1
|
Abu-Amero KK, Almadani B, Abualkhair S, Hameed S, Kondkar AA, Sollazzo A, Yu AC, Busin M, Zauli G. Mitochondrial DNA Pathogenic Variants in Ophthalmic Diseases: A Review. Genes (Basel) 2025; 16:347. [PMID: 40149498 PMCID: PMC11941924 DOI: 10.3390/genes16030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria are vital organelles responsible for ATP production and metabolic regulation, essential for energy-intensive cells such as retinal ganglion cells. Dysfunction in mitochondrial oxidative phosphorylation or mitochondrial DNA (mtDNA) pathogenic variants can disrupt ATP synthesis, cause oxidative stress, and lead to cell death. This has profound implications for tissues such as the retina, optic nerve, and retinal pigment epithelium, which are dependent on robust mitochondrial function. In this review, we provide a comprehensive compilation of pathogenic variants in the mtDNA associated with various ophthalmic diseases, including Leber's hereditary optic neuropathy, chronic progressive external ophthalmoplegia, Leigh syndrome, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, among others. We highlight the genetic variants implicated in these conditions, their pathogenic roles, and the phenotypic consequences of mitochondrial dysfunction in ocular tissues. In addition to well-established mutations, we also discuss the emerging evidence of the role of mtDNA's variants in complex multifactorial diseases, such as non-arteritic anterior ischemic optic neuropathy, primary open-angle glaucoma, and age-related macular degeneration. The review aims to serve as a valuable resource for clinicians and researchers, providing a detailed overview of mtDNA pathogenic variants and their clinical significance in the context of mitochondrial-related eye diseases.
Collapse
Affiliation(s)
- Khaled K. Abu-Amero
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Bashaer Almadani
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Shereen Abualkhair
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Syed Hameed
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Andrea Sollazzo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| |
Collapse
|
2
|
Duan H, Pan C, Wu T, Peng J, Yang L. MT-TN mutations lead to progressive mitochondrial encephalopathy and promotes mitophagy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167043. [PMID: 38320662 DOI: 10.1016/j.bbadis.2024.167043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.
Collapse
Affiliation(s)
- Haolin Duan
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cunhui Pan
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tenghui Wu
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Peng
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China..
| | - Li Yang
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China..
| |
Collapse
|
3
|
Dogan SA, Giacchin G, Zito E, Viscomi C. Redox Signaling and Stress in Inherited Myopathies. Antioxid Redox Signal 2022; 37:301-323. [PMID: 35081731 DOI: 10.1089/ars.2021.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are highly reactive compounds that behave like a double-edged sword; they damage cellular structures and act as second messengers in signal transduction. Mitochondria and endoplasmic reticulum (ER) are interconnected organelles with a central role in ROS production, detoxification, and oxidative stress response. Skeletal muscle is the most abundant tissue in mammals and one of the most metabolically active ones and thus relies mainly on oxidative phosphorylation (OxPhos) to synthesize adenosine triphosphate. The impairment of OxPhos leads to myopathy and increased ROS production, thus affecting both redox poise and signaling. In addition, ROS enter the ER and trigger ER stress and its maladaptive response, which also lead to a myopathic phenotype with mitochondrial involvement. Here, we review the role of ROS signaling in myopathies due to either mitochondrial or ER dysfunction. Recent Advances: Relevant advances have been evolving over the last 10 years on the intricate ROS-dependent pathways that act as modifiers of the disease course in several myopathies. To this end, pathways related to mitochondrial biogenesis, satellite cell differentiation, and ER stress have been studied extensively in myopathies. Critical Issues: The analysis of the chemistry and the exact quantitation, as well as the localization of ROS, are still challenging due to the intrinsic labile nature of ROS and the technical limitations of their sensors. Future Directions: The mechanistic studies of the pathogenesis of mitochondrial and ER-related myopathies offer a unique possibility to discover novel ROS-dependent pathways. Antioxid. Redox Signal. 37, 301-323.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Giacomo Giacchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Evaluation of the tRNA-Leu (UUR) gene haplotype profile observed in canine mammary gland tumours based on comparative analysis with the MT-TL1 human gene. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aetiology and pathogenesis of many canine tumours are likely to be similar to cancers found in humans. This study aimed to evaluate a plausible link between changes in the tRNA-Leu (UUR) gene and the carcinogenesis process in dogs with mammary gland tumours. The whole mitochondrial DNA (mtDNA) isolated from blood and tumour tissues of 13 dogs with malignant mammary gland tumours was sequenced. The present work is the first report showing that some polymorphisms might occur at the corresponding positions in the human and canine mtDNA genome, which in turn may provoke similar deleterious effects. The homology between the human MT-TL1 and canine tRNA-Leu (UUR) genes was 84%. After resequencing of the whole mitochondrial DNA genome with the use of the NGS technology, two polymorphisms in two haplotypes were identified: m.2683G>A (observed in 18 out of 27 samples) and m.2678_2679insG (27 out of 27 samples). The m.2683G>A polymorphism corresponded to a deleterious change at m.3243A>G, which is linked with MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, Stroke-like episodes) syndrome and with different types of cancers in humans as well. The comparative analysis of MT-TL1 and tRNA-Leu (UUR) led us to hypothesise that the m.2678_2679insG and m.2683G>A polymorphisms might influence the dog’s condition and might be linked with tumourigenesis, as observed in humans.
