1
|
Nganou-Makamdop K. Clinical and experimental treatment of residual immune activation in people living with HIV. Clin Exp Immunol 2025; 219:uxaf023. [PMID: 40243265 PMCID: PMC12062964 DOI: 10.1093/cei/uxaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025] Open
Abstract
Potent inflammatory responses stemming from innate and T cell activation are initiated during acute human immunodeficiency virus infection. Suppression of the virus replication by antiretroviral therapy reduces but does not normalize immune activation. By now, it is clear that residual immune activation can persist even after years of antiretroviral therapy and associates with increased risks for co-morbidities, thereby raising interest for strategies that can resolve the residual immune activation in people with human immunodeficiency virus on antiretrovirals. This brief review reports the human studies with various drugs with anti-inflammatory properties and their effects on measures of systemic immune activation on people with human immunodeficiency virus. Along with the possible reasons for conflicting outcomes, considerations for ongoing and future approaches are outlined.
Collapse
Affiliation(s)
- Krystelle Nganou-Makamdop
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Vanpouille C, Wells A, DeGruttola V, Lynch M, Zhang X, Fitzgerald W, Tu X, Chaillon A, Landay A, Weber K, Scully E, Karn J, Gianella S. Cytokine trajectory over time in men and women with HIV on long-term antiretroviral therapy. AIDS 2025; 39:1-10. [PMID: 39639719 PMCID: PMC11631044 DOI: 10.1097/qad.0000000000004033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Although antiretroviral therapy (ART) suppresses viral replication and reduces inflammation, it does not lead to the normalization of cytokines. The long-term effects of ART beyond viral suppression have not been studied and are mostly limited to cross-sectional research. DESIGN The impact of long-term ART on the trajectory of 40 cytokines/chemokines in 31 men and 59 women who maintained viral suppression over a median period of 6 years (317 visits ranging from 24 to 384 weeks post ART initiation) were measured by Luminex. METHODS We used a generalized additive model with a Gaussian distribution and identity link function to model concentrations over time and investigate sex and race differences. RESULTS While most cytokine/chemokine trajectories remained stable, the trajectory of nine markers of monocyte/macrophage activation (IP-10, I-TAC, MIG, sCD163, sCD14, MCP-1, MIP-3β, CXCL13, TNF-α) decreased over time (adj. P < 0.05). Despite continuous viral suppression, M-CSF, IL-15, and LBP increased over time (adj. P < 0.05). sCD14 was the only cytokine whose trajectory differed by sex (adj. P = 0.033). Overall, women had lower mean levels of IL-18 but higher levels of sCD14 than did men (adj. P < 0.05). GROα, LBP, and sCD14 showed significant differences between races (adj. P < 0.05). No association between cytokines and cellular HIV DNA/RNA was found. CONCLUSION Our study reveals a continuous decline in markers of monocyte/macrophage activation over 6 years of suppressive ART, indicating that long-term treatment may mitigate inflammaging and cardiovascular-related outcomes. The higher levels of sCD14 observed in women are consistent with them having greater innate immune activation than men do.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alan Wells
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victor DeGruttola
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Miranda Lynch
- Department of Biostatistics and Bioinformatics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - Xinlian Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wendy Fitzgerald
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xin Tu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alan Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Kathleen Weber
- Hektoen Institute of Medicine/Cook County Health, Chicago, IL, USA
| | - Eileen Scully
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Webb GM, Sauter KA, Takahashi D, Kirigiti M, Bader L, Lindsley SR, Blomenkamp H, Zaro C, Shallman M, McGuire C, Hofmeister H, Avila U, Pessoa C, Hwang JM, McCullen A, Humkey M, Reed J, Gao L, Winchester L, Fletcher CV, Varlamov O, Brown TT, Sacha JB, Kievit P, Roberts CT. Effect of metabolic status on response to SIV infection and antiretroviral therapy in nonhuman primates. JCI Insight 2024; 9:e181968. [PMID: 39115937 PMCID: PMC11457846 DOI: 10.1172/jci.insight.181968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Current antiretroviral therapy (ART) regimens efficiently limit HIV replication, thereby improving the life expectancy of people living with HIV; however, they also cause metabolic side effects. The ongoing obesity epidemic has resulted in more people with metabolic comorbidities at the time of HIV infection, yet the effect of preexisting metabolic dysregulation on infection sequelae and response to ART is unclear. Here, to investigate the impact of preexisting obesity and insulin resistance on acute infection and subsequent long-term ART, we infected a cohort of lean and obese adult male macaques with SIV and administered ART. The responses of lean and obese macaques to SIV and ART were similar with respect to plasma and cell-associated viral loads, ART drug levels in plasma and tissues, SIV-specific immune responses, adipose tissue and islet morphology, and colon inflammation, with baseline differences between lean and obese groups largely maintained. Both groups exhibited a striking depletion of CD4+ T cells from adipose tissue that did not recover with ART. However, differential responses to SIV and ART were observed for body weight, omental adipocyte size, and the adiponectin/leptin ratio, a marker of cardiometabolic risk. Thus, obesity and insulin resistance had limited effects on multiple responses to acute SIV infection and ART, while several factors that underlie long-term metabolic comorbidities were influenced by prior obesity and insulin resistance. These studies provide the foundation for future investigations into the efficacy of adjunct therapies such as metformin and glucagon-like peptide-1 receptor agonists in the prevention of metabolic comorbidities in people living with HIV.
Collapse
Affiliation(s)
| | - Kristin A. Sauter
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Diana Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Lindsay Bader
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Sarah R. Lindsley
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Hannah Blomenkamp
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Cicely Zaro
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Molly Shallman
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Casey McGuire
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Heather Hofmeister
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Uriel Avila
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | | | | | | | | | - Jason Reed
- Division of Pathobiology and Immunology, and
| | - Lina Gao
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lee Winchester
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Oleg Varlamov
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Todd T. Brown
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Charles T. Roberts
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| |
Collapse
|
4
|
Blazkova J, Whitehead EJ, Schneck R, Shi V, Justement JS, Rai MA, Kennedy BD, Manning MR, Praiss L, Gittens K, Wender PA, Oguz C, Lack J, Moir S, Chun TW. Immunologic and Virologic Parameters Associated With Human Immunodeficiency Virus (HIV) DNA Reservoir Size in People With HIV Receiving Antiretroviral Therapy. J Infect Dis 2024; 229:1770-1780. [PMID: 38128541 PMCID: PMC11492273 DOI: 10.1093/infdis/jiad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A better understanding of the dynamics of human immunodeficiency virus (HIV) reservoirs in CD4+ T cells of people with HIV (PWH) receiving antiretroviral therapy (ART) is crucial for developing therapies to eradicate the virus. METHODS We conducted a study involving 28 aviremic PWH receiving ART with high and low levels of HIV DNA. We analyzed immunologic and virologic parameters and their association with the HIV reservoir size. RESULTS The frequency of CD4+ T cells carrying HIV DNA was associated with higher pre-ART plasma viremia, lower pre-ART CD4+ T-cell counts, and lower pre-ART CD4/CD8 ratios. During ART, the High group maintained elevated levels of intact HIV proviral DNA, cell-associated HIV RNA, and inducible virion-associated HIV RNA. HIV sequence analysis showed no evidence for preferential accumulation of defective proviruses nor higher frequencies of clonal expansion in the High versus Low group. Phenotypic and functional T-cell analyses did not show enhanced immune-mediated virologic control in the Low versus High group. Of considerable interest, pre-ART innate immunity was significantly higher in the Low versus High group. CONCLUSIONS Our data suggest that innate immunity at the time of ART initiation may play an important role in modulating the dynamics and persistence of viral reservoirs in PWH.
