular Medicine, Kyorin University Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Wang Y, Lai J, Chen Z, Sun L, Ma Y, Wu J. Exploring the therapeutic mechanisms of heart failure with Chinese herbal medicine: a focus on miRNA-mediated regulation. Front Pharmacol 2024; 15:1475975. [PMID: 39564110 PMCID: PMC11573571 DOI: 10.3389/fphar.2024.1475975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Heart failure (HF) is a clinical condition caused by abnormalities in the heart's structure or function, primarily manifested as diminished ability of the heart to pump blood, which leads to compensatory activation of neurohormones and increased left ventricular filling pressure. HF is one of the fastest-growing cardiovascular diseases globally in terms of incidence and mortality, negatively impacting patients' quality of life and imposing significant medical and economic burdens. Despite advancements in the treatment of HF, hospitalization and mortality remain rates high. In China, Chinese herbal medicine (CHM) has historically played a prominent role in addressing HF, with significant proven efficacy. MicroRNA (miRNA) exerts a pivotal regulatory influence on the maintenance of regular cardiac activity and the progression of HF. MiRNAs, a category of single-stranded RNA molecules, are characterized by their inability to code for proteins. They regulate gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs, thereby influencing the onset and progression of various diseases. Abnormal expression of specific miRNAs is closely associated with HF pathological processes, such as cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy. This abnormal expression can influence the pathological progression of HF through the regulation of miRNA expression. This article reviews the regulatory role of miRNAs in HF pathology discusses how CHM compounds and their active ingredients can ameliorate HF pathology through the regulation of miRNA expression. In conclusion, miRNAs represent promising therapeutic targets for HF, and CHM provides a novel strategy for treatment through the regulation of miRNA expression. Future studies must delve deeper into the precise mechanisms by which CHM modulates miRNAs and fully explore its potential for clinical application in HF treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liqiang Sun
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yirong Ma
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Madè A, Bibi A, Garcia-Manteiga JM, Tascini AS, Piella SN, Tikhomirov R, Voellenkle C, Gaetano C, Leszek P, Castelvecchio S, Menicanti L, Martelli F, Greco S. circRNA-miRNA-mRNA Deregulated Network in Ischemic Heart Failure Patients. Cells 2023; 12:2578. [PMID: 37947656 PMCID: PMC10648415 DOI: 10.3390/cells12212578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Noncoding RNAs (ncRNAs), which include circular RNAs (circRNAs) and microRNAs (miRNAs), regulate the development of cardiovascular diseases (CVD). Notably, circRNAs can interact with miRNAs, influencing their specific mRNA targets' levels and shaping a competing endogenous RNAs (ceRNA) network. However, these interactions and their respective functions remain largely unexplored in ischemic heart failure (IHF). This study is aimed at identifying circRNA-centered ceRNA networks in non-end-stage IHF. Approximately 662 circRNA-miRNA-mRNA interactions were identified in the heart by combining state-of-the-art bioinformatics tools with experimental data. Importantly, KEGG terms of the enriched mRNA indicated CVD-related signaling pathways. A specific network centered on circBPTF was validated experimentally. The levels of let-7a-5p, miR-18a-3p, miR-146b-5p, and miR-196b-5p were enriched in circBPTF pull-down experiments, and circBPTF silencing inhibited the expression of HDAC9 and LRRC17, which are targets of miR-196b-5p. Furthermore, as suggested by the enriched pathway terms of the circBPTF ceRNA network, circBPTF inhibition elicited endothelial cell cycle arrest. circBPTF expression increased in endothelial cells exposed to hypoxia, and its upregulation was confirmed in cardiac samples of 36 end-stage IHF patients compared to healthy controls. In conclusion, circRNAs act as miRNA sponges, regulating the functions of multiple mRNA targets, thus providing a novel vision of HF pathogenesis and laying the theoretical foundation for further experimental studies.
Collapse
Affiliation(s)
- Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jose Manuel Garcia-Manteiga
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
| | - Anna Sofia Tascini
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Santiago Nicolas Piella
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Roman Tikhomirov
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Serenella Castelvecchio
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Lorenzo Menicanti
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| |
Collapse
|
4
|
Fang Q, Huang K, Yao X, Peng Y, Kan A, Song Y, Wang X, Xiao X, Gong L. The application of radiology for dilated cardiomyopathy diagnosis, treatment, and prognosis prediction: a bibliometric analysis. Quant Imaging Med Surg 2023; 13:7012-7028. [PMID: 37869323 PMCID: PMC10585513 DOI: 10.21037/qims-23-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Background Radiology plays a highly crucial role in the diagnosis, treatment, and prognosis prediction of dilated cardiomyopathy (DCM). Related research has increased rapidly over the past few years, but systematic analyses are lacking. This study thus aimed to provide a reference for further research by analyzing the knowledge field, development trends, and research hotspots of radiology in DCM using bibliometric methods. Methods Articles on the radiology of DCM published between 2002 and 2021 in the Web of Science Core Collection database (WoSCCd) were searched and analyzed. Data were retrieved and analyzed using CiteSpace V, VOSviewer, and Scimago Graphic software, and included the name, research institution, and nationality of authors; journals of publication; and the number of citations. Results A total of 4,257 articles were identified on radiology of DCM from WoSCCd. The number of articles published in this field has grown steadily from 2002 to 2021 and is expected to reach 392 annually by 2024. According to subfields, the number of papers published in cardiac magnetic resonance field increased steadily. The authors from the United States published the most (1,364 articles, 32.04%) articles. The author with the most articles published was Bax JJ (54 articles, 1.27%) from Leiden University Medical Center. The most cited article was titled "2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure", with 138 citations. Citation-based clustering showed that arrhythmogenic cardiomyopathy, T1 mapping, and endomyocardial biopsy are the current hots pots for research in DCM radiology. The most frequently occurring keyword was "dilated cardiomyopathy". The keyword-based clusters mainly included "late gadolinium enhancement", "congestive heart failure", "cardiovascular magnetic resonance", "sudden cardiac death", "ventricular arrhythmia", and "cardiac resynchronization therapy". Conclusions The United States and Northern Europe are the most influential countries in research on DCM radiology, with many leading distinguished research institutions. The current research hots pots are myocardial fibrosis, risk stratification of ventricular arrhythmia, the prognosis of cardiac resynchronization therapy (CRT) treatment, and subtype classification of DCM.
Collapse
Affiliation(s)
- Qimin Fang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaiyao Huang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinyu Yao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Kan
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yipei Song
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiwen Wang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Xiao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianggeng Gong
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Tatman PD, Kao DP, Chatfield KC, Carroll IA, Wagner JA, Jonas ER, Sucharov CC, Port JD, Lowes BD, Minobe WA, Huebler SP, Karimpour-Fard A, Rodriguez EM, Liggett SB, Bristow MR. An extensive β1-adrenergic receptor gene signaling network regulates molecular remodeling in dilated cardiomyopathies. JCI Insight 2023; 8:e169720. [PMID: 37606047 PMCID: PMC10543724 DOI: 10.1172/jci.insight.169720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
We investigated the extent, biologic characterization, phenotypic specificity, and possible regulation of a β1-adrenergic receptor-linked (β1-AR-linked) gene signaling network (β1-GSN) involved in left ventricular (LV) eccentric pathologic remodeling. A 430-member β1-GSN was identified by mRNA expression in transgenic mice overexpressing human β1-ARs or from literature curation, which exhibited opposite directional behavior in interventricular septum endomyocardial biopsies taken from patients with beta-blocker-treated, reverse remodeled dilated cardiomyopathies. With reverse remodeling, the major biologic categories and percentage of the dominant directional change were as follows: metabolic (19.3%, 81% upregulated); gene regulation (14.9%, 78% upregulated); extracellular matrix/fibrosis (9.1%, 92% downregulated); and cell homeostasis (13.3%, 60% upregulated). Regarding the comparison of β1-GSN categories with expression from 19,243 nonnetwork genes, phenotypic selection for major β1-GSN categories was exhibited for LV end systolic volume (contractility measure), ejection fraction (remodeling index), and pulmonary wedge pressure (wall tension surrogate), beginning at 3 months and persisting to study completion at 12 months. In addition, 121 lncRNAs were identified as possibly involved in cis-acting regulation of β1-GSN members. We conclude that an extensive 430-member gene network downstream from the β1-AR is involved in pathologic ventricular remodeling, with metabolic genes as the most prevalent category.
Collapse
Affiliation(s)
| | - David P. Kao
- Division of Cardiology, Department of Medicine, and
- Colorado Center for Personalized Medicine University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kathryn C. Chatfield
- Division of Cardiology, Department of Medicine, and
- Department of Pediatric Cardiology, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Ian A. Carroll
- Division of Cardiology, Department of Medicine, and
- ARCA biopharma, Westminster, Colorado, USA
| | | | | | | | | | - Brian D. Lowes
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Stephen B. Liggett
- Departments of Medicine and Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael R. Bristow
- Division of Cardiology, Department of Medicine, and
- ARCA biopharma, Westminster, Colorado, USA
| |
Collapse
|
6
|
Margiana R, Kzar HH, Hussam F, Hameed NM, Al-Qaim ZH, Al-Gazally ME, Kandee M, Saleh MM, Toshbekov BBU, Tursunbaev F, Karampoor S, Mirzaei R. Exploring the impact of miR-128 in inflammatory diseases: A comprehensive study on autoimmune diseases. Pathol Res Pract 2023; 248:154705. [PMID: 37499519 DOI: 10.1016/j.prp.2023.154705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Iraq
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | | | - Mahmoud Kandee
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | | | - Farkhod Tursunbaev
- MD, Independent Researcher, "Medcloud" educational centre, Tashkent, Uzbekistan
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Palazzuoli A, Tramonte F, Beltrami M. Laboratory and Metabolomic Fingerprint in Heart Failure with Preserved Ejection Fraction: From Clinical Classification to Biomarker Signature. Biomolecules 2023; 13:173. [PMID: 36671558 PMCID: PMC9855377 DOI: 10.3390/biom13010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a poorly characterized syndrome with many unknown aspects related to different patient profiles, various associated risk factors and a wide range of aetiologies. It comprises several pathophysiological pathways, such as endothelial dysfunction, myocardial fibrosis, extracellular matrix deposition and intense inflammatory system activation. Until now, HFpEF has only been described with regard to clinical features and its most commonly associated risk factors, disregarding all biological mechanisms responsible for cardiovascular deteriorations. Recently, innovations in laboratory and metabolomic findings have shown that HFpEF appears to be strictly related to specific cells and molecular mechanisms' dysregulation. Indeed, some biomarkers are efficient in early identification of these processes, adding new insights into diagnosis and risk stratification. Moreover, recent advances in intermediate metabolites provide relevant information on intrinsic cellular and energetic substrate alterations. Therefore, a systematic combination of clinical imaging and laboratory findings may lead to a 'precision medicine' approach providing prognostic and therapeutic advantages. The current review reports traditional and emerging biomarkers in HFpEF and it purposes a new diagnostic approach based on integrative information achieved from risk factor burden, hemodynamic dysfunction and biomarkers' signature partnership.
Collapse
Affiliation(s)
- Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, Le Scotte Hospital, University of Siena, 53100 Siena, Italy
| | - Francesco Tramonte
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, Le Scotte Hospital, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
8
|
Badianyama M, Mpanya D, Adamu U, Sigauke F, Nel S, Tsabedze N. New Biomarkers and Their Potential Role in Heart Failure Treatment Optimisation-An African Perspective. J Cardiovasc Dev Dis 2022; 9:jcdd9100335. [PMID: 36286287 PMCID: PMC9604249 DOI: 10.3390/jcdd9100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is a clinical syndrome resulting from various cardiovascular diseases of different aetiologies and pathophysiology. These varying pathologies involve several complex mechanisms that lead to the activation of the neurohumoral system, inflammation, angiogenesis, apoptosis, fibrosis, and eventually adverse cardiac remodelling associated with a progressive decline in cardiac function. Once a diagnosis is made, the cardiac function has a gradual decline characterised by multiple hospital admissions. It is therefore imperative to identify patients at different stages of the heart failure continuum to better risk stratify and initiate optimal management strategies. Biomarkers may play a role in the diagnosis, prognostication, and monitoring response to treatment. This review discusses the epidemiology of heart failure and biomarkers commonly used in clinical practice such as natriuretic peptides and cardiac troponins. In addition, we provide a brief overview of novel biomarkers and genetic coding and non-coding biomarkers used in the management of patients with heart failure. We also discuss barriers that hinder the clinical application of novel biomarkers. Finally, we appraise the value of polygenic risk scoring, focusing on sub-Saharan Africa.
Collapse
|
9
|
Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, Papakostantinou A, Vogazianos P, Ioulianou E, Shammas C, Constantinidou A, Tozzi F, Fotiadis DI, Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. CARDIO-ONCOLOGY 2022; 8:16. [PMID: 36071532 PMCID: PMC9450324 DOI: 10.1186/s40959-022-00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the management of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also be released into the circulatory system and have been associated with the progression of many chronic diseases including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is performed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by reviewing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer treatments.
Collapse
|
10
|
Hailu FT, Karimpour-Fard A, Toni LS, Bristow MR, Miyamoto SD, Stauffer BL, Sucharov CC. Integrated analysis of miRNA-mRNA interaction in pediatric dilated cardiomyopathy. Pediatr Res 2022; 92:98-108. [PMID: 34012027 PMCID: PMC8602449 DOI: 10.1038/s41390-021-01548-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are short single-stranded nucleotides that can regulate gene expression. Although we previously evaluated the expression of miRNAs in pediatric dilated cardiomyopathy (DCM) by miRNA array, pathway prediction based on changes in mRNA expression has not been previously analyzed in this population. The current study aimed to determine the regulation of miRNA expression by miRNA-sequencing (miRNA-seq) and, through miRNA-sequencing (mRNA-seq), analyze their putative target genes and altered pathways in pediatric DCM hearts. METHODS miRNA expression was determined by miRNA-seq [n = 10 non-failing (NF), n = 20 DCM]. Expression of a subset of miRNAs was evaluated in adult DCM patients (n = 11 NF, n = 13 DCM). miRNA-mRNA prediction analysis was performed using mRNA-seq data (n = 7 NF, n = 7 DCM) from matched samples. RESULTS Expression of 393 miRNAs was significantly different (p < 0.05) in pediatric DCM patients compared to NF controls. TargetScan-based miRNA-mRNA analysis revealed 808 significantly inversely expressed genes. Functional analysis suggests upregulated pathways related to the regulation of stem cell differentiation and cardiac muscle contraction, and downregulated pathways related to the regulation of protein phosphorylation, signal transduction, and cell communication. CONCLUSIONS Our results demonstrated a unique age-dependent regulation of miRNAs and their putative target genes, which may contribute to distinctive phenotypic characteristics of DCM in children. IMPACT This is the first study to compare miRNA expression in the heart of pediatric DCM patients to age-matched healthy controls by RNA sequencing. Expression of a subset of miRNAs is uniquely dysregulated in children. Using mRNA-seq and miRNA-seq from matched samples, target prediction was performed. This study underscores the importance of pediatric-focused studies.
Collapse
Affiliation(s)
- Frehiwet T Hailu
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Lee S Toni
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael R Bristow
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Brian L Stauffer
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA.
- Division of Cardiology, Denver Health and Hospital Authority, Denver, CO, USA.
| | - Carmen C Sucharov
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
11
|
Xuan L, Fu D, Zhen D, Bai D, Yu L, Gong G. Long non-coding RNA Sox2OT promotes coronary microembolization-induced myocardial injury by mediating pyroptosis. ESC Heart Fail 2022; 9:1689-1702. [PMID: 35304834 PMCID: PMC9065873 DOI: 10.1002/ehf2.13814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE As a common complication of coronary microembolization (CME), myocardial injury (MI) implies high mortality. Long non-coding RNAs (lncRNAs) are rarely studied in CME-induced MI. Herein, this study intended to evaluate the role of lncRNA Sox2 overlapping transcript (Sox2OT) in CME-induced MI. METHODS The CME rat models were successfully established by injection of microemboli. Rat cardiac functions and MI were observed by ultrasonic electrocardiogram, HE staining, and HBFP staining. Functional assays were utilized to test the inflammatory responses, oxidative stress, and pyroptosis using reverse transcription quantitative polymerase chain reaction, Western blotting, immunohistochemistry, immunofluorescence, and ELISA. Dual-luciferase reporter gene assay and RNA immunoprecipitation were conducted to clarify the targeting relations between Sox2OT and microRNA (miRNA)-23b and between miR-23b and toll-like receptor 4 (TLR4). RESULTS Rat CME disrupted the cardiac functions and induced inflammatory responses and oxidative stress, and activated the nuclear factor-kappa B (NF-κB) pathway and pyroptosis (all P < 0.05). An NF-κB inhibitor downregulated the NF-κB pathway, reduced pyroptosis, and relieved cardiomyocyte injury and pyroptosis. Compared with the sham group (1.05 ± 0.32), lncRNA Sox2OT level (4.41 ± 0.67) in the CME group was elevated (P < 0.05). Sox2OT acted as a competitive endogenous RNA (ceRNA) of miR-23b to regulate TLR4. Silencing of Sox2OT favoured miR-23b binding to 3'UTR of TLR4 mRNA leading to suppressed TLR4-mediated NFKB signalling and pyroptosis in myocardial tissues harvested from CME rat models. In addition, miR-23b overexpression could supplement the cytosolic miR-23b reserves to target TLR-4 and partially reverse Sox2OT-mediated pyroptosis in LPS-treated H9C2 cells. CONCLUSIONS This study supported that silencing Sox2OT inhibited CME-induced MI by eliminating Sox2OT/miR-23b binding and down-regulating the TLR4/NF-κB pathway. This investigation may provide novel insights for the treatment of CME-induced MI.
Collapse
Affiliation(s)
- Liying Xuan
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Danni Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Dong Zhen
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Dongsong Bai
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Lijun Yu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Guohua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
- First Medical Clinic, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
12
|
G3bp1 - microRNA-1 axis regulates cardiomyocyte hypertrophy. Cell Signal 2022; 91:110245. [PMID: 35017014 PMCID: PMC8802629 DOI: 10.1016/j.cellsig.2022.110245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Adaptation of gene expression is one of the most fundamental response of cardiomyocytes to hypertrophic stimuli. G3bp1, an RNA binding protein with site-specific endoribonuclease activity regulates the processing of pre-miR-1 stem-loop, and thus levels of cardiomyocyte -enriched mature miR-1. Here, we examine the role of G3bp1 in regulating gene expression in quiescent cardiomyocytes and those undergoing growth-factor induced hypertrophy. Further, we determine if these changes are facilitated through G3bp1-mediated regulation of miR-1 in these cardiomyocytes. Using isolated cardiomyocytes with knockdown of endogenous G3bp1, we performed high throughput RNA sequencing to determine the change in cardiac transcriptome. Then, using gain and loss of function approach for both, G3bp1 and miR-1, alone or in combination we examine the G3bp1-miR-1 signaling in regulating gene expression and Endothelin (ET-1) -induced cardiomyocyte hypertrophy. We show that knockdown of endogenous G3bp1 results in inhibition of genes involved in calcium handling, cardiac muscle contraction, action potential and sarcomeric structure. In addition, there is inhibition of genes that contribute to hypertrophic and dilated cardiomyopathy development. Conversely, an increase is seen in genes that negatively regulate the Hippo signaling, like Rassf1 and Arrdc3, along with inflammatory genes of TGF-β and TNF pathways. Knockdown of G3bp1 restricts ET-1 induced cardiomyocyte hypertrophy. Interestingly, concurrent silencing of G3bp1 and miR-1 rescues the change in gene expression and inhibition of hypertrophy seen with knockdown of G3bp1 alone. Similarly, expression of exogenous G3bp1 reverses the miR-1 induced inhibition of gene expression. Intriguingly, expression of Gfp tagged G3bp1 results in perinuclear accumulations of G3bp1-Gfp, resembling Stress Granules. Based on our results, we conclude that G3bp1 through its regulation of mature miR-1 levels plays a critical role in regulating the expression of essential cardiac-enriched genes and those involved in development of cardiomyocyte hypertrophy.
Collapse
|
13
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
14
|
Li JY, Li XC, Tang YL. Upregulation of miR-128 Mediates Heart Injury by Activating Wnt/β-catenin Signaling Pathway in Heart Failure Mice. Organogenesis 2021; 17:27-39. [PMID: 34965835 PMCID: PMC9208784 DOI: 10.1080/15476278.2021.2020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cardiac hypertrophy contributes to heart failure and is pathogenically modulated by a network of signaling cascades including Wnt/β-catenin signaling pathway. miRNAs have been widely demonstrated to regulate gene expression in heart development. miR-128 was routinely found as a brain-enriched gene and has been functionally associated with regulation of cardiac function. However, its role and molecular mechanisms that regulate cardiac hypertrophy remain largely unclear. Adeno-associated virus serotype 9 (AAV9)-mediated constructs with miR-128 or anti-miR-128 were generated and delivered to overexpression or blockade of miR-128 in vivo followed by HF induction with isoproterenol (ISO) or transverse aortic constriction (TAC). Cardiac dysfunction and hypertrophy, coupled with involved gene and protein level, were then assessed. Our data found that miR-128, Wnt1, and β-catenin expressions were upregulated in both patients and mice model with HF. Interference with miR-128 reduces Wnt1/β-catenin expression in mouse failing hearts and ameliorates heart dysfunctional properties. We identified miR-128 directly targets to Axin1, an inhibitor of Wnt/β-catenin signaling, and suppresses its inhibition on Wnt1/β-catenin. Our study provides evidence indicating miR-128 as an inducer of HF and cardiac hypertrophy by enhancing Wnt1/β-catenin in an Axin1-dependent nature. We thus suggest miR-128 has potential value in the treatment of heart failure.
Collapse
Affiliation(s)
- Jing-Yao Li
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Xin-Chang Li
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Yu-Long Tang
- Cardiac Intensive Care Center, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| |
Collapse
|
15
|
Yuan K, Zhao P, Wang L. Molecular mechanism of atrial remodeling in patients with aging atrial fibrillation under the expression of microRNA-1 and microRNA-21. Bioengineered 2021; 12:12905-12916. [PMID: 34957910 PMCID: PMC8810186 DOI: 10.1080/21655979.2021.2008668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We investigated the expression levels of microRNA-1 (miRNA-1) and microRNA-21 (miRNA-21) in the atrial tissues of patients with atrial fibrillation (AF) and the molecular mechanism of action in atrial remodeling. Patients with valvular heart disease were selected as the subjects. The ultrastructure, degree of myocardial fibrosis, apoptosis index (AI), expression of microRNA-1, expression of microRNA-21, and mRNA of TIMP-1, MMP-9, BCL-2, and Bax of patients were compared and analyzed in each group. The results showed that the degree of myocardial fibrosis and AI in patients with AF of the same age were extremely higher than those of patients with sinus rhythm (SR) (P < 0.01). Patients with AF showed much higher messenger RNA (mRNA) levels of mini-mental Parkinson 9 (MMP9) and Bax and obvious lover mRNA levels of tissue inhibitors of metalloproteinase 1 (TIMP-1) and Bcl-2 compared with patients with sinus rhythm (SR) (P < 0.05). It indicated that the expression of miRNA-1 in the AF patients was markedly down-regulated, and that miRNA-21 was up-regulated. This showed that microRNA-1 and microRNA-21 were involved in the molecular remodeling of aging AF through the regulation of primers, which would provide a critical basis for diagnosis and treatment of aging AF.
Collapse
Affiliation(s)
- Kexin Yuan
- Department of Cardiovascular, Hebei People's Hospital, Shijiazhuang, China
| | - Pei Zhao
- Department of Laboratory Medicine, Hebei People's Hospital, Shijiazhuang, China
| | - Lili Wang
- Department of Cardiovascular, Hebei People's Hospital, Shijiazhuang, China
| |
Collapse
|
16
|
Huang XH, Li JL, Li XY, Wang SX, Jiao ZH, Li SQ, Liu J, Ding J. miR-208a in Cardiac Hypertrophy and Remodeling. Front Cardiovasc Med 2021; 8:773314. [PMID: 34957257 PMCID: PMC8695683 DOI: 10.3389/fcvm.2021.773314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Various stresses, including pressure overload and myocardial stretch, can trigger cardiac remodeling and result in heart diseases. The disorders are associated with high risk of morbidity and mortality and are among the major health problems in the world. MicroRNAs, a class of ~22nt-long small non-coding RNAs, have been found to participate in regulating heart development and function. One of them, miR-208a, a cardiac-specific microRNA, plays key role(s) in modulating gene expression in the heart, and is involved in a broad array of processes in cardiac pathogenesis. Genetic deletion or pharmacological inhibition of miR-208a in rodents attenuated stress-induced cardiac hypertrophy and remodeling. Transgenic expression of miR-208a in the heart was sufficient to cause hypertrophic growth of cardiomyocytes. miR-208a is also a key regulator of cardiac conduction system, either deletion or transgenic expression of miR-208a disturbed heart electrophysiology and could induce arrhythmias. In addition, miR-208a appeared to assist in regulating the expression of fast- and slow-twitch myofiber genes in the heart. Notably, this heart-specific miRNA could also modulate the “endocrine” function of cardiac muscle and govern the systemic energy homeostasis in the whole body. Despite of the critical roles, the underlying regulatory networks involving miR-208a are still elusive. Here, we summarize the progress made in understanding the function and mechanisms of this important miRNA in the heart, and propose several topics to be resolved as well as the hypothetical answers. We speculate that miR-208a may play diverse and even opposite roles by being involved in distinct molecular networks depending on the contexts. A deeper understanding of the precise mechanisms of its action under the conditions of cardiac homeostasis and diseases is needed. The clinical implications of miR-208a are also discussed.
Collapse
Affiliation(s)
- Xing-Huai Huang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jia-Lu Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin-Yue Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Xia Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Han Jiao
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Si-Qi Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jun Liu
- Department of Orthopaedics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Chinese Traditional Medicine, Nanjing, China
| | - Jian Ding
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021; 10:cells10102512. [PMID: 34685492 PMCID: PMC8533951 DOI: 10.3390/cells10102512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- COVID-19
- Homeostasis
- Humans
- Mice
- MicroRNAs/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/virology
- Myocardium/metabolism
- Origin of Life
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Untranslated/genetics
- RNA, Viral/metabolism
- Regeneration
- SARS-CoV-2/genetics
Collapse
Affiliation(s)
- Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Fabio Desideri
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Center for Life Nano & Neuro-Science of Instituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Correspondence:
| |
Collapse
|
18
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Cardiac MicroRNA Expression Profile After Experimental Brain Death Is Associated With Myocardial Dysfunction and Can Be Modulated by Hypertonic Saline. Transplantation 2021; 106:289-298. [PMID: 33859149 DOI: 10.1097/tp.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs (DEMs) in the heart and computational and functional analysis were performed to compare the DEMs and find their putative targets and their related enriched canonical pathways. RESULTS An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with two miRNAs, miR-30a-3p and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD induced miRNA's on early and late cardiac allograft function must be investigated.Supplemental Visual Abstract; http://links.lww.com/TP/C210.
Collapse
|
20
|
Yu J, Qin Y, Zhou N. Knockdown of Circ_SLC39A8 protects against the progression of osteoarthritis by regulating miR-591/IRAK3 axis. J Orthop Surg Res 2021; 16:170. [PMID: 33658057 PMCID: PMC7927261 DOI: 10.1186/s13018-021-02323-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. METHODS The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. RESULTS Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. CONCLUSION Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.
Collapse
Affiliation(s)
- Jizhe Yu
- Department of Orthopaedics, Yichang Central People's Hospital, 183 Yiling Avenue, Wujiagang District, Yichang City, 443003, Hubei Province, P. R. China
| | - Yushuang Qin
- Department of Nuclear Medicine, Yichang Central People's Hospital, 183 Yiling Avenue, Wujiagang District, Yichang City, 443003, Hubei Province, P. R. China
| | - Naxin Zhou
- Department of Orthopaedics, Yichang Central People's Hospital, 183 Yiling Avenue, Wujiagang District, Yichang City, 443003, Hubei Province, P. R. China.
| |
Collapse
|
21
|
The Degree of Cardiac Remodelling before Overload Relief Triggers Different Transcriptome and miRome Signatures during Reverse Remodelling (RR)-Molecular Signature Differ with the Extent of RR. Int J Mol Sci 2020; 21:ijms21249687. [PMID: 33353134 PMCID: PMC7766898 DOI: 10.3390/ijms21249687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
This study aims to provide new insights into transcriptome and miRome modifications occurring in cardiac reverse remodelling (RR) upon left ventricle pressure-overload relief in mice. Pressure-overload was established in seven-week-old C57BL/6J-mice by ascending aortic constriction. A debanding (DEB) surgery was performed seven weeks later in half of the banding group (BA). Two weeks later, cardiac function was evaluated through hemodynamics and echocardiography, and the hearts were collected for histology and small/bulk-RNA-sequencing. Pressure-overload relief was confirmed by the normalization of left-ventricle-end-systolic-pressure. DEB animals were separated into two subgroups according to the extent of cardiac remodelling at seven weeks and RR: DEB1 showed an incomplete RR phenotype confirmed by diastolic dysfunction persistence (E/e' ≥ 16 ms) and increased myocardial fibrosis. At the same time, DEB2 exhibited normal diastolic function and fibrosis, presenting a phenotype closer to myocardial recovery. Nevertheless, both subgroups showed the persistence of cardiomyocytes hypertrophy. Notably, the DEB1 subgroup presented a more severe diastolic dysfunction at the moment of debanding than the DEB2, suggesting a different degree of cardiac remodelling. Transcriptomic and miRomic data, as well as their integrated analysis, revealed significant downregulation in metabolic and hypertrophic related pathways in DEB1 when compared to DEB2 group, including fatty acid β-oxidation, mitochondria L-carnitine shuttle, and nuclear factor of activated T-cells pathways. Moreover, extracellular matrix remodelling, glycan metabolism and inflammation-related pathways were up-regulated in DEB1. The presence of a more severe diastolic dysfunction at the moment of pressure overload-relief on top of cardiac hypertrophy was associated with an incomplete RR. Our transcriptomic approach suggests that a cardiac inflammation, fibrosis, and metabolic-related gene expression dysregulation underlies diastolic dysfunction persistence after pressure-overload relief, despite left ventricular mass regression, as echocardiographically confirmed.
Collapse
|
22
|
Medvedeva MV, Solodilova MA, Bykanova MA, Ivanova NV, Polonikov AV. Polymorphism of the VEGFA Gene and Coronary Artery Disease: Sex Dimorphism in Relationship between the Gene and Disease Predisposition. RUSS J GENET+ 2020; 56:1512-1519. [DOI: 10.1134/s1022795420120108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 07/28/2024]
|
23
|
Greco S, Madè A, Gaetano C, Devaux Y, Emanueli C, Martelli F. Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. J Transl Med 2020; 18:408. [PMID: 33129318 PMCID: PMC7602761 DOI: 10.1186/s12967-020-02582-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022] Open
Abstract
COronaVIrus Disease 19 (COVID-19) is caused by the infection of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are respiratory, many patients also display acute myocardial injury and chronic damage to the cardiovascular system. Understanding both direct and indirect damage caused to the heart and the vascular system by SARS-CoV-2 infection is necessary to identify optimal clinical care strategies. The homeostasis of the cardiovascular system requires a tight regulation of the gene expression, which is controlled by multiple types of RNA molecules, including RNA encoding proteins (messenger RNAs) (mRNAs) and those lacking protein-coding potential, the noncoding-RNAs. In the last few years, dysregulation of noncoding-RNAs has emerged as a crucial component in the pathophysiology of virtually all cardiovascular diseases. Here we will discuss the potential role of noncoding RNAs in COVID-19 disease mechanisms and their possible use as biomarkers of clinical use.
Collapse
Affiliation(s)
- S Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - A Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - C Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Y Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - C Emanueli
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, London, W12 0NN, UK
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy.
| |
Collapse
|
24
|
Mansueto G, Benincasa G, Della Mura N, Nicoletti GF, Napoli C. Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: a focus on cell-free DNA and microRNAs. J Clin Pathol 2020; 73:535-543. [DOI: 10.1136/jclinpath-2019-206404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/07/2020] [Accepted: 04/04/2020] [Indexed: 12/15/2022]
Abstract
Dilated cardiomyopathy (DCM) represents a common genetic cause of mechanical and/or electrical dysfunction leading to heart failure (HF) onset for which truncating variants in titin (TTN) gene result in the most frequent mutations. Moreover, myocyte and endothelial cell apoptosis is a key endophenotype underlying cardiac remodelling. Therefore, a deeper knowledge about molecular networks leading to acute injury and apoptosis may reveal novel circulating biomarkers useful to better discriminate HF phenotypes, patients at risk of heart transplant as well as graft reject in order to improve personalised therapy. Remarkably, increased plasma levels of cell-free DNA (cfDNA) may reflect the extent of cellular damage, whereas circulating mitochondrial DNA (mtDNA) may be a promising biomarker of poor prognosis in patients with HF. Furthermore, some panels of circulating miRNAs may improve the stratification of natural history of disease. For example, a combination of miR-558, miR-122* and miR-520d-5p, as well as miR-125a-5p, miR-550a-5p, miR-638 and miR-190a, may aid to discriminate different phenotypes of HF ranging from preserved to reduced ejection fraction. We give update on the most relevant genetic determinants involved in DCM and discuss the putative role of non-invasive biomarkers to overcome current limitations of the reductionist approach in HF management.
Collapse
|
25
|
Bristow MR, Zisman LS, Altman NL, Gilbert EM, Lowes BD, Minobe WA, Slavov D, Schwisow JA, Rodriguez EM, Carroll IA, Keuer TA, Buttrick PM, Kao DP. Dynamic Regulation of SARS-Cov-2 Binding and Cell Entry Mechanisms in Remodeled Human Ventricular Myocardium. ACTA ACUST UNITED AC 2020; 5:871-883. [PMID: 32838074 PMCID: PMC7314447 DOI: 10.1016/j.jacbts.2020.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Using serial analysis of myocardial gene expression employing endomyocardial biopsy starting material in a dilated cardiomyopathy cohort, we show that mRNA expression of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) cardiac myocyte receptor ACE2 is up-regulated with remodeling and with reverse remodeling down-regulates into the normal range. The proteases responsible for virus-cell membrane fusion were expressed but not regulated with remodeling. In addition, a new candidate for SARS-CoV-2 cell binding and entry was identified, the integrin encoded by ITGA5. Up-regulation in ACE2 in remodeled left ventricles may explain worse outcomes in patients with coronavirus disease 2019 who have underlying myocardial disorders, and counteracting ACE2 up-regulation is a possible therapeutic approach to minimizing cardiac damage.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- ACE2, angiotensin converting enzyme 2
- ARB, angiotensin receptor blocker
- BNP, B-type natriuretic peptide
- COVID-19, coronavirus disease-2019
- EmBx, endomyocardial biopsies
- F/NDC, nonischemic dilated cardiomyopathy with heart failure
- HFrEF, heart failure with reduced (<0.50) left ventricular ejection fraction
- IQR, interquartile range
- LOCF, last observation carried forward
- LV, left ventricle (ventricular)
- LVEF, left ventricular ejection fraction
- NF, nonfailing
- NR, nonresponder
- PCR, polymerase chain reaction
- R, responder
- RAS, renin-angiotensin system
- RGD, arginine-glycine-aspartic acid
- RNA-Seq, ribonucleic acid sequencing
- RV, right ventricle (ventricular)
- SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2
- angiotensin converting enzyme 2
- coronavirus disease 2019
- integrins
- mRNA, messenger ribonucleic acid
- proteases
- ventricular remodeling
Collapse
Affiliation(s)
- Michael R. Bristow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- ARCA Biopharma, Westminster, Colorado
- University of Colorado Cardiovascular Institute Pharmacogenomics, Aurora, Colorado
- Address for correspondence: Dr. Michael R. Bristow, Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, B-139 Research 2, 12700 East 19th Avenue, Aurora, Colorado 80045.
| | | | - Natasha L. Altman
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cardiovascular Institute Pharmacogenomics, Aurora, Colorado
| | - Edward M. Gilbert
- Division of Cardiology, University of Utah Medical Center, Salt Lake City, Utah
| | - Brian D. Lowes
- Division of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wayne A. Minobe
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Dobromir Slavov
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Jessica A. Schwisow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Erin M. Rodriguez
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Ian A. Carroll
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- ARCA Biopharma, Westminster, Colorado
| | | | - Peter M. Buttrick
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cardiovascular Institute Pharmacogenomics, Aurora, Colorado
| | - David P. Kao
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cardiovascular Institute Pharmacogenomics, Aurora, Colorado
| |
Collapse
|
26
|
Tian C, Hu G, Gao L, Hackfort BT, Zucker IH. Extracellular vesicular MicroRNA-27a* contributes to cardiac hypertrophy in chronic heart failure. J Mol Cell Cardiol 2020; 143:120-131. [PMID: 32370947 DOI: 10.1016/j.yjmcc.2020.04.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Under stress, the heart undergoes extensive remodeling resulting in cardiac fibrosis and hypertrophy, ultimately contributing to chronic heart failure (CHF). Alterations in microRNA levels are associated with dysfunctional gene expression profiles involved in the pathogenesis of heart failure. We previously showed that myocardial infarction-induced microRNA-enriched extracellular vesicles (EVs) contribute to the reduction in antioxidant enzymes by targeting Nrf2 signaling in CHF. MicroRNA-27a (miRNA-27a) is the predominant microRNA contained in cardiac fibroblast-derived EVs contributing to oxidative stress along with hypertrophic gene expression in cardiomyocytes. In the present study, we observed that miRNA-27a passenger strand (miRNA-27a*) was markedly upregulated in the non-infarcted area of the left ventricle of rats with CHF and encapsulated into EVs and secreted into the circulation. Bioinformatic analysis revealed that PDZ and LIM domain 5 (PDLIM5) is one of the major targets of miRNA-27a*, playing a major role in cardiac structure and function, and potentially contributing to the progression of cardiac hypertrophy. Our in vivo data demonstrate that PDLIM5 is down-regulated in the progression of heart failure, accompanied with the upregulation of hypertrophic genes and consistent with alterations in miRNA-27a*. Moreover, exogenous administration of miRNA27a* mimics inhibit PDLIM5 translation in cardiomyocytes whereas a miRNA27a* inhibitor enhanced PDLIM5 expression. Importantly, we confirmed that infarcted hearts have higher abundance of miRNA-27a* in EVs compared to normal hearts and further demonstrated that cultured cardiac fibroblasts secrete miRNA27a*-enriched EVs into the extracellular space in response to Angiotensin II stimulation, which inhibited PDLIM5 translation, leading to cardiomyocyte hypertrophic gene expression. In vivo studies suggest that the administration of a miRNA-27a* inhibitor in CHF rats partially blocks endogenous miR-27a* expression, prevents hypertrophic gene expression and improves myocardial contractility. These findings suggest that cardiac fibroblast-secretion of miRNA27a*-enriched EVs may act as a paracrine signaling mediator of cardiac hypertrophy that has potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States of America
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States of America
| |
Collapse
|
27
|
Mirzadeh Azad F, Arabian M, Maleki M, Malakootian M. Small Molecules with Big Impacts on Cardiovascular Diseases. Biochem Genet 2020; 58:359-383. [PMID: 31997044 DOI: 10.1007/s10528-020-09948-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Although in recent years there has been a significant progress in the diagnosis, treatment, and prognosis of CVD, but due to their complex pathobiology, developing novel biomarkers and therapeutic interventions are still in need. MicroRNAs (miRNAs) are a fraction of non-coding RNAs that act as micro-regulators of gene expression. Mounting evidences over the last decade confirmed that microRNAs were deregulated in several CVDs and manipulating their expression could affect homeostasis, differentiation, and function of cardiovascular system. Here, we review the current knowledge concerning the roles of miRNAs in cardiovascular diseases with more details on cardiac remodeling, arrhythmias, and atherosclerosis. In addition, we discuss the latest findings on the potential therapeutic applications of miRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maedeh Arabian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Calderon-Dominguez M, Belmonte T, Quezada-Feijoo M, Ramos-Sánchez M, Fernández-Armenta J, Pérez-Navarro A, Cesar S, Peña-Peña L, Vea À, Llorente-Cortés V, Mangas A, de Gonzalo-Calvo D, Toro R. Emerging role of microRNAs in dilated cardiomyopathy: evidence regarding etiology. Transl Res 2020; 215:86-101. [PMID: 31505160 DOI: 10.1016/j.trsl.2019.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is a heart muscle disease characterized by ventricular dilation and systolic dysfunction in the absence of abnormal loading conditions or coronary artery disease. This cardiac disorder is a major health problem due to its high prevalence, morbidity, and mortality. DCM is a complex disease with a common phenotype but heterogeneous pathological mechanisms. Early etiological diagnosis and prognosis stratification is crucial for the clinical management of the patient. Advances in imaging technology and genetic tests have provided useful tools for clinical practice. Nevertheless, the assessment of the disease remains challenging. Novel noninvasive indicators are still needed to assist in decision-making. microRNAs (miRNAs), a group of small noncoding RNAs, have been identified as key mediators of cell biology. They are found in a stable form in body fluids and their concentration is altered in response to stress. Previous research has suggested that the miRNA signature constitutes a novel source of noninvasive biomarkers for a wide array of cardiovascular diseases. Specifically, several studies have reported the potential role of miRNAs as clinical indicators among the etiologies of DCM. However, this field has not been reviewed in detail. Here, we summarize the evidence of intracellular and circulating miRNAs in DCM and their usefulness in the development of novel diagnostic, prognostic and therapeutic approaches, with a focus on DCM etiology. Although the findings are still preliminary, due to methodological and technical limitations and the lack of robust population-based studies, miRNAs constitute a promising tool to assist in the clinical management of DCM.
Collapse
Affiliation(s)
- Maria Calderon-Dominguez
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Thalía Belmonte
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Maribel Quezada-Feijoo
- Department of Cardiology, Cruz Roja Central Hospital, Madrid, Spain; Alfonso X University (UAX), Madrid, Spain
| | - Monica Ramos-Sánchez
- Department of Cardiology, Cruz Roja Central Hospital, Madrid, Spain; Alfonso X University (UAX), Madrid, Spain
| | - Juan Fernández-Armenta
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Cardiology, Puerta del Mar Universitary Hospital, Cádiz, Spain
| | - Amparo Pérez-Navarro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Sergi Cesar
- Department of Pediatric Cardiology, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Luisa Peña-Peña
- Department of Cardiology, Virgen del Rocio Universitary Hospital, Sevilla, Spain
| | - Àngela Vea
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Internal Medicine, Puerta del Mar Universitary Hospital, Cádiz, Spain; Department of Medicine, School of Medicine, University of Cádiz, Cádiz, Spain
| | - David de Gonzalo-Calvo
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Internal Medicine, Puerta del Mar Universitary Hospital, Cádiz, Spain; Department of Medicine, School of Medicine, University of Cádiz, Cádiz, Spain.
| |
Collapse
|
29
|
Basma H, Johanson AN, Dhar K, Anderson D, Qiu F, Rennard S, Lowes BD. TGF-β induces a heart failure phenotype via fibroblasts exosome signaling. Heliyon 2019; 5:e02633. [PMID: 31687497 PMCID: PMC6820308 DOI: 10.1016/j.heliyon.2019.e02633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose The mechanisms for persistent and progressive loss of myocardial function in advanced heart failure (HF) remain incompletely characterized. In the current study, we sought to determine the impact of TGF-β on fibroblasts transcriptional profiles and assess if exosomes from TGF-β treated fibroblasts could induce a heart failure phenotype in co-cultured cardiomyocytes. Method Normal heart fibroblasts were treated with TGF-β with a final conc. of 2.5 ng/ml in serum free media. HF fibroblasts were also obtained from patients undergoing implantation of left ventricular assist devices. Exosomes were collected using three-step ultracentrifugation. Cardiomyocytes were co-cultured with exosomes from TGF-β-treated, HF and control fibroblasts. RNA was extracted from the fibroblasts, exosomes, and the cardiomyocytes for a targeted panel of genes using Ion AmpliSeq. Fibroblast function was evaluated by collagen gel contraction. Results Fibroblasts treated with TGF-β differentially express 21 of the 140 genes in our targeted panel. These fibroblasts exhibit enhanced collagen gel contraction similar to HF fibroblasts. Fifty of these targeted genes were also differentially expressed in fibroblast exosomes. Pathway analysis of these transcriptional changes suggest hypertrophic signaling to cardiac muscle. Cardiomyocytes, co-cultured with exosomes from TGF- β treated fibroblasts or heart failure patients, differentially expressed 40 genes compared to controls. Cardiomyocytes co-cultured with exosomes of TGF-β treated fibroblasts induced a molecular phenotype similar to cardiomyocytes co-cultured with exosomes from HF fibroblasts. These changes involve contractile proteins, adrenergic receptors, calcium signaling, metabolism and cell renewal. Conclusion TGF-β induces broad transcriptional changes in fibroblasts as well as their exosomes. These exosomes induce a heart failure phenotype in cardiomyocytes. Exosome signaling from fibroblasts likely contributes to disease progression in heart failure.
Collapse
Affiliation(s)
| | | | | | | | - Fang Qiu
- University of Nebraska Medical Center, USA
| | - Stephen Rennard
- University of Nebraska Medical Center, USA.,Early Clinical Development, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
30
|
Toni LS, Carroll IA, Jones KL, Schwisow JA, Minobe WA, Rodriguez EM, Altman NL, Lowes BD, Gilbert EM, Buttrick PM, Kao DP, Bristow MR. Sequential analysis of myocardial gene expression with phenotypic change: Use of cross-platform concordance to strengthen biologic relevance. PLoS One 2019; 14:e0221519. [PMID: 31469842 PMCID: PMC6716635 DOI: 10.1371/journal.pone.0221519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the biologic relevance of cross-platform concordant changes in gene expression in intact human failing/hypertrophied ventricular myocardium undergoing reverse remodeling. Background Information is lacking on genes and networks involved in remodeled human LVs, and in the associated investigative best practices. Methods We measured mRNA expression in ventricular septal endomyocardial biopsies from 47 idiopathic dilated cardiomyopathy patients, at baseline and after 3–12 months of β-blocker treatment to effect left ventricular (LV) reverse remodeling as measured by ejection fraction (LVEF). Cross-platform gene expression change concordance was investigated in reverse remodeling Responders (R) and Nonresponders (NR) using 3 platforms (RT-qPCR, microarray, and RNA-Seq) and two cohorts (All 47 subjects (A-S) and a 12 patient “Super-Responder” (S-R) subset of A-S). Results For 50 prespecified candidate genes, in A-S mRNA expression 2 platform concordance (CcpT), but not single platform change, was directly related to reverse remodeling, indicating CcpT has biologic significance. Candidate genes yielded a CcpT (PCR/microarray) of 62% for Responder vs. Nonresponder (R/NR) change from baseline analysis in A-S, and ranged from 38% to 100% in S-R for PCR/microarray/RNA-Seq 2 platform comparisons. Global gene CcpT measured by microarray/RNA-Seq was less than for candidate genes, in S-R R/NR 17.5% vs. 38% (P = 0.036). For S-R global gene expression changes, both cross-cohort concordance (CccT) and CcpT yielded markedly greater values for an R/NR vs. an R-only analysis (by 22 fold for CccT and 7 fold for CcpT). Pathway analysis of concordant global changes for R/NR in S-R revealed signals for downregulation of multiple phosphoinositide canonical pathways, plus expected evidence of a β1-adrenergic receptor gene network including enhanced Ca2+ signaling. Conclusions Two-platform concordant change in candidate gene expression is associated with LV biologic effects, and global expression concordant changes are best identified in an R/NR design that can yield novel information.
Collapse
Affiliation(s)
- Lee S Toni
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ian A Carroll
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,ARCA biopharma, Westminster, Colorado, United States of America
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jessica A Schwisow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wayne A Minobe
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Erin M Rodriguez
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Natasha L Altman
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Brian D Lowes
- Division of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Edward M Gilbert
- Division of Cardiology, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| | - Peter M Buttrick
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - David P Kao
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Michael R Bristow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,ARCA biopharma, Westminster, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| |
Collapse
|
31
|
Abstract
Heritable cardiomyopathies are a class of heart diseases caused by variations in a number of genetic loci. Genetic variants on one allele lead to either a degraded protein, which causes a haploinsufficiency of that protein, or a nonfunctioning protein that subverts the molecular system within which the protein works. Over years, both of these mechanisms eventually lead to diseased heart tissue and symptoms of a failing heart. Most cardiomyopathy treatments repurpose heart failure drugs to manage these symptoms and avoid adverse outcomes. There are few therapies that correct the underlying pathogenic genetic or molecular mechanism. This review will reflect on this unmet clinical need in genetic cardiomyopathies and consider a variety of therapies that address the mechanism of disease rather than patient symptoms. These therapies are genetic, targeting a defective gene or transcript, or ameliorating a genetic insufficiency. However, there are also a number of small molecules under exploration that modulate downstream faulty protein products affected in cardiomyopathies.
Collapse
Affiliation(s)
- Giuliana G Repetti
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
| | - Christopher N Toepfer
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.N.T.)
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.N.T., C.E.S.)
| | - Jonathan G Seidman
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
| | - Christine E Seidman
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| |
Collapse
|
32
|
Differential expression of circulating miRNAs as a novel tool to assess BAG3-associated familial dilated cardiomyopathy. Biosci Rep 2019; 39:BSR20180934. [PMID: 30792263 PMCID: PMC6418398 DOI: 10.1042/bsr20180934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
A new familial dilated cardiomyopathy (FDCM) was found related to mutations in BAG3 gene. MicroRNAs (miRNAs) represent new targets of FDCM, although no studies have assessed clinical association between Bcl2-associated athanogene 3 (BAG3)-related DCM and miRNAs. Here, we studied whether a clinical association between BAG3-related FDCM and circulating miRNAs may have diagnostic and prognostic value in a small cohort of familial related individuals carrying a BAG3 mutation (BAG3+) and/or diagnosed of dilated cardiomyopathy (DCM) (DCM+). The analysis of 1759 circulating miRNAs showed significant differences between BAG3+ and BAG3- individuals for miRNAs mir-3191-3p, 6769b-3p, 1249-ep, 154-5p, 6855-5p, and 182-5p, while comparisons between BAG3+/DCM+ versus BAG3+/DCM- were restricted to miRNAs mir-154-5p, 6885-5p, and 182-5p, showing significant correlation with systolic and diastolic blood pressure, A wave, left atrium length, and left atrium area. Additionally, when stratified by gender and age, miRNAs were statistically correlated with critical parameters, including left ventricle ejection fraction (LVEF) and ventricular diameter, in women and young men. Likewise, 56% of BAG3+/DCM+, significantly co-expressed mir-154-5p and mir-182-5p, and a slight 4% did not express such combination, suggesting that co-expression of mir-154-5p and mir-182-5p may potentially show diagnostic value. Further studies will require long-term follow-up, and validation in larger populations.
Collapse
|
33
|
Zhang R, Xu Y, Niu H, Tao T, Ban T, Zheng L, Ai J. Lycium barbarum polysaccharides restore adverse structural remodelling and cardiac contractile dysfunction induced by overexpression of microRNA-1. J Cell Mol Med 2018; 22:4830-4839. [PMID: 30117672 PMCID: PMC6156239 DOI: 10.1111/jcmm.13740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNA‐1 (miR‐1) stands out as the most prominent microRNA (miRNA) in regulating cardiac function and has been perceived as a new potential therapeutic target. Lycium barbarum polysaccharides (LBPs) are major active constituents of the traditional Chinese medicine based on L. barbarum. The purpose of this study was to exploit the cardioprotective effect and molecular mechanism of LBPs underlying heart failure. We found that LBPs significantly reduced the expression of myocardial miR‐1. LBPs improved the abnormal ECG and indexes of cardiac functions in P‐V loop detection in transgenic (Tg) mice with miR‐1 overexpression. LBPs recovered morphological changes in sarcomeric assembly, intercalated disc and gap junction. LBPs reversed the reductions of CaM and cMLCK, the proteins targeted by miR‐1. Similar trends were also obtained in their downstream effectors including the phosphorylation of MLC2v and both total level and phosphorylation of CaMKII and cMyBP‐C. Collectively, LBPs restored adverse structural remodelling and improved cardiac contractile dysfunction induced by overexpression of miR‐1. One of the plausible mechanisms was that LBPs down‐regulated miR‐1 expression and consequently reversed miR‐1‐induced repression of target proteins relevant to myocardial contractibility. LBPs could serve as a new, at least a very useful adjunctive, candidate for prevention and therapy of heart failure.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huifang Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ting Tao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Ban
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linyao Zheng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Ai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Bristow MR, Kao DP, Breathett KK, Altman NL, Gorcsan J, Gill EA, Lowes BD, Gilbert EM, Quaife RA, Mann DL. Structural and Functional Phenotyping of the Failing Heart: Is the Left Ventricular Ejection Fraction Obsolete? JACC-HEART FAILURE 2018; 5:772-781. [PMID: 29096787 DOI: 10.1016/j.jchf.2017.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022]
Abstract
Diagnosis, prognosis, treatment, and development of new therapies for diseases or syndromes depend on a reliable means of identifying phenotypes associated with distinct predictive probabilities for these various objectives. Left ventricular ejection fraction (LVEF) provides the current basis for combined functional and structural phenotyping in heart failure by classifying patients as those with heart failure with reduced ejection fraction (HFrEF) and those with heart failure with preserved ejection fraction (HFpEF). Recently the utility of LVEF as the major phenotypic determinant of heart failure has been challenged based on its load dependency and measurement variability. We review the history of the development and adoption of LVEF as a critical measurement of LV function and structure and demonstrate that, in chronic heart failure, load dependency is not an important practical issue, and we provide hemodynamic and molecular biomarker evidence that LVEF is superior or equal to more unwieldy methods of identifying phenotypes of ventricular remodeling. We conclude that, because it reliably measures both left ventricular function and structure, LVEF remains the best current method of assessing pathologic remodeling in heart failure in both individual clinical and multicenter group settings. Because of the present and future importance of left ventricular phenotyping in heart failure, LVEF should be measured by using the most accurate technology and methodologic refinements available, and improved characterization methods should continue to be sought.
Collapse
Affiliation(s)
- Michael R Bristow
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado.
| | - David P Kao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado
| | - Khadijah K Breathett
- Division of Cardiology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Natasha L Altman
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado
| | - John Gorcsan
- Division of Cardiology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| | - Edward A Gill
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado
| | - Brian D Lowes
- Division of Cardiology, Department of Medicine, School of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Edward M Gilbert
- Division of Cardiology, Department of Medicine, School of Medicine, University of Utah Medical Center, Salt Lake City, Utah
| | - Robert A Quaife
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado
| | - Douglas L Mann
- Division of Cardiology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| |
Collapse
|
35
|
Baek SH. Beta Blockers in Heart Failure: More Evidence for an Old Friend. J Korean Med Sci 2018; 33:e196. [PMID: 29915527 PMCID: PMC6000598 DOI: 10.3346/jkms.2018.33.e196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Sang Hong Baek
- Cardiovascular Medicine Division, Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
36
|
Michalska-Kasiczak M, Bielecka-Dabrowa A, von Haehling S, Anker SD, Rysz J, Banach M. Biomarkers, myocardial fibrosis and co-morbidities in heart failure with preserved ejection fraction: an overview. Arch Med Sci 2018; 14:890-909. [PMID: 30002709 PMCID: PMC6040115 DOI: 10.5114/aoms.2018.76279] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of heart failure with preserved ejection fraction (HFpEF) is steadily increasing. Its diagnosis remains difficult and controversial and relies mostly on non-invasive echocardiographic detection of left ventricular diastolic dysfunction and elevated filling pressures. The large phenotypic heterogeneity of HFpEF from pathophysiologic al underpinnings to clinical manifestations presents a major obstacle to the development of new therapies targeted towards specific HF phenotypes. Recent studies suggest that natriuretic peptides have the potential to improve the diagnosis of early HFpEF, but they still have significant limitations, and the cut-off points for diagnosis and prognosis in HFpEF remain open to debate. The purpose of this review is to present potential targets of intervention in patients with HFpEF, starting with myocardial fibrosis and methods of its detection. In addition, co-morbidities are discussed as a means to treat HFpEF according to cut-points of biomarkers that are different from usual. Biomarkers and approaches to co-morbidities may be able to tailor therapies according to patients' pathophysiological needs. Recently, soluble source of tumorigenicity 2 (sST2), growth differentiation factor 15 (GDF-15), galectin-3, and other cardiac markers have emerged, but evidence from large cohorts is still lacking. Furthermore, the field of miRNA is a very promising area of research, and further exploration of miRNA may offer diagnostic and prognostic applications and insight into the pathology, pointing to new phenotype-specific therapeutic targets.
Collapse
Affiliation(s)
- Marta Michalska-Kasiczak
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Department of Endocrine Disorders and Bone Metabolism, 1 Chair of Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Agata Bielecka-Dabrowa
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
| | - Stefan D. Anker
- Division of Cardiology and Metabolism – Heart Failure, Cachexia and Sarcopenia, Department of Cardiology, Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
37
|
Sucharov CC, Miyamoto SD, Garcia AM. Circulating microRNAs as biomarkers in pediatric heart diseases. PROGRESS IN PEDIATRIC CARDIOLOGY 2018. [DOI: 10.1016/j.ppedcard.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Jeffrey DA, Sucharov CC. CELF1 regulates gap junction integrity contributing to dilated cardiomyopathy. NON-CODING RNA INVESTIGATION 2018; 2:10. [PMID: 30198017 PMCID: PMC6128295 DOI: 10.21037/ncri.2018.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Danielle A Jeffrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C Sucharov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
39
|
Spearman AD. Epigenetics for the pediatric cardiologist. CONGENIT HEART DIS 2017; 12:828-833. [PMID: 28984030 DOI: 10.1111/chd.12543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
A genetic basis of congenital heart disease (CHD) has been known for decades. In addition to the sequence of the genome, the contribution of epigenetics to pediatric cardiology is increasingly recognized. Multiple epigenetic mechanisms, including DNA methylation, histone modification, and RNA-based regulation, are known mediators of cardiovascular disease, including both development and progression of CHD and its sequelae. Basic understanding of the concepts of epigenetics will be essential to all pediatric cardiologists in order to understand mechanisms of pathophysiology, pharmacotherapeutic concepts, and to understand the role of epigenetics in precision medicine.
Collapse
Affiliation(s)
- Andrew D Spearman
- Medical College of Wisconsin, 9000 Wisconsin Avenue, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Shah P, Bristow MR, Port JD. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential. Curr Heart Fail Rep 2017; 14:454-464. [DOI: 10.1007/s11897-017-0362-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Insights of Chinese medicine on ventricular remodeling: Multiple-targets, individualized-treatment. Chin J Integr Med 2017; 23:643-647. [DOI: 10.1007/s11655-017-2415-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 11/27/2022]
|
42
|
de Lucia C, Komici K, Borghetti G, Femminella GD, Bencivenga L, Cannavo A, Corbi G, Ferrara N, Houser SR, Koch WJ, Rengo G. microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases. Front Med (Lausanne) 2017; 4:74. [PMID: 28660188 PMCID: PMC5466994 DOI: 10.3389/fmed.2017.00074] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, life expectancy has significantly increased although several chronic diseases persist in the population, with aging as the leading risk factor. Despite improvements in diagnosis and treatment, many elderlies suffer from cardiovascular problems that are much more frequent in an older, more fragile organism. In the long term, age-related cardiovascular diseases (CVDs) contribute to the decline of quality of life and ability to perform normal activities of daily living. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level in both physiological and pathological conditions. In this review, we will focus on the role of miRNAs in aging and age-related CVDs as heart failure, hypertension, atherosclerosis, atrial fibrillation, and diabetes mellitus. miRNAs are key regulators of complex biological mechanisms, representing an exciting potential therapeutic target in CVDs. Moreover, one major challenge in geriatric medicine is to find reliable biomarkers for diagnosis, prognosis, and prediction of the response to specific drugs. miRNAs represent a very promising tool due to their stability in the circulation and unique signature in CVDs. However, further studies are needed to investigate their translational potential in the real clinical practice.
Collapse
Affiliation(s)
- Claudio de Lucia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Klara Komici
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| |
Collapse
|