1
|
Amita H, Subair Z, Mora T, Dudhe PE, Dhanasekaran K. Betrayal From the Core: Centriolar and Cytoskeletal Subversion by Infectious Pathogens. Cytoskeleton (Hoboken) 2025. [PMID: 39902598 DOI: 10.1002/cm.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Microbes and parasites have evolved several means to evade and usurp the host cellular machinery to mediate pathogenesis. Being the major microtubule-organizing center (MTOC) of the cell, the centrosome is targeted by multiple viral and nonviral pathogens to mediate their assembly and trafficking within the host cell. This review examines the consequence of such targeting to the centrosome and associated cytoskeletal machinery. We have also amassed a substantial body of evidence of viruses utilizing the cilia within airway epithelium to mediate infection and the hijacking of host cytoskeletal machinery for efficient entry, replication, and egress. While infections have been demonstrated to induce structural, functional, and numerical aberrations in centrosomes, and induce ciliary dysfunction, current literature increasingly supports the notion of a pro-viral role for these organelles. Although less explored, the impact of bacterial and parasitic pathogens on these structures has also been addressed very briefly. Mechanistically, the molecular pathways responsible for these effects remain largely uncharacterized in many instances. Future research focusing on the centriolar triad comprising the centrosome, cilia, and centriolar satellites will undoubtedly provide vital insights into the tactics employed by infectious agents to subvert the host centriole and cytoskeleton-based machinery.
Collapse
Affiliation(s)
- Himanshi Amita
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Zidhan Subair
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Tulasiram Mora
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Pranay Eknath Dudhe
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Karthigeyan Dhanasekaran
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| |
Collapse
|
2
|
Chen CY, Hajinicolaou C, Walabh P, Ingasia LAO, Song E, Kramvis A. Molecular characterization of hepatitis B virus (HBV) isolated from a pediatric case of acute lymphoid leukemia, with a delayed response to antiviral treatment: a case report. BMC Pediatr 2022; 22:168. [PMID: 35361141 PMCID: PMC8969373 DOI: 10.1186/s12887-022-03204-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tenofovir disoproxil fumarate (TDF) is effectively used as the first-line antiviral for chronic hepatitis B virus (HBV) infection in adults and children older than 12 years. To date, no confirmed case of virologic breakthrough (VBT) in a pediatric case has been reported. CASE PRESENTATION Here we describe a case of a 5-year old, asymptomatically infected with HBV infection two months after chemotherapy for precursor B acute lymphoblastic leukemia (ALL). Although the 5-year old male is South African, his family originated from Guinea. At the end of the one-year follow-up, the infection progressed to chronic HBV infection, with a high viral load. At 36 weeks (8 months) post-treatment with lamivudine (LAM), there was a partial virologic response (PVR) and after 61 weeks (14 months), he was switched to TDF rescue monotherapy. Even with TDF treatment, he still experienced VBT and subsequent PVR. The full-length genome of HBV isolated 78 weeks after the switch to rescue TDF monotherapy was sequenced and belonged to genotype E. In addition to the LAM mutations (rtS256G and rtM267L), missense mutations in B-cell, T-cell, HLA class I and II-restricted epitopes emerged, which were to evade and escape host surveillance, leading to delayed viral clearance, persistence and disease progression. Two further events of VBT occurred between weeks 113 and 141 of TDF rescue-therapy. Viral loads and liver enzymes are normalizing progressively with long-term therapy. CONCLUSION Although the host immune reconstitution may be delayed, prolonged TDF treatment was effective in treating this pediatric case of HBV infection with VBT and PVR.
Collapse
Affiliation(s)
- Chien-Yu Chen
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Christina Hajinicolaou
- Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Paediatric Gastroenterology, Hepatology and Nutrition Unit, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa.,Paediatric Gastroentrology, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Priya Walabh
- Paediatric Gastroenterology, Hepatology and Nutrition Unit, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Luicer Anne Olubayo Ingasia
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Ernest Song
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
A Systematic Review of T Cell Epitopes Defined from the Proteome of Hepatitis B Virus. Vaccines (Basel) 2022; 10:vaccines10020257. [PMID: 35214714 PMCID: PMC8878595 DOI: 10.3390/vaccines10020257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a worldwide health problem and no eradicative therapy is currently available. Host T cell immune responses have crucial influences on the outcome of HBV infection, however the development of therapeutic vaccines, T cell therapies and the clinical evaluation of HBV-specific T cell responses are hampered markedly by the lack of validated T cell epitopes. This review presented a map of T cell epitopes functionally validated from HBV antigens during the past 33 years; the human leukocyte antigen (HLA) supertypes to present these epitopes, and the methods to screen and identify T cell epitopes. To the best of our knowledge, a total of 205 CD8+ T cell epitopes and 79 CD4+ T cell epitopes have been defined from HBV antigens by cellular functional experiments thus far, but most are restricted to several common HLA supertypes, such as HLA-A0201, A2402, B0702, DR04, and DR12 molecules. Therefore, the currently defined T cell epitope repertoire cannot cover the major populations with HLA diversity in an indicated geographic region. More researches are needed to dissect a more comprehensive map of T cell epitopes, which covers overall HBV proteome and global patients.
Collapse
|
4
|
Cargill T, Barnes E. Therapeutic vaccination for treatment of chronic hepatitis B. Clin Exp Immunol 2021; 205:106-118. [PMID: 33969474 PMCID: PMC8274149 DOI: 10.1111/cei.13614] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B infection remains a serious global health threat, contributing to a large number of deaths through liver cirrhosis and hepatocellular carcinoma. Current treatment does not eradicate disease, and therefore new treatments are urgently needed. In acute hepatitis B virus (HBV) a strong immune response is necessary to clear the virus, but in chronic infection the immune response is weakened and dysfunctional. Therapeutic vaccination describes the process of inoculating individuals with a non‐infective form of viral antigen with the aim of inducing or boosting existing HBV‐specific immune responses, resulting in sustained control of HBV infection. In this review we outline the rationale for therapeutic vaccination in chronic HBV infection, discuss previous and ongoing trials of novel HBV therapeutic vaccine candidates and outline strategies to improve vaccine efficacy going forward.
Collapse
Affiliation(s)
- Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom.,Translational Gastroenterology Unit, Oxford University, Oxford, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom.,Translational Gastroenterology Unit, Oxford University, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre and Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
5
|
Lacasta A, Mody KT, De Goeyse I, Yu C, Zhang J, Nyagwange J, Mwalimu S, Awino E, Saya R, Njoroge T, Muriuki R, Ndiwa N, Poole EJ, Zhang B, Cavallaro A, Mahony TJ, Steinaa L, Mitter N, Nene V. Synergistic Effect of Two Nanotechnologies Enhances the Protective Capacity of the Theileria parva Sporozoite p67C Antigen in Cattle. THE JOURNAL OF IMMUNOLOGY 2021; 206:686-699. [PMID: 33419770 PMCID: PMC7851744 DOI: 10.4049/jimmunol.2000442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022]
Abstract
East Coast fever (ECF), caused by Theileria parva, is the most important tick-borne disease of cattle in sub-Saharan Africa. Practical disadvantages associated with the currently used live-parasite vaccine could be overcome by subunit vaccines. An 80-aa polypeptide derived from the C-terminal portion of p67, a sporozoite surface Ag and target of neutralizing Abs, was the focus of the efforts on subunit vaccines against ECF and subjected to several vaccine trials with very promising results. However, the vaccination regimen was far from optimized, involving three inoculations of 450 μg of soluble p67C (s-p67C) Ag formulated in the Seppic adjuvant Montanide ISA 206 VG. Hence, an improved formulation of this polypeptide Ag is needed. In this study, we report on two nanotechnologies that enhance the bovine immune responses to p67C. Individually, HBcAg-p67C (chimeric hepatitis B core Ag virus-like particles displaying p67C) and silica vesicle (SV)-p67C (s-p67C adsorbed to SV-140-C18, octadecyl-modified SVs) adjuvanted with ISA 206 VG primed strong Ab and T cell responses to p67C in cattle, respectively. Coimmunization of cattle (Bos taurus) with HBcAg-p67C and SV-p67C resulted in stimulation of both high Ab titers and CD4 T cell response to p67C, leading to the highest subunit vaccine efficacy we have achieved to date with the p67C immunogen. These results offer the much-needed research depth on the innovative platforms for developing effective novel protein-based bovine vaccines to further the advancement.
Collapse
Affiliation(s)
- Anna Lacasta
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya;
| | - Karishma T Mody
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ine De Goeyse
- Enzootic, Vector-borne and Bee Diseases, Sciensano, 1180 Brussels, Belgium.,Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James Nyagwange
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Stephen Mwalimu
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Elias Awino
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Rosemary Saya
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Thomas Njoroge
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Robert Muriuki
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute, Nairobi 00100, Kenya; and
| | - Elisabeth Jane Poole
- Research Methods Group, International Livestock Research Institute, Nairobi 00100, Kenya; and
| | - Bing Zhang
- Department of Agriculture and Fisheries, Brisbane, Queensland 4102, Australia
| | - Antonino Cavallaro
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| |
Collapse
|
6
|
Chua C, Salimzadeh L, Gehring AJ. Immunopathogenesis of Hepatitis B Virus Infection. HEPATITIS B VIRUS AND LIVER DISEASE 2021:73-97. [DOI: 10.1007/978-981-16-3615-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Choga WT, Anderson M, Zumbika E, Phinius BB, Mbangiwa T, Bhebhe LN, Baruti K, Kimathi PO, Seatla KK, Musonda RM, Bell TG, Moyo S, Blackard JT, Gaseitsiwe S. In Silico Prediction of Human Leukocytes Antigen (HLA) Class II Binding Hepatitis B Virus (HBV) Peptides in Botswana. Viruses 2020; 12:E731. [PMID: 32640609 PMCID: PMC7412261 DOI: 10.3390/v12070731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is the primary cause of liver-related malignancies worldwide, and there is no effective cure for chronic HBV infection (CHB) currently. Strong immunological responses induced by T cells are associated with HBV clearance during acute infection; however, the repertoire of epitopes (epi) presented by major histocompatibility complexes (MHCs) to elicit these responses in various African populations is not well understood. In silico approaches were used to map and investigate 15-mers HBV peptides restricted to 9 HLA class II alleles with high population coverage in Botswana. Sequences from 44 HBV genotype A and 48 genotype D surface genes (PreS/S) from Botswana were used. Of the 1819 epi bindings predicted, 20.2% were strong binders (SB), and none of the putative epi bind to all the 9 alleles suggesting that multi-epitope, genotype-based, population-based vaccines will be more effective against HBV infections as opposed to previously proposed broad potency epitope-vaccines which were assumed to work for all alleles. In total, there were 297 unique epi predicted from the 3 proteins and amongst, S regions had the highest number of epi (n = 186). Epitope-densities (Depi) between genotypes A and D were similar. A number of mutations that hindered HLA-peptide binding were observed. We also identified antigenic and genotype-specific peptides with characteristics that are well suited for the development of sensitive diagnostic kits. This study identified candidate peptides that can be used for developing multi-epitope vaccines and highly sensitive diagnostic kits against HBV infection in an African population. Our results suggest that viral variability may hinder HBV peptide-MHC binding, required to initiate a cascade of immunological responses against infection.