Collapse
Affiliation(s)
- Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Emily J Whitehead
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Rachel Schneck
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - M Ali Rai
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Brooke D Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Maegan R Manning
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Lauren Praiss
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, California
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| |
Collapse
|
5
|
De Clercq J, De Scheerder MA, Mortier V, Verhofstede C, Vandecasteele SJ, Allard SD, Necsoi C, De Wit S, Gerlo S, Vandekerckhove L. Longitudinal patterns of inflammatory mediators after acute HIV infection correlate to intact and total reservoir. Front Immunol 2024; 14:1337316. [PMID: 38250083 PMCID: PMC10796502 DOI: 10.3389/fimmu.2023.1337316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Despite the beneficial effects of antiretroviral therapy (ART) initiation during acute HIV infection (AHI), residual immune activation remains a hallmark of treated HIV infection. Methods Plasma concentrations of 40 mediators were measured longitudinally in 39 early treated participants of a Belgian AHI cohort (HIV+) and in 21 HIV-negative controls (HIV-). We investigated the association of the inflammatory profile with clinical presentation, plasma viral load, immunological parameters, and in-depth characterization of the HIV reservoir. Results While levels of most soluble mediators normalized with suppressive ART, we demonstrated the persistence of a pro-inflammatory signature in early treated HIV+ participants in comparison to HIV- controls. Examination of these mediators demonstrated a correlation with their levels during AHI, which seemed to be viremia-driven, and suggested involvement of an activated myeloid compartment, IFN-γ-signaling, and inflammasome-related pathways. Interestingly, some of these pro-inflammatory mediators correlated with a larger reservoir size and slower reservoir decay. In contrast, we also identified soluble mediators which were associated with favorable effects on immunovirological outcomes and reservoir, both during and after AHI. Conclusion These data highlight how the persistent pro-inflammatory profile observed in early ART treated individuals is shaped during AHI and is intertwined with viral dynamics.
Collapse
Affiliation(s)
- Jozefien De Clercq
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Virginie Mortier
- Department of Diagnostic Sciences, Aids Reference Laboratory, Ghent University, Ghent, Belgium
| | - Chris Verhofstede
- Department of Diagnostic Sciences, Aids Reference Laboratory, Ghent University, Ghent, Belgium
| | | | - Sabine D Allard
- Department of Internal Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Coca Necsoi
- Department of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Stéphane De Wit
- Department of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Blaauw MJ, Cristina dos Santos J, Vadaq N, Trypsteen W, van der Heijden W, Groenendijk A, Zhang Z, Li Y, de Mast Q, Netea MG, Joosten LA, Vandekerckhove L, van der Ven A, Matzaraki V. Targeted plasma proteomics identifies MICA and IL1R1 proteins associated with HIV-1 reservoir size. iScience 2023; 26:106486. [PMID: 37091231 PMCID: PMC10113782 DOI: 10.1016/j.isci.2023.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023] Open
Abstract
HIV-1 reservoir shows high variability in size and activity among virally suppressed individuals. Differences in the size of the viral reservoir may relate to differences in plasma protein concentrations. We tested whether plasma protein expression levels are associated with levels of cell-associated (CA) HIV-1 DNA and RNA in 211 virally suppressed people living with HIV (PLHIV). Plasma concentrations of FOLR1, IL1R1, MICA, and FETUB showed a positive association with CA HIV-1 RNA and DNA. Moreover, SNPs in close proximity to IL1R1 and MICA genes were found to influence the levels of CA HIV-1 RNA and DNA. We found a difference in mRNA expression of the MICA gene in homozygotes carrying the rs9348866-A allele compared to the ones carrying the G allele (p < 0.005). Overall, our findings pinpoint plasma proteins that could serve as potential targets for therapeutic interventions to lower or even eradicate cells containing CA HIV-1 RNA and DNA in PLHIV.
Collapse
|
7
|
Udoakang AJ, Djomkam Zune AL, Tapela K, Nganyewo NN, Olisaka FN, Anyigba CA, Tawiah-Eshun S, Owusu IA, Paemka L, Awandare GA, Quashie PK. The COVID-19, tuberculosis and HIV/AIDS: Ménage à Trois. Front Immunol 2023; 14:1104828. [PMID: 36776887 PMCID: PMC9911459 DOI: 10.3389/fimmu.2023.1104828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
In December 2019, a novel pneumonic condition, Coronavirus disease 2019 (COVID- 19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), broke out in China and spread globally. The presentation of COVID-19 is more severe in persons with underlying medical conditions such as Tuberculosis (TB), Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) and other pneumonic conditions. All three diseases are of global concern and can significantly affect the lungs with characteristic cytokine storm, immunosuppression, and respiratory failure. Co-infections of SARS-CoV-2 with HIV and Mycobacterium tuberculosis (Mtb) have been reported, which may influence their pathogenesis and disease progression. Pulmonary TB and HIV/AIDS patients could be more susceptible to SARS-CoV-2 infection leading to lethal synergy and disease severity. Therefore, the biological and epidemiological interactions of COVID-19, HIV/AIDS, and TB need to be understood holistically. While data is needed to predict the impact of the COVID-19 pandemic on these existing diseases, it is necessary to review the implications of the evolving COVID-19 management on HIV/AIDS and TB control, including therapy and funding. Also, the impact of long COVID on patients, who may have this co-infection. Thus, this review highlights the implications of COVID-19, HIV/AIDS, and TB co-infection compares disease mechanisms, addresses growing concerns, and suggests a direction for improved diagnosis and general management.
Collapse
Affiliation(s)
- Aniefiok John Udoakang
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
| | - Alexandra Lindsey Djomkam Zune
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Nora Nghochuzie Nganyewo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Frances Ngozi Olisaka
- Environmental and Public Health Microbiology, Department of Biological Science, Benson Idahosa University, Benin City, Edo State, Nigeria
| | - Claudia Adzo Anyigba
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
8
|
Paul R, Cho K, Bolzenius J, Sacdalan C, Ndhlovu LC, Trautmann L, Krebs S, Tipsuk S, Crowell TA, Suttichom D, Colby DJ, Premeaux TA, Phanuphak N, Chan P, Kroon E, Vasan S, Hsu D, Carrico A, Valcour V, Ananworanich J, Robb ML, Ake JA, Sriplienchan S, Spudich S. Individual Differences in CD4/CD8 T-Cell Ratio Trajectories and Associated Risk Profiles Modeled From Acute HIV Infection. Psychosom Med 2022; 84:976-983. [PMID: 36162059 PMCID: PMC9553252 DOI: 10.1097/psy.0000000000001129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE We examined individual differences in CD4/CD8 T-cell ratio trajectories and associated risk profiles from acute HIV infection (AHI) through 144 weeks of antiretroviral therapy (ART) using a data-driven approach. METHODS A total of 483 AHI participants began ART during Fiebig I-V and completed follow-up evaluations for 144 weeks. CD4+, CD8+, and CD4/CD8 T-cell ratio trajectories were defined followed by analyses to identify associated risk variables. RESULTS Participants had a median viral load (VL) of 5.88 copies/ml and CD4/CD8 T-cell ratio of 0.71 at enrollment. After 144 weeks of ART, the median CD4/CD8 T-cell ratio was 1.3. Longitudinal models revealed five CD4/CD8 T-cell ratio subgroups: group 1 (3%) exhibited a ratio >1.0 at all visits; groups 2 (18%) and 3 (29%) exhibited inversion at enrollment, with normalization 4 and 12 weeks after ART, respectively; and groups 4 (31%) and 5 (18%) experienced CD4/CD8 T-cell ratio inversion due to slow CD4+ T-cell recovery (group 4) or high CD8+ T-cell count (group 5). Persistent inversion corresponded to ART onset after Fiebig II, higher VL, soluble CD27 and TIM-3, and lower eosinophil count. Individuals with slow CD4+ T-cell recovery exhibited higher VL, lower white blood cell count, lower basophil percent, and treatment with standard ART, as well as worse mental health and cognition, compared with individuals with high CD8+ T-cell count. CONCLUSIONS Early HIV disease dynamics predict unfavorable CD4/CD8 T-cell ratio outcomes after ART. CD4+ and CD8+ T-cell trajectories contribute to inversion risk and correspond to specific viral, immune, and psychological profiles during AHI. Adjunctive strategies to achieve immune normalization merit consideration.