Collapse
|
5
|
Yang M, Xu L, Xu C, Cui Y, Jiang S, Dong J, Liao L. The Mutations and Clinical Variability in Maternally Inherited Diabetes and Deafness: An Analysis of 161 Patients. Front Endocrinol (Lausanne) 2021; 12:728043. [PMID: 34899594 PMCID: PMC8654930 DOI: 10.3389/fendo.2021.728043] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022] Open
Abstract
Aims To investigate the clinical features and mitochondrial mutations for maternally inherited diabetes and deafness. Methods PubMed, Embase, Medline, Web of Science, the China National Knowledge Infrastructure, and Wanfang were searched with the following search terms: "Maternally inherited diabetes and deafness" OR "MIDD" OR "Mitochondrial diabetes". The mutations and clinical features were analyzed. Correlation between the heteroplasmy levels of the m.3243A>G mutation in the peripheral blood and age at the onset of diabetes was conducted by Spearman test. The significance level was set as p < 0.05. Statistical analysis was performed using the Statistical Package for the Social Sciences version 26 for Windows. Results Totally 161 patients with 21 different mitochondrial mutations were enrolled. The most common mutation was the m.3243A>G mutation in 136 cases. Of 142 patients, 120 (84.51%) had family histories of diabetes or hearing loss. Hearing loss presented in 85.71% of the patients with mitochondrial mutations. Central nervous system diseases were found in 29.19%, myopathy in 22.98%, oculopathy in 23.60%, cardiac disease in 23.60%, and nephropathy in 13.66% of the patients. Forty-two of 101 (41.58%) patients were underweight. A significant negative correlation was found between the heteroplasmy levels of the m.3243A>G mutation in the peripheral blood and age at the onset of diabetes. Conclusions The young onset of diabetes with low or normal BMI, maternal inheritance, and presence of impairments of multiple systems should prompt a genetic testing in order to differentiate MIDD from other types of diabetes earlier.
Collapse
Affiliation(s)
- Mengge Yang
- Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Lusi Xu
- Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Chunmei Xu
- Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Yuying Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Shan Jiang
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Lin Liao
- Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| |
Collapse
|
6
|
Visuttijai K, Hedberg‐Oldfors C, Lindgren U, Nordström S, Elíasdóttir Ó, Lindberg C, Oldfors A. Progressive external ophthalmoplegia associated with novel MT-TN mutations. Acta Neurol Scand 2021; 143:103-108. [PMID: 32869280 PMCID: PMC7756270 DOI: 10.1111/ane.13339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To describe two patients with progressive external ophthalmoplegia (PEO) and mitochondrial myopathy associated with mutations in mitochondrial DNA, encoding the tRNAAsn gene (MT-TN), which have not previously been published with clinical descriptions. MATERIALS & METHODS Two unrelated patients with PEO were clinically examined. Muscle biopsy was performed and investigated by exome sequencing, enzyme histochemistry, and immunohistochemistry. The level of heteroplasmy was investigated in single muscle fibers and in other tissues. RESULTS Patient 1 was a 52-year-old man with ptosis, PEO, and exercise intolerance since childhood. Muscle biopsy demonstrated mitochondrial myopathy with frequent cytochrome c oxidase (COX)-deficient fibers and a heteroplasmic mutation, m.5669G>A in the MT-TN gene, resulting in a substitution of a highly conserved C to T in the T stem of tRNAAsn . Patient 2 was a 66-year-old woman with ptosis, PEO, and exercise intolerance since many years. Muscle biopsy demonstrated mitochondrial myopathy with frequent COX-deficient fibers. She had a novel m.5702delA mutation in MT-TN, resulting in loss of a highly conserved U in the anticodon stem of tRNAAsn . Single fiber analysis in both cases showed highly significant differences in mutation load between COX-deficient and COX-normal fibers and a high threshold level for COX deficiency. The mutations were not found in blood, urine sediment or buccal cells. CONCLUSION We describe two MT-TN mutations associated with PEO and mitochondrial myopathy, and their pathogenicity was demonstrated. Together with previous reports, the results indicate that MT-TN is a hot spot for mutations causing sporadic PEO.
Collapse
Affiliation(s)
- Kittichate Visuttijai
- Department of Laboratory MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carola Hedberg‐Oldfors
- Department of Laboratory MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ulrika Lindgren
- Department of Laboratory MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sara Nordström
- Department of NeurologySahlgrenska University HospitalGothenburgSweden
| | - Ólöf Elíasdóttir
- Department of NeurologySahlgrenska University HospitalGothenburgSweden
| | | | - Anders Oldfors
- Department of Laboratory MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
7
|
Toncheva D, Serbezov D, Karachanak-Yankova S, Nesheva D. Ancient mitochondrial DNA pathogenic variants putatively associated with mitochondrial disease. PLoS One 2020; 15:e0233666. [PMID: 32970680 PMCID: PMC7514063 DOI: 10.1371/journal.pone.0233666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/09/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA variants associated with diseases are widely studied in contemporary populations, but their prevalence has not yet been investigated in ancient populations. The publicly available AmtDB database contains 1443 ancient mtDNA Eurasian genomes from different periods. The objective of this study was to use this data to establish the presence of pathogenic mtDNA variants putatively associated with mitochondrial diseases in ancient populations. The clinical significance, pathogenicity prediction and contemporary frequency of mtDNA variants were determined using online platforms. The analyzed ancient mtDNAs contain six variants designated as being "confirmed pathogenic" in modern patients. The oldest of these, m.7510T>C in the MT-TS1 gene, was found in a sample from the Neolithic period, dated 5800-5400 BCE. All six have well established clinical association, and their pathogenic effect is corroborated by very low population frequencies in contemporary populations. Analysis of the geographic location of the ancient samples, contemporary epidemiological trends and probable haplogroup association indicate diverse spatiotemporal dynamics of these variants. The dynamics in the prevalence and distribution is conceivably result of de novo mutations or human migrations and subsequent evolutionary processes. In addition, ten variants designated as possibly or likely pathogenic were found, but the clinical effect of these is not yet well established and further research is warranted. All detected mutations putatively associated with mitochondrial disease in ancient mtDNA samples are in tRNA coding genes. Most of these mutations are in a mt-tRNA type (Model 2) that is characterized by loss of D-loop/T-loop interaction. Exposing pathogenic variants in ancient human populations expands our understanding of their origin and prevalence dynamics.