Collapse
Affiliation(s)
- Wonderful Tatenda Choga
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Motswedi Anderson
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
| | - Edward Zumbika
- Department of Applied Biology and Biochemistry, Faculty of Applied Sciences, National University of Science and Technology, Bulawayo 0000, Zimbabwe;
| | - Bonolo B. Phinius
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
| | - Tshepiso Mbangiwa
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lynnette N. Bhebhe
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
| | - Kabo Baruti
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone 0000, Botswana
| | | | - Kaelo K. Seatla
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone 0000, Botswana
| | - Rosemary M. Musonda
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Trevor Graham Bell
- Independent Researcher, P.O. Box 497, Wits, Johannesburg 2050, South Africa;
| | - Sikhulile Moyo
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jason T. Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Simani Gaseitsiwe
- Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone 0000, Botswana; (W.T.C.); (M.A.); (B.B.P.); (T.M.); (L.N.B.); (K.B.); (K.K.S.); (R.M.M.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
8
|
Luo Y, Zhang L, Dai Y, Hu Y, Xu B, Zhou YH. Conservative Evolution of Hepatitis B Virus Precore and Core Gene During Immune Tolerant Phase in Intrafamilial Transmission. Virol Sin 2020; 35:388-397. [PMID: 32124248 DOI: 10.1007/s12250-020-00194-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) is characterized with high mutations, which is attributed to the lack of proof-reading of the viral reverse transcriptase and host immune pressure. In this study, 31 HBV chronic carriers from 14 families were enrolled to investigate the evolution of the same original HBV sources in different hosts. Sequences of pre-C and C (pre-C/C) genes were analyzed in eight pairs of HBV-infected mothers with longitudinal sera (at an interval of 6.0-7.2 years) and their children (5.5-6.7 years old), and in 15 adults (21-78 years old) from six families with known intrafamilial HBV infection. The pre-C/C sequences had almost no change in eight mothers during 6.0-7.2 years and their children who were in immune tolerant phase. The pre-C/C sequences from the 15 adults of six families, mostly in the immune-clearance phase or the low replicative phase, showed various diversified mutations between individuals from each family. Compared to a reference stain (GQ205441) isolated nearby, the pre-C/C in individuals in immune tolerant phase showed 98.56%-99.52% homology at nucleotide level and 99.5%-100% homology at amino acid level. In contrast, multiple mutations were developed in the immune-clearance phase or the low replicative phase, affecting immune epitopes in core gene and G1896 in pre-C gene. The results indicate that the evolution of new HBV variants is not mainly resulted from the spontaneous error rate of viral reverse transcription, but from the host immune pressure.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, 210008, China
| | - Le Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, 210008, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Biyun Xu
- Department of Biostatistics, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Yi-Hua Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, 210008, China. .,Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
9
|
Zhang TY, Guo XR, Wu YT, Kang XZ, Zheng QB, Qi RY, Chen BB, Lan Y, Wei M, Wang SJ, Xiong HL, Cao JL, Zhang BH, Qiao XY, Huang XF, Wang YB, Fang MJ, Zhang YL, Cheng T, Chen YX, Zhao QJ, Li SW, Ge SX, Chen PJ, Zhang J, Yuan Q, Xia NS. A unique B cell epitope-based particulate vaccine shows effective suppression of hepatitis B surface antigen in mice. Gut 2020; 69:343-354. [PMID: 30926653 PMCID: PMC6984059 DOI: 10.1136/gutjnl-2018-317725] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed to develop a novel therapeutic vaccine based on a unique B cell epitope and investigate its therapeutic potential against chronic hepatitis B (CHB) in animal models. METHODS A series of peptides and carrier proteins were evaluated in HBV-tolerant mice to obtain an optimised therapeutic molecule. The immunogenicity, therapeutic efficacy and mechanism of the candidate were investigated systematically. RESULTS Among the HBsAg-aa119-125-containing peptides evaluated in this study, HBsAg-aa113-135 (SEQ13) exhibited the most striking therapeutic effects. A novel immunoenhanced virus-like particle carrier (CR-T3) derived from the roundleaf bat HBV core antigen (RBHBcAg) was created and used to display SEQ13, forming candidate molecule CR-T3-SEQ13. Multiple copies of SEQ13 displayed on the surface of this particulate antigen promote the induction of a potent anti-HBs antibody response in mice, rabbits and cynomolgus monkeys. Sera and purified polyclonal IgG from the immunised animals neutralised HBV infection in vitro and mediated efficient HBV/hepatitis B virus surface antigen (HBsAg) clearance in the mice. CR-T3-SEQ13-based vaccination induced long-term suppression of HBsAg and HBV DNA in HBV transgenic mice and eradicated the virus completely in hydrodynamic-based HBV carrier mice. The suppressive effects on HBsAg were strongly correlated with the anti-HBs level after vaccination, suggesting that the main mechanism of CR-T3-SEQ13 vaccination therapy was the induction of a SEQ13-specific antibody response that mediated HBV/HBsAg clearance. CONCLUSIONS The novel particulate protein CR-T3-SEQ13 suppressed HBsAg effectively through induction of a humoural immune response in HBV-tolerant mice. This B cell epitope-based therapeutic vaccine may provide a novel immunotherapeutic agent against chronic HBV infection in humans.
Collapse
Affiliation(s)
- Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Xue-Ran Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Yang-Tao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Xiao-Zhen Kang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Qing-Bing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Ruo-Yao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Bin-Bing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Ying Lan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Min Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Shao-Juan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Jia-Li Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Bao-Hui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Xiao-Yang Qiao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Xiao-Fen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Ying-Bin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Mu-Jin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Ya-Li Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Yi-Xin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Qin-Jian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Shao-Wei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Sheng-Xiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Pei-Jer Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| | - Ning-shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health & School of Life Science, Xiamen University, Xiamen, China,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Science, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Heim K, Neumann-Haefelin C, Thimme R, Hofmann M. Heterogeneity of HBV-Specific CD8 + T-Cell Failure: Implications for Immunotherapy. Front Immunol 2019; 10:2240. [PMID: 31620140 PMCID: PMC6763562 DOI: 10.3389/fimmu.2019.02240] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major global health burden affecting around 257 million people worldwide. The consequences of chronic HBV infection include progressive liver damage, liver cirrhosis, and hepatocellular carcinoma. Although current direct antiviral therapies successfully lead to suppression of viral replication and deceleration of liver cirrhosis progression, these treatments are rarely curative and patients often require a life-long therapy. Based on the ability of the immune system to control HBV infection in at least a subset of patients, immunotherapeutic approaches are promising treatment options to achieve HBV cure. In particular, T cell-based therapies are of special interest since CD8+ T cells are not only capable to control HBV infection but also to eliminate HBV-infected cells. However, recent data show that the molecular mechanisms underlying CD8+ T-cell failure in chronic HBV infection depend on the targeted antigen and thus different strategies to improve the HBV-specific CD8+ T-cell response are required. Here, we review the current knowledge about the heterogeneity of impaired HBV-specific T-cell populations and the potential consequences for T cell-based immunotherapeutic approaches in HBV cure.
Collapse
Affiliation(s)
- Kathrin Heim
- Department of Medicine II, Faculty of Medicine, University Hospital Freiburg, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Faculty of Medicine, University Hospital Freiburg, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Faculty of Medicine, University Hospital Freiburg, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Faculty of Medicine, University Hospital Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Kramvis A, Kostaki EG, Hatzakis A, Paraskevis D. Immunomodulatory Function of HBeAg Related to Short-Sighted Evolution, Transmissibility, and Clinical Manifestation of Hepatitis B Virus. Front Microbiol 2018; 9:2521. [PMID: 30405578 PMCID: PMC6207641 DOI: 10.3389/fmicb.2018.02521] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a global public health problem can be asymptomatic, acute or chronic and can lead to serious consequences of infection, including cirrhosis, and hepatocellular carcinoma. HBV, a partially double stranded DNA virus, belongs to the family Hepadnaviridae, and replicates via reverse transcription of an RNA intermediate. This reverse transcription is catalyzed by a virus-encoded polymerase that lacks proof reading ability, which leads to sequence heterogeneity. HBV is classified into nine genotypes and at least 35 subgenotypes, which may be characterized by distinct geographical distributions. This HBV diversification and distinct geographical distribution has been proposed to be the result of the co-expansion of HBV with modern humans, after their out-of-Africa migration. HBeAg is a non-particulate protein of HBV that has immunomodulatory properties as a tolerogen that allows the virus to establish HBV infection in vivo. During the natural course of infection, there is seroconversion from a HBeAg-positive phase to a HBeAg-negative, anti-HBe-positive phase. During this seroconversion, there is loss of tolerance to infection and immune escape-HBeAg-negative mutants can be selected in response to the host immune response. The different genotypes and, in some cases, subgenotypes develop different mutations that can affect HBeAg expression at the transcriptional, translational and post-translational levels. The ability to develop mutations, affecting HBeAg expression, can influence the length of the HBeAg-positive phase, which is important in determining both the mode of transmission and the clinical course of HBV infection. Thus, the different genotypes/subgenotypes have evolved in such a way that they exhibit different modes of transmission and clinical manifestation of infection. Loss of HBeAg may be a sign of short-sighted evolution because there is loss of tolerogenic ability of HBeAg and HBeAg-negative virions are less transmissible. Depending on their ability to lead to HBeAg seroconversion, the genotype/subgenotypes exhibit varying degrees of short-sighted evolution. The “arms race” between HBV and the immune response to HBeAg is multifaceted and its elucidation intricate, with transmissibility and persistence being important for the survival of the virus. We attempt to shed some light on this complex interplay between host and virus.
Collapse
Affiliation(s)
- Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Al-Qahtani AA, Al-Anazi MR, Nazir N, Abdo AA, Sanai FM, Al-Hamoudi WK, Alswat KA, Al-Ashgar HI, Khan MQ, Albenmousa A, El-Shamy A, Alanazi SK, Dela Cruz D, Bohol MFF, Al-Ahdal MN. The Correlation Between Hepatitis B Virus Precore/Core Mutations and the Progression of Severe Liver Disease. Front Cell Infect Microbiol 2018; 8:355. [PMID: 30406036 PMCID: PMC6204459 DOI: 10.3389/fcimb.2018.00355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
Viral mutations acquired during the course of chronic hepatitis B virus (HBV) infection are known to be associated with the progression and severity of HBV-related liver disease. This study of HBV-infected Saudi Arabian patients aimed to identify amino acid substitutions within the precore/core (preC/C) region of HBV, and investigate their impact on disease progression toward hepatocellular carcinoma (HCC). Patients were categorized according to the severity of their disease, and were divided into the following groups: inactive HBV carriers, active HBV carriers, liver cirrhosis patients, and HCC patients. Two precore mutations, W28* and G29D, and six core mutations, F24Y, E64D, E77Q, A80I/T/V, L116I, and E180A were significantly associated with the development of cirrhosis and HCC. Six of the seven significant core mutations that were identified in this study were located within immuno-active epitopes; E77Q, A80I/T/V, and L116I were located within B-cell epitopes, and F24Y, E64D, and V91S/T were located within T-cell epitopes. Multivariate risk analysis confirmed that the core mutations A80V and L116I were both independent predictors of HBV-associated liver disease progression. In conclusion, our data show that mutations within the preC/C region, particularly within the immuno-active epitopes, may contribute to the severity of liver disease in patients with chronic hepatitis. Furthermore, we have identified several distinct preC/C mutations within the study population that affect the clinical manifestation and progression of HBV-related disease. The specific identity of HBV mutations that are associated with severe disease varies between different ethnic populations, and so the specific preC/C mutations identified here will be useful for predicting clinical outcomes and identifying the HBV-infected patients within the Saudi population that are at high risk of developing HCC.