Collapse
|
9
|
Streeck H, Maestri A, Habermann D, Crowell TA, Esber AL, Son G, Eller LA, Eller MA, Parikh AP, Horn PA, Maganga L, Bahemana E, Adamu Y, Kiweewa F, Maswai J, Owuoth J, Robb ML, Michael NL, Polyak CS, Hoffmann D, Ake JA. Dissecting drivers of immune activation in chronic HIV-1 infection. EBioMedicine 2022; 83:104182. [PMID: 35905559 PMCID: PMC9334338 DOI: 10.1016/j.ebiom.2022.104182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Immune activation is a significant contributor to HIV pathogenesis and disease progression. In virally-suppressed individuals on ART, low-level immune activation has been linked to several non-infectious comorbid diseases. However, studies have not been systematically performed in sub-Saharan Africa and thus the impact of demographics, ART and regional endemic co-infections on immune activation is not known. We therefore comprehensively evaluated in a large multinational African cohort markers for immune activation and its distribution in various settings. Methods 2747 specimens from 2240 people living with HIV (PLWH) and 477 without HIV from the observational African Cohort Study (AFRICOS) were analyzed for 13 immune parameters. Samples were collected along with medical history, sociodemographic and comorbidity data at 12 HIV clinics across 5 programs in Uganda, Kenya, Tanzania and Nigeria. Data were analyzed with univariate and multivariate methods such as random forests and principal component analysis. Findings Immune activation was markedly different between PLWH with detectable viral loads, and individuals without HIV across sites. Among viremic PLWH, we found that all immune parameters were significantly correlated with viral load except for IFN-α. The overall inflammatory profile was distinct between men and women living with HIV, in individuals off ART and with HIV viremia. We observed stronger differences in the immune activation profile with increasing viremia. Using machine learning methods, we found that geographic differences contributed to unique inflammatory profiles. We also found that among PLWH, age and the presence of infectious and/or noninfectious comorbidities showed distinct inflammatory patterns, and biomarkers may be used to predict the presence of some comorbidities. Interpretation Our findings show that chronic immune activation in HIV-1 infection is influenced by HIV viral load, sex, age, region and ART use. These predictors, as well as associations among some biomarkers and coinfections, influence biomarkers associated with noncommunicable diseases. Funding This work was supported by the President's Emergency Plan for AIDS Relief via a cooperative agreement between the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of Defense [W81XWH-11-2-0174, W81XWH-18-2-0040]. The investigators have adhered to the policies for protection of human subjects as prescribed in AR 70–25. This article was prepared while Michael A. Eller was employed at Henry M. Jackson Foundation for the Advancement of Military Medicine for the U.S. Military HIV Research Program. The views expressed are those of the authors and should not be construed to represent the positions of the US Army or the Department of Defense. The opinions expressed in this article are the author's own, and do not reflect the view of the National Institutes of Health, the U.S. Department of Health and Human Services, or the U.S. government.
Collapse
Affiliation(s)
- Hendrik Streeck
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany.
| | - Alvino Maestri
- Institute for HIV Research, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Daniel Habermann
- Bioinformatics and Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Trevor A Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Allahna L Esber
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Gowoon Son
- Institute for HIV Research, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA; Vaccine Research Program, DAIDS, NIAID, NIH, Bethesda, MD, USA
| | - Ajay P Parikh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Lucas Maganga
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Emmanuel Bahemana
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; HJF Medical Research International, Mbeya, Tanzania
| | - Yakubu Adamu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Army Medical Research Directorate - Africa, Abuja, Nigeria
| | | | - Jonah Maswai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; HJF Medical Research International, Kericho, Kenya
| | - John Owuoth
- U.S. Army Medical Research Directorate - Africa, Kisumu, Kenya; HJF Medical Research International, Kisumu, Kenya
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christina S Polyak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Julie A Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
10
|
Rawlings SA, Torres F, Wells A, Lisco A, Fitzgerald W, Margolis L, Gianella S, Vanpouille C. Effect of HIV suppression on the cytokine network in blood and seminal plasma. AIDS 2022; 36:621-630. [PMID: 34873090 PMCID: PMC8957508 DOI: 10.1097/qad.0000000000003146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE HIV infection disrupts the cytokine network and this disruption is not completely reversed by antiretroviral therapy (ART). Characterization of cytokine changes in blood and genital secretions is important for understanding HIV pathogenesis and the mechanisms of HIV sexual transmission. Here, we characterized the cytokine network in individuals longitudinally sampled before they began ART and after achieving suppression of HIV RNA. METHODS We measured concentrations of 34 cytokine/chemokines using multiplex bead-based assay in blood and seminal plasma of 19 men with HIV-1 prior to and after viral suppression. We used Partial Least Squares Discriminant Analysis (PLS-DA) to visualize the difference in cytokine pattern between the time points. Any cytokines with VIP scores exceeding 1 were deemed important in predicting suppression status and were subsequently tested using Wilcoxon Signed Rank Tests. RESULTS PLS-DA projections in blood were fairly similar before and after viral suppression. In contrast, the difference in PLS-DA projection observed in semen emphasizes that the immunological landscape and immunological needs are very different before and after ART in the male genital compartment. When tested individually, four cytokines were significantly different across time points in semen (MIG, IL-15, IL-7, I-TAC), and two in blood (MIG and IP-10). CONCLUSION Viral suppression with ART impacts the inflammatory milieu in seminal plasma. In contrast, the overall effect on the network of cytokines in blood was modest but consistent with prior analyses. These results identify specific changes in the cytokine networks in semen and blood as the immune system acclimates to chronic, suppressed HIV infection.
Collapse
Affiliation(s)
| | - Felix Torres
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Alan Wells
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Wendy Fitzgerald
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Leonid Margolis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sara Gianella
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Christophe Vanpouille
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Longino AA, Paul R, Wang Y, Lama JR, Brandes P, Ruiz E, Correa C, Keating S, Spudich SS, Pilcher C, Vecchio A, Pasalar S, Ignacio RAB, Valdez R, Dasgupta S, Robertson K, Duerr A. HIV Disease Dynamics and Markers of Inflammation and CNS Injury During Primary HIV Infection and Their Relationship to Cognitive Performance. J Acquir Immune Defic Syndr 2022; 89:183-190. [PMID: 34629415 PMCID: PMC8752485 DOI: 10.1097/qai.0000000000002832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Early systemic and central nervous system viral replication and inflammation may affect brain integrity in people with HIV, leading to chronic cognitive symptoms not fully reversed by antiretroviral therapy (ART). This study examined associations between cognitive performance and markers of CNS injury associated with acute HIV infection and ART. METHODS HIV-infected MSM and transgender women (average age: 27 years and education: 13 years) enrolled within 100 days from the estimated date of detectable infection (EDDI). A cognitive performance (NP) protocol was administered at enrollment (before ART initiation) and every 24 weeks until week 192. An overall index of cognitive performance (NPZ) was created using local normative data. Blood (n = 87) and cerebrospinal fluid (CSF; n = 29) biomarkers of inflammation and neuronal injury were examined before ART initiation. Regression analyses assessed relationships between time since EDDI, pre-ART biomarkers, and NPZ. RESULTS Adjusting for multiple comparisons, shorter time since EDDI was associated with higher pre-ART VL and multiple biomarkers in plasma and CSF. NPZ scores were within the normative range at baseline (NPZ = 0.52) and at each follow-up visit, with a modest increase through week 192. Plasma or CSF biomarkers were not correlated with NP scores at baseline or after ART. CONCLUSIONS Biomarkers of CNS inflammation, immune activation, and neuronal injury peak early and then decline during acute HIV infection, confirming and extending results of other studies. Neither plasma nor CSF biomarkers during acute infection corresponded to NP scores before or after sustained ART in this cohort with few psychosocial risk factors for cognitive impairment.
Collapse
Affiliation(s)
| | | | - Yixin Wang
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Peter Brandes
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru
| | - Eduardo Ruiz
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru
| | | | | | | | | | - Alyssa Vecchio
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Rachel A. Bender Ignacio
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | | | - Sayan Dasgupta
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kevin Robertson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ann Duerr
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Liu N, Jiang C, Cai P, Shen Z, Sun W, Xu H, Fang M, Yao X, Zhu L, Gao X, Fang J, Lin J, Guo C, Qu K. Single-cell analysis of COVID-19, sepsis, and HIV infection reveals hyperinflammatory and immunosuppressive signatures in monocytes. Cell Rep 2021; 37:109793. [PMID: 34587478 PMCID: PMC8445774 DOI: 10.1016/j.celrep.2021.109793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The mortality risk of coronavirus disease 2019 (COVID-19) patients has been linked to the cytokine storm caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the inflammatory responses shared between COVID-19 and other infectious diseases that feature cytokine storms may therefore help in developing improved therapeutic strategies. Here, we use integrative analysis of single-cell transcriptomes to characterize the inflammatory signatures of peripheral blood mononuclear cells from patients with COVID-19, sepsis, and HIV infection. We identify ten hyperinflammatory cell subtypes in which monocytes are the main contributors to the transcriptional differences in these infections. Monocytes from COVID-19 patients share hyperinflammatory signatures with HIV infection and immunosuppressive signatures with sepsis. Finally, we construct a "three-stage" model of heterogeneity among COVID-19 patients, related to the hyperinflammatory and immunosuppressive signatures in monocytes. Our study thus reveals cellular and molecular insights about inflammatory responses to SARS-CoV-2 infection and provides therapeutic guidance to improve treatments for subsets of COVID-19 patients.
Collapse
Affiliation(s)
- Nianping Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Zhuoqiao Shen
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; School of Data Science, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Hao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Minghao Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; School of Life Science and Technology, University of Electronic Science and Technology of China, 610054 Chengdu, Sichuan, China
| | - Xinfeng Yao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; Institute for Advanced Study, Nanchang University, 330031 Nanchang, Jiangxi, China
| | - Lin Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Xuyuan Gao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Jingwen Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; HanGene Biotech, Xiaoshan Innovation Polis, 31200 Hangzhou, Zhejiang, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China; School of Data Science, University of Science and Technology of China, 230026 Hefei, Anhui, China.
| |
Collapse
|
13
|
Wang Z, Yin X, Ma M, Ge H, Lang B, Sun H, He S, Fu Y, Sun Y, Yu X, Zhang Z, Cui H, Han X, Xu J, Ding H, Chu Z, Shang H, Wu Y, Jiang Y. IP-10 Promotes Latent HIV Infection in Resting Memory CD4 + T Cells via LIMK-Cofilin Pathway. Front Immunol 2021; 12:656663. [PMID: 34447368 PMCID: PMC8383741 DOI: 10.3389/fimmu.2021.656663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
A major barrier to HIV eradication is the persistence of viral reservoirs. Resting CD4+ T cells are thought to be one of the major viral reservoirs, However, the underlying mechanism regulating HIV infection and the establishment of viral reservoir in T cells remain poorly understood. We have investigated the role of IP-10 in the establishment of HIV reservoirs in CD4+ T cells, and found that in HIV-infected individuals, plasma IP-10 was elevated, and positively correlated with HIV viral load and viral reservoir size. In addition, we found that binding of IP-10 to CXCR3 enhanced HIV latent infection of resting CD4+ T cells in vitro. Mechanistically, IP-10 stimulation promoted cofilin activity and actin dynamics, facilitating HIV entry and DNA integration. Moreover, treatment of resting CD4+ T cells with a LIM kinase inhibitor R10015 blocked cofilin phosphorylation and abrogated IP-10-mediated enhancement of HIV latent infection. These results suggest that IP-10 is a critical factor involved in HIV latent infection, and that therapeutic targeting of IP-10 may be a potential strategy for inhibiting HIV latent infection.
Collapse
Affiliation(s)
- Zhuo Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowan Yin
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Meichen Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongchi Ge
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bin Lang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Sun
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Sijia He
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Sun
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowen Yu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hualu Cui
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Ismail SD, Pankrac J, Ndashimye E, Prodger JL, Abrahams MR, Mann JFS, Redd AD, Arts EJ. Addressing an HIV cure in LMIC. Retrovirology 2021; 18:21. [PMID: 34344423 PMCID: PMC8330180 DOI: 10.1186/s12977-021-00565-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.
Collapse
Affiliation(s)
- Sherazaan D Ismail
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Joshua Pankrac
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Emmanuel Ndashimye
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Jamie F S Mann
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Andrew D Redd
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada.
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
15
|
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy. Viruses 2021; 13:v13050776. [PMID: 33924786 PMCID: PMC8145733 DOI: 10.3390/v13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
| | - Ryutaro Iwabuchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Yasuko Tsunetsugu-Yokota
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo 144-8535, Japan
- Correspondence: or ; Tel.: +81-3-6424-2223
| |
Collapse
|
16
|
Wolf G, Singh NJ. Modular Approaches to Understand the Immunobiology of Human Immunodeficiency Virus Latency. Viral Immunol 2021; 34:365-375. [PMID: 33600238 DOI: 10.1089/vim.2020.0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite advances in slowing the progression of acquired immunodeficiency syndrome (AIDS), there is no viable cure for human immunodeficiency virus (HIV). The challenge toward a cure is mainly the formation and maintenance of a latent reservoir of cells that harbor the virus in both replication-competent and replication-defective states. This small niche of quiescent cells has been identified to reside primarily in quiescent and memory CD4+ T cells, but parameters that could reliably distinguish an infected T cell from an uninfected one, if any, are not clear. In addition, the migratory properties and specific anatomical reservoirs of latent T cells are difficult to measure at a high resolution in humans. A functional cure of HIV would require targeting this population using innovative new clinical strategies. One constraint toward the empirical development of such approaches is the absence of a native small animal model for AIDS. Since HIV does not efficiently infect murine cells, probing molecular-genetic questions involving latently infected T cells homing to deep tissue sites, interacting with stroma and persisting through different treatment regimens, is challenging. The goal of this article is to discuss how examining the dynamics of T cells in mouse models can provide a framework for effectively studying these questions, even without infecting mice with HIV. The inflammatory and cytokine milieu found in early human HIV infections are being increasingly understood as a result of clinical measurements. Mouse studies that recreate this milieu can potentially be used to subsequently map the fate of T cells activated in this context as well as their migratory routes. In essence, such a framework could allow complementary studies in mice to enhance our understanding of aspects of the biology of HIV latency. This can be the basis of a modular approach to small animal HIV modeling, amenable to preclinical curative strategy development.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Martin GE, Pace M, Shearer FM, Zilber E, Hurst J, Meyerowitz J, Thornhill JP, Lwanga J, Brown H, Robinson N, Hopkins E, Olejniczak N, Nwokolo N, Fox J, Fidler S, Willberg CB, Frater J. Levels of Human Immunodeficiency Virus DNA Are Determined Before ART Initiation and Linked to CD8 T-Cell Activation and Memory Expansion. J Infect Dis 2021; 221:1135-1145. [PMID: 31776569 PMCID: PMC7075410 DOI: 10.1093/infdis/jiz563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 01/31/2023] Open
Abstract
Initiation of antiretroviral therapy (ART) in early compared with chronic human immunodeficiency virus (HIV) infection is associated with a smaller HIV reservoir. This longitudinal analysis of 60 individuals who began ART during primary HIV infection (PHI) investigates which pre- and posttherapy factors best predict HIV DNA levels (a correlate of reservoir size) after treatment initiation during PHI. The best predictor of HIV DNA at 1 year was pre-ART HIV DNA, which was in turn significantly associated with CD8 memory T-cell differentiation (effector memory, naive, and T-bet−Eomes− subsets), CD8 T-cell activation (CD38 expression) and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) expression on memory T cells. No associations were found for any immunological variables after 1 year of ART. Levels of HIV DNA are determined around the time of ART initiation in individuals treated during PHI. CD8 T-cell activation and memory expansion are linked to HIV DNA levels, suggesting the importance of the initial host-viral interplay in eventual reservoir size.
Collapse
Affiliation(s)
- Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Freya M Shearer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Eva Zilber
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jacob Hurst
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Julianne Lwanga
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Hopkins
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,King's College National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom.,Imperial College National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
18
|
Heritability of the HIV-1 reservoir size and decay under long-term suppressive ART. Nat Commun 2020; 11:5542. [PMID: 33139735 PMCID: PMC7608612 DOI: 10.1038/s41467-020-19198-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/23/2020] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 reservoir is the major hurdle to curing HIV-1. However, the impact of the viral genome on the HIV-1 reservoir, i.e. its heritability, remains unknown. We investigate the heritability of the HIV-1 reservoir size and its long-term decay by analyzing the distribution of those traits on viral phylogenies from both partial-pol and viral near full-length genome sequences. We use a unique nationwide cohort of 610 well-characterized HIV-1 subtype-B infected individuals on suppressive ART for a median of 5.4 years. We find that a moderate but significant fraction of the HIV-1 reservoir size 1.5 years after the initiation of ART is explained by genetic factors. At the same time, we find more tentative evidence for the heritability of the long-term HIV-1 reservoir decay. Our findings indicate that viral genetic factors contribute to the HIV-1 reservoir size and hence the infecting HIV-1 strain may affect individual patients’ hurdle towards a cure. The HIV reservoir is a major hurdle for a cure of HIV, but the factors determining its size and dynamics remain unclear. Here the authors show in a large cohort of 610 HIV-1 infected individuals, who are on suppressive ART for a median of 5.4 years, that viral genetic factors contribute substantially to the HIV-1 reservoir size.
Collapse
|
19
|
McLaughlin MM, Ma Y, Scherzer R, Rahalkar S, Martin JN, Mills C, Milush J, Deeks SG, Hsue PY. Association of Viral Persistence and Atherosclerosis in Adults With Treated HIV Infection. JAMA Netw Open 2020; 3:e2018099. [PMID: 33119103 PMCID: PMC7596582 DOI: 10.1001/jamanetworkopen.2020.18099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE Persons living with HIV (PLWH) have increased risk for cardiovascular disease, and inflammation is thought to contribute to this excess risk. Production of HIV during otherwise effective antiretroviral therapy (ART) has been associated with inflammation. OBJECTIVE To determine whether higher levels of viral persistence are associated with atherosclerosis as assessed by changes in carotid artery intima-media thickness (IMT) over time. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, intima-media thickness, a validated marker of atherosclerosis, was assessed over time in a cohort of treated PLWH with viral suppression. Cell-associated HIV DNA and RNA and change in IMT, adjusted for demographics, cardiovascular risk factors, and HIV-related factors, were examined, as well as which factors were associated with viral persistence. One hundred fifty-two PLWH with undetectable viral loads for at least 6 months before study enrollment were recruited from HIV clinics affiliated with 2 hospitals in San Francisco, California, from January 1, 2003, to December 31, 2012. Data were analyzed from February 7, 2018, to May 12, 2020. EXPOSURES Cell-associated HIV RNA and DNA were measured using enriched CD4+ T cells from cryopreserved peripheral blood mononuclear cells. MAIN OUTCOMES AND MEASURES Carotid IMT was measured at baseline and the last visit, with a mean (SD) follow-up of 4.2 (2.7) years, using high-resolution B mode ultrasonography. The main study outcomes were baseline IMT, annual IMT progression, and incident plaque, defined as a focal region of carotid IMT of greater than 1.5 mm. RESULTS The analysis included 152 PLWH (140 [92.1%] male; median age, 48.5 [interquartile range {IQR}, 43.3-53.7] years). Older age, smoking, medications for hypertension, higher low-density lipoprotein levels, and higher interleukin 6 levels were associated with higher baseline mean IMT, whereas cell-associated HIV DNA (estimate, -0.07% [95% CI, -6.1% to 6.4%]; P = .98), and HIV RNA levels (estimate, -0.8% [95% CI, -5.9% to 4.4%]; P = .75) were not. Levels of HIV RNA (0.017 [95% CI, 0.000-0.034] mm/y; P = .047) and HIV DNA (0.022 [95% CI, 0.001-0.044] mm/y; P = .042) were significantly associated with annual carotid artery IMT progression in unadjusted models only. Both HIV RNA (incidence risk ratio [IRR], 3.05 [95% CI, 1.49-6.27] per IQR; P = .002) and HIV DNA (IRR, 3.15 [95% CI, 1.51-6.57] per IQR; P = .002) were significantly associated with incident plaque, which remained significant after adjusting for demographics, cardiovascular risk factors, and HIV-related factors (IRR for HIV RNA, 4.05 [95% CI, 1.44-11.36] per IQR [P = .008]; IRR for HIV DNA, 3.35 [95% CI, 1.22-9.19] per IQR [P = .02]). Higher C-reactive protein levels were associated with higher cell-associated HIV RNA (estimate, 20.7% [95% CI, 0.9%-44.4%] per doubling; P = .04), whereas higher soluble CD14 levels were associated with HIV DNA (estimate, 18.6% [95% CI, 3.5%-35.8%] per 10% increase; P = .01). Higher soluble CD163 levels were associated with a higher HIV RNA:DNA ratio (difference, 63.8% [95% CI, 3.5%-159.4%]; P = .04). CONCLUSIONS AND RELEVANCE These findings suggest that measurements of viral persistence in treated HIV disease are independently associated with incident carotid plaque development. The size and transcriptional activity of the HIV reservoir may be important contributors to HIV-associated atherosclerosis.
Collapse
Affiliation(s)
| | - Yifei Ma
- Department of Medicine, San Francisco Veterans Affairs Medical Center, UCSF
| | - Rebecca Scherzer
- Department of Medicine, San Francisco Veterans Affairs Medical Center, UCSF
| | - Smruti Rahalkar
- Division of Cardiology, Department of Medicine, San Francisco General Hospital, UCSF
| | | | - Claire Mills
- Division of Cardiology, Department of Medicine, San Francisco General Hospital, UCSF
| | - Jeffrey Milush
- Department of Medicine, Division of Experimental Medicine, UCSF
| | - Steven G. Deeks
- Positive Health Program, San Francisco General Hospital, San Francisco, California
| | - Priscilla Y. Hsue
- Division of Cardiology, Department of Medicine, San Francisco General Hospital, UCSF
| |
Collapse
|
20
|
Muema DM, Akilimali NA, Ndumnego OC, Rasehlo SS, Durgiah R, Ojwach DBA, Ismail N, Dong M, Moodley A, Dong KL, Ndhlovu ZM, Mabuka JM, Walker BD, Mann JK, Ndung'u T. Association between the cytokine storm, immune cell dynamics, and viral replicative capacity in hyperacute HIV infection. BMC Med 2020; 18:81. [PMID: 32209092 PMCID: PMC7093991 DOI: 10.1186/s12916-020-01529-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Immunological damage in acute HIV infection (AHI) may predispose to detrimental clinical sequela. However, studies on the earliest HIV-induced immunological changes are limited, particularly in sub-Saharan Africa. We assessed the plasma cytokines kinetics, and their associations with virological and immunological parameters, in a well-characterized AHI cohort where participants were diagnosed before peak viremia. METHODS Blood cytokine levels were measured using Luminex and ELISA assays pre-infection, during the hyperacute infection phase (before or at peak viremia, 1-11 days after the first detection of viremia), after peak viremia (24-32 days), and during the early chronic phase (77-263 days). Gag-protease-driven replicative capacities of the transmitted/founder viruses were determined using a green fluorescent reporter T cell assay. Complete blood counts were determined before and immediately following AHI detection before ART initiation. RESULTS Untreated AHI was associated with a cytokine storm of 12 out of the 33 cytokines analyzed. Initiation of ART during Fiebig stages I-II abrogated the cytokine storm. In untreated AHI, virus replicative capacity correlated positively with IP-10 (rho = 0.84, P < 0.001) and IFN-alpha (rho = 0.59, P = 0.045) and inversely with nadir CD4+ T cell counts (rho = - 0.58, P = 0.048). Hyperacute HIV infection before the initiation of ART was associated with a transient increase in monocytes (P < 0.001), decreased lymphocytes (P = 0.011) and eosinophils (P = 0.003) at Fiebig stages I-II, and decreased eosinophils (P < 0.001) and basophils (P = 0.007) at Fiebig stages III-V. Levels of CXCL13 during the untreated hyperacute phase correlated inversely with blood eosinophils (rho = - 0.89, P < 0.001), basophils (rho = - 0.87, P = 0.001) and lymphocytes (rho = - 0.81, P = 0.005), suggesting their trafficking into tissues. In early treated individuals, time to viral load suppression correlated positively with plasma CXCL13 at the early chronic phase (rho = 0.83, P = 0.042). CONCLUSION While commencement of ART during Fiebig stages I-II of AHI abrogated the HIV-induced cytokine storm, significant depletions of eosinophils, basophils, and lymphocytes, as well as transient expansions of monocytes, were still observed in these individuals in the hyperacute phase before the initiation of ART, suggesting that even ART initiated during the onset of viremia does not abrogate all HIV-induced immune changes.
Collapse
Affiliation(s)
- Daniel M Muema
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | | | - Doty B A Ojwach
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mary Dong
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Amber Moodley
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista L Dong
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Zaza M Ndhlovu
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | | | - Bruce D Walker
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa. .,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA. .,Max Planck Institute for Infection Biology, Berlin, Germany. .,Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
21
|
Song CB, Zhang LL, Wu X, Fu YJ, Jiang YJ, Shang H, Zhang ZN. CD4 +CD38 + central memory T cells contribute to HIV persistence in HIV-infected individuals on long-term ART. J Transl Med 2020; 18:95. [PMID: 32093678 PMCID: PMC7038621 DOI: 10.1186/s12967-020-02245-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Despite the effective antiretroviral treatment (ART) of HIV-infected individuals, HIV persists in a small pool. Central memory CD4+ T cells (Tcm) make a major contribution to HIV persistence. We found that unlike HLA-DR, CD38 is highly expressed on the Tcm of HIV-infected subjects receiving ART for > 5 years. It has been reported that the half-life of total and episomal HIV DNA in the CD4+CD38+ T cell subset, exhibits lower decay rates at 12 weeks of ART. Whether CD38 contributes to HIV latency in HIV-infected individuals receiving long-term ART is yet to be addressed. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of HIV-infected subjects receiving suppressive ART. The immunophenotyping, proliferation and apoptosis of CD4+ T cell subpopulations were detected by flow cytometry, and the level of CD38 mRNA and total HIV DNA were measured using real-time PCR and digital droplet PCR, respectively. A negative binomial regression model was used to determine the correlation between CD4+CD38+ Tcm and total HIV DNA in CD4+ T cells. Results CD38 was highly expressed on CD4+ Tcm cells from HIV infected individuals on long-term ART. Comparing with HLA-DR−Tcm and CD4+HLA-DR+ T cells, CD4+CD38+ Tcm cells displayed lower levels of activation (CD25 and CD69) and higher levels of CD127 expression. The proportion of CD38+ Tcm, but not CD38− Tcm cells can predict the total HIV DNA in the CD4+ T cells and the CD38+ Tcm subset harbored higher total HIV DNA copy numbers than the CD38− Tcm subset. After transfected with CD38 si-RNA in CD4+ T cells, the proliferation of CD4+ T cells was inhibited. Conclusion The current date indicates that CD4+CD38+ Tcm cells contribute to HIV persistence in HIV-infected individuals on long-term ART. Our study provides a potential target to resolve HIV persistence.
Collapse
Affiliation(s)
- Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Le-Le Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Xian Wu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
22
|
Gürtler LG. Cytokines and chemokines involved in the defense reaction against HIV-1 and hepatitis B virus: isn't it time to use a standardized nomenclature of the involved mediators? Virus Genes 2019; 56:120-127. [PMID: 31848887 DOI: 10.1007/s11262-019-01721-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Discovery of new mediators of immune cell activation and interaction facilitated elucidation of the various ways of defense against infectious agents and happened some 40 years ago. Each involved group of researchers named the mediators according to their scope of investigation; often the same molecules were published at the same time with different names. To avoid confusion resulting from using different names for the same mediators and to prevent a Babylonian confusion, standardization was implemented-as in the field of metrics, music, or science including virology. For cytokines and chemokines a standard nomenclature was proposed some 10 years ago and in conclusion it should be used. In this paper the most relevant biomarkers in HIV-1 and HBV infection and their contribution during viral pathogenesis are listed.
Collapse
Affiliation(s)
- Lutz G Gürtler
- Max von Pettenkofer Institut, Ludwig Maximilians Universität München, Pettenkofer Str 9A, 80336, München, Germany.
| |
Collapse
|
23
|
Wonderlich ER, Subramanian K, Cox B, Wiegand A, Lackman-Smith C, Bale MJ, Stone M, Hoh R, Kearney MF, Maldarelli F, Deeks SG, Busch MP, Ptak RG, Kulpa DA. Effector memory differentiation increases detection of replication-competent HIV-l in resting CD4+ T cells from virally suppressed individuals. PLoS Pathog 2019; 15:e1008074. [PMID: 31609991 PMCID: PMC6812841 DOI: 10.1371/journal.ppat.1008074] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/24/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Studies have demonstrated that intensive ART alone is not capable of eradicating HIV-1, as the virus rebounds within a few weeks upon treatment interruption. Viral rebound may be induced from several cellular subsets; however, the majority of proviral DNA has been found in antigen experienced resting CD4+ T cells. To achieve a cure for HIV-1, eradication strategies depend upon both understanding mechanisms that drive HIV-1 persistence as well as sensitive assays to measure the frequency of infected cells after therapeutic interventions. Assays such as the quantitative viral outgrowth assay (QVOA) measure HIV-1 persistence during ART by ex vivo activation of resting CD4+ T cells to induce latency reversal; however, recent studies have shown that only a fraction of replication-competent viruses are inducible by primary mitogen stimulation. Previous studies have shown a correlation between the acquisition of effector memory phenotype and HIV-1 latency reversal in quiescent CD4+ T cell subsets that harbor the reservoir. Here, we apply our mechanistic understanding that differentiation into effector memory CD4+ T cells more effectively promotes HIV-1 latency reversal to significantly improve proviral measurements in the QVOA, termed differentiation QVOA (dQVOA), which reveals a significantly higher frequency of the inducible HIV-1 replication-competent reservoir in resting CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Bryan Cox
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Ann Wiegand
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | | | - Michael J Bale
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, United States of America.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Rebecca Hoh
- University of California, San Francisco (UCSF), San Francisco, California, United States of America
| | - Mary F Kearney
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Frank Maldarelli
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Steven G Deeks
- University of California, San Francisco (UCSF), San Francisco, California, United States of America
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, United States of America.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Roger G Ptak
- Southern Research, Frederick, Maryland, United States of America
| | - Deanna A Kulpa
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Boulougoura A, Gabriel E, Laidlaw E, Khetani V, Arakawa K, Higgins J, Rupert A, Gorelick RJ, Lumbard K, Pau A, Poole A, Kibiy A, Kumar P, Sereti I. A Phase I, Randomized, Controlled Clinical Study of CC-11050 in People Living With HIV With Suppressed Plasma Viremia on Antiretroviral Therapy (APHRODITE). Open Forum Infect Dis 2019; 6:ofz246. [PMID: 31211164 PMCID: PMC6559277 DOI: 10.1093/ofid/ofz246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/02/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Phosphodiesterase 4 inhibitors (PDE4i) are novel anti-inflammatory medications that have been approved for rheumatologic diseases and have been tested as host-directed therapy in tuberculosis. We examined the safety of CC-11050, a potent PDE4i in people living with HIV (PLWH) with suppressed HIV plasma viremia. We hypothesized that CC-11050 could be used to modulate HIV-related inflammation. METHOD Thirty PLWH on antiretroviral therapy (ART) ≥ 1 year with suppressed HIV viremia were enrolled and randomized 2:1 to 12 weeks of CC-11050 200mg twice daily or placebo with follow-up at weeks 2, 4, 8, 12, and 16. Primary endpoint was safety. Secondary endpoints were the effect of CC-11050 on cytokines, monocyte, and T-cell activation and potential pharmacokinetic interaction between CC-11050 and Efavirenz (EFV). RESULTS At baseline, median age was 49.5 years and CD4 count 459 cells/µL. Most frequent adverse events (grade 1 and 2 only) in CC-11050 group were headache, diarrhea, nausea, cough, nasal congestion, and restlessness. Over a 12-week period, the CC-11050 group had lower level of IL-8, adjusted for baseline level, group, and week (0.72-fold, P = .02), lower percentage of NK cells (0.87-fold, P = .02) and higher IL-6 level (1.48-fold, P = .03) compared to placebo (0.87-fold, P = .02). CC-11050 and EFV co-administration did not reveal any pharmacokinetic interaction. CONCLUSIONS CC-11050 was well tolerated in PLWH, without affecting CD4 counts or plasma viremia, and led to a decrease in NK cells and plasma IL-8 level after 12-weeks of administration. Further study will be needed to elucidate the efficacy of CC-11050 as potential anti-inflammatory adjuvant strategy in HIV.
Collapse
Affiliation(s)
- Afroditi Boulougoura
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Erin Gabriel
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Elizabeth Laidlaw
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | | | | | | | | | | - Keith Lumbard
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alice Pau
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - April Poole
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Angela Kibiy
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Princy Kumar
- Department of Infectious Disease, MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
25
|
Wang RJ, Moore J, Moisi D, Chang EG, Byanyima P, Kaswabuli S, Musisi E, Sanyu I, Sessolo A, Lalitha R, Worodria W, Davis JL, Crothers K, Lin J, Lederman MM, Hunt PW, Huang L. HIV infection is associated with elevated biomarkers of immune activation in Ugandan adults with pneumonia. PLoS One 2019; 14:e0216680. [PMID: 31091258 PMCID: PMC6519791 DOI: 10.1371/journal.pone.0216680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Pneumonia is an important cause of morbidity and mortality in persons living with human immunodeficiency virus (HIV) infection. How immune activation differs among HIV-infected and HIV-uninfected adults with pneumonia is unknown. METHODS The Inflammation, Aging, Microbes, and Obstructive Lung Disease (I AM OLD) Cohort is a prospective cohort of adults with pneumonia in Uganda. In this cross-sectional analysis, plasma was collected at pneumonia presentation to measure the following 12 biomarkers: interleukin 6 (IL-6), soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1 and sTNFR-2), high sensitivity C-reactive protein (hsCRP), fibrinogen, D-dimer, soluble CD27 (sCD27), interferon gamma-inducible protein 10 (IP-10), soluble CD14 (sCD14), soluble CD163 (sCD163), hyaluronan, and intestinal fatty acid binding protein. We asked whether biomarker levels differed between HIV-infected and HIV-uninfected participants, and whether higher levels of these biomarkers were associated with mortality. RESULTS One hundred seventy-three participants were enrolled. Fifty-three percent were HIV-infected. Eight plasma biomarkers-sTNFR-1, sTNFR-2, hsCRP, D-dimer, sCD27, IP-10, sCD14, and hyaluronan-were higher among participants with HIV infection, after adjustment for pneumonia severity. Higher levels of 8 biomarkers-IL-6, sTNFR-1, sTNFR-2, hsCRP, IP-10, sCD14, sCD163, and hyaluronan-were associated with increased 2-month mortality. CONCLUSIONS As in other clinical contexts, HIV infection is associated with a greater degree of immune activation among Ugandan adults with pneumonia. Some of these are also associated with short-term mortality. Further study is needed to explore whether these biomarkers might predict poor long-term outcomes-such as the development of obstructive lung disease-in patients with HIV who have recovered from pneumonia.
Collapse
Affiliation(s)
- Richard J. Wang
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (RW); (LH)
| | - Julia Moore
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Daniela Moisi
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Emily G. Chang
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Patrick Byanyima
- Makerere University – University of California San Francisco Research Collaboration, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Sylvia Kaswabuli
- Makerere University – University of California San Francisco Research Collaboration, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Emmanuel Musisi
- Makerere University – University of California San Francisco Research Collaboration, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Ingvar Sanyu
- Makerere University – University of California San Francisco Research Collaboration, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Abdulwahab Sessolo
- Makerere University – University of California San Francisco Research Collaboration, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Rejani Lalitha
- Department of Internal Medicine, Makerere College of Health Sciences, Kampala, Uganda
| | - William Worodria
- Department of Internal Medicine, Makerere College of Health Sciences, Kampala, Uganda
| | - J. Lucian Davis
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Kristina Crothers
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Michael M. Lederman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Peter W. Hunt
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Laurence Huang
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (RW); (LH)
| |
Collapse
|
26
|
Xiao J, Zhang L, Dong Y, Liu X, Peng L, Yang Y, Wang Y. PD-1 Upregulation Is Associated with Exhaustion of Regulatory T Cells and Reflects Immune Activation in HIV-1-Infected Individuals. AIDS Res Hum Retroviruses 2019; 35:444-452. [PMID: 30618263 DOI: 10.1089/aid.2018.0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We hypothesized that PD-1expressed by regulatory T cells (Tregs) would be functional and their expression levels may associate with activation status of CD4+ T and CD8+ T cells and the disease progression of HIV-1-infected patients. To prove it, we dynamically examined PD-1 expression levels by Tregs in peripheral blood of HIV-1-infected individuals not receiving antiretroviral therapy. Eighty-one HIV-1-infected individuals not undergoing antiretroviral therapy and 22 HIV-1-seronegative donors were enrolled in our study. Tregs were defined as CD4+CD25+CD127lo/- by flow cytometry. Expression of PD-1 and the activation markers CD38, HLA-DR, and Ki67 by Tregs and CD4+ T and CD8+ T cells was also determined by flow cytometry. TGF-β and IL-10 were measured to evaluate the suppressive function of Tregs. In all Tregs, the proportion of PD-1+ Tregs observed in HIV-1-infected persons was significantly greater than that seen in HIV-1-seronegative donors, and correlated with the activation of Tregs and CD4+ T and CD8+ T cells. This increased proportion of Tregs was also statistically associated with the disease progression. Blockade of PD-1/PD-L1 pathway with anti-PD-L1 mAb profoundly increased the level of intracellular TGF-β and IL-10 in CD4+CD25+CD127lo/- Tregs. Our data not only support that PD-1 plays a critical role to predict the activation status of cellular immunity and disease progression during HIV-1 infection but also indicate that blockade of PD-1/PD-L1 pathway represents a novel therapeutic approach to AIDS.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Immunology, GuangXi University of Chinese Medicine, Nanning, China
- GuangXi Medical Transformational Key Laboratory of Combine Traditional Chinese and Western Medicine and High Incidence of Infectious Diseases, Nanning, China
- Department of AIDS/STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lifeng Zhang
- Department of Immunology, GuangXi University of Chinese Medicine, Nanning, China
- GuangXi Medical Transformational Key Laboratory of Combine Traditional Chinese and Western Medicine and High Incidence of Infectious Diseases, Nanning, China
| | - Yuan Dong
- Department of AIDS/STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xian Liu
- Department of Immunology, GuangXi University of Chinese Medicine, Nanning, China
- GuangXi Medical Transformational Key Laboratory of Combine Traditional Chinese and Western Medicine and High Incidence of Infectious Diseases, Nanning, China
| | - Lishan Peng
- Department of Immunology, GuangXi University of Chinese Medicine, Nanning, China
- GuangXi Medical Transformational Key Laboratory of Combine Traditional Chinese and Western Medicine and High Incidence of Infectious Diseases, Nanning, China
| | - Yang Yang
- Department of Immunology, GuangXi University of Chinese Medicine, Nanning, China
- GuangXi Medical Transformational Key Laboratory of Combine Traditional Chinese and Western Medicine and High Incidence of Infectious Diseases, Nanning, China
| | - Ying Wang
- Department of AIDS/STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
27
|
HIV Subtype and Nef-Mediated Immune Evasion Function Correlate with Viral Reservoir Size in Early-Treated Individuals. J Virol 2019; 93:JVI.01832-18. [PMID: 30602611 DOI: 10.1128/jvi.01832-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022] Open
Abstract
The HIV accessory protein Nef modulates key immune evasion and pathogenic functions, and its encoding gene region exhibits high sequence diversity. Given the recent identification of early HIV-specific adaptive immune responses as novel correlates of HIV reservoir size, we hypothesized that viral factors that facilitate the evasion of such responses-namely, Nef genetic and functional diversity-might also influence reservoir establishment and/or persistence. We isolated baseline plasma HIV RNA-derived nef clones from 30 acute/early-infected individuals who participated in a clinical trial of early combination antiretroviral therapy (cART) (<6 months following infection) and assessed each Nef clone's ability to downregulate CD4 and human leukocyte antigen (HLA) class I in vitro We then explored the relationships between baseline clinical, immunological, and virological characteristics and the HIV reservoir size measured 48 weeks following initiation of suppressive cART (where the reservoir size was quantified in terms of the proviral DNA loads as well as the levels of replication-competent HIV in CD4+ T cells). Maximal within-host Nef-mediated downregulation of HLA, but not CD4, correlated positively with post-cART proviral DNA levels (Spearman's R = 0.61, P = 0.0004) and replication-competent reservoir sizes (Spearman's R = 0.36, P = 0.056) in univariable analyses. Furthermore, the Nef-mediated HLA downregulation function was retained in final multivariable models adjusting for established clinical and immunological correlates of reservoir size. Finally, HIV subtype B-infected persons (n = 25) harbored significantly larger viral reservoirs than non-subtype B-infected persons (2 infected with subtype CRF01_AE and 3 infected with subtype G). Our results highlight a potentially important role of viral factors-in particular, HIV subtype and accessory protein function-in modulating viral reservoir establishment and persistence.IMPORTANCE While combination antiretroviral therapies (cART) have transformed HIV infection into a chronic manageable condition, they do not act upon the latent HIV reservoir and are therefore not curative. As HIV cure or remission should be more readily achievable in individuals with smaller HIV reservoirs, achieving a deeper understanding of the clinical, immunological, and virological determinants of reservoir size is critical to eradication efforts. We performed a post hoc analysis of 30 participants of a clinical trial of early cART who had previously been assessed in detail for their clinical, immunological, and reservoir size characteristics. We observed that the HIV subtype and autologous Nef-mediated HLA downregulation function correlated with the viral reservoir size measured approximately 1 year post-cART initiation. Our findings highlight virological characteristics-both genetic and functional-as possible novel determinants of HIV reservoir establishment and persistence.
Collapse
|
28
|
Stability of plasma indices of inflammation/coagulation and homeostasis after fatty and non-fatty meals in treated people with HIV. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Dorazio D, Kitch DW, Utay NS, Macatangay BJ, Landay A, Brown T, Bosch RJ, Pelger AL, Baum JE, Asaad R, Rodriguez B, Lederman MM. Stability of plasma indices of inflammation/coagulation and homeostasis after fatty and non-fatty meals in treated people with HIV. J Virus Erad 2019; 5:28-32. [PMID: 30800423 PMCID: PMC6362905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVES The relationship between lipid levels in plasma and inflammatory indices is complex and fatty meals alter plasma inflammatory markers in people with diabetes. There is interest in monitoring the effects of interventions on plasma inflammatory and coagulation elements in people with HIV, as they have been linked to risk for morbid outcomes and HIV persistence. Understanding the effects of feeding and time of specimen acquisition is important for the correct scheduling of clinical sampling. METHODS We examined the effects of feeding on plasma inflammatory, coagulation and homeostatic indices among 24 non-diabetic people with HIV, with controlled viraemia and on antiretroviral therapy after fasting and then 1, 3 and 6 hours after ingesting a fatty meal, and also approximately 1 week later after fasting and after an isocaloric non-fatty meal. Plasma levels of IL-6, IL-7, IP-10, sCD14, sCD163, sTNFrII and D-dimer were monitored by immunoassay. RESULTS Fasting levels of all markers obtained approximately 1 week apart were significantly correlated (P<0.001). Mild alterations in plasma concentrations of inflammatory markers were observed after feeding but geometric means varied more than 10% from baseline for only IL-6 and IL-7. Meal type was differentially associated with changes in plasma levels for IL-7 only. Antiretroviral treatment regimen, body mass index and changes in plasma triglyceride levels were not linked to post-feeding changes in these biomarkers. CONCLUSIONS These plasma inflammatory, coagulation and homeostatic indices are relatively stable at fasting and are only minimally affected by feeding or time of day. These findings will aid in the monitoring of inflammatory and homeostatic indices that may contribute to control of HIV expression and its persistence.
Collapse
Affiliation(s)
- Dominic Dorazio
- Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center,
Cleveland,
OH,
USA
| | - Douglas W Kitch
- Harvard TH Chan School of Public Health,
Boston,
Massachusetts,
USA
| | - Netanya S Utay
- McGovern Medical School at the University of Texas Health Science Center at Houston,
Houston,
TX,
USA
| | | | - Alan Landay
- Rush University Medical Center,
Chicago,
IL,
USA
| | - Todd Brown
- Johns Hopkins University School of Medicine,
Baltimore,
MD,
USA
| | - Ronald J Bosch
- Harvard TH Chan School of Public Health,
Boston,
Massachusetts,
USA
| | - Alison L Pelger
- Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center,
Cleveland,
OH,
USA
| | - Jane E Baum
- Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center,
Cleveland,
OH,
USA
| | - Robert Asaad
- Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center,
Cleveland,
OH,
USA
| | - Benigno Rodriguez
- Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center,
Cleveland,
OH,
USA
| | - Michael M Lederman
- Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center,
Cleveland,
OH,
USA,Corresponding author: Michael M Lederman,
Case Western Reserve University,
2061 Cornell Rd,
Cleveland,
OH,
44106,
USA
| |
Collapse
|
30
|
Hydroxypropyl-Beta-Cyclodextrin Reduces Inflammatory Signaling from Monocytes: Possible Implications for Suppression of HIV Chronic Immune Activation. mSphere 2018; 3:3/6/e00497-18. [PMID: 30404938 PMCID: PMC6222057 DOI: 10.1128/msphere.00497-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Monocytes from HIV-infected patients produce increased levels of inflammatory cytokines, which are associated with chronic immune activation and AIDS progression. Chronic immune activation is often not restored even in patients showing viral suppression under ART. Therefore, new therapeutic strategies to control inflammation and modulate immune activation are required. Hydroxypropyl-beta-cyclodextrin (HP-BCD) is a cholesterol-sequestering agent that has been reported to be safe for human use in numerous pharmaceutical applications and that has been shown to inactivate HIV in vitro and to control SIV infection in vivo Since cellular cholesterol content or metabolism has been related to altered cellular activation, we evaluated whether HP-BCD treatment could modulate monocyte response to inflammatory stimuli. Treatment of monocytes isolated from HIV-positive and HIV-negative donors with HP-BCD inhibited the expression of CD36 and TNF-α after LPS stimulation, independent of raft disruption. Accordingly, HP-BCD-treated cells showed significant reduction of TNF-α and IL-10 secretion, which was associated with lower mRNA expression. LPS-induced p38MAPK phosphorylation was dampened by HP-BCD treatment, indicating this pathway as a target for HP-BCD-mediated anti-inflammatory response. The expression of HLA-DR was also reduced in monocytes and dendritic cells treated with HP-BCD, which could hinder T cell activation by these cells. Our data suggest that, besides its well-known antiviral activity, HP-BCD could have an immunomodulatory effect, leading to decreased inflammatory responses mediated by antigen-presenting cells, which may impact HIV pathogenesis and AIDS progression.IMPORTANCE Chronic immune activation is a hallmark of HIV infection and is often not controlled even in patients under antiretroviral therapy. Indeed, chronic diseases with inflammatory pathogenesis are being reported as major causes of death for HIV-infected persons. Hydroxypropyl-beta cyclodextrin (HP-BCD) is a cholesterol-sequestering drug that inhibits HIV replication and infectivity in vitro and in vivo Recent studies have demonstrated the importance of cholesterol metabolism and content in different inflammatory conditions; therefore, we investigated the potential of HP-BCD as an immunomodulatory drug, regulating the activation of cells from HIV-infected patients. Treatment of monocytes with HP-BCD inhibited the expression and secretion of receptors and mediators that are usually enhanced in HIV patients. Furthermore, we investigated the molecular mechanisms associated with the immunomodulatory effect of HP-BCD. Our results indicate that, besides reducing viral replication, HP-BCD treatment may contribute to modulation of chronic immune activation associated with AIDS.
Collapse
|