Collapse
Affiliation(s)
- Draga Toncheva
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
- Bulgarian Academy of Sciences–BAS, Sofia, Bulgaria
- * E-mail:
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Sena Karachanak-Yankova
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
- Department of Genetics, Faculty of biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Desislava Nesheva
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
| |
Collapse
|
8
|
Harvey NR, Voisin S, Lea RA, Yan X, Benton MC, Papadimitriou ID, Jacques M, Haupt LM, Ashton KJ, Eynon N, Griffiths LR. Investigating the influence of mtDNA and nuclear encoded mitochondrial variants on high intensity interval training outcomes. Sci Rep 2020; 10:11089. [PMID: 32632177 PMCID: PMC7338527 DOI: 10.1038/s41598-020-67870-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondria supply intracellular energy requirements during exercise. Specific mitochondrial haplogroups and mitochondrial genetic variants have been associated with athletic performance, and exercise responses. However, these associations were discovered using underpowered, candidate gene approaches, and consequently have not been replicated. Here, we used whole-mitochondrial genome sequencing, in conjunction with high-throughput genotyping arrays, to discover novel genetic variants associated with exercise responses in the Gene SMART (Skeletal Muscle Adaptive Response to Training) cohort (n = 62 completed). We performed a Principal Component Analysis of cohort aerobic fitness measures to build composite traits and test for variants associated with exercise outcomes. None of the mitochondrial genetic variants but eight nuclear encoded variants in seven separate genes were found to be associated with exercise responses (FDR < 0.05) (rs11061368: DIABLO, rs113400963: FAM185A, rs6062129 and rs6121949: MTG2, rs7231304: AFG3L2, rs2041840: NDUFAF7, rs7085433: TIMM23, rs1063271: SPTLC2). Additionally, we outline potential mechanisms by which these variants may be contributing to exercise phenotypes. Our data suggest novel nuclear-encoded SNPs and mitochondrial pathways associated with exercise response phenotypes. Future studies should focus on validating these variants across different cohorts and ethnicities.
Collapse
Affiliation(s)
- N R Harvey
- Health Sciences and Medicine Faculty, Bond University, Robina, QLD, 4226, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - S Voisin
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - R A Lea
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - X Yan
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - M C Benton
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - I D Papadimitriou
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - M Jacques
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - L M Haupt
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - K J Ashton
- Health Sciences and Medicine Faculty, Bond University, Robina, QLD, 4226, Australia
| | - N Eynon
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - L R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
9
|
Zereg E, Chaussenot A, Morel G, Bannwarth S, Sacconi S, Soriani MH, Attarian S, Cano A, Pouget J, Bellance R, Tranchant C, Lannes B, de Paula AM, Saadi Ait-El-Mkadem S, Chafino B, Berthet M, Fragaki K, Paquis-Flucklinger V, Rouzier C. Single-fiber studies for assigning pathogenicity of eight mitochondrial DNA variants associated with mitochondrial diseases. Hum Mutat 2020; 41:1394-1406. [PMID: 32419253 DOI: 10.1002/humu.24037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/29/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
Whole mitochondrial DNA (mtDNA) sequencing is now systematically used in clinical laboratories to screen patients with a phenotype suggestive of mitochondrial disease. Next Generation Sequencing (NGS) has significantly increased the number of identified pathogenic mtDNA variants. Simultaneously, the number of variants of unknown significance (VUS) has increased even more, thus challenging their interpretation. Correct classification of the variants' pathogenicity is essential for optimal patient management, including treatment and genetic counseling. Here, we used single muscle fiber studies to characterize eight heteroplasmic mtDNA variants, among which were three novel variants. By applying the pathogenicity scoring system, we classified four variants as "definitely pathogenic" (m.590A>G, m.9166T>C, m.12293G>A, and m.15958A>T). Two variants remain "possibly pathogenic" (m.4327T>C and m.5672T>C) but should these be reported in a different family, they would be reclassified as "definitely pathogenic." We also illustrate the contribution of single-fiber studies to the diagnostic approach in patients harboring pathogenic variants with low level heteroplasmy.
Collapse
Affiliation(s)
- Elamine Zereg
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France
| | - Annabelle Chaussenot
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France.,Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d'Azur, Nice, France
| | - Godelieve Morel
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France
| | - Sylvie Bannwarth
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France.,Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d'Azur, Nice, France
| | - Sabrina Sacconi
- Department of Clinical Neurosciences, Neuromuscular Diseases Centre, Nice Teaching Hospital, Nice, France
| | - Marie-Hélène Soriani
- Department of Clinical Neurosciences, Neuromuscular Diseases Centre, Nice Teaching Hospital, Nice, France
| | - Shahram Attarian
- Neurology Department, Referral Center for ALS and Neuromuscular Diseases, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Aline Cano
- Pediatric Neurology Department, Reference Center for Inherited Metabolic Diseases, Timone Hospital, Marseille, France
| | - Jean Pouget
- Neurology Department, Referral Center for ALS and Neuromuscular Diseases, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Rémi Bellance
- Neuromyology Department, Neuromuscular Reference Center, Fort-de-France Teaching Hospital, Fort-de-France, France
| | - Christine Tranchant
- Department of Movement Pathology, Strasbourg Teaching Hospital, Strasbourg, France
| | - Béatrice Lannes
- Pathology Department, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - André Maues de Paula
- Pathology Department, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Samira Saadi Ait-El-Mkadem
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France.,Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d'Azur, Nice, France
| | - Bernadette Chafino
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France
| | - Mathieu Berthet
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France
| | - Konstantina Fragaki
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France.,Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d'Azur, Nice, France
| | - Véronique Paquis-Flucklinger
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France.,Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d'Azur, Nice, France
| | - Cécile Rouzier
- Department of Medical Genetics, National Center for Mitochondrial Diseases, Nice Teaching Hospital, Nice, France.,Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d'Azur, Nice, France
| |
Collapse
|
10
|
A Brief History of Mitochondrial Pathologies. Int J Mol Sci 2019; 20:ijms20225643. [PMID: 31718067 PMCID: PMC6888695 DOI: 10.3390/ijms20225643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/19/2023] Open
Abstract
The history of "mitochondrial pathologies", namely genetic pathologies affecting mitochondrial metabolism because of mutations in nuclear DNA-encoded genes for proteins active inside mitochondria or mutations in mitochondrial DNA-encoded genes, began in 1988. In that year, two different groups of researchers discovered, respectively, large-scale single deletions of mitochondrial DNA (mtDNA) in muscle biopsies from patients with "mitochondrial myopathies" and a point mutation in the mtDNA gene for subunit 4 of NADH dehydrogenase (MTND4), associated with maternally inherited Leber's hereditary optic neuropathy (LHON). Henceforth, a novel conceptual "mitochondrial genetics", separate from mendelian genetics, arose, based on three features of mtDNA: (1) polyplasmy; (2) maternal inheritance; and (3) mitotic segregation. Diagnosis of mtDNA-related diseases became possible through genetic analysis and experimental approaches involving histochemical staining of muscle or brain sections, single-fiber polymerase chain reaction (PCR) of mtDNA, and the creation of patient-derived "cybrid" (cytoplasmic hybrid) immortal fibroblast cell lines. The availability of the above-mentioned techniques along with the novel sensitivity of clinicians to such disorders led to the characterization of a constantly growing number of pathologies. Here is traced a brief historical perspective on the discovery of autonomous pathogenic mtDNA mutations and on the related mendelian pathology altering mtDNA integrity.
Collapse
|
11
|
Broadening the phenotype of m.5703G>A mutation in mitochondrial tRNAAsn gene from mitochondrial myopathy to myoclonic epilepsy with ragged red fibers syndrome. Chin Med J (Engl) 2019; 132:865-867. [PMID: 30897601 PMCID: PMC6595846 DOI: 10.1097/cm9.0000000000000151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
12
|
Schlapakow E, Peeva V, Zsurka G, Jeub M, Wabbels B, Kornblum C, Kunz WS. Distinct segregation of the pathogenic m.5667G>A mitochondrial tRNA Asn mutation in extraocular and skeletal muscle in chronic progressive external ophthalmoplegia. Neuromuscul Disord 2019; 29:358-367. [PMID: 30962064 DOI: 10.1016/j.nmd.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/08/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Abstract
Chronic progressive external ophthalmoplegia (CPEO) is a frequent clinical manifestation of disorders caused by pathogenic mitochondrial DNA mutations. However, for diagnostic purposes skeletal muscle tissue is used, since extraocular muscle tissue is usually not available for work-up. In the present study we aimed to identify causative factors that are responsible for extraocular muscle to be primarily affected in CPEO. We performed comparative histochemical and molecular genetic analyses of extraocular muscle and skeletal muscle single fibers in a case of isolated CPEO caused by the heteroplasmic m.5667G>A mutation in the mitochondrial tRNAAsn gene (MT-TN). Histochemical analyses revealed higher proportion of cytochrome c oxidase deficient fibers in extraocular muscle (41%) compared to skeletal muscle (10%). However, genetic analyses of single fibers revealed no significant difference either in the mutation loads between extraocular muscle and skeletal muscle cytochrome c oxidase deficient single fibers (extraocular muscle 86% ± 4.6%; skeletal muscle 87.8 %± 5.7%, p = 0.246) nor in the mutation threshold (extraocular muscle 74% ± 3%; skeletal muscle 74% ± 4%). We hypothesize that higher proportion of cytochrome c oxidase deficient fibers in extraocular muscle compared to skeletal muscle might be due to facilitated segregation of the m.5667G>A mutation into extraocular muscle, which may explain the preferential ocular manifestation and clinically isolated CPEO.
Collapse
Affiliation(s)
- Elena Schlapakow
- Department of Neurology, University Hospital of Bonn, Germany; Center for Rare Diseases, University Hospital of Bonn, Germany
| | - Viktoriya Peeva
- Division of Neurochemistry, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Gábor Zsurka
- Division of Neurochemistry, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany; Department of Epileptology, University of Bonn, Germany
| | - Monika Jeub
- Department of Neurology, University Hospital of Bonn, Germany
| | | | - Cornelia Kornblum
- Department of Neurology, University Hospital of Bonn, Germany; Center for Rare Diseases, University Hospital of Bonn, Germany
| | - Wolfram S Kunz
- Division of Neurochemistry, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany; Department of Epileptology, University of Bonn, Germany.
| |
Collapse
|
13
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|
14
|
Bacalhau M, Simões M, Rocha MC, Hardy SA, Vincent AE, Durães J, Macário MC, Santos MJ, Rebelo O, Lopes C, Pratas J, Mendes C, Zuzarte M, Rego AC, Girão H, Wong LJC, Taylor RW, Grazina M. Disclosing the functional changes of two genetic alterations in a patient with Chronic Progressive External Ophthalmoplegia: Report of the novel mtDNA m.7486G>A variant. Neuromuscul Disord 2018; 28:350-360. [PMID: 29398297 PMCID: PMC5952895 DOI: 10.1016/j.nmd.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023]
Abstract
Chronic Progressive External Ophthalmoplegia (CPEO) is characterized by ptosis and ophthalmoplegia and is usually caused by mitochondrial DNA (mtDNA) deletions or mt-tRNA mutations. The aim of the present work was to clarify the genetic defect in a patient presenting with CPEO and elucidate the underlying pathogenic mechanism. This 62-year-old female first developed ptosis of the right eye at the age of 12 and subsequently the left eye at 45 years, and was found to have external ophthalmoplegia at the age of 55 years. Histopathological abnormalities were detected in the patient's muscle, including ragged-red fibres, a mosaic pattern of COX-deficient muscle fibres and combined deficiency of respiratory chain complexes I and IV. Genetic investigation revealed the "common deletion" in the patient's muscle and fibroblasts. Moreover, a novel, heteroplasmic mt-tRNASer(UCN) variant (m.7486G>A) in the anticodon loop was detected in muscle homogenate (50%), fibroblasts (11%) and blood (4%). Single-fibre analysis showed segregation with COX-deficient fibres for both genetic alterations. Assembly defects of mtDNA-encoded complexes were demonstrated in fibroblasts. Functional analyses showed significant bioenergetic dysfunction, reduction in respiration rate and ATP production and mitochondrial depolarization. Multilamellar bodies were detected by electron microscopy, suggesting disturbance in autophagy. In conclusion, we report a CPEO patient with two possible genetic origins, both segregating with biochemical and histochemical defect. The "common mtDNA deletion" is the most likely cause, yet the potential pathogenic effect of a novel mt-tRNASer(UCN) variant cannot be fully excluded.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Marta Simões
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Mariana C Rocha
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Steven A Hardy
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - João Durães
- CHUC - Neurology Department of Coimbra University Hospitals, Coimbra, Portugal
| | - Maria C Macário
- CHUC - Neurology Department of Coimbra University Hospitals, Coimbra, Portugal
| | - Maria João Santos
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- CHUC - Neurology Department of Coimbra University Hospitals, Coimbra, Portugal
| | - Carla Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Pratas
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Cândida Mendes
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Mónica Zuzarte
- IBILI - Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; IBILI - Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lee-Jun C Wong
- Mitochondrial Diagnostic Laboratory, Baylor College of Medicine, Houston, USA
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Manuela Grazina
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
15
|
Li Y, Wang Y, He Q, Dang X, Cao Y, Wu X, Mo S, He X, Yi Z. Genetic mutational testing of Chinese children with familial hematuria with biopsy‑proven FSGS. Mol Med Rep 2017; 17:1513-1526. [PMID: 29138824 PMCID: PMC5780091 DOI: 10.3892/mmr.2017.8023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2017] [Indexed: 12/27/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a pathological lesion rather than a disease, with a diverse etiology. FSGS may result from genetic and non‑genetic factors. FSGS is considered a podocyte disease due to the fact that in the majority of patients with proven‑FSGS, the lesion results from defects in the podocyte structure or function. However, FSGS does not result exclusively from podocyte‑associated genes, however also from other genes including collagen IV‑associated genes. Patients who carry the collagen type IVA3 chain (COL4A3) or COL4A4 mutations usually exhibit Alport Syndrome (AS), thin basement membrane neuropathy or familial hematuria (FH). Previous studies revealed that long‑time persistent microscopic hematuria may lead to FSGS. A case of a family is presented here where affected individuals exhibited FH with FSGS‑proven, or chronic kidney disease. Renal biopsies were unhelpful and failed to demonstrate glomerular or basement membrane defects consistent with an inherited glomerulopathy, and therefore a possible underlying genetic cause for a unifying diagnosis was pursued. Genomic DNA of the siblings affected by FH with biopsy‑proven FSGS was analyzed, and their father was screened for 18 gene mutations associated with FSGS [nephrin, podocin, CD2 associated protein, phospholipase C ε, actinin α 4, transient receptor potential cation channel subfamily C member 6, inverted formin, FH2 and WH2 domain containing, Wilms tumor 1, LIM homeobox transcription factor 1 β, laminin subunit β 2, laminin subunit β 3, galactosida α, integrin subunit β 4, scavenger receptor class B member 2, coenzyme Q2, decaprenyl diphosphate synthase subunit 2, mitochondrially encoded tRNA leucine 1 (UUA/G; TRNL1) and SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a like 1] using matrix‑assisted laser desorption/ionization time‑of‑flight mass spectrometry technology. Then whole exome sequencing (WES) was performed in the two probands to ascertain whether there were other known or unknown gene mutations that segregated with the disease. Using mass array technology, a TRNL1 missense homozygous mutation (m. 3290T>C) was identified in the probands diagnosed with FH and manifested as FSGS on biopsy. In addition, a COL4A4 missense mutation c. 4195A>T (p. M1399L) in heterozygous pattern was identified using WES. None of these variants were detected in their father. In the present study, a mutation in TRNL1 (m. 3290T>C) was identified, which was the first reported variant associated with FSGS. The COL4A4 (c. 4195A>T) may co‑segregate with FSGS. Screening for COL4A mutations in familial FSGS patients is suggested in the present study. Genetic investigations of families with similar clinical phenotypes should be a priority for nephrologists. The combination of mass array technology and WES may improve the detection rate of genetic mutation with a high level of accuracy.
Collapse
Affiliation(s)
- Yongzhen Li
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ying Wang
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qingnan He
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiqiang Dang
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Cao
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaochuan Wu
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shuanghong Mo
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaoxie He
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhuwen Yi
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
16
|
HEIDARI MM, DERAKHSHANI M, SEDIGHI F, FORUZAN-NIA SK. Mutation Analysis of the Mitochondrial tRNA Genes in Iranian Coronary Atherosclerosis Patients. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:1379-1385. [PMID: 29308382 PMCID: PMC5750350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atherosclerosis is a disease that affects large and medium size arteries in the body that underlies coronary heart disease. Several nucleotide changes in mitochondrial tRNA genes have been reported in various diseases. The purpose of the study was to identify hotspot mitochondrial tRNA mutations in atherosclerotic patients. METHODS In this case-control study, the variations of ten mitochondrial tRNA genes (about 50%) were investigated in 70 patients from October 2013 and June 2015 suffered from atherosclerosis. The related mitochondrial area was amplified using PCR methid. The mutation analysis was performed by Single Strand Conformational Polymorphism (SSCP) and Restriction Fragment Length Polymorphism (RFLP). All the positive samples were sequenced. RESULTS We found one novel heteroplasmic mutation (m.5725T>G) and three reported single nucleotide polymorphisms (SNPs) previously in other diseases including m.5568A>G, m.5711A>G and m.12308A>G. CONCLUSION These tRNA mutations can alter their steady state level and affect the structure of tRNA. The role of mitochondrial tRNA mutations in the pathogenesis of atherosclerosis could potentially be important for the understanding of mitochondrial dysfunction in coronary atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Mohammad Mehdi HEIDARI
- Dept. of Biology, Faculty of Science, Yazd University, Yazd, Iran,Corresponding Author:
| | | | - Fatemeh SEDIGHI
- Dept. of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Seyed Khalil FORUZAN-NIA
- Dept. of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Siira SJ, Shearwood AMJ, Bracken CP, Rackham O, Filipovska A. Defects in RNA metabolism in mitochondrial disease. Int J Biochem Cell Biol 2017; 85:106-113. [PMID: 28189843 DOI: 10.1016/j.biocel.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 12/16/2022]
Abstract
The expression of mitochondrially-encoded genes requires the efficient processing of long precursor RNAs at the 5' and 3' ends of tRNAs, a process which, when disrupted, results in disease. Two such mutations reside within mt-tRNALeu(UUR); a m.3243A>G transition, which is the most common cause of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), and m.3302A>G which often causes mitochondrial myopathy (MM). We used parallel analysis of RNA ends (PARE) that captures the 5' terminal end of 5'-monophosphorylated mitochondrial RNAs to compare the effects of the m.3243A>G and m.3302A>G mutations on mitochondrial tRNA processing and downstream RNA metabolism. We confirmed previously identified RNA processing defects, identified common internal cleavage sites and new sites unique to the m.3243A>G mutants that do not correspond to transcript ends. These sites occur in regions of predicted RNA secondary structure, or are in close proximity to such regions, and may identify regions of importance to the processing of mtRNAs.
Collapse
Affiliation(s)
- Stefan J Siira
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Anne-Marie J Shearwood
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Cameron P Bracken
- Division of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
18
|
Hahn IK, Lim HT. A Case of Atypical Leber Hereditary Optic Neuropathy Associated with MT-TL1Gene Mutation Misdiagnosed with Glaucoma. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2017. [DOI: 10.3341/jkos.2017.58.1.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- In Kyun Hahn
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Sallevelt SCEH, de Die-Smulders CEM, Hendrickx ATM, Hellebrekers DMEI, de Coo IFM, Alston CL, Knowles C, Taylor RW, McFarland R, Smeets HJM. De novo mtDNA point mutations are common and have a low recurrence risk. J Med Genet 2016; 54:73-83. [PMID: 27450679 PMCID: PMC5502310 DOI: 10.1136/jmedgenet-2016-103876] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022]
Abstract
Background Severe, disease-causing germline mitochondrial (mt)DNA mutations are maternally inherited or arise de novo. Strategies to prevent transmission are generally available, but depend on recurrence risks, ranging from high/unpredictable for many familial mtDNA point mutations to very low for sporadic, large-scale single mtDNA deletions. Comprehensive data are lacking for de novo mtDNA point mutations, often leading to misconceptions and incorrect counselling regarding recurrence risk and reproductive options. We aim to study the relevance and recurrence risk of apparently de novo mtDNA point mutations. Methods Systematic study of prenatal diagnosis (PND) and recurrence of mtDNA point mutations in families with de novo cases, including new and published data. ‘De novo’ based on the absence of the mutation in multiple (postmitotic) maternal tissues is preferred, but mutations absent in maternal blood only were also included. Results In our series of 105 index patients (33 children and 72 adults) with (likely) pathogenic mtDNA point mutations, the de novo frequency was 24.6%, the majority being paediatric. PND was performed in subsequent pregnancies of mothers of four de novo cases. A fifth mother opted for preimplantation genetic diagnosis because of a coexisting Mendelian genetic disorder. The mtDNA mutation was absent in all four prenatal samples and all 11 oocytes/embryos tested. A literature survey revealed 137 de novo cases, but PND was only performed for 9 (including 1 unpublished) mothers. In one, recurrence occurred in two subsequent pregnancies, presumably due to germline mosaicism. Conclusions De novo mtDNA point mutations are a common cause of mtDNA disease. Recurrence risk is low. This is relevant for genetic counselling, particularly for reproductive options. PND can be offered for reassurance.
Collapse
Affiliation(s)
- Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Christine E M de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Research School for Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Alexandra T M Hendrickx
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Irenaeus F M de Coo
- Department of Neurology, Erasmus MC-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Knowles
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Hubert J M Smeets
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Research School for Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.,Research School for Cardiovascular Diseases in Maastricht, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Marin-Garcia J, Goldenthal MJ. Mitochondrial DNA defects in cardiomyopathy. Cardiovasc Pathol 2015; 7:205-13. [PMID: 25851396 DOI: 10.1016/s1054-8807(97)00101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/1997] [Accepted: 10/16/1997] [Indexed: 10/16/2022] Open
Abstract
Abnormalities in mitochondrial DNA (mtDNA) including specific deletions and point mutations have been found in an increasing number of cases of both dilated and hypertrophic cardiomyopathy. The role that these mutations may play in contributing to the cardiomyopathic phenotype is discussed in this survey of the recent literature.
Collapse
Affiliation(s)
- J Marin-Garcia
- The Molecular Cardiology Institute, Highland Park, New Jersey USA
| | - M J Goldenthal
- The Molecular Cardiology Institute, Highland Park, New Jersey USA
| |
Collapse
|
21
|
Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls. BIOMED RESEARCH INTERNATIONAL 2014; 2014:292017. [PMID: 24818137 PMCID: PMC4003915 DOI: 10.1155/2014/292017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/14/2014] [Indexed: 11/17/2022]
Abstract
The role of alterations of mitochondrial DNA (mtDNA) in the development of human pathologies is not understood well. Most of mitochondrial mutations are characterized by the phenomenon of heteroplasmy which is defined as the presence of a mixture of more than one type of an organellar genome within a cell or tissue. The level of heteroplasmy varies in wide range, and the expression of disease is dependent on the percent of alleles bearing mutations, thus allowing consumption that an upper threshold level may exist beyond which the mitochondrial function collapses. Recent findings have demonstrated that some mtDNA heteroplasmic mutations are associated with widely spread chronic diseases, including atherosclerosis and cancer. Actually, each etiological mtDNA mutation has its own heteroplasmy threshold that needs to be measured. Therefore, quantitative evaluation of a mutant allele of mitochondrial genome is an obvious methodological challenge, since it may be a keystone for diagnostics of individual genetic predisposition to the disease. This review provides a comprehensive comparison of methods applicable to the measurement of heteroplasmy level of mitochondrial mutations associated with the development of pathology, in particular, in atherosclerosis and its clinical manifestations.
Collapse
|
22
|
Williams SL, Mash DC, Züchner S, Moraes CT. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet 2013; 9:e1003990. [PMID: 24339796 PMCID: PMC3854840 DOI: 10.1371/journal.pgen.1003990] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/16/2013] [Indexed: 12/21/2022] Open
Abstract
The accumulation of heteroplasmic mitochondrial DNA (mtDNA) deletions and single nucleotide variants (SNVs) is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq) to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the “common” deletion and other “major arc” deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ− mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states. Mitochondria are unique among animal organelles in that they contain their own multi-copy genome (mtDNA). For the past 20 years it has been known that tissues like brain and muscle accumulate somatic mtDNA mutations with age. Because individual mtDNA mutations are present at very low levels, few details are known about the spectrum of mutations associated with aging. Advances in sequencing technology now permit the examination of mtDNA mutations at high resolution. We have examined the spectrum of mtDNA mutations present in putamen, a brain region prone to the accumulation of somatic mtDNA mutations. We were able to quantify the accumulation of clonal and non-clonal deletions in the mtDNA coding region which are known to have a strong association with aging. Partial deletions and novel duplications of the mtDNA control region were also identified, and appear to be more prevalent than previously recognized, but levels showed weaker associations with age than coding region deletions. Single nucleotide variants accumulate fastest in the control region, with a skew towards the accumulation of pathogenic mutations in the coding region. Understanding how the mitochondrial genome alters with age provides a benchmark for studies of somatic mtDNA mutations and dissection of the role they play in normal aging and degenerative diseases.
Collapse
Affiliation(s)
- Siôn L. Williams
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| | - Deborah C. Mash
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Carlos T. Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- Department of Cell Biology and Anatomy, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
23
|
Yu E, Calvert PA, Mercer JR, Harrison J, Baker L, Figg NL, Kumar S, Wang JC, Hurst LA, Obaid DR, Logan A, West NEJ, Clarke MCH, Vidal-Puig A, Murphy MP, Bennett MR. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 2013; 128:702-12. [PMID: 23841983 DOI: 10.1161/circulationaha.113.002271] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) damage occurs in both circulating cells and the vessel wall in human atherosclerosis. However, it is unclear whether mtDNA damage directly promotes atherogenesis or is a consequence of tissue damage, which cell types are involved, and whether its effects are mediated only through reactive oxygen species. METHODS AND RESULTS mtDNA damage occurred early in the vessel wall in apolipoprotein E-null (ApoE(-/-)) mice, before significant atherosclerosis developed. mtDNA defects were also identified in circulating monocytes and liver and were associated with mitochondrial dysfunction. To determine whether mtDNA damage directly promotes atherosclerosis, we studied ApoE(-/-) mice deficient for mitochondrial polymerase-γ proofreading activity (polG(-/-)/ApoE(-/-)). polG(-/-)/ApoE(-/-) mice showed extensive mtDNA damage and defects in oxidative phosphorylation but no increase in reactive oxygen species. polG(-/-)/ApoE(-/-) mice showed increased atherosclerosis, associated with impaired proliferation and apoptosis of vascular smooth muscle cells, and hyperlipidemia. Transplantation with polG(-/-)/ApoE(-/-) bone marrow increased the features of plaque vulnerability, and polG(-/-)/ApoE(-/-) monocytes showed increased apoptosis and inflammatory cytokine release. To examine mtDNA damage in human atherosclerosis, we assessed mtDNA adducts in plaques and in leukocytes from patients who had undergone virtual histology intravascular ultrasound characterization of coronary plaques. Human atherosclerotic plaques showed increased mtDNA damage compared with normal vessels; in contrast, leukocyte mtDNA damage was associated with higher-risk plaques but not plaque burden. CONCLUSIONS We show that mtDNA damage in vessel wall and circulating cells is widespread and causative and indicates higher risk in atherosclerosis. Protection against mtDNA damage and improvement of mitochondrial function are potential areas for new therapeutics.
Collapse
Affiliation(s)
- Emma Yu
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, P.O. Box 110, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sobenin IA, Sazonova MA, Postnov AY, Salonen JT, Bobryshev YV, Orekhov AN. Association of mitochondrial genetic variation with carotid atherosclerosis. PLoS One 2013; 8:e68070. [PMID: 23874496 PMCID: PMC3706616 DOI: 10.1371/journal.pone.0068070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/24/2013] [Indexed: 11/26/2022] Open
Abstract
In human pathology, several diseases are associated with somatic mutations in the mitochondrial genome (mtDNA). Even though mitochondrial dysfunction leads to increased oxidative stress, the role of mitochondrial mutations in atherosclerosis has not received much attention so far. In this study we analyzed the association of mitochondrial genetic variation with the severity of carotid atherosclerosis, as assessed by carotid intima-media thickness (cIMT) and the presence of coronary heart disease (CHD) in 190 subjects from Moscow, Russia, a population with high CHD occurrence. cIMT was measured by high-resolution B-mode ultrasonography and mtDNA heteroplasmies by a pyrosequencing-based method. We found that heteroplasmies for several mutations in the mtDNA in leukocytes, including C3256T, T3336C, G12315A, G13513A, G14459A, G14846A, and G15059A mutations, were significantly (p<0.001) associated with both the severity of carotid atherosclerosis and the presence of CHD. These findings indicate that somatic mitochondrial mutations have a role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Igor A. Sobenin
- Russian Cardiology Research and Production Complex, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | | | - Anton Y. Postnov
- Russian Cardiology Research and Production Complex, Moscow, Russia
| | - Jukka T. Salonen
- MAS-Metabolic Analytical Services Oy, Helsinki, Finland
- University of Helsinki, Hjelt Institute, Helsinki, Finland
| | - Yuri V. Bobryshev
- Institute for Atherosclerosis Research, Skolkovo Innovation Center, Moscow, Russia
- Faculty of Medicine, University of New South Wales and St Vincent’s Hospital Sydney, Kensington, New South Wales, Australia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovation Center, Moscow, Russia
| |
Collapse
|
25
|
Montanari A, Zhou YF, D'Orsi MF, Bolotin-Fukuhara M, Frontali L, Francisci S. Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases. Gene 2013; 527:1-9. [PMID: 23727608 DOI: 10.1016/j.gene.2013.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 12/01/2022]
Abstract
The respiratory defects associated with mutations in human mitochondrial tRNA genes can be mimicked in yeast, which is the only organism easily amenable to mitochondrial transformation. This approach has shown that overexpression of several nuclear genes coding for factors involved in mitochondrial protein synthesis can alleviate the respiratory defects both in yeast and in human cells. The present paper analyzes in detail the effects of overexpressed yeast and human mitochondrial translation elongation factors EF-Tu. We studied the suppressing activity versus the function in mt translation of mutated versions of this factor and we obtained indications on the mechanism of suppression. Moreover from a more extended search for suppressor genes we isolated factors which might be active in mitochondrial biogenesis. Results