Collapse
Affiliation(s)
- Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Mashael R Al-Anazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nyla Nazir
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ayman A Abdo
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Faisal M Sanai
- Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia.,Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Waleed K Al-Hamoudi
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Khalid A Alswat
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Hamad I Al-Ashgar
- Gastroenterology Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Q Khan
- Gastroenterology Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Albenmousa
- Department of Gastroenterology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahmed El-Shamy
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, CA, United States
| | - Salah K Alanazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Damian Dela Cruz
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Marie Fe F Bohol
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Anderson M, Choga WT, Moyo S, Bell TG, Mbangiwa T, Phinius BB, Bhebhe L, Sebunya TK, Makhema J, Marlink R, Kramvis A, Essex M, Musonda RM, Blackard JT, Gaseitsiwe S. In Silico Analysis of Hepatitis B Virus Occult Associated Mutations in Botswana Using a Novel Algorithm. Genes (Basel) 2018; 9:genes9090420. [PMID: 30134551 PMCID: PMC6162659 DOI: 10.3390/genes9090420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
Occult hepatitis B infections (OBI) represent a reservoir of undiagnosed and untreated hepatitis B virus (HBV), hence the need to identify mutations that lead to this phenotype. Functionally characterizing these mutations by in vitro studies is time-consuming and expensive. To bridge this gap, in silico approaches, which predict the effect of amino acid (aa) variants on HBV protein function, are necessary. We developed an algorithm for determining the relevance of OBI-associated mutations using in silico approaches. A 3 kb fragment of subgenotypes A1 and D3 from 24 chronic HBV-infected (CHB) and 24 OBI participants was analyzed. To develop and validate the algorithm, the effects of 68 previously characterized occult-associated mutations were determined using three computational tools: PolyPhen2, SNAP2, and PROVEAN. The percentage of deleterious mutations (with impact on protein function) predicted were 52 (76.5%) by PolyPhen2, 55 (80.9%) by SNAP2, and 65 (95.6%) by PROVEAN. At least two tools correctly predicted 59 (86.8%) mutations as deleterious. To identify OBI-associated mutations exclusive to Botswana, study sequences were compared to CHB sequences from GenBank. Of the 43 OBI-associated mutations identified, 26 (60.5%) were predicted by at least two tools to have an impact on protein function. To our knowledge, this is the first study to use in silico approaches to determine the impact of OBI-associated mutations, thereby identifying potential candidates for functional analysis to facilitate mechanistic studies of the OBI phenotype.
Collapse
Affiliation(s)
- Motswedi Anderson
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Faculty of Science, Department of Biological Sciences, University of Botswana, Gaborone, Botswana.
| | | | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Trevor Graham Bell
- Hepatitis Virus Diversity Research Unit (HVDRU), Faculty of Health Sciences, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Tshepiso Mbangiwa
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Faculty of Allied Health Sciences, University of Botswana, Gaborone, Botswana.
| | - Bonolo B Phinius
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
| | - Lynette Bhebhe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
| | - Theresa K Sebunya
- Faculty of Science, Department of Biological Sciences, University of Botswana, Gaborone, Botswana.
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Richard Marlink
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
- Rutgers Global Health Institute, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit (HVDRU), Faculty of Health Sciences, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | | | - Jason T Blackard
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Hepatitis B Vaccination Induced TNF- α- and IL-2-Producing T Cell Responses in HIV- Healthy Individuals Higher than in HIV+ Individuals Who Received the Same Vaccination Regimen. J Immunol Res 2018; 2018:8350862. [PMID: 29682590 PMCID: PMC5848135 DOI: 10.1155/2018/8350862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
We investigated cytokine production and expression of degranulation marker CD107a after different strategies of hepatitis B virus (HBV) vaccination in human immunodeficiency virus-infected individuals, which were three doses of 20 μg (standard dose group), four doses of 20 μg (four doses group), or four doses of 40 μg (four double doses group), compared to standard dose vaccination in healthy controls. PBMCs collected at different time points were stimulated in vitro with recombinant hepatitis B surface antigen and analyzed by flow cytometry. There was an increase in TNF-α production of total and memory CD4+ T cells at 7 months after vaccination in healthy controls compared to the HIV+ group, which received the same standard vaccination regimen. An increase in the IL-2-producing memory CD4+ T cells in the healthy control group was also observed at 7 months after vaccination. No differences were observed between the healthy controls and both groups of four doses at any time point of study. These results suggest that the standard HBV vaccination schedule might induce better production of TNF-α and IL-2 from CD4+ T cells in healthy individuals. Modification of HBV vaccination schedule by increasing the frequency and/or dosage may improve the CMI response in HIV-infected individuals. This trial is registered with NCT1289106.
Collapse
|
15
|
Yang G, Liu Z, Yang J, Luo K, Xu Y, He H, Fu Q, Yu S, Wang Z. Quasispecies characteristics in mother-to-child transmission of hepatitis B virus by next-generation sequencing. J Infect 2017; 75:48-58. [PMID: 28483405 DOI: 10.1016/j.jinf.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To identify within-host quasispecies characteristics of hepatitis B virus (HBV) in mothers and children infected via mother-to-child transmission (MTCT). METHODS Using next-generation sequencing (NGS), we analyzed sequences within the non-overlapping pre-core/core (pre-C/C) gene in 37 mother-child pairs. RESULTS Phylogenetic and Highlighter analyses suggested that both a single strain and multiple distinct strains may be transmitted in MTCT of HBV. However, analysis of reassembled viral sequences revealed a relatively narrow distribution of variants in children, which was confirmed by a lower viral diversity in children than that in mothers. New closely related variants with combinations of two to five high-frequency mutations were observed in seven children with elevated ALT levels; the new variants out-competed the transmitted maternal variants to become the dominant strains in five of them. Furthermore, 30 mutations with a frequency >1% of all viruses within-host were present in those children; the mutations caused 19 amino-acid substitutions. Interestingly, almost all were located within the well-known T-cell or B-cell epitopes. CONCLUSIONS There are restrictive changes that occur in the early stages of chronic HBV infection through MTCT with different clinical consequences. These data might have important implications for future investigations of interrelated immunopathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Guifeng Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Zhihua Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juncheng Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangxian Luo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitang He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qunfang Fu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shouyi Yu
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China.
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Mazor R, Addissie S, Jang Y, Tai CH, Rose J, Hakim F, Pastan I. Role of HLA-DP in the Presentation of Epitopes from the Truncated Bacterial PE38 Immunotoxin. AAPS J 2017; 19:117-129. [PMID: 27796910 PMCID: PMC7900900 DOI: 10.1208/s12248-016-9986-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Identification of helper T-cell epitopes is important in many fields of medicine. We previously used an experimental approach to identify T-cell epitopes in PE38, a truncated bacterial toxin used in immunotoxins. Here, we evaluated the ability of antibodies to DR, DP, or DQ to block T-cell responses to PE38 epitopes in 36 PBMC samples. We predicted the binding affinities of peptides to DR, DP, and DQ alleles using computational tools and analyzed their ability to predict the T-cell epitopes. We found that HLA-DR is responsible for 65% of the responses, DP 24%, and DQ 4%. One epitope that is presented in 20% of the samples (10/50) is entirely DP restricted and was not predicted to bind to DR or DP reference alleles using binding algorithms. We conclude that DP has an important role in helper T-cell response to PE38.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Selamawit Addissie
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Youjin Jang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Jeremy Rose
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fran Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA.
| |
Collapse
|
17
|
Valaydon Z, Pellegrini M, Thompson A, Desmond P, Revill P, Ebert G. The role of tumour necrosis factor in hepatitis B infection: Jekyll and Hyde. Clin Transl Immunology 2016; 5:e115. [PMID: 28090316 PMCID: PMC5192060 DOI: 10.1038/cti.2016.68] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B (CHB) is a major health problem worldwide and is associated with significant long-term morbidity and mortality. The hepatitis B virus (HBV) is a hepatotropic virus that is capable of integrating in the host nucleus permanently resulting in lifelong infection. To date, there is no definitive cure for HBV, as our current treatments cannot eradicate the viral reservoir that has integrated in the liver. Elucidating the immunopathogenesis is key to finding a therapeutic target for HBV as the virus is not in itself cytopathic but the immune response to the virus causes the majority of the cellular injury. In most cases, the virus reaches a state of equilibrium with low viral replication constrained by host immunity. Multiple cytokines have been implicated in the pathogenesis of CHB. Tumor necrosis factor (TNF) has emerged as a key player; on one hand it can facilitate immune-mediated virological control but on the other hand it can cause collateral hepatocyte damage, cirrhosis and possibly promote hepatocellular carcinoma. In this review, we discuss the current understanding of the immunopathogenesis of HBV, focusing on TNF and whether it can be harnessed in therapeutic strategies to cure HBV infection.
Collapse
Affiliation(s)
- Zina Valaydon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Thompson
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Desmond
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Revill
- Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. J Hepatol 2016; 64:S71-S83. [PMID: 27084039 DOI: 10.1016/j.jhep.2016.01.026] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
During hepatitis B virus (HBV) infection, the presence of HBV-specific antibody producing B cells and functional HBV-specific T cells (with helper or cytotoxic effects) ultimately determines HBV infection outcome. In this review, in addition to summarizing the present state of knowledge of HBV-adaptive immunity, we will highlight controversies and uncertainties concerning the HBV-specific B and T lymphocyte response, and propose future directions for research aimed at the generation of more efficient immunotherapeutic strategies.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases (EID) Program, Duke-NUS Medical School, Singapore; Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*STAR), Singapore.
| | - Carlo Ferrari
- Divisione Malattie Infettive, Ospdale Maggiore Parma, Parma, Italy
| |
Collapse
|
19
|
|
20
|
Fang Z, Li J, Yu X, Zhang D, Ren G, Shi B, Wang C, Kosinska AD, Wang S, Zhou X, Kozlowski M, Hu Y, Yuan Z. Polarization of Monocytic Myeloid-Derived Suppressor Cells by Hepatitis B Surface Antigen Is Mediated via ERK/IL-6/STAT3 Signaling Feedback and Restrains the Activation of T Cells in Chronic Hepatitis B Virus Infection. THE JOURNAL OF IMMUNOLOGY 2015; 195:4873-83. [PMID: 26416274 DOI: 10.4049/jimmunol.1501362] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/04/2015] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is characterized by T cell tolerance to virus. Although inhibition of T cell responses by myeloid-derived suppressor cells (MDSCs) has been observed in patients with chronic hepatitis B (CHB), the mechanism for expansion of MDSCs remains ambiguous. In this study, a significant increased frequency of monocytic MDSCs (mMDSCs) was shown positively correlated to level of HBsAg in the patients with CHB. We further found hepatitis B surface Ag (HBsAg) efficiently promoted differentiation of mMDSCs in vitro, and monocytes in PBMCs performed as the progenitors. This required the activation of ERK/IL-6/STAT3 signaling feedback. Importantly, the mMDSCs polarized by HBsAg in vitro acquired the ability to suppress T cell activation. Additionally, treatment of all-trans retinoic acid, an MDSC-targeted drug, restored the proliferation and IFN-γ production by HBV-specific CD4(+) and CD8(+) T cells in PBMCs from patients with CHB and prevented increase of viral load in mouse model. In summary, HBsAg maintains HBV persistence and suppresses T cell responses by promoting differentiation of monocytes into mMDSCs. A therapy aimed at the abrogation of MDSCs may help to disrupt immune suppression in patients with CHB.
Collapse
Affiliation(s)
- Zhong Fang
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China; Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China; and
| | - Jin Li
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Xiaoyu Yu
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Dandan Zhang
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Guangxu Ren
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Bisheng Shi
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Anna D Kosinska
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Sen Wang
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Xiaohui Zhou
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China
| | - Maya Kozlowski
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Yunwen Hu
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China;
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai 201508, People's Republic of China; Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China; and
| |
Collapse
|
21
|
Thedja MD, Muljono DH, Ie SI, Sidarta E, Turyadi, Verhoef J, Marzuki S. Genogeography and Immune Epitope Characteristics of Hepatitis B Virus Genotype C Reveals Two Distinct Types: Asian and Papua-Pacific. PLoS One 2015; 10:e0132533. [PMID: 26162099 PMCID: PMC4498642 DOI: 10.1371/journal.pone.0132533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 06/15/2015] [Indexed: 12/18/2022] Open
Abstract
Distribution of hepatitis B virus (HBV) genotypes/subgenotypes is geographically and ethnologically specific. In the Indonesian archipelago, HBV genotype C (HBV/C) is prevalent with high genome variability, reflected by the presence of 13 of currently existing 16 subgenotypes. We investigated the association between HBV/C molecular characteristics with host ethnicity and geographical distribution by examining various subgenotypes of HBV/C isolates from the Asia and Pacific region, with further analysis on the immune epitope characteristics of the core and surface proteins. Phylogenetic tree was constructed based on complete HBV/C genome sequences from Asia and Pacific region, and genetic distance between isolates was also examined. HBV/C surface and core immune epitopes were analyzed and grouped by comparing the amino acid residue characteristics and geographical origins. Based on phylogenetic tree and geographical origins of isolates, two major groups of HBV/C isolates—East-Southeast Asia and Papua-Pacific—were identified. Analysis of core and surface immune epitopes supported these findings with several amino acid substitutions distinguishing the East-Southeast Asia isolates from the Papua-Pacific isolates. A west-to-east gradient of HBsAg subtype distribution was observed with adrq+ prominent in the East and Southeast Asia and adrq- in the Pacific, with several adrq-indeterminate subtypes observed in Papua and Papua New Guinea (PNG). This study indicates that HBV/C isolates can be classified into two types, the Asian and the Papua-Pacific, based on the virus genome diversity, immune epitope characteristics, and geographical distribution, with Papua and PNG as the molecular evolutionary admixture region in the switching from adrq+ to adrq-.
Collapse
Affiliation(s)
- Meta Dewi Thedja
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia; Eijkman Winkler Institute, University Medical Centre (UMC) Utrecht, Utrecht, The Netherlands
| | - David Handojo Muljono
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia; Faculty of Medicine, Hasanuddin University, Makassar, Indonesia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | | | - Erick Sidarta
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Turyadi
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Jan Verhoef
- Eijkman Winkler Institute, University Medical Centre (UMC) Utrecht, Utrecht, The Netherlands
| | - Sangkot Marzuki
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia; Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Total Hepatitis B Core Antigen Antibody, a Quantitative Non-Invasive Marker of Hepatitis B Virus Induced Liver Disease. PLoS One 2015; 10:e0130209. [PMID: 26115521 PMCID: PMC4482637 DOI: 10.1371/journal.pone.0130209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022] Open
Abstract
Non invasive immunologic markers of virus-induced liver disease are unmet needs. We tested the clinical significance of quantitative total and IgM-anti-HBc in well characterized chronic-HBsAg-carriers. Sera (212) were obtained from 111 HBsAg-carriers followed-up for 52 months (28-216) during different phases of chronic-HBV-genotype-D-infection: 10 HBeAg-positive, 25 inactive-carriers (HBV-DNA≤2000IU/ml, ALT<30U/L), 66 HBeAg-negative-CHB-patients and 10 with HDV-super-infection. In 35 patients treated with Peg-IFN±nucleos(t)ide-analogues (NUCs) sera were obtained at baseline, end-of-therapy and week-24-off-therapy and in 22 treated with NUCs (for 60 months, 42-134m) at baseline and end-of-follow-up. HBsAg and IgM-anti-HBc were measured by Architect-assays (Abbott, USA); total-anti-HBc by double-antigen-sandwich-immune-assay (Wantai, China); HBV-DNA by COBAS-TaqMan (Roche, Germany). Total-anti-HBc were detectable in all sera with lower levels in HBsAg-carriers without CHB (immune-tolerant, inactive and HDV-superinfected, median 3.26, range 2.26-4.49 Log10 IU/ml) versus untreated-CHB (median 4.68, range 2.76-5.54 Log10 IU/ml), p<0.0001. IgM-anti-HBc positive using the chronic-hepatitis-cut-off" (0.130-S/CO) were positive in 102 of 212 sera (48.1%). Overall total-anti-HBc and IgM-anti-HBc correlated significantly (p<0.001, r=0.417). Total-anti-HBc declined significantly in CHB patients with response to Peg-IFN (p<0.001) and in NUC-treated patients (p<0.001); the lowest levels (median 2.68, range 2.12-3.08 Log10 IU/ml) were found in long-term responders who cleared HBsAg subsequently. During spontaneous and therapy-induced fluctuations of CHB (remissions and reactivations) total- and IgM-anti-HBc correlated with ALT (p<0.001, r=0.351 and p=0.008, r=0.185 respectively). Total-anti-HBc qualifies as a useful marker of HBV-induced-liver-disease that might help to discriminate major phases of chronic HBV infection and to predict sustained response to antivirals.
Collapse
|
23
|
Bes M, Vargas V, Piron M, Casamitjana N, Esteban JI, Campos-Varela I, Puig L, Sauleda S. Doubtful Role of IL28B Polymorphism in Occult Hepatitis B Infection. Intervirology 2015; 58:160-5. [PMID: 26022419 DOI: 10.1159/000430444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/11/2015] [Indexed: 11/19/2022] Open
Abstract
AIMS To investigate the influence of IL28B polymorphism in occult hepatitis B infection (OBI) and whether IL28B genetic variants are associated with hepatitis B virus (HBV)-specific T-cell responses. PATIENTS AND METHODS The rs12979860 IL28B genotype was determined in 34 OBI blood donors, 22 spontaneous HBV resolvers, 36 inactive HBV carriers and 25 seronegative donors. T-cell responses to HBV recombinant proteins were assessed by interferon-γ enzyme-linked immunospot assay. RESULTS The frequency of the IL28B CC genotype among OBI patients was similar to that of inactive carriers [41 vs. 39%, respectively, p = 0.961; odds ratio (OR) = 1.10; 95% confidence interval (CI) = 0.42-2.86; p = 0.845]. The IL28B CC genotype was found more frequently in spontaneous resolvers, although the differences were not significant (45 vs. 39%, spontaneous resolvers and inactive carriers, respectively; p = 0.828; OR = 1.31; 95% CI = 0.45-3.83; p = 0.622). HBV-specific T-cell responses were detected in OBIs, and significantly stronger T-cell responses towards hepatitis B envelope antigen were observed in those with the IL28B CC genotype. In spontaneous resolvers and inactive carriers, IL28B CC did not correlate with the magnitude of T-cell responses. CONCLUSIONS In OBI donors, IL28B CC correlates with the intensity of HBV-specific T-cell responses. In this study, IL28B CC is not statistically associated with OBI or with HBV clearance, but a larger number of cases is needed before completely ruling out its role in HBV infection.
Collapse
Affiliation(s)
- Marta Bes
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Servei Català de la Salut, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Isogawa M, Tanaka Y. Immunobiology of hepatitis B virus infection. Hepatol Res 2015; 45:179-189. [PMID: 25331910 DOI: 10.1111/hepr.12439] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/13/2022]
Abstract
The adaptive immune response, particularly the virus-specific CD8(+) T-cell response, is largely responsible for viral clearance and disease pathogenesis during hepatitis B virus (HBV) infection. The HBV-specific CD8(+) T-cell response is vigorous, polyclonal and multispecific in acutely infected patients who successfully clear the virus and relatively weak and narrowly focused in chronically infected patients. The immunological basis for this dichotomy is unclear. A recent study using HBV transgenic mice and HBV-specific T-cell receptor transgenic mice suggests that intrahepatic antigen presentation by HBV positive hepatocytes suppresses HBV-specific CD8(+) T-cell responses through a co-inhibitory molecule, programmed cell death 1 (PD-1). In contrast, antigen presentation by activated professional antigen-presenting cells induces functional differentiation of HBV-specific CD8(+) T cells. These findings suggest that the outcome of T-cell priming is largely dependent on the nature of antigen-presenting cells. Another study suggests that the timing of HBV-specific CD4(+) T-cell priming regulates the magnitude of the HBV-specific CD8(+) T-cell response. Other factors that could regulate HBV-specific cellular immune responses are high viral loads, mutational epitope inactivation, T-cell receptor antagonism and infection of immunologically privileged tissues. However, these pathways become apparent only in the setting of an ineffective cellular immune response, which is therefore the fundamental underlying cause. Understanding the cellular and molecular mechanisms by which HBV evades host immune responses will eventually help develop new immunotherapeutic strategies designed to terminate chronic HBV infection.
Collapse
Affiliation(s)
- Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | | |
Collapse
|
25
|
Thio CL, Hawkins C. Hepatitis B Virus and Hepatitis Delta Virus. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1815-1839.e7. [DOI: 10.1016/b978-1-4557-4801-3.00148-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Sun S, Yan J, Xia C, Lin Y, Jiang X, Liu H, Ren H, Yan J, Lin J, He X. Visualizing hepatitis B virus with biarsenical labelling in living cells. Liver Int 2014; 34:1532-42. [PMID: 24373334 DOI: 10.1111/liv.12419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/24/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Study on viruses has greatly benefited from visualization of viruses tagged with green fluorescent protein (GFP) in living cells. But GFP tag, as a large inserted fragment, is not suitable for labelling Hepatitis B virus (HBV) that is a compact virion with limited internal space. AIM To visualize HBV in living cells, we constructed several recombinant HBV fluorescently labelled with biarsenical dye to track the behaviour of HBV in the cytoplasm of infected cells. METHODS By mutagenesis, a smaller size tetracysteine (TC) tag (C-C-P-G-C-C) that could be bound with a biarsenical fluorescent dye was genetically inserted at different cell epitopes of HBV core protein expressed in transfected cells. RESULT Confocal microscopy and transmission electron microscopy (TEM) observations showed that TC-tagged core proteins bound with biarsenical dye could specifically fluoresce in cells and be incorporated into nucleocapsid to form fluorescent virions. The recombinant fluorescent HBV virions retained their infectivity as wild-type ones. Moreover, tracking of fluorescent HBV particles in living cells reveals microtubule-dependent motility of the intracellular particles. CONCLUSION To the best of our knowledge, this is the first time to generate fluorescent HBV virions with biarsenical labelling and to visualize their trafficking in living cells. The fluorescent HBV may become one highly valuable tool for further studying detailed dynamic processes of HBV life cycle and interaction of HBV with host in live-imaging approach.
Collapse
Affiliation(s)
- Shuzhen Sun
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gastroenterology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cesar Aguilar J, Y L. Immunotherapy for Chronic Hepatitis B using HBsAg-based Vaccine Formulations: From Preventive Commercial Vaccines to Therapeutic Approach Julio Cesar Aguilar. Euroasian J Hepatogastroenterol 2014; 4:92-97. [PMID: 29699355 PMCID: PMC5913903 DOI: 10.5005/jp-journals-10018-1109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/25/2014] [Indexed: 12/19/2022] Open
Abstract
Despite the existence of effective prophylactic vaccines, hepatitis B virus (HBV) infections remain a major public health problem. It has been estimated that about 370 million people are chronically infected with this virus worldwide. These individuals act as a reservoir for viral spread and chronic infection also increases the risk of liver diseases, such as cirrhosis and hepatocellular carcinoma. Current antiviral therapies fail to control viral replication in the long term in most patients. Viral persistence has been associated with a defect in the development of HBV-specific cellular immunity. The limitations of the current available therapies underline the need for alternative therapies. Specific immunotherapeutic strategies target not only the induction or stimulation of CD4(+) and CD8(+) T-cell responses but also the induction of proinflammatory cytokines capable of controlling viral replication. Therapeutic vaccination has been extensively studied in chronic hepatitis B (CHB) based in the properties of hepatitis B surface antigen (HBsAg) and taking advantage of its previous use in preventive vaccination. In this sense, pioneer studies were carried out employing HBsAg-based vaccines, including prophylactic commercial vaccines and HBsAg-based formulations with novel adjuvants. The results and general knowledge coming from these studies are discussed in the present review. The decision on developing new generations of vaccines including new antigens or formulations should take into account the experience with HBsAg-based vaccine formulations in order to decide about changing the vaccine antigen or adding new antigens to improve the composition. How to cite this article: Aguilar JC, Lobaina Y. Immunotherapy for Chronic Hepatitis B using HBsAg-based Vaccine Formulations: From Preventive Commercial Vaccines to Therapeutic Approach. Euroasian J Hepato-Gastroenterol 2014;4(2):92-97.
Collapse
Affiliation(s)
- Julio Cesar Aguilar
- Department of Hepatitis B, Biomedical Research Unit, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lobaina Y
- Department of Hepatitis B, Biomedical Research Unit, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
28
|
Riedl P, Reiser M, Stifter K, Krieger J, Schirmbeck R. Differential presentation of endogenous and exogenous hepatitis B surface antigens influences priming of CD8+T cells in an epitope-specific manner. Eur J Immunol 2014; 44:1981-91. [DOI: 10.1002/eji.201343933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/28/2014] [Accepted: 04/04/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Petra Riedl
- Department of Internal Medicine I; University Hospital of Ulm; Ulm Germany
| | - Michael Reiser
- Department of Internal Medicine I; University Hospital of Ulm; Ulm Germany
| | - Katja Stifter
- Department of Internal Medicine I; University Hospital of Ulm; Ulm Germany
| | - Jana Krieger
- Department of Internal Medicine I; University Hospital of Ulm; Ulm Germany
| | | |
Collapse
|
29
|
Ren C, Yin G, Qin M, Suo J, Lv Q, Xie L, Wang Y, Huang X, Chen Y, Liu X, Suo X. CDR3 analysis of TCR Vβ repertoire of CD8⁺ T cells from chickens infected with Eimeria maxima. Exp Parasitol 2014; 143:1-4. [PMID: 24801021 DOI: 10.1016/j.exppara.2014.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
CD8(+) T cells play a major role in the immune protection of host against the reinfection of Eimeria maxima, the most immunogenic species of eimerian parasites in chickens. To explore the dominant complementarity-determining regions 3 (CDR3) of CD8(+) T cell populations induced by the infection of this parasite, sequence analysis was performed in this study for CDR3 of CD8(+) T cells from E. maxima infected chickens. After 5 days post the third or forth infection, intraepithelial lymphocytes were isolated from the jejunum of bird. CD3(+)CD8(+) T cells were sorted and subjected to total RNA isolation and cDNA preparation. PCR amplification and cloning of the loci between Vβ1 and Cβ was conducted for the subsequent sequencing of CDR3 of T cell receptor (TCR). After the forth infection, 2 birds exhibited two same frequent TCR CDR3 sequences, i.e., AKQDWGTGGYSNMI and AGRVLNIQY; while the third bird showed two different frequent TCR CDR3 sequences, AKQGARGHTPLN and AKQDIEVRGPNTPLN. No frequent CDR3 sequence was detected from uninfected birds, though AGRVLNIQY was also found in two uninfected birds. Our result preliminarily demonstrates that frequent CDR3 sequences may exist in E. maxima immunized chickens, encouraging the mining of the immunodominant CD8(+) T cells against E. maxima infection.
Collapse
Affiliation(s)
- Chao Ren
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guangwen Yin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mei Qin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingxia Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiyao Lv
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Xie
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yunzhou Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxi Huang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuchen Chen
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xun Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
30
|
Loggi E, Gamal N, Bihl F, Bernardi M, Andreone P. Adaptive response in hepatitis B virus infection. J Viral Hepat 2014; 21:305-313. [PMID: 24674098 DOI: 10.1111/jvh.12255] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) is a major cause of acute and chronic liver inflammation worldwide. The immune response against the virus represents a key factor in determining infection outcome, in terms of both viral clearance and the perpetuation of liver damage. Significant advances have recently been achieved regarding the functions of antiviral CD8+ T cells, leading to a better understanding of their abnormalities during chronic infection as well as the pathways to be manipulated to reverse the immune impairment of chronic infection. In this review, we aimed to analyse the patterns of adaptive immunity that develop during acute infection and the profiles in chronic infection. In addition to CD8+ T cells, which are the best-described subset to date, we reviewed and commented on the direct and indirect roles of CD4+ T cells and B cells.
Collapse
Affiliation(s)
- E Loggi
- Institute for Research in Biomedicine, Bellinzona, Switzerland; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
31
|
Sede M, Lopez-Ledesma M, Frider B, Pozzati M, Campos RH, Flichman D, Quarleri J. Hepatitis B virus depicts a high degree of conservation during the immune-tolerant phase in familiarly transmitted chronic hepatitis B infection: deep-sequencing and phylogenetic analysis. J Viral Hepat 2013; 21:650-661. [PMID: 25244642 DOI: 10.1111/jvh.12196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/08/2013] [Indexed: 12/13/2022]
Abstract
When intrafamilial transmission of hepatitis B virus (HBV) occurs, a virus with the same characteristics interacts with diverse hosts' immune systems and may thus result in different mutations to escape immune pressure. In this study, the HBV genomic characterization was assessed longitudinally after intrafamilial transmission using nucleotide sequence data of phylogenetic and mutational analyses, including those obtained by deep-sequencing for the first time. Furthermore, HBeAg-anti-HBe profile and variability of HBV core-derived epitopes were also evaluated. Strong evidence was obtained from intrafamilial transmission of HBV genotype D1 by phylogenetic inferences. HBV isolates exhibited high degree (~99%) of genomic conservation for almost 20 years, when patients were persistently HBeAg positive with normal amino transferase levels. This identity remained high among immune-tolerant siblings. In contrast, it diminished significantly (P = 0.02) when the mother cleared HBeAg (immune clearance phase). By deep-sequencing, the quantitative analysis of the dynamics of basal core promoter (BCP) (A1762T, G1764A; A1766C; T1773C; 8-bp deletion; and other) and precore (G1896A) variants among HBV isolates from family members exhibited differences during the follow-up. However, only those from the mother showed amino acid variations at core protein that would impair their MHC-II binding. Hence, when intrafamilial transmission occurs, HBV was highly conserved under the immune-tolerant phase, but it exhibited mutations more frequently during the immune clearance phase. The analysis of the HBV BCP and precore mutants after intrafamilial HBV transmission contributes to a better understanding of how they evolve over time.
Collapse
Affiliation(s)
- M Sede
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
32
|
Cheng Y, Guindon S, Rodrigo A, Wee LY, Inoue M, Thompson AJV, Locarnini S, Lim SG. Cumulative viral evolutionary changes in chronic hepatitis B virus infection precedes hepatitis B e antigen seroconversion. Gut 2013; 62:1347-55. [PMID: 23242209 DOI: 10.1136/gutjnl-2012-302408] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine viral evolutionary changes and their relationship to hepatitis B e antigen (HBeAg) seroconversion. DESIGN A matched case-control study of HBeAg seroconverters (n = 8) and non-seroconverters (n = 7) with adequate stored sera before seroconversion was performed. Nested PCR, cloning and sequencing of hepatitis B virus (HBV) precore/core gene was performed. Sequences were aligned using Clustal X2.0, followed by construction of phylogenetic trees using Pebble 1.0. Viral diversity, evolutionary rates and positive selection were then analysed. RESULTS Baseline HBV quasispecies viral diversity was identical in seroconverters and non-seroconverters 10 years before seroconversion but started to increase approximately 3 years later. Concurrently, precore stop codon (PSC) mutations appeared. Some 2 years later, HBV-DNA declined, together with a dramatic reduction in HBeAg titres. Just before HBeAg seroconversion, seroconverters had HBV-DNA levels 2 log lower (p = 0.008), HBeAg titres 310-fold smaller (p = 0.02), PSC mutations > 25% (p < 0.001), viral evolution 8.1-fold higher (p = 0.01) and viral diversity 2.9-fold higher (p < 0.001), compared to non-seroconverters, with a 9.3-fold higher viral diversity than baseline (p = 0.011). Phylogenetic trees in seroconverters showed clustering of separate time points and longer branch lengths than non-seroconverters (p = 0.01). Positive selection was detected in five of eight seroconverters but none in non-seroconverters (p = 0.026). There was significant negative correlation between viral diversity (rs = -0.60, p < 0.001) and HBV-DNA or HBeAg (rs = -0.58, p = 0.006) levels; and positive correlation with PSC mutations (rs = 0.38, p = 0.009). Over time, the significant positive correlation was viral diversity (rs = 0.65, p < 0.001), while negative correlation was HBV-DNA (rs = -0.627, p < 0.001) and HBeAg levels (rs = -0.512, p =0.015). CONCLUSIONS Cumulative viral evolutionary changes that precede HBeAg seroconversion provide insights into this event that may have implications for therapy.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, , Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee JG, Hwang SG, Yoon H, Son MS, Kim DY, Yoo JH, Kim KI, Rim KS. Hepatitis B core antigen expression in hepatocytes reflects viral response to entecavir in chronic hepatitis B patients. Gut Liver 2013; 7:462-8. [PMID: 23898388 PMCID: PMC3724036 DOI: 10.5009/gnl.2013.7.4.462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/16/2012] [Accepted: 11/30/2012] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Hepatitis B core antigen is known to be a major target for virus-specific T cells and also reflects the progression of liver dissease and viral replication. Hepatitis B core antigen expression in hepatocytes leads to altered histological activity, viral replication, and immune response. The purpose of this study is to evaluate whether the topographical distribution of hepatitis B core antigen expression can predict the viral response to entecavir in patients with chronic hepatitis B. Methods We enrolled 91 patients with treatment-naïve chronic hepatitis B. All the patients underwent liver biopsy, and the existence and pattern of hepatitis B core antigen evaluated by immunohistochemistry. All patients received 0.5 mg of entecavir daily following a liver biopsy. We checked the viral response at 3, 6, and 12 months during antiviral therapy. Results Of the 91 patients, 64 (70.3%) had hepatitis B core antigen expression. Of the subcellular patterns, the mixed type was dominant (n=48, 75%). The viral response was significantly higher in the hepatitis B core antigen-negative group than in the hepatitis B core antigen-positive group (88.9% and 54.7%, respectively; p=0.001) after 12 months of entecavir therapy. Conclusions Chronic hepatitis B patients who are hepatitis B core antigen-negative have a better response to entecavir therapy than do hepatitis B core antigen-positive patients.
Collapse
Affiliation(s)
- Jeong Guil Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Loggi E, Bihl FK, Cursaro C, Granieri C, Galli S, Brodosi L, Furlini G, Bernardi M, Brander C, Andreone P. Virus-specific immune response in HBeAg-negative chronic hepatitis B: relationship with clinical profile and HBsAg serum levels. PLoS One 2013; 8:e65327. [PMID: 23750252 PMCID: PMC3672146 DOI: 10.1371/journal.pone.0065327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/24/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AIMS The immune impairment characterizing chronic hepatitis B (cHBV) infection is thought to be the consequence of persistent exposure to viral antigens. However, the immune correlates of different clinical stages of cHBV and their relation with different levels of HBsAg have not been investigated. The aim of the present study was to evaluate the relationship between HBV-specific T cells response and the degree of in vivo HBV control and HBsAg serum levels in HBeAg-HBeAb+ cHBV. METHODS Peripheral blood mononuclear cells from 42 patients with different clinical profiles (treatment-suppressed, inactive carriers and active hepatitis) of cHBV, 6 patients with resolved HBV infection and 10 HBV-uninfected individuals were tested with overlapping peptides spanning the entire HBV proteome. The frequency and magnitude of HBV-specific T cell responses was assessed by IFNγ ELISPOT assay. Serum HBsAg was quantified with a chemiluminescent immunoassay. RESULTS The total breadth and magnitude of HBV-specific T cell responses did not differ significantly between the four groups. However, inactive carriers targeted preferentially the core region. In untreated patients, the breadth of the anti-core specific T cell response was inversely correlated with serum HBsAg concentrations as well as HBV-DNA and ALT levels and was significantly different in patients with HBsAg levels either above or below 1000 IU/mL. The same inverse association between anti-core T cell response and HBsAg levels was found in treated patients. CONCLUSIONS Different clinical outcomes of cHBV infection are associated with the magnitude, breadth and specificity of the HBV-specific T cell response. Especially, robust anti-core T cell responses were found in the presence of reduced HBsAg serum levels, suggesting that core-specific T cell responses can mediate a protective effect on HBV control.
Collapse
Affiliation(s)
- Elisabetta Loggi
- Department of Medical and Surgical Scinces, University of Bologna, Bologna, Italy
| | - Florian K. Bihl
- Gastroenterology Section, Ospedale Regionale di Bellinzona e Valli, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Carmela Cursaro
- Department of Medical and Surgical Scinces, University of Bologna, Bologna, Italy
| | - Camilla Granieri
- Department of Medical and Surgical Scinces, University of Bologna, Bologna, Italy
| | - Silvia Galli
- Department of Clinical and Experimental Medicine, Microbiology Section, University of Bologna, Bologna, Italy
| | - Lucia Brodosi
- Department of Medical and Surgical Scinces, University of Bologna, Bologna, Italy
| | - Giuliano Furlini
- Department of Clinical and Experimental Medicine, Microbiology Section, University of Bologna, Bologna, Italy
| | - Mauro Bernardi
- Department of Medical and Surgical Scinces, University of Bologna, Bologna, Italy
| | - Christian Brander
- AIDS Research Institute IrsiCaixa - HIVACAT, Germans Trias i Pujol Hospital, Autonomous University Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Pietro Andreone
- Department of Medical and Surgical Scinces, University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Ibañez LI, Roose K, De Filette M, Schotsaert M, De Sloovere J, Roels S, Pollard C, Schepens B, Grooten J, Fiers W, Saelens X. M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A. PLoS One 2013; 8:e59081. [PMID: 23527091 PMCID: PMC3601086 DOI: 10.1371/journal.pone.0059081] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
The ectodomain of influenza A matrix protein 2 (M2e) is a candidate for a universal influenza A vaccine. We used recombinant Hepatitis B core antigen to produce virus-like particles presenting M2e (M2e-VLPs). We produced the VLPs with and without entrapped nucleic acids and compared their immunogenicity and protective efficacy. Immunization of BALB/c mice with M2e-VLPs containing nucleic acids induced a stronger, Th1-biased antibody response compared to particles lacking nucleic acids. The former also induced a stronger M2e-specific CD4(+) T cell response, as determined by ELISPOT. Mice vaccinated with alum-adjuvanted M2e-VLPs containing the nucleic acid-binding domain were better protected against influenza A virus challenge than mice vaccinated with similar particles lacking this domain, as deduced from the loss in body weight following challenge with X47 (H3N2) or PR/8 virus. Challenge of mice that had been immunized with M2e-VLPs with or without nucleic acids displayed significantly lower mortality, morbidity and lung virus titers than control-immunized groups. We conclude that nucleic acids present in M2e-VLPs correlate with improved immune protection.
Collapse
Affiliation(s)
- Lorena Itatí Ibañez
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marina De Filette
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael Schotsaert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jessica De Sloovere
- Unit of Surveillance, Orientation and Veterinary Support, Operational Direction Interactions and Surveillance, Veterinary and Agrochemical Research Centre (CODA/CERVA), Brussels, Belgium
| | - Stefan Roels
- Unit of Surveillance, Orientation and Veterinary Support, Operational Direction Interactions and Surveillance, Veterinary and Agrochemical Research Centre (CODA/CERVA), Brussels, Belgium
| | - Charlotte Pollard
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bert Schepens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
36
|
Cheng Y, Guindon S, Rodrigo A, Lim SG. Increased viral quasispecies evolution in HBeAg seroconverter patients treated with oral nucleoside therapy. J Hepatol 2013; 58:217-24. [PMID: 23023011 DOI: 10.1016/j.jhep.2012.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/30/2012] [Accepted: 09/19/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Increased viral diversity and evolution appear to be a pre-HBeAg-seroconversion feature in spontaneous and interferon-treated seroconverters. The aim of this study was to examine the viral evolution pattern in nucleoside analogue related HBeAg-seroconversion. METHODS This was a case control study consisting of ten lamivudine-treated HBeAg-seroconverters and ten lamivudine-treated non-seroconverters as matching controls. All patients in this study were followed as long as 6 years after starting lamivudine, and cases had three serum time points before HBeAg-seroconversion while controls had three matching serum time points. Nested PCR, cloning and sequencing of HBV precore/core gene were performed. Sequences were aligned with Clustal X 2.0. Phylogenetic trees were constructed and viral diversity, evolutionary rates and patterns of positive selection were evaluated. RESULTS After starting lamivudine treatment, HBV viral diversity increased in both seroconverters and non-seroconverters, but seroconverters showed a significantly higher level of viral diversity that persisted over time by 2.1-fold (p = 0.009). The increased viral diversity correlated with reduced HBV DNA levels (p <0.001). Lamivudine-treated seroconverters had significant reduced HBV DNA concurrent with increased viral diversity after starting treatment (p = 0.001, compared to non-seroconverters, and resembled those of interferon-seroconverters published previously). There was evidence of positive selection in seroconverters with significantly increased amino acid changes compared to non-seroconverters (p <0.001), occurring in recognized T-cell and B-cell epitopes. CONCLUSIONS Lamivudine-treated HBeAg-seroconverters showed a higher viral diversity than non-seroconverters, and the pattern resembled that of interferon-treated seroconverters. The findings strengthen the evidence that increased viral diversity is strongly associated with HBeAg-seroconversion.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
37
|
Lim L, Tran BM, Vincan E, Locarnini S, Warner N. HBV-related hepatocellular carcinoma: the role of integration, viral proteins and miRNA. Future Virol 2012. [DOI: 10.2217/fvl.12.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of hepatocellular carcinoma during chronic hepatitis B infection is a multifactorial process thought to be a consequence of several direct and indirect mechanisms. In this review we discuss how viral proteins and cycles of ongoing liver damage and regeneration, coupled with HBV DNA integration and aberrant miRNA expression may enhance the risk for the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lucy Lim
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
- Austin Liver Transplant Unit, Heidelberg, Victoria, Australia
| | - Bang Manh Tran
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
- Cancer Biology Laboratory, Department of Anatomy & Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
- Cancer Biology Laboratory, Department of Anatomy & Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
| | - Nadia Warner
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Abstract
During hepatitis B virus (HBV) infection, at least four antigen-antibody systems are observed: HBsAg and anti-HBs; preS antigen and anti-preS antibody; HBcAg and anti-HBc; and HBeAg and anti-HBe. Through the examination of these antigen-antibody systems, hepatitis B infection is diagnosed and the course of the disorder may be observed. Although the serologic findings that allow both the diagnosis of HBV infection as well as assessing of its clinical course are already well established, the dynamics of viral proteins expression and of the antibodies production may vary during the infection natural course. This causes the HBV infection to be occasionally associated with the presence of uncommon serological profiles, which could lead to doubts in the interpretation of results or suspicion of a serological result being incorrect. This paper is dedicated to the discussion of some of these profiles and their significance.
Collapse
|
39
|
Homs M, Buti M, Tabernero D, Quer J, Sanchez A, Corral N, Esteban R, Rodriguez-Frias F. Quasispecies dynamics in main core epitopes of hepatitis B virus by ultra-deep-pyrosequencing. World J Gastroenterol 2012; 18:6096-6105. [PMID: 23155338 PMCID: PMC3496886 DOI: 10.3748/wjg.v18.i42.6096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/25/2012] [Accepted: 07/28/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the variability of the main immunodominant motifs of hepatitis B virus (HBV) core gene by ultra-deep-pyrosequencing (UDPS). METHODS Four samples (2 genotype A and 2 genotype D) from 4 treatment-naïve patients were assessed for baseline variability. Two additional samples from one patient (patient 4, genotype D) were selected for analysis: one sample corresponded to a 36-mo treatment-free period from baseline and the other to the time of viral breakthrough after 18 mo of lamivudine treatment. The HBV region analyzed covered amino acids 40 to 95 of the core gene, and included the two main epitopic regions, Th50-69 and B74-84. UDPS was carried out in the Genome Sequencer FLX system (454 Life Sciences, Roche). After computer filtering of UDPS data based on a Poisson statistical model, 122,813 sequences were analyzed. The most conserved position detected by UDPS was analyzed by site-directed mutagenesis and evaluated in cell culture. RESULTS Positions with highest variability rates were mainly located in the main core epitopes, confirming their role as immune-stimulating regions. In addition, the distribution of variability showed a relationship with HBV genotype. Patient 1 (genotype A) presented the lowest variability rates and patient 2 (genotype A) had 3 codons with variability higher than 1%. Patient 3 and 4 (both genotype D) presented 5 and 8 codons with variability higher than 1%, respectively. The median baseline frequencies showed that genotype A samples had higher variability in epitopic positions than in the other positions analyzed, approaching significance (P = 0.07, sample 1 and P = 0.05, sample 2). In contrast, there were no significant differences in variability between the epitopic and other positions in genotype D cases. Interestingly, patient 1 presented a completely mutated motif from amino acid 64 to 67 (E₆₄LMT₆₇), which is commonly recognized by T helper cells. Additionally, the variability observed in all 4 patients was particularly associated with the E₆₄LMT₆₇ motif. Codons 78 and 79 were highly conserved in all samples, in keeping with their involvement in the interaction between the HBV virion capsid and the surface antigens (HBsAg). Of note, codon 76 was even more conserved than codons 78 and 79, suggesting a possible role in HBsAg interactions or even in hepatitis B e antigen conformation. Sequential analysis of samples from patient 4 (genotype D) illustrated the dynamism of the HBV quasispecies, with strong selection of one minor baseline variant coinciding with a decrease in core variability during the treatment-free and lamivudine-treated period. The drop in variability seemed to result from a "steady state" situation of the HBV quasispecies after selection of the variant with greatest fitness. CONCLUSION Host immune pressure seems to be the main cause of HBV core evolution. UDPS analysis is a useful technique for studying viral quasispecies.
Collapse
|
40
|
Kim DW, Lee SA, Hwang ES, Kook YH, Kim BJ. Naturally occurring precore/core region mutations of hepatitis B virus genotype C related to hepatocellular carcinoma. PLoS One 2012; 7:e47372. [PMID: 23071796 PMCID: PMC3468518 DOI: 10.1371/journal.pone.0047372] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022] Open
Abstract
Previous studies have proved the presence of several distinct types of mutations in hepatitis B virus (HBV) infections, which are related to the progression of liver disease. However, few reports have detailed the mutation frequencies and mutation patterns in the precore/core (preC/C) region, which are based on the clinical status and HBeAg serostatus. Our aim in this study is to investigate the relationships between the preC/C mutations and clinical severity or HBeAg serostatus from patients chronically infected with HBV genotype C. A total of 70 Korean chronic patients, including 35 with hepatocellular carcinoma (HCC), participated in this study. HBV genotyping and precore/core mutations were analyzed by direct sequencing. All patients were confirmed to have genotype C infections. Mutations in the C region were distributed in a non-random manner. In particular, mutations in the MHC class II restricted region were found to be significantly related to HCC. Six (preC-W28*, C-P5H/L/T, C-E83D, C-I97F/L, C-L100I and C-Q182K/*) and seven types (preC-W28*, preC-G29D, C-D32N/H, C-E43K, C-P50A/H/Y, C-A131G/N/P and C-S181H/P) of mutations in the preC/C region were found to be related to HCC and to affect the HBeAg serostatus, respectively. In conclusion, our data indicated that HBV variants in the C region, particularly in the MHC class II restricted region, may contribute to the progress of HCC in chronic patients infected with genotype C. In addition, we found several distinct preC/C mutations in the Korean chronic cohort, which affect the clinical status of HCC and HBeAg serostatus of patients infected with genotype C.
Collapse
Affiliation(s)
- Dong-Won Kim
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Seoung-Ae Lee
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Eung-Soo Hwang
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
T cell responses and viral variability in blood donation candidates with occult hepatitis B infection. J Hepatol 2012; 56:765-74. [PMID: 22173156 DOI: 10.1016/j.jhep.2011.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Occult HBV infection (OBI) is defined by the presence of HBV DNA in the liver and/or serum and negative HBsAg testing. Since the implementation of highly sensitive HBV DNA screening, OBI is also detected in healthy blood donors. The aims of this study were to investigate HBV-specific immune responses and genetic variability in donors with OBI, established by HBV DNA in serum. METHODS HBV-specific T-cell responses to HBV antigens were tested in 34 OBI donors by IFN-γ ELISpot, cytometric bead array, and intracellular cytokine staining. As comparison populations, 36 inactive HBV carriers, 22 donors with spontaneously resolved HBV infection, 24 vaccinated donors, and 25 seronegative donors were also included. Surface, pre-S, and pre-c/core genes from 44 genotype D isolates (24 OBI and 20 HBsAg-positive) were sequenced. RESULTS The immune response of OBI donors to the 3 HBV antigens was 29-41%, similar to the response in subjects with resolved HBV infection and higher than that in HBsAg-positive subjects. On sequence analysis, OBI donors presented a higher HBsAg mutation rate than HBsAg-positive subjects. Mutations were clustered in the major hydrophilic region of HBsAg, and no stop codons or relevant mutations that could affect antigen formation or detection were observed. CONCLUSIONS Our results suggest that immune response can suppress viral replication to low levels and HBsAg expression to undetectable levels in OBI blood donors. Relevant mutations were not found in the genomic HBsAg coding region. Hence, the fact that HBsAg was not detected in OBI is likely due to low HBsAg production, rather than to a failure of laboratory reagents.
Collapse
|
42
|
Homs M, Jardi R, Buti M, Schaper M, Tabernero D, Fernandez-Fernandez P, Quer J, Esteban R, Rodriguez-Frias F. HBV core region variability: effect of antiviral treatments on main epitopic regions. Antivir Ther 2011; 16:37-49. [PMID: 21311107 DOI: 10.3851/imp1701] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Amino acid (AA) changes in specific hepatitis B core antigen (HBcAg) regions were assessed in patients infected with chronic hepatitis B (CHB) after a 12-month untreated period and after receiving antiviral therapy (interferon, lamivudine or adefovir dipivoxil), and in inactive hepatitis B surface antigen-positive carriers. METHODS Samples corresponding to different time points in 76 CHB cases (64 on-treatment) and 4 inactive carriers were included. The main precore mutation, T-helper immunodominant epitope at AA 50-69 (Th50-69), minor T-helper epitope (Th28-47), B-cell immunodominant epitope (B74-84) and a conserved region of HBcAg at AA 1-11 (AA1-11) were directly sequenced. For comparisons, the average number of AA changes in each region was standardized to 12 months (Av12). RESULTS AA changes clustered mainly in immunodominant regions (69%). The highest percentage of cases (%n) with changes and highest Av12 changes were detected after interferon treatment (%n=73%, Av12=3.1 in Th50-69 and %n=86%, Av12=2.7 in B74-84). At baseline, immunodominant regions had higher Av12 changes in hepatitis B e antigen-negative patients and those with main precore mutations. Changes in the Th28-47 region were more frequent after nucleoside/nucleotide analogue treatment (40%) than before treatment (9%). Codons 74 and 77 were the most polymorphic, and the double change E64D-N67T was significantly observed. Codon 84 substitutions were mainly associated with interferon treatment (P=0.05). CONCLUSIONS Natural and treatment-induced substitutions in HBV core protein, occurring especially with interferon treatment, were characterized. Some immune-stimulating activity related to the minor Th28-47 epitope might be associated with nucleoside/nucleotide analogues; this activity was also seen in inactive carriers.
Collapse
Affiliation(s)
- Maria Homs
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pondé RADA. The underlying mechanisms for the "isolated positivity for the hepatitis B surface antigen (HBsAg)" serological profile. Med Microbiol Immunol 2010; 200:13-22. [PMID: 20458499 DOI: 10.1007/s00430-010-0160-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Indexed: 12/16/2022]
Abstract
During HBV infection, four structural antigen/antibody systems are observed: hepatitis B surface antigen (HBsAg) and its antibody (anti-HBs); the pre-S antigens associated with HBsAg particles and their antibodies; the particulate nucleocapsid antigen (HBcAg) and anti-HBc; and an antigen structurally related to HBcAg, namely HBeAg and its antibody (anti-HBe). Through the examination of this antigen-antibodies system, hepatitis B infection is diagnosed and the course of the disorder may be observed. Isolated HBsAg seropositivity is a peculiar serological pattern in HBV infection observed some times in routine laboratory. In most cases is not clear how this profile should be interpreted neither its significance. This pattern, however, may be associated with some clinical and laboratorial situations of great relevance, some of which will be addressed in this article.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Laboratório de Virologia Humana, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia-Goiás, Brazil.
| |
Collapse
|
44
|
Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. Five HLA-DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2492-503. [PMID: 20139279 PMCID: PMC2935290 DOI: 10.4049/jimmunol.0903655] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compared with DR and DQ, knowledge of the binding repertoires and specificities of HLA-DP alleles is somewhat limited. However, a growing body of literature has indicated the importance of DP-restricted responses in the context of cancer, allergy, and infectious disease. In the current study, we developed high-throughput binding assays for the five most common HLA-DPB1 alleles in the general worldwide population. Using these assays on a comprehensive panel of single-substitution analogs and large peptide libraries, we derived novel detailed binding motifs for DPB1*0101 and DPB1*0501. We also derived more detailed quantitative motifs for DPB1*0201, DPB1*0401, and DPB1*0402, which were previously characterized on the basis of sets of eluted ligands and/or limited sets of substituted peptides. Unexpectedly, all five DP molecules, originally selected only on the basis of their frequency in human populations, were found to share largely overlapping peptide motifs. Testing panels of known DP epitopes and a panel of peptides spanning a set of Phleum pratense Ags revealed that these molecules also share largely overlapping peptide-binding repertoires. This demonstrates that a previously hypothesized DP supertype extends far beyond what was originally envisioned and includes at least three additional very common DP specificities. Taken together, these DP supertype molecules are found in >90% of the human population. Thus, these findings have important implications for epitope-identification studies and monitoring of human class II-restricted immune responses.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Revill P, Yuen L, Walsh R, Perrault M, Locarnini S, Kramvis A. Bioinformatic analysis of the hepadnavirus e-antigen and its precursor identifies remarkable sequence conservation in all orthohepadnaviruses. J Med Virol 2010; 82:104-15. [PMID: 19950245 DOI: 10.1002/jmv.21645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis B e-antigen (HBeAg) is a non-particulate secretory protein expressed by all viruses within the family Hepadnaviridae. It is not essential for viral assembly or replication but is important for establishment of persistent infection in vivo. Although the exact mechanism(s) by which the HBeAg manifests chronicity are unclear, the HBeAg elicits both humoral and cell-mediated immunity, down-regulates the innate immune response to infection, as well as functioning as a T cell tolerogen and regulating the immune response to the intracellular nucleocapsid. A bioinformatics approach was used to show that the HBeAg and precursory genetic codes share remarkable sequence conservation in all mammalian-infecting hepadnaviruses, irrespective of host, genotype, or geographic origin. Whilst much of this sequence conservation was within key immunomodulatory epitopes, highest conservation was observed at the unique HBeAg N-terminus, suggesting this sequence in particular may play an important role in HBeAg function.
Collapse
Affiliation(s)
- Peter Revill
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Li Y, Zhu M, Guo Y, Chen W, Li G. Full-length hepatitis B virus sequences from naïve patients with fluctuation of viral load during ADV monotherapy. Virus Genes 2009; 40:155-62. [PMID: 20012680 DOI: 10.1007/s11262-009-0429-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 11/26/2009] [Indexed: 12/25/2022]
Abstract
The reasons for adefovir dipivoxil (ADV) treatment failures appear diverse. Few studies have reported full-length hepatitis B virus (HBV) genome in patients with ADV treatment failures. The patients were from a phase III clinical trial that investigated the antiviral response to ADV in China. Seven patients had increase in HBV-DNA (>1 log(10) copies/ml above on-treatment nadir) at week 52. The serum HBV-DNA levels were above 10(4)copies/ml at week 92 in four of them. Sixteen full-length HBV genomes from the four patients at four time points were sequenced using cloning sequencing method. The frequency of substitutions at week 52 was higher than at weeks 28(16 wt) and 92(80). HBV-DNA reduction was correlated negatively with the frequency of substitutions at the three time points. No published ADV-resistant mutations were detected. The mutations, including substitutions in immunogenic epitopes and conserved sites of the polymerase gene, were frequent during ADV treatment. Amino acid deletions in X gene and basal core promoter/pre-core mutations appeared before or during ADV treatment. The substitutions in immunogenic epitopes (mainly of the surface gene) and conserved sites of the polymerase gene other than ADV-resistant mutations may have influenced antiviral efficacy in the study. More potent antiviral drugs may be important to rescue individual patients and for public health safety. It is needed to study how these substitutions influence HBV replication, disease progression, and antiviral treatment efficacy.
Collapse
Affiliation(s)
- Yongwei Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
47
|
Mohamadkhani A, Jazii FR, Poustchi H, Nouraein O, Abbasi S, Sotoudeh M, Montazeri G. The role of mutations in core protein of hepatitis B virus in liver fibrosis. Virol J 2009; 6:209. [PMID: 19939285 PMCID: PMC2800847 DOI: 10.1186/1743-422x-6-209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/26/2009] [Indexed: 12/13/2022] Open
Abstract
The core protein of hepatitis B virus encompasses B- and T-cell immunodominant epitopes and subdivided into two domains: the N-terminal and the functional C-terminal consisted phosphorylation sites. Mutations of the core gene may change the conformation of the core protein or cause alteration of important epitopes in the host immune response. In this study twenty nine men (mean age 40 ± 9 years old) with chronic hepatitis B were recruited for direct sequencing of the core gene. Serum ALT and HBV DNA level were measured at the time of liver biopsy. The effects of core protein mutations on patients' characteristics and subsequently mutations in B cell, T helper and cytotoxic T lymphocyte (CTL) epitopes and also C-terminal domain of core protein on the activity of liver disease was evaluated. Liver fibrosis was significantly increased in patients with core protein mutation (1.0 ± 0.8 vs 1.9 ± 1.4 for mean stage of fibrosis P = 0.05). Mutations in CTL epitopes and in phosphorylation sites of C-terminal domain of core protein also were associated with higher liver fibrosis (P = 0.003 and P = 0.04; Fisher's exact test for both). Patients with mutation in C-terminal domain had higher serum ALT (62 ± 17 vs 36 ± 12 IU/l, p = 0.02). Patients with mutations in B cell and T helper epitopes did not show significant difference in the clinical features. Our data suggests that core protein mutations in CTL epitopes and C-terminal domain accompanied with higher stage of liver fibrosis may be due to alterations in the function of core protein.
Collapse
|
48
|
Sendi H, Mehrab-Mohseni M, Shahraz S, Norder H, Alavian SM, Noorinayer B, Zali MR, Pumpens P, Bonkovsky HL, Magnius LO. CTL escape mutations of core protein are more frequent in strains of HBeAg negative patients with low levels of HBV DNA. J Clin Virol 2009; 46:259-64. [PMID: 19748824 PMCID: PMC2763602 DOI: 10.1016/j.jcv.2009.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/31/2009] [Accepted: 08/11/2009] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recent studies have suggested that Cytotoxic T lymphocytes (CTL) play a key role in eliminating hepatitis B virus (HBV). OBJECTIVES We aimed to investigate the role of mutations in different immune epitopes of hepatitis B core antigen (HBcAg) among Iranians with hepatitis B e antigen negative chronic hepatitis B (e-CHB), and asymptomatic carriers (ASCs). STUDY DESIGN Amino acids 1-150 of HBcAg were characterized for HBV strains from 29 e-CHB patients and 48 ASCs from Iran. All patients were infected with HBV genotype D and had previously been investigated for the presence of pre-core and basic core promoter (BCP) mutants. RESULTS Amino acid mutations of core protein were observed more frequently in HBV strains from ASCs than e-CHB patients (p=0.014). Asn(67) mutation was mutually exclusive to the combination Ile(66) and Ser(69) (P<0.001). Substitutions for Ser(21) and Thr12Ser were associated with lower serum levels of HBV DNA (p<0.001). None of the patients with mutations in HLA-A2 CTL epitope, 18-27, had serum HBV DNA more than 10(5)copies/mL (p<0.001). By multivariate analysis, high level (>10(5)copies/mL) of serum HBV DNA was inversely associated with the presence of mutations in CTL epitopes of HBc (OR: 0.11, p=0.015), while it was directly associated with the presence of promoter double T(1762)A(1764) mutations together with G(1757) (OR: 16.87, p=0.004). CONCLUSION The inverse correlation between serum levels of HBV DNA and CTL escape mutations of the core protein in HBeAg seroconverted patients, supports the notion that selection of CTL escape mutations consolidates the persistence of HBV infection despite reducing viral fitness.
Collapse
Affiliation(s)
- Hossein Sendi
- Department of Virology, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sung FY, Jung CM, Wu CF, Lin CL, Liu CJ, Liaw YF, Tsai KS, Yu MW. Hepatitis B virus core variants modify natural course of viral infection and hepatocellular carcinoma progression. Gastroenterology 2009; 137:1687-97. [PMID: 19664630 DOI: 10.1053/j.gastro.2009.07.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/11/2009] [Accepted: 07/23/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS We assessed the influence of genetic variants in the hepatitis B virus (HBV) core, which is a principal immunologic target, on the progression to hepatocellular carcinoma (HCC) in a cohort of 4841 male HBV carriers followed up for 16 years. METHODS First, baseline sera from 116 HCC cases and 154 controls nested within the cohort were used for sequencing of the HBV core gene to screen for variants with effects on HCC progression. By applying a high-throughput assay for detecting viral single nucleotide substitutions, we then used a longitudinal study (n = 1143) to examine whether 2 identified variants that lie in the region within or flanking epitopes affected the natural course of hepatitis B through investigating their relationships with time trends for viral load and clinical features. RESULTS In the nested case-control study, there were 6 core variants associated with decreased risk of HCC after accounting for viral genotype; 5 lie in the region within or flanking epitopes (P < .04). Each variant correlated with a 0.7- to 1-log decrease in viral load and hepatitis B virus e antigen negativity at baseline. The longitudinal study further showed that the appearance of 2 such variants (T1938C and T2045A) was preceded by long-term diminished viral load and decreased rate of liver abnormalities and was significantly less frequent in individuals with a prolonged immune clearance phase that associated with spectrum of liver disease than those in inactive carrier or reactivation phase. CONCLUSIONS HBV core variants affecting the kinetics of host-virus interplay may influence longitudinal viral load and HCC progression.
Collapse
Affiliation(s)
- Feng-Yu Sung
- Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cote PJ, Butler SD, George AL, Fairman J, Gerin JL, Tennant BC, Menne S. Rapid immunity to vaccination with woodchuck hepatitis virus surface antigen using cationic liposome-DNA complexes as adjuvant. J Med Virol 2009; 81:1760-72. [PMID: 19697409 DOI: 10.1002/jmv.21566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Complexes of cationic liposomes and non-coding DNA (CLDC) have shown promise as vaccine adjuvant. Using the woodchuck animal model of hepatitis B virus (HBV) infection, the immunogenic effects of CLDC were evaluated following vaccination with three doses of woodchuck hepatitis virus surface antigen (WHsAg) adjuvanted with either CLDC or conventional alum and administered intramuscularly (im) or subcutaneously (sc). IM vaccination with WHsAg and CLDC elicited antibodies earlier, in more woodchucks, and with higher titers than WHsAg and alum. After two vaccine doses, antibody titers were higher following im than sc administration. Woodchucks administered two vaccine doses sc received the third vaccine dose im, and antibody responses reached titers comparable to those elicited by im administration. Following the second vaccine dose, im vaccination with WHsAg and CLDC induced T cell responses to WHsAg and selected WHs peptides and expression of the leukocyte surface marker CD8 and of the Th1 cytokines interferon-gamma and tumor necrosis factor alpha in woodchucks. T cell responses and CD8/cytokine expression were diminished in woodchucks from the other groups suggesting that this vaccine regimen induced a skew toward Th1 immune responses. The present study in woodchucks demonstrates that CLDC-adjuvanted WHsAg vaccine administered im resulted in a more rapid induction of humoral and cellular immune responses compared to conventional, alum-adjuvanted WHsAg vaccine. While less rapid, the immune responses following sc administration can prime the im immune responses. This adjuvant activity of CLDC over alum may be beneficial for therapeutic vaccination in chronic HBV infection.
Collapse
Affiliation(s)
- Paul J Cote
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | | | | | | | | | | |
Collapse
|