1
|
Gehlhausen JR, Kong Y, Baker E, Ramachandran S, Koumpouras F, Ko CJ, Vesely M, Little AJ, Damsky W, King B, Iwasaki A. Cutaneous lupus features specialized stromal niches and altered retroelement expression. J Invest Dermatol 2025:S0022-202X(25)00488-9. [PMID: 40409678 DOI: 10.1016/j.jid.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/25/2025]
Abstract
Cutaneous Lupus is an inflammatory skin disease causing highly morbid inflamed skin and hair loss. In order to investigate the pathophysiology of cutaneous lupus, we performed single-cell RNA and spatial sequencing of lesional and non-lesional cutaneous lupus skin compared to healthy controls. Pathway enrichment analyses of lesional keratinocytes revealed elevated responses to type I interferon, type II interferon, tumor necrosis factor, and apoptotic signaling. Detailed clustering demonstrated unique fibroblasts specific to lupus skin with likely roles in inflammatory cell recruitment and fibrosis. We also evaluated the association of retroelement expression with type I interferons in the skin. We observed increased retroelement expression which correlated with interferon-stimulated genes across multiple cell types. Moreover, we saw elevated expression of genes involved in RIG-I and cGAS-STING pathways, which transduce elevated nucleic acid signals. Treatment of active cutaneous lupus with Anifrolumab reduced RIG-I and cGAS-STING pathways in addition to the most abundant retroelement family, L2b. Our studies better define type I interferon-mediated immunopathology in cutaneous lupus and identify an association between retroelement expression and interferon signatures in cutaneous lupus.
Collapse
Affiliation(s)
| | - Yong Kong
- Yale School of Public Health; New Haven, CT, USA
| | - Emily Baker
- Yale Department of Dermatology; New Haven, CT, USA
| | | | | | - Christine J Ko
- Yale Department of Dermatology; New Haven, CT, USA; Yale Department of Pathology; New Haven, CT, USA
| | | | | | - William Damsky
- Yale Department of Dermatology; New Haven, CT, USA; Yale Department of Pathology; New Haven, CT, USA
| | - Brett King
- Yale Department of Dermatology; New Haven, CT, USA
| | - Akiko Iwasaki
- Yale Department of Dermatology; New Haven, CT, USA; Yale Department of Immunobiology; New Haven, CT, USA; Department of Molecular Cellular and Developmental Biology, Yale University; New Haven, CT, USA; Howard Hughes Medical Institute; Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Alvarez K, Anacona CA, Agudelo ER, Losada P, Orozco VH, Giraldo LF, Vásquez G, Rodriguez D, Díaz JC, Pineda R, Rojas M. Wheat germ agglutinin-nanoparticles encapsulating itacitinib target and suppress pro-inflammatory slan+ monocytes. Nanomedicine (Lond) 2025; 20:1113-1126. [PMID: 40289864 PMCID: PMC12068337 DOI: 10.1080/17435889.2025.2494500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND 6-sulfoLacNAc (slan)+ monocytes, a non-classical monocyte subset, play a pro-inflammatory role in autoimmune diseases like systemic lupus erythematosus (SLE). This study evaluates the therapeutic potential of itacitinib (ITA) encapsulated in wheat germ agglutinin-functionalized nanoparticles (WGA/F127/PNPs) to target and inhibit the JAK-STAT pathway in slan+ monocytes. METHODS We prepared ITA-loaded WGA/F127/PNPs and analyzed their binding and internalization in various leukocyte subsets using flow cytometry, focusing on slan+ and slan- monocytes. Further, peripheral blood samples from healthy controls (n = 37) and SLE patients (n = 50) were used to assess slan+ monocyte phenotypes. Co-cultures of slan+ and slan- monocytes stimulated with LPS revealed that slan+ monocytes significantly increased HLA-DR expression. RESULTS Results showed that slan+ monocytes from SLE patients were reduced compared to healthy controls (p < 0.001) and that slan+ monocytes effectively internalized WGA/F127/PNPs, unlike slan- cells. ITA-loaded nanoparticles decreased HLA-DR, CD69, and CD86 expression, STAT1 phosphorylation, and cytokine production in IFN-γ-stimulated slan+ monocytes. Findings support WGA/F127/PNPs as a promising drug delivery system for targeting slan+ monocytes, providing new therapeutic potential for SLE. CONCLUSION ITA-loaded WGA/F127/PNPs effectively target and suppress pro-inflammatory slan+ monocytes, presenting a promising, cell-specific therapeutic approach for managing systemic lupus erythematosus and related autoimmune disorders.
Collapse
Affiliation(s)
- Karen Alvarez
- Cellular Immunology and Immunogenetics Group (GICIG), Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Cristian A. Anacona
- Cellular Immunology and Immunogenetics Group (GICIG), Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | | | - Paula Losada
- Cellular Immunology and Immunogenetics Group (GICIG), Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Víctor H. Orozco
- Polymer Research Laboratory, University of Antioquia, Medellin, Colombia
| | | | - Gloria Vásquez
- Cellular Immunology and Immunogenetics Group (GICIG), Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Rheumatology Service, Hospital Universitario San Vicente Fundación, Medellin, Colombia
| | - Daniel Rodriguez
- ARTMEDICA Health Service Provider, Medellin, Antioquia, Colombia
| | - Juan Camilo Díaz
- ARTMEDICA Health Service Provider, Medellin, Antioquia, Colombia
| | - Ricardo Pineda
- ARTMEDICA Health Service Provider, Medellin, Antioquia, Colombia
| | - Mauricio Rojas
- Cellular Immunology and Immunogenetics Group (GICIG), Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Flow Cytometry Core, University Research Headquarters (SIU), University of Antioquia, Medellin, Colombia
| |
Collapse
|
3
|
Chen W, Wang X, Huang G, Sheng Q, Zhou E. Identification of cellular senescence-related genes as biomarkers for lupus nephritis based on bioinformatics. Front Genet 2025; 16:1551450. [PMID: 40290492 PMCID: PMC12021929 DOI: 10.3389/fgene.2025.1551450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Background Lupus nephritis (LN) is one of the most common and severe complications of systemic lupus erythematosus with unclear pathogenesis. The most accurate diagnosis criterion of LN is still renal biopsy and nowadays treatment strategies of LN are far from satisfactory. Cellular senescence is defined as the permanent cell cycle arrest marked by senescence-associated secretory phenotype (SASP), which has been proved to accelerate the mobility and mortality of patients with LN. The study is aimed to identify cellular senescence-related genes for LN. Methods Genes related to cellular senescence and LN were obtained from the MSigDB genetic database and GEO database respectively. Through differential gene analysis, Weighted Gene Go-expression Network Analysis (WGCNA) and machine learning algorithms, hub cellular senescence-related differentially expressed genes (CS-DEGs) were identified. By external validation, hub CS-DEGs were further filtered and the remaining genes were identified as biomarkers. We explored their potential physiopathologic function through GSEA. Results We obtained 432 genes related to cellular senescence, 1,208 differentially expressed genes (DEGs) and 840 genes in the key gene module related to LN, which were intersected with each other for CS-DEGs. Subsequent Machine learning algorithms screened out six hub CS-DEGs and finally three hub CS-DEGs, ALOX5, PTGER2 and PRKCB passed through external validation, which were identified as biomarkers. The three biomarkers were enriched in "B Cell receptor signaling pathway" and "NF-kappa B signaling pathway" based on GESA results. Conclusion This study explored the potential relationship between cellular senescence and LN, and identified three biomarkers ALOX5, PTGER2, and PRKCB playing key roles in LN, which will provide new insights for the diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Wei Chen
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
- Jiangsu University Key Laboratory of Tonifying Kidney and Anti-senescence, Nanjing, Jiangsu, China
| | - Xiaofang Wang
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Guoshun Huang
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
- Jiangsu University Key Laboratory of Tonifying Kidney and Anti-senescence, Nanjing, Jiangsu, China
| | - Qin Sheng
- Department of Nephrology, Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine (Suzhou Hospital of Traditional Chinese Medicine), Suzhou, Jiangsu, China
| | - Enchao Zhou
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
- Jiangsu University Key Laboratory of Tonifying Kidney and Anti-senescence, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zeisbrich M, Rzepka R, Finzel S, Venhoff N, Voll RE. Macrophage colony-stimulating factor receptor/CD115 + non-classical monocytes are expanded in systemic lupus erythematosus and associated with lupus nephritis. Scand J Rheumatol 2025; 54:125-134. [PMID: 39171822 DOI: 10.1080/03009742.2024.2387483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE In systemic lupus erythematosus (SLE), the non-classical monocyte compartment is expanded, but its phenotype and association with clinical disease manifestations have not been explored. METHOD Monocyte subsets from 39 SLE patients, 32 healthy age-matched controls, and 16 patients from a disease control (autoimmune connective tissue disease other than SLE) were determined based on CD14 and CD16 surface expression. Cell surface expression of the receptors for macrophage colony-stimulating factor (M-CSF) (CD115) and granulocyte-macrophage colony-stimulating factor (GM-CSF) (CD116), as well as 6-Sulpho LacNAc (slan), were analysed by flow cytometry. The association of monocyte populations with disease manifestations, disease activity markers, and current medication of each patient was analysed by chart review. RESULTS Non-classical monocytes displayed a cell-type specific signature of high M-CSF receptor CD115 and low GM-CSF receptor CD116 expression that separated them from the other two monocyte subsets. In healthy individuals, the M-CSF receptor on non-classical monocytes was an age-dependent surface marker, with lower expression in young adults. However, SLE monocytes were characterized by a marked expansion of M-CSF receptor/CD115+ non-classical monocytes in patients of all ages. The expanded population of M-CSF receptor/CD115+ non-classical monocytes was associated with lupus nephritis but not with disease activity, and coexpressed slan. CONCLUSION The non-classical monocyte subset in SLE is characterized by an expansion of M-CSF receptor/CD115+ cells that are associated with lupus nephritis and coexpress slan.
Collapse
Affiliation(s)
- M Zeisbrich
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - R Rzepka
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - S Finzel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - N Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - R E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Tan Z, Hall P, Mack M, Snelgrove SL, Kitching AR, Hickey MJ. Both Classical and Non-Classical Monocytes Patrol Glomerular Capillaries and Promote Acute Glomerular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:89-101. [PMID: 39117108 DOI: 10.1016/j.ajpath.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Monocyte patrolling of the vasculature has been ascribed primarily to the non-classical monocyte subset. However, a recent study of the glomerular microvasculature provided evidence that both classical and non-classical monocytes undergo periods of intravascular retention and migration. Despite this, whether these subsets contribute differentially to acute glomerular inflammation is unknown. This study used glomerular multiphoton intravital microscopy to investigate the capacity of classical and non-classical monocytes to patrol the glomerular microvasculature and promote acute, neutrophil-dependent glomerular inflammation. In imaging experiments in monocyte reporter Cx3cr1gfp/+ mice, co-staining with anti-Ly6B or anti-Ly6C revealed that both non-classical monocytes [CX3 chemokine receptor 1-green fluorescent protein positive (CX3CR1-GFP+)] and classical monocytes (CX3CR1-GFP+ and Ly6B+ or Ly6C+) underwent prolonged (>10 minutes) retention and migration in the glomerular microvasculature. On induction of acute glomerulonephritis, these behaviors were increased in classical, but not non-classical, monocytes. Using non-classical monocyte-deficient Csf1rCreNr4a1fl/fl mice, or anti-CCR2 to deplete classical monocytes, the removal of either subset reduced neutrophil retention and activation in acutely inflamed glomeruli, while the depletion of both subsets, via anti-CCR2 treatment in Csf1rCreNr4a1fl/fl mice, led to further reductions in neutrophil activity. In contrast, in a model of CD4+ T cell-dependent glomerulonephritis, the depletion of either monocyte subset failed to alter neutrophil responses. These findings indicate that both classical and non-classical monocytes patrol the glomerular microvasculature and promote neutrophil responses in acutely inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Matthias Mack
- Department of Internal Medicine II-Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia; Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Cheng Y, Liu L, Ye Y, He Y, Hu W, Ke H, Guo ZY, Shao G. Roles of macrophages in lupus nephritis. Front Pharmacol 2024; 15:1477708. [PMID: 39611168 PMCID: PMC11602334 DOI: 10.3389/fphar.2024.1477708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
LN is a serious complication of systemic lupus erythematosus (SLE), affecting up to 60% of patients with SLE and may lead to end-stage renal disease (ESRD). Macrophages play multifaceted roles in the pathogenesis of LN, including clearance of immune complexes, antigen presentation, regulation of inflammation, and tissue repair. Macrophages are abundant in the glomeruli and tubulointerstitium of LN patients and are positively correlated with serum creatinine levels and the severity of renal pathology. It has been shown that the infiltration of macrophages is closely associated with several clinical indicators, such as serum creatinine and complement C3 levels, anti-dsDNA antibody titers, Austin score, interstitial fibrosis and renal tubular atrophy. Moreover, cytokines expressed by macrophages were upregulated at LN onset and downregulated after remission, suggesting that macrophages may serve as markers of LN pathogenesis and remission. Therapies targeting macrophages have been shown to alleviate LN. There are two main types of macrophages in the kidney: kidney-resident macrophages (KRMs) and monocyte-derived macrophages (MDMs). KRMs and MDMs play different pathological roles in LN, with KRMs promoting leukocyte recruitment at sites of inflammation by expressing monocyte chemokines, while MDMs may exacerbate autoimmune responses by presenting immune complex antigens. Macrophages exhibit high plasticity and can differentiate into various phenotypes in response to distinct environmental stimuli. M1 (proinflammatory) macrophages are linked to the progression of active SLE, whereas the M2 (anti-inflammatory) phenotype is observed during the remission phase of LN. The polarization of macrophages in LN can be manipulated through multiple pathways, such as the modulation of signaling cascades including TLR 2/1, S1P, ERS, metabolic reprogramming, and HMGB1. This paper provides a comprehensive overview of the role of macrophages in the progression of lupus nephritis (LN), and elucidates how these cells and their secretory products function as indicators and therapeutic targets for the disease in the context of diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Yaqian Cheng
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Lulu Liu
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei Ye
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingxue He
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Wenwen Hu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Haiyan Ke
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhi-Yong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guojian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
7
|
Chernova I. Lupus Nephritis: Immune Cells and the Kidney Microenvironment. KIDNEY360 2024; 5:1394-1401. [PMID: 39120952 PMCID: PMC11441818 DOI: 10.34067/kid.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024]
Abstract
Lupus nephritis (LN) is the most common major organ manifestation of the autoimmune disease SLE (lupus), with 10% of those afflicted progressing to ESKD. The kidney in LN is characterized by a significant immune infiltrate and proinflammatory cytokine milieu that affects intrinsic renal cells and is, in part, responsible for the tissue damage observed in LN. It is now increasingly appreciated that LN is not due to unidirectional immune cell activation with subsequent kidney damage. Rather, the kidney microenvironment influences the recruitment, survival, differentiation, and activation of immune cells, which, in turn, modify kidney cell function. This review covers how the biochemical environment of the kidney ( i.e ., low oxygen tension and hypertonicity) and unique kidney cell types affect the intrarenal immune cells in LN. The pathways used by intrinsic renal cells to interact with immune cells, such as antigen presentation and cytokine production, are discussed in detail. An understanding of these mechanisms can lead to the design of more kidney-targeted treatments and the avoidance of systemic immunosuppressive effects and may represent the next frontier of LN therapies.
Collapse
Affiliation(s)
- Irene Chernova
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Yang W, Lecuona E, Wu Q, Liu X, Sun H, Alam H, Nadig SN, Bharat A. The role of lung-restricted autoantibodies in the development of primary and chronic graft dysfunction. FRONTIERS IN TRANSPLANTATION 2023; 2:1237671. [PMID: 38993924 PMCID: PMC11235341 DOI: 10.3389/frtra.2023.1237671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 07/13/2024]
Abstract
Lung transplantation is a life-saving treatment for both chronic end-stage lung diseases and acute respiratory distress syndrome, including those caused by infectious agents like COVID-19. Despite its increasing utilization, outcomes post-lung transplantation are worse than other solid organ transplants. Primary graft dysfunction (PGD)-a condition affecting more than half of the recipients post-transplantation-is the chief risk factor for post-operative mortality, transplant-associated multi-organ dysfunction, and long-term graft loss due to chronic rejection. While donor-specific antibodies targeting allogenic human leukocyte antigens have been linked to transplant rejection, the role of recipient's pre-existing immunoglobulin G autoantibodies against lung-restricted self-antigens (LRA), like collagen type V and k-alpha1 tubulin, is less understood in the context of lung transplantation. Recent studies have found an increased risk of PGD development in lung transplant recipients with LRA. This review will synthesize past and ongoing research-utilizing both mouse models and human subjects-aimed at unraveling the mechanisms by which LRA heightens the risk of PGD. Furthermore, it will explore prospective approaches designed to mitigate the impact of LRA on lung transplant patients.
Collapse
Affiliation(s)
- Wenbin Yang
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emilia Lecuona
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qiang Wu
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xianpeng Liu
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haiying Sun
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hasan Alam
- Division of Trauma & Acute Care Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Satish N. Nadig
- Division of Abdominal Transplant, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Tsao YP, Tseng FY, Chao CW, Chen MH, Yeh YC, Abdulkareem BO, Chen SY, Chuang WT, Chang PC, Chen IC, Wang PH, Wu CS, Tsai CY, Chen ST. NLRP12 is an innate immune checkpoint for repressing IFN signatures and attenuating lupus nephritis progression. J Clin Invest 2023; 133:e157272. [PMID: 36719379 PMCID: PMC9888378 DOI: 10.1172/jci157272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Signaling driven by nucleic acid sensors participates in interferonopathy-mediated autoimmune diseases. NLRP12, a pyrin-containing NLR protein, is a negative regulator of innate immune activation and type I interferon (IFN-I) production. Peripheral blood mononuclear cells (PBMCs) derived from systemic lupus erythematosus (SLE) patients expressed lower levels of NLRP12, with an inverse correlation with IFNA expression and high disease activity. NLRP12 expression was transcriptionally suppressed by runt-related transcription factor 1-dependent (RUNX1-dependent) epigenetic regulation under IFN-I treatment, which enhanced a negative feedback loop between low NLRP12 expression and IFN-I production. Reduced NLRP12 protein levels in SLE monocytes was linked to spontaneous activation of innate immune signaling and hyperresponsiveness to nucleic acid stimulations. Pristane-treated Nlrp12-/- mice exhibited augmented inflammation and immune responses; and substantial lymphoid hypertrophy was characterized in NLRP12-deficient lupus-prone mice. NLRP12 deficiency mediated the increase of autoantibody production, intensive glomerular IgG deposition, monocyte recruitment, and the deterioration of kidney function. These were bound in an IFN-I signature-dependent manner in the mouse models. Collectively, we reveal a remarkable link between low NLRP12 expression and lupus progression, which suggests the impact of NLRP12 on homeostasis and immune resilience.
Collapse
Affiliation(s)
- Yen-Po Tsao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, and
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fang-Yu Tseng
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Chih-Wei Chao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Ming-Han Chen
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, and
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Babamale Olarewaju Abdulkareem
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Se-Yi Chen
- Department of Neurosurgery, and
- School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Wen-Ting Chuang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - I-Chun Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pin-Hsuan Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, and
| | - Szu-Ting Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Preuß SL, Oehrl S, Zhang H, Döbel T, Engel U, Young JL, Spatz JP, Schäkel K. Immune complex-induced haptokinesis in human non-classical monocytes. Front Immunol 2023; 14:1078241. [PMID: 36936904 PMCID: PMC10014541 DOI: 10.3389/fimmu.2023.1078241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Formation and deposition of immune complexes (ICs) are hallmarks of various autoimmune diseases. Detection of ICs by IC receptors on leukocytes induces downstream signaling and shapes the local immune response. In many cases the pathological relevance of ICs is not well understood. We here show that ICs induce a distinct migratory response, i.e. haptokinesis in 6-sulfo LacNAc+ monocytes (slanMo) and in non-classical monocytes (ncMo) but not in intermediate (imMo) and classical monocytes (cMo). Using live imaging combined with automated cell tracking, we show that the main features of IC-dependent haptokinesis are elongation of the cell body, actin polarization at the leading edge, and highly directional migration. We find that CD16-dependent signaling mediates haptokinesis as blocking of CD16 or blocking SYK-signaling inhibited the migratory response. The activity of the metalloproteinase ADAM17 also modifies IC-dependent haptokinesis, likely at least partially via cleavage of CD16. Furthermore, using matrices with defined ligand spacing, we show that ligand density impacts the magnitude of the migratory response. Taken together, we have demonstrated that ICs induce a specific migratory response in ncMo but not in other monocyte subsets. Therefore, our work lays the groundwork for the investigation of IC-dependent haptokinesis in ncMo as a potential pathomechanism in IC-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Sophie L. Preuß
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hao Zhang
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center, Heidelberg University, Heidelberg, Germany
| | - Jennifer L. Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Biomedical Engineering Department, National University of Singapore, Singapore, Singapore
| | - Joachim P. Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
- *Correspondence: Knut Schäkel,
| |
Collapse
|
13
|
Macrophages in Lupus Nephritis: Exploring a potential new therapeutic avenue. Clin Exp Rheumatol 2022; 21:103211. [PMID: 36252930 DOI: 10.1016/j.autrev.2022.103211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) that occurs in about half of patients. LN is characterized by glomerular deposition of immune complexes, leading to subendothelial, mesangial and subepithelial electron dense deposits, triggering immune cell infiltration and glomerular as well as tubulointerstitial injury. Monocytes and macrophages are abundantly present in inflammatory lesions, both in glomeruli and the tubulointerstitium. Here we discuss how monocytes and macrophages are involved in this process and how monocytes and macrophages may represent specific therapeutic targets to control LN.
Collapse
|
14
|
Jachiet V, Ricard L, Hirsch P, Malard F, Pascal L, Beyne-Rauzy O, Peterlin P, Maria ATJ, Vey N, D'Aveni M, Gourin MP, Dimicoli-Salazar S, Banos A, Wickenhauser S, Terriou L, De Renzis B, Durot E, Natarajan-Ame S, Vekhoff A, Voillat L, Park S, Vinit J, Dieval C, Dellal A, Grobost V, Willems L, Rossignol J, Solary E, Kosmider O, Dulphy N, Zhao LP, Adès L, Fenaux P, Fain O, Mohty M, Gaugler B, Mekinian A. Reduced peripheral blood dendritic cell and monocyte subsets in MDS patients with systemic inflammatory or dysimmune diseases. Clin Exp Med 2022:10.1007/s10238-022-00866-5. [PMID: 35953763 DOI: 10.1007/s10238-022-00866-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Systemic inflammatory and autoimmune diseases (SIADs) occur in 10-20% of patients with myelodysplastic syndrome (MDS). Recently identified VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) syndrome, associated with somatic mutations in UBA1 (Ubiquitin-like modifier-activating enzyme 1), encompasses a range of severe inflammatory conditions along with hematological abnormalities, including MDS. The pathophysiological mechanisms underlying the association between MDS and SIADs remain largely unknown, especially the roles of different myeloid immune cell subsets. The aim of this study was to quantitatively evaluate peripheral blood myeloid immune cells (dendritic cells (DC) and monocytes) by flow cytometry in MDS patients with associated SIAD (n = 14, most often including relapsing polychondritis or neutrophilic dermatoses) and to compare their distribution in MDS patients without SIAD (n = 23) and healthy controls (n = 7). Most MDS and MDS/SIAD patients had low-risk MDS. Eight of 14 (57%) MDS/SIAD patients carried UBA1 somatic mutations, defining VEXAS syndrome.Compared with MDS patients, most DC and monocyte subsets were significantly decreased in MDS/SIAD patients, especially in MDS patients with VEXAS syndrome. Our study provides the first overview of the peripheral blood immune myeloid cell distribution in MDS patients with associated SIADs and raises several hypotheses: possible redistribution to inflammation sites, increased apoptosis, or impaired development in the bone marrow.
Collapse
Affiliation(s)
- Vincent Jachiet
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France. .,Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France.
| | - Laure Ricard
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Pierre Hirsch
- Service d'Hématologie Biologique, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Laurent Pascal
- Service d'Oncologie et d'Hématologie, Hôpital Saint Vincent de Paul, Université Catholique de Lille, Lille, France
| | - Odile Beyne-Rauzy
- Service de Médecine Interne, CHU de Toulouse, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Pierre Peterlin
- Service d'Hématologie Clinique, CHU de Nantes, Nantes, France
| | - Alexandre Thibault Jacques Maria
- Service de Médecine Interne, maladies multi-organiques de l'adulte, Hôpital Saint-Éloi, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Norbert Vey
- Institut Paoli-Calmettes, CRCM, Aix-Marseille Univ, Inserm, CNRS, Marseille, France
| | - Maud D'Aveni
- Service d'Hématologie et de Médecine Interne, Hôpital Brabois, CHRU Nancy, Nancy, France
| | - Marie-Pierre Gourin
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Dupuytren, CHU de Limoges, Limoges, France
| | | | - Anne Banos
- Service d'Hématologie Clinique, Centre Hospitalier Côte Basque, Bayonne, France
| | - Stefan Wickenhauser
- Service d'Hématologie Clinique, Hôpital Universitaire Carémeau, Institut de Cancérologie du Gard, Nîmes, France
| | - Louis Terriou
- Service de Médecine Interne et Immunologie Clinique, CHU Lille, 59000, Lille, France
| | - Benoit De Renzis
- Service d'Hématologie Clinique, Hôpital Estaing, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Eric Durot
- Service d'Hématologie Clinique, Hôpital Robert Debré, CHU de Reims, Reims, France
| | - Shanti Natarajan-Ame
- Service d'Hématologie, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, Strasbourg, France
| | - Anne Vekhoff
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Laurent Voillat
- Service d'Hématologie et Oncologie, CH William Morey, Chalon sur Saône, France
| | - Sophie Park
- Service d'Hématologie, Université Grenoble Alpes Et CHU Grenoble Alpes, Grenoble, France
| | - Julien Vinit
- Service de Médecine Interne, CH William Morey, Chalon sur Saône, France
| | - Céline Dieval
- Service de Médecine Interne et Hématologie, GHLA, CH de Rochefort, Rochefort, France
| | - Azeddine Dellal
- Service de Rhumatologie, Hôpital Montfermeil, Montfermeil, France
| | - Vincent Grobost
- Service de Médecine Interne, CHU Estaing, Clermont-Ferrand, France
| | - Lise Willems
- Service d'Hématologie, AP-HP, Hôpital Cochin, Paris, France
| | - Julien Rossignol
- Service d'Hématologie Adultes, AP-HP, Hôpital Necker-Enfants Malades, 75015, Paris, France
| | - Eric Solary
- Département d'Hématologie, Institut Gustave Roussy, Villejuif, France
| | - Olivier Kosmider
- Service d'Hématologie Biologique, Université de Paris, AP-HP, Hôpital Cochin, 75014, Paris, France
| | - Nicolas Dulphy
- Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, INSERM U1160, Paris, France
| | - Lin Pierre Zhao
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Lionel Adès
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Pierre Fenaux
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Olivier Fain
- Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Arsène Mekinian
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | | |
Collapse
|
15
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Oates JC, Russell DL, Van Beusecum JP. Endothelial cells: potential novel regulators of renal inflammation. Am J Physiol Renal Physiol 2022; 322:F309-F321. [PMID: 35129369 PMCID: PMC8897017 DOI: 10.1152/ajprenal.00371.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Substantial evidence has supported the role of endothelial cell (EC) activation and dysfunction in the development of hypertension, chronic kidney disease (CKD), and lupus nephritis (LN). In both humans and experimental models of hypertension, CKD, and LN, ECs become activated and release potent mediators of inflammation including cytokines, chemokines, and reactive oxygen species that cause EC dysfunction, tissue damage, and fibrosis. Factors that activate the endothelium include inflammatory cytokines, mechanical stretch, and pathological shear stress. These signals can activate the endothelium to promote upregulation of adhesion molecules, such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, which promote leukocyte adhesion and migration to the activated endothelium. More importantly, it is now recognized that some of these signals may in turn promote endothelial antigen presentation through major histocompatibility complex II. In this review, we will consider in-depth mechanisms of endothelial activation and the novel mechanism of endothelial antigen presentation. Moreover, we will discuss these proinflammatory events in renal pathologies and consider possible new therapeutic approaches to limit the untoward effects of endothelial inflammation in hypertension, CKD, and LN.
Collapse
Affiliation(s)
- Jim C. Oates
- 1Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina,2Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dayvia L. Russell
- 2Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Justin P. Van Beusecum
- 1Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina,3Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
17
|
Yanis R, Bergua C, Christelle B, Maillot F, Bigot A, Beurier P, Ferreira-Maldent N, Diot E, Gouilleux-Gruart V. Neonatal Fc receptor expression in lymphoid and myeloid cells in systemic lupus erythematosus. Lupus 2021; 30:1938-1945. [PMID: 34634960 DOI: 10.1177/09612033211045049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neonatal Fc receptor (FcRn) is a ubiquitously expressed protein historically involved in IgG and albumin recycling. Recent data suggest an involvement in the pathophysiology of antibody-mediated autoimmune diseases. Among them, systemic lupus erythematosus (SLE) implies clinical and biological abnormalities of innate and adaptive circulating immune cells, potentially involving newly described functions of FcRn. In this study, FcRn expression was assessed by flow cytometry in peripheral blood leukocytes of 41 SLE patients with either active or inactive disease and 32 healthy donors. FcRn expression in B cells, natural killer cells, and T cells of SLE patients was statistically lower as compared to healthy donors. Conversely, FcRn level was statistically higher in non-classical monocyte subpopulations (CD14+CD16+ monocytes) of SLE patients versus healthy donors providing an interesting perspective to further explore its role in SLE pathophysiology.
Collapse
Affiliation(s)
- Ramdani Yanis
- Groupement Innovation et Ciblage Cellulaire EA, 26928Tours University, Tours, France.,Internal Medicine Unit, 26928University Hospital of Tours, Tours, France
| | - Cécile Bergua
- Groupement Innovation et Ciblage Cellulaire EA, 26928Tours University, Tours, France
| | | | - François Maillot
- Internal Medicine Unit, 26928University Hospital of Tours, Tours, France
| | - Adrien Bigot
- Internal Medicine Unit, 26928University Hospital of Tours, Tours, France
| | - Pauline Beurier
- Internal Medicine Unit, 26928University Hospital of Tours, Tours, France
| | | | - Elisabeth Diot
- Internal Medicine Unit, 26928University Hospital of Tours, Tours, France
| | | |
Collapse
|
18
|
Toro-Domínguez D, Alarcón-Riquelme ME. "Precision Medicine in Autoimmune Diseases: Fact or Fiction". Rheumatology (Oxford) 2021; 60:3977-3985. [PMID: 34003926 DOI: 10.1093/rheumatology/keab448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/04/2023] Open
Abstract
Much is said about precision medicine, but its real significance and the possibility of making it a real possibility is far from certain. Several studies in each of the autoimmune diseases have provided important insight into molecular pathways but the use of molecular studies, particularly those looking into transcriptome pathways, have seldom approached the possibility of using the data for disease stratification and then for prediction, or diagnosis. Only the type I interferon signature has been considered in the use of this signature for therapeutic purposes, particularly in the case of systemic lupus erythematosus. Here, the authors provide an update on precision medicine, what can be translated into clinical practice, and what do single-cell molecular studies provide to our knowledge in autoimmune diseases, focusing on a few examples. The main message being that we should try to move from precision medicine of established disease to preventive medicine in order to predict the development of disease.
Collapse
Affiliation(s)
- Daniel Toro-Domínguez
- Pfizer-University of Granada-Andalusian Regional Government (GENYO) Center for Genomics and Oncological Research, Av de la Ilustración 114, Parque Tecnológico de la Salud, Granada, 18016, Spain
| | - Marta E Alarcón-Riquelme
- Pfizer-University of Granada-Andalusian Regional Government (GENYO) Center for Genomics and Oncological Research, Av de la Ilustración 114, Parque Tecnológico de la Salud, Granada, 18016, Spain
| |
Collapse
|
19
|
Padern G, Duflos C, Ferreira R, Assou S, Guilpain P, Maria ATJ, Goulabchand R, Galea P, Jurtela M, Jorgensen C, Pers YM. Identification of a Novel Serum Proteomic Signature for Primary Sjögren's Syndrome. Front Immunol 2021; 12:631539. [PMID: 33708222 PMCID: PMC7942395 DOI: 10.3389/fimmu.2021.631539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Context Primary Sjögren's syndrome (pSS) is a complex heterogeneous autoimmune disease (AID) which can mimic rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE). Our exploratory study investigated serum biomarkers that may discriminate pSS from RA and SLE. Methods Serum concentrations of 63 biomarkers involved in immune cell trafficking, inflammatory response, cellular movement, and cell-to-cell signaling were measured in AID patients, included prospectively into the study at the Montpellier University Hospital. A multivariate analysis by multiple logistic regression was performed, and discriminative power assessed using logistic regression adjusted on significant demographic factors. Results Among the 95 patients enrolled, 42 suffered from pSS, 28 from RA, and 25 from SLE. Statistical analysis showed that concentrations of BDNF (OR = 0.493 with 95% CI [0.273-0.891]; p = 0.0193) and I-TAC/CXCL11 (OR = 1.344 with 95% CI [1.027-1.76]; p = 0.0314) can significantly discriminate pSS from RA. Similarly, greater concentrations of sCD163 (OR = 0.803 with 95% CI [0.649-0.994]; p = 0.0436), Fractalkine/CX3CL1 (OR = 0.534 with 95% CI [0.287-0. 991]; p = 0.0466), MCP-1/CCL2 (OR = 0.839 with 95% CI [0.732-0.962]; p = 0.0121), and TNFa (OR = 0.479 with 95% CI [0.247-0.928]; p = 0.0292) were associated with SLE diagnosis compared to pSS. In addition, the combination of low concentrations of BDNF and Fractalkine/CX3CL1 was highly specific for pSS (specificity 96.2%; positive predictive value 80%) compared to RA and SLE, as well as the combination of high concentrations of I-TAC/CXCL11 and low concentrations of sCD163 (specificity 98.1%; positive predictive value 75%). Conclusion Our study highlights biomarkers potentially involved in pSS, RA, and SLE pathophysiology that could be useful for developing a pSS-specific diagnostic tool.
Collapse
Affiliation(s)
- Guillaume Padern
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Claire Duflos
- Clinical Research and Epidemiology Unit, CHU Montpellier, Montpellier University, Montpellier, France
| | - Rosanna Ferreira
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Internal Medicine and Multi-Organic Diseases Department, Hôpital Saint Éloi, CHU Montpellier, Montpellier, France
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Internal Medicine and Multi-Organic Diseases Department, Hôpital Saint Éloi, CHU Montpellier, Montpellier, France
| | - Radjiv Goulabchand
- Internal Medicine Department, Caremeau University Hospital, Nîmes, France
| | - Pascale Galea
- BioRad Laboratory, Research and Development Department, Montpellier, France
| | - Maja Jurtela
- Clinical Research and Epidemiology Unit, CHU Montpellier, Montpellier University, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Yves-Marie Pers
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
20
|
Van Leeuwen-Kerkhoff N, Westers TM, Poddighe PJ, Povoleri GAM, Timms JA, Kordasti S, De Gruijl TD, Van de Loosdrecht AA. Reduced frequencies and functional impairment of dendritic cell subsets and non-classical monocytes in myelodysplastic syndromes. Haematologica 2021; 107:655-667. [PMID: 33567812 PMCID: PMC8883570 DOI: 10.3324/haematol.2020.268136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 11/09/2022] Open
Abstract
In myelodysplastic syndromes (MDS) the immune system is involved in pathogenesis as well as in disease progression. Dendritic cells (DC) are key players of the immune system by serving as regulators of immune responses. Their function has been scarcely studied in MDS and most of the reported studies didn't investigate naturally occurring DC subsets. Therefore, we here examined the frequency and function of DC subsets and slan+ non-classical monocytes in various MDS risk groups. Frequencies of DC as well as of slan+ monocytes were decreased in MDS bone marrow (BM) compared to normal bone marrow (NBM) samples. Transcriptional profiling revealed down-regulation of transcripts related to pro-inflammatory pathways in MDS-derived cells as compared to NBM. Additionally, their capacity to induce T cell proliferation was impaired. Multidimensional mass cytometry showed that whereas healthy donor-derived slan+ monocytes supported Th1/Th17/Treg differentiation/expansion their MDS-derived counterparts also mediated substantial Th2 expansion. Our findings point to a role for an impaired ability of DC subsets to adequately respond to cellular stress and DNA damage in the immune escape and progression of MDS. As such, it paves the way toward potential novel immunotherapeutic interventions.
Collapse
Affiliation(s)
- Nathalie Van Leeuwen-Kerkhoff
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Theresia M Westers
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Pino J Poddighe
- Department of Clinical Genetics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam
| | - Giovanni A M Povoleri
- Department Inflammation Biology, King's College London, Centre for Inflammation Biology and Cancer Immunology, London
| | - Jessica A Timms
- Systems Cancer Immunology Lab, Comprehensive Cancer Center, King's College London, London
| | - Shahram Kordasti
- Systems Cancer Immunology Lab, Comprehensive Cancer Center, King's College London, London, United Kingdom; Dipartimento Scienze Cliniche e Molecolari, UNIVPM, Ancona
| | - Tanja D De Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Arjan A Van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam.
| |
Collapse
|
21
|
Álvarez K, Villar-Vesga J, Ortiz-Reyes B, Vanegas-García A, Castaño D, Rojas M, Vásquez G. Induction of NF-κB inflammatory pathway in monocytes by microparticles from patients with systemic lupus erythematosus. Heliyon 2020; 6:e05815. [PMID: 33409392 PMCID: PMC7773880 DOI: 10.1016/j.heliyon.2020.e05815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Background Elevated levels of circulating microparticles (MPs) and molecules of the complement system have been reported in patients with systemic lupus erythematosus (SLE). Moreover, microparticles isolated from patients with SLE (SLE-MPs) contain higher levels of damage-associated molecular patterns (DAMPs) than MPs from healthy controls (CMPs). We hypothesize that the uptake of MPs by monocytes could contribute to the chronic inflammatory processes observed in patients with SLE. Therefore, the aim of this study was to evaluate the expression of activation markers, production of proinflammatory mediators, and activation of the NF-κB signaling pathway in monocytes treated with CMPs and SLE-MPs. Methodology Monocytes isolated from healthy individuals were pretreated or not with pyrrolidine dithiocarbamate (PDTC) and cultured with CMPs and SLE-MPs. The cell surface expression of CD69 and HLA-DR were evaluated by flow cytometry; cytokine and eicosanoid levels were quantified in culture supernatants by Cytokine Bead Array and ELISA, respectively; and the NF-κB activation was evaluated by Western blot and epifluorescence microscopy. Results The cell surface expression of HLA-DR and CD69, and the supernatant levels of IL-6, IL-1β, PGE2, and LTB4 were higher in cultures of monocytes treated with SLE-MPs than CMPs. These responses were blocked in the presence of PDTC, a pharmacological inhibitor of the NF-κB pathway, with concomitant reduction of IκBα and cytoplasmic p65, and increased nuclear translocation of p65. Conclusions The present findings indicate that significant uptake of SLE-MPs by monocytes results in activation, production of inflammatory mediators, and triggering of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Juan Villar-Vesga
- Grupo de Neurociencias de Antioquia, Área de Neurobiología Celular y Molecular, Facultad de Medicina. Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Calle 70 No.52-21, Medellín, Colombia
| | - Blanca Ortiz-Reyes
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Sección de Reumatología, Hospital Universitario San Vicente Fundación, Calle 64 No.51D-154, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| |
Collapse
|
22
|
Kolopp-Sarda MN, Azevedo PM, Miossec P. IgG subclasses in cryoglobulins: link to composition and clinical manifestations. Arthritis Res Ther 2020; 22:267. [PMID: 33183349 PMCID: PMC7659205 DOI: 10.1186/s13075-020-02364-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Cryoglobulins (CG) are immunoglobulins which precipitate at low temperature. The analysis of IgG subclass composition of CG is poorly reported. The aim of this study was to determine the subclasses of IgG-containing type I and mixed type II and III CG in relation to clinical manifestations. METHODS Out of a previous series of 1675 patients, inclusion criteria were a cryoprecipitate > 1 mL and a total IgG > 300 mg/L. IgG subclasses were quantified by immunoturbidimetry, rheumatoid factor (RF), and C4 by immunonephelometry. Clinical parameters were collected from hospital charts. RESULTS CG samples from 86 patients were included, 10 type I CG and 76 mixed CG. Type I CG subclasses were IgG1 (6/10) and IgG2/IgG3 (4/10), never IgG4. IgG subclass in type II vs. III CG were 73.3 ± 15.2% vs. 52.5 ± 20.7% for IgG1 (p < 0.0001), 15.4 ± 8.2% vs. 25.9 ± 14% for IgG2 (p < 0.0001), 8.4 ± 12.4 vs. 21.2 ± 14% for IgG3 (p < 0.0001), and 3 ± 5.2% vs. 0.5 ± 1.2 for IgG4 (p < 0.0001). In mixed CG, the higher proportion of IgG4 was associated with RF positive CG (p = 0.01) and low C4 (p = 0.01). In type I CG, IgG1 were associated with severe vasculitis manifestations, IgG2/IgG3 with cutaneous or renal manifestations. In mixed CG, IgG2 was the only subclass associated with CG manifestations, with a higher concentration in asymptomatic (162.6 ± 29.5 mg/L) vs. symptomatic patients with cutaneous (103 ± 17.8 mg/L, p = 0.04) and neurological (108 ± 24 mg/L, p = 0.04) manifestations. CONCLUSION In type I IgG CG, IgG1 was the main CG subclass associated with CG vasculitis. In mixed CG, low IgG2 concentration was linked to CG cutaneous and neurological manifestations.
Collapse
Affiliation(s)
- Marie N Kolopp-Sarda
- Immunogenomics and Inflammation research Unit EA 4130, University of Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon, France
| | - Pedro Ming Azevedo
- Immunogenomics and Inflammation research Unit EA 4130, University of Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation research Unit EA 4130, University of Lyon, Lyon, France.
- Department of Immunology and Rheumatology, Clinical Immunology Unit, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
23
|
Li B, Tang Y, Ni X, Chen W. Immune Cell Landscape Identification Associates Intrarenal Mononuclear Phagocytes With Onset and Remission of Lupus Nephritis in NZB/W Mice. Front Genet 2020; 11:577040. [PMID: 33304383 PMCID: PMC7693546 DOI: 10.3389/fgene.2020.577040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Objective A challenging issue in the clinical management of lupus nephritis (LN) is the resistance to immunosuppressive therapy. We postulated that perturbed intrarenal immune cell landscape affected LN onset and remission induction, and shedding light on the characteristics of intrarenal immune cell infiltration could cultivate more efficient treatment regimens. Materials and Methods Genome-wide expression profiles of microarray datasets were downloaded from the Gene Expression Omnibus database. The CIBERSORT algorithm was used to analyze the intrarenal immune cell landscape, followed by Pearson correlation analysis and principal component analysis. The differentially expressed genes were identified and subjected to Gene Ontology (GO) enrichment analyses and protein-protein interaction network establishment, being visualized by Cytoscape and further analyzed by CytoHubba to extract hub genes. Hub genes were also validated in the genomic dataset from kidney biopsy-proven LN patients. Results In addition to memory B cells, monocytes and M1 macrophages were identified as two predominantly increased intrarenal immune cell types in LN-prone NZB/W mice upon nephritis onset. Most interestingly, apart from memory B cells, monocytes and M1 macrophages proportions in kidney tissue were significantly lower in early remission mice compared with late remission mice. Furthermore, GO analysis showed that intrarenal mononuclear phagocytes triggered nephritis onset mainly via the initiation of adaptive immune response and inflammatory reaction, but this functional involvement was mitigated upon remission induction. Hub genes related to LN onset in NZB/W mice were validated in the genomic dataset from kidney biopsy-proven LN patients. Conclusion LN characterizes aberrant mononuclear phagocytes abundance and signature upon disease onset, of which the reversal is associated with early remission induction in LN-prone NZB/W mice. Mononuclear phagocytes might be an adjunctive histology marker for monitoring disease onset and stratifying LN patients in terms of response to remission induction therapy.
Collapse
Affiliation(s)
- Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
24
|
Turner-Stokes T, Garcia Diaz A, Pinheiro D, Prendecki M, McAdoo SP, Roufosse C, Cook HT, Pusey CD, Woollard KJ. Live Imaging of Monocyte Subsets in Immune Complex-Mediated Glomerulonephritis Reveals Distinct Phenotypes and Effector Functions. J Am Soc Nephrol 2020; 31:2523-2542. [PMID: 32868399 DOI: 10.1681/asn.2019121326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Immune complexes within glomerular capillary walls cause crescentic GN (CrGN). Monocytes and macrophages are important in mediating CrGN, but little work has been done to phenotype the subpopulations involved and determine their respective contributions to glomerular inflammation. METHODS Live glomerular imaging using confocal microscopy monitored intravascular monocyte subset behavior during nephrotoxic nephritis (NTN) in a novel WKY-hCD68-GFP monocyte/macrophage reporter rat strain. Flow cytometry and qPCR further analyzed ex vivo the glomerular leukocyte infiltrate during NTN. RESULTS Non-classical monocytes surveyed the glomerular endothelium via lymphocyte function-associated antigen 1 (LFA-1) in the steady state. During NTN, non-classical monocytes were recruited first, but subsequent recruitment and retention of classical monocytes was associated with glomerular damage. Monocytes recruited to the glomerular vasculature did not undergo transendothelial migration. This finding suggests that inflammation in immune complex-mediated CrGN is predominantly intravascular, driven by dynamic interactions between intravascular blood monocytes and the endothelium. Glomerular endothelium and non-classical monocytes overexpressed a distinct chemokine axis, which may orchestrate inflammatory myeloid cell recruitment and expression of damage mediators. Reduced classical monocyte recruitment in Lewis rats during NTN confirmed a role for CD16 in mediating glomerular damage. CONCLUSIONS Monocyte subsets with distinct phenotypes and effector functions may be important in driving inflammation in experimental CrGN resulting from immune complexes formed within the glomerular capillary wall. LFA-1-dependent endothelial surveillance by non-classical monocytes may detect immune complexes through CD16, orchestrating the inflammatory response through intravascular retention of classical monocytes, which results in glomerular damage and proteinuria.
Collapse
Affiliation(s)
| | - Ana Garcia Diaz
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Damilola Pinheiro
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Maria Prendecki
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Candice Roufosse
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - H Terence Cook
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Imperial College London, London, UK
| |
Collapse
|
25
|
Rammensee HG, Wiesmüller KH, Chandran PA, Zelba H, Rusch E, Gouttefangeas C, Kowalewski DJ, Di Marco M, Haen SP, Walz JS, Gloria YC, Bödder J, Schertel JM, Tunger A, Müller L, Kießler M, Wehner R, Schmitz M, Jakobi M, Schneiderhan-Marra N, Klein R, Laske K, Artzner K, Backert L, Schuster H, Schwenck J, Weber ANR, Pichler BJ, Kneilling M, la Fougère C, Forchhammer S, Metzler G, Bauer J, Weide B, Schippert W, Stevanović S, Löffler MW. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer 2019; 7:307. [PMID: 31730025 PMCID: PMC6858783 DOI: 10.1186/s40425-019-0796-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously showed that the bacterial lipopeptide Pam3Cys-Ser-Ser, meanwhile established as a toll-like receptor (TLR) 1/2 ligand, acts as a strong adjuvant for the induction of virus specific CD8+ T cells in mice, when covalently coupled to a synthetic peptide. CASE PRESENTATION We now designed a new water-soluble synthetic Pam3Cys-derivative, named XS15 and characterized it in vitro by a TLR2 NF-κB luciferase reporter assay. Further, the capacity of XS15 to activate immune cells and stimulate peptide-specific CD8+ T and NK cells by 6-sulfo LacNAc+ monocytes was assessed by flow cytometry as well as cytokine induction using immunoassays. The induction of a functional immune response after vaccination of a volunteer with viral peptides was assessed by ELISpot assay and flow cytometry in peripheral blood cells and infiltrating cells at the vaccination site, as well as by immunohistochemistry and imaging. XS15 induced strong ex vivo CD8+ and TH1 CD4+ responses in a human volunteer upon a single injection of XS15 mixed to uncoupled peptides in a water-in-oil emulsion (Montanide™ ISA51 VG). A granuloma formed locally at the injection site containing highly activated functional CD4+ and CD8+ effector memory T cells. The total number of vaccine peptide-specific functional T cells was experimentally assessed and estimated to be 3.0 × 105 in the granuloma and 20.5 × 106 in peripheral blood. CONCLUSION Thus, in one volunteer we show a granuloma forming by peptides combined with an efficient adjuvant in a water-in-oil-emulsion, inducing antigen specific T cells detectable in circulation and at the vaccination site, after one single vaccination only. The ex vivo T cell responses in peripheral blood were detectable for more than one year and could be strongly boosted by a second vaccination. Hence, XS15 is a promising adjuvant candidate for peptide vaccination, in particular for tumor peptide vaccines in a personalized setting.
Collapse
Affiliation(s)
- Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.
| | | | - P Anoop Chandran
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Henning Zelba
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Elisa Rusch
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Daniel J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Moreno Di Marco
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Sebastian P Haen
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Yamel Cardona Gloria
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Johanna Bödder
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Jill-Marie Schertel
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Antje Tunger
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Luise Müller
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Maximilian Kießler
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Reinhild Klein
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Kerstin Artzner
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Linus Backert
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Heiko Schuster
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Johannes Schwenck
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tübingen, Tübingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Bernd J Pichler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany.,Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Christian la Fougère
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Gisela Metzler
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Jürgen Bauer
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Wilfried Schippert
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Markus W Löffler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany. .,Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Tübingen, Germany. .,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Hofer TP, van de Loosdrecht AA, Stahl-Hennig C, Cassatella MA, Ziegler-Heitbrock L. 6-Sulfo LacNAc (Slan) as a Marker for Non-classical Monocytes. Front Immunol 2019; 10:2052. [PMID: 31572354 PMCID: PMC6753898 DOI: 10.3389/fimmu.2019.02052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Monocytes are subdivided into three subsets, which have different phenotypic and functional characteristics and different roles in inflammation and malignancy. When in man CD14 and CD16 monoclonal antibodies are used to define these subsets, then the distinction of non-classical CD14low and intermediate CD14high monocytes requires setting a gate in what is a gradually changing level of CD14 expression. In the search for an additional marker to better dissect the two subsets we have explored the marker 6-sulfo LacNAc (slan). Slan is a carbohydrate residue originally described to be expressed on the cell surface of a type of dendritic cell in human blood. We elaborate herein that the features of slan+ cells are congruent with the features of CD16+ non-classical monocytes and that slan is a candidate marker for definition of non-classical monocytes. The use of this marker may help in studying the role of non-classical monocytes in health and in diagnosis and monitoring of disease.
Collapse
Affiliation(s)
- Thomas P Hofer
- Immunoanalytics Core Facility and RG Tissue Control of Immunocytes, Helmholtz Centre Munich, Munich, Germany
| | | | | | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
27
|
Bagchi-Chakraborty J, Francis A, Bray T, Masters L, Tsiantoulas D, Nus M, Harrison J, Broekhuizen M, Leggat J, Clatworthy MR, Espéli M, Smith KG, Binder CJ, Mallat Z, Sage AP. B Cell Fcγ Receptor IIb Modulates Atherosclerosis in Male and Female Mice by Controlling Adaptive Germinal Center and Innate B-1-Cell Responses. Arterioscler Thromb Vasc Biol 2019; 39:1379-1389. [PMID: 31092015 PMCID: PMC6636804 DOI: 10.1161/atvbaha.118.312272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/22/2019] [Indexed: 02/02/2023]
Abstract
Objective- Investigate the impact of modulating B cell FcγRIIb (Fcγ receptor IIb) expression on atherosclerosis. Approach and Results- Western diet-induced atherosclerosis was assessed in Ldlr-/- or Apoe-/- mice with B cell-specific overexpression of FcγRIIb or with an FcγRIIb promoter mutation that alters FcγRIIb expression in germinal center (GC) B cells. In males, overexpression of FcγRIIb on B cells severely reduced activated, class switched B cell responses, as indicated by reductions in GC B cells, plasma cells, and serum IgG but not IgM antibodies. Male mice overexpressing FcγRIIb developed less atherosclerosis, suggesting a pathogenic role for GC B cell IgG responses. In support of this hypothesis, male mice with a promoter polymorphism-driven reduction in FcγRIIb on GC B cells but not plasma cells have a converse phenotype of enhanced GC responses and IgG2c antibodies and enhanced atherosclerosis. IgG2c significantly enhanced TNF (tumor necrosis factor) secretion by CD11b+ CD11c+ cells expressing the high-affinity receptor FcγRIV. In females, overexpression of FcγRIIb on B cells not only reduced GC B cell responses but also substantially reduced B-1 cells and IgM antibodies, which translated into acceleration of atherosclerosis. Promoter-driven reduction in FcγRIIb did not alter GC B cell responses in females and, therefore, had no impact on atherosclerosis. Conclusions- B cell FcγRIIb differentially alters proatherogenic adaptive GC B cell and atheroprotective innate B-1 responses in male and female mice fed a western diet. Our results highlight the importance of a better understanding and ability to selectively target B cell responses in future immunotherapeutic approaches against human cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Jayashree Bagchi-Chakraborty
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Anna Francis
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Toni Bray
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Leanne Masters
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Dimitrios Tsiantoulas
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Meritxell Nus
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - James Harrison
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Michelle Broekhuizen
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Jennifer Leggat
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
| | - Marion Espéli
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France (M.E.)
| | - Kenneth G.C. Smith
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria (C.J.B.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (C.J.B.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
- Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, France (Z.M.)
| | - Andrew P. Sage
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
28
|
Oras A, Peet A, Giese T, Tillmann V, Uibo R. A study of 51 subtypes of peripheral blood immune cells in newly diagnosed young type 1 diabetes patients. Clin Exp Immunol 2019; 198:57-70. [PMID: 31116879 DOI: 10.1111/cei.13332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. Various immune cell populations are involved in disease development and natural course. However, to our knowledge, so far there are no comprehensive comparative investigations of all main immune cell populations and their most important subsets at the onset of disease. Therefore, in the current study, we analyzed 51 peripheral blood immune cell populations in 22 young T1D patients and in 25 age-matched controls using a comprehensive polychromatic flow cytometry panel developed for whole blood by the COST Action no. BM0907 ENTIRE (European Network for Translational Immunology Research and Education: From Immunomonitoring to Personalized Immunotherapy) consortium. We found that in T1D patients, frequencies and absolute counts of natural killer (NK) cells, dendritic cells (DC) and T cells, as well as their respective subsets, were significantly altered compared to controls. Further, we observed that changes in several cell populations (e.g. CD14+ CD16+ non-classical monocytes, plasmablasts) were dependent on the age of the patient. In addition to age-related changes, we also found that alterations in immune cell patterns were associated with parameters such as the presence of ketoacidosis and C-peptide serum levels. Our study provides a foundation for future studies investigating different cell lineages and their role in T1D and illustrates the value of polychromatic flow cytometry for evaluating all main peripheral immune cells and their subsets in whole blood samples.
Collapse
Affiliation(s)
- A Oras
- Instititute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - A Peet
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - T Giese
- Institut für Immunologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - V Tillmann
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - R Uibo
- Instititute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
29
|
Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol 2019; 10:948. [PMID: 31191513 PMCID: PMC6540605 DOI: 10.3389/fimmu.2019.00948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universtät Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
30
|
Wagner F, Hölig U, Wilczkowski F, Plesca I, Sommer U, Wehner R, Kießler M, Jarosch A, Flecke K, Arsova M, Tunger A, Bogner A, Reißfelder C, Weitz J, Schäkel K, Troost EGC, Krause M, Folprecht G, Bornhäuser M, Bachmann MP, Aust D, Baretton G, Schmitz M. Neoadjuvant Radiochemotherapy Significantly Alters the Phenotype of Plasmacytoid Dendritic Cells and 6-Sulfo LacNAc + Monocytes in Rectal Cancer. Front Immunol 2019; 10:602. [PMID: 30984181 PMCID: PMC6450462 DOI: 10.3389/fimmu.2019.00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/06/2019] [Indexed: 12/23/2022] Open
Abstract
Neoadjuvant radiochemotherapy (nRCT) can significantly influence the tumor immune architecture that plays a pivotal role in regulating tumor growth. Whereas, various studies have investigated the effect of nRCT on tumor-infiltrating T cells, little is known about its impact on the frequency and activation status of human dendritic cells (DCs). Plasmacytoid DCs (pDCs) essentially contribute to the regulation of innate and adaptive immunity and may profoundly influence tumor progression. Recent studies have revealed that higher pDC numbers are associated with poor prognosis in cancer patients. 6-sulfo LacNAc-expressing monocytes (slanMo) represent a particular proinflammatory subset of human non-classical blood monocytes that can differentiate into DCs. Recently, we have reported that activated slanMo produce various proinflammatory cytokines and efficiently stimulate natural killer cells and T lymphocytes. slanMo were also shown to accumulate in clear cell renal cell carcinoma (ccRCC) and in metastatic lymph nodes from cancer patients. Here, we investigated the influence of nRCT on the frequency of rectal cancer-infiltrating pDCs and slanMo. When evaluating rectal cancer tissues obtained from patients after nRCT, a significantly higher density of pDCs in comparison to pre-nRCT tissue samples was found. In contrast, the density of slanMo was not significantly altered by nRCT. Further studies revealed that nRCT significantly enhances the proportion of rectal cancer-infiltrating CD8+ T cells expressing the cytotoxic effector molecule granzyme B. When exploring the impact of nRCT on the phenotype of rectal cancer-infiltrating pDCs and slanMo, we observed that nRCT markedly enhances the percentage of inducible nitric oxide synthase (iNOS)- or tumor necrosis factor (TNF) alpha-producing slanMo. Furthermore, nRCT significantly increased the percentage of mature CD83+ pDCs in rectal cancer tissues. Moreover, the proportion of pDCs locally expressing interferon-alpha, which plays a major role in antitumor immunity, was significantly higher in post-nRCT tissues compared to pre-nRCT tumor specimens. These novel findings indicate that nRCT significantly influences the frequency and/or phenotype of pDCs, slanMo, and CD8+ T cells, which may influence the clinical response of rectal cancer patients to nRCT.
Collapse
Affiliation(s)
- Felix Wagner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Hölig
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friederike Wilczkowski
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ioana Plesca
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, University Hospital of Dresden, Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Kießler
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Jarosch
- Institute of Pathology, University Hospital of Dresden, Dresden, Germany
| | - Katharina Flecke
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maia Arsova
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Andreas Bogner
- Department of Gastrointestinal, Thoracic, and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christoph Reißfelder
- Department of Surgery, Mannheim University Medical Centre, University of Heidelberg, Mannheim, Germany
| | - Jürgen Weitz
- Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gastrointestinal, Thoracic, and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Gunnar Folprecht
- Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael P Bachmann
- Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, Dresden, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital of Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gustavo Baretton
- Institute of Pathology, University Hospital of Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany.,Partner Site Dresden, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
|
32
|
Abstract
In recent years, therapeutic monoclonal antibodies have made impressive progress, providing great benefit by successfully treating malignant and chronic inflammatory diseases. Monoclonal antibodies with broadly neutralizing effects against specific antigens, or that target specific immune regulators, manifest therapeutic effects via their Fab fragment specificities. Subsequently therapeutic efficacy is mediated mostly by interactions of the Fc fragments of the antibodies with their receptors (FcR) displayed on cells of the immune system. These interactions can trigger a series of immunoregulatory responses, involving both innate and adaptive immune systems and including cross-presentation of antigens, activation of CD8+ T cells and CD4+ T cells, phagocytosis, complement-mediated antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). The nature of the triggered effector functions of the antibodies is markedly affected by the glycosylation patterns of the Fc fragments. These can cause differences in the conformation of the heavy chains of antibodies, with resultant changes in antibody binding affinity and activation of the complement system. Studies of the Fc glycosylation profiles together with the associated Fc effector functions and FcR/CR interactions promoted interest and progress in engineering therapeutic antibodies. Furthermore, because antigen–antibody immune complexes (ICs) have shown similar actions, in addition to certain novel immunoregulatory mechanisms that also reshape immune responses, the properties of ICs are being explored in new approaches for prevention and therapy of diseases. In this review, both basic studies and experimental/clinical applications of ICs leading to the development of preventive and therapeutic vaccines are presented.
Collapse
|
33
|
Holgado MP, Sananez I, Raiden S, Geffner JR, Arruvito L. CD32 Ligation Promotes the Activation of CD4 + T Cells. Front Immunol 2018; 9:2814. [PMID: 30555482 PMCID: PMC6284025 DOI: 10.3389/fimmu.2018.02814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Low affinity receptors for the Fc portion of IgG (FcγRs) represent a critical link between innate and adaptive immunity. Immune complexes (ICs) are the natural ligands for low affinity FcγRs, and high levels of ICs are usually detected in both, chronic viral infections and autoimmune diseases. The expression and function of FcγRs in myeloid cells, NK cells and B cells have been well characterized. By contrast, there are controversial reports about the expression and function of FcγRs in T cells. Here, we demonstrated that ~2% of resting CD4+ T cells express cell surface FcγRII (CD32). Analysis of CD32 expression in permeabilized cells revealed an increased proportion of CD4+CD32+ T cells (~9%), indicating that CD4+ T cells store a CD32 cytoplasmic pool. Activation of CD4+ T cells markedly increased the expression of CD32 either at the cell surface or intracellularly. Analysis of CD32 mRNA transcripts in activated CD4+ T cells revealed the presence of both, the stimulatory FcγRIIa (CD32a) and the inhibitory FcγRIIb (CD32b) isoforms of CD32, being the CD32a:CD32b mRNA ratio ~5:1. Consistent with this finding, we found not only that CD4+ T cells bind aggregated IgG, used as an IC model, but also that CD32 ligation by specific mAb induced a strong calcium transient in CD4+ T cells. Moreover, we found that pretreatment of CD4+ T cells with immobilized IgG as well as cross-linking of CD32 by specific antibodies increased both, the proliferative response of CD4+ T cells and the release of a wide pattern of cytokines (IL-2, IL-5, IL-10, IL-17, IFN-γ, and TNF-α) triggered by either PHA or anti-CD3 mAb. Collectively, our results indicate that ligation of CD32 promotes the activation of CD4+ T cells. These findings suggest that ICs might contribute to the perpetuation of chronic inflammatory responses by virtue of its ability to directly interact with CD4+ T cells through CD32a, promoting the activation of T cells into different inflammatory profiles.
Collapse
Affiliation(s)
- María Pía Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Silvina Raiden
- Unidad I, Departamento de Clínica Médica, Hospital de Niños Pedro de Elizalde, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge R Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
34
|
Cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nat Commun 2018; 9:5058. [PMID: 30498196 PMCID: PMC6265255 DOI: 10.1038/s41467-018-07506-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
Vascular-deposited IgG immune complexes promote neutrophil recruitment, but how this process is regulated is still unclear. Here we show that the CD18 integrin Mac-1, in its bent state, interacts with the IgG receptor FcγRIIA in cis to reduce the affinity of FcγRIIA for IgG and inhibit FcγRIIA-mediated neutrophil recruitment under flow. The Mac-1 rs1143679 lupus-risk variant reverses Mac-1 inhibition of FcγRIIA, as does a Mac-1 ligand and a mutation in Mac-1’s ligand binding αI-domain. Sialylated complex glycans on FcγRIIA interact with the αI-domain via divalent cations, and this interaction is required for FcγRIIA inhibition by Mac-1. Human neutrophils deficient in CD18 integrins exhibit augmented FcγRIIA-dependent recruitment to IgG-coated endothelium. In mice, CD18 integrins on neutrophils dampen IgG-mediated neutrophil accumulation in the kidney. In summary, cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 alters the threshold for IgG-mediated neutrophil recruitment. A disruption of this interaction may increase neutrophil influx in autoimmune diseases. Deposited immune complexes (IC) promote neutrophil recruitment, but the fine tuning of this process is still unclear. Here the authors show that the cis interaction of the IC receptor, FcγRIIA and CD18 integrin, Mac-1, on the neutrophil surface modulates neutrophil adhesion, with FcγRIIA sialylation specifically implicated in this interaction.
Collapse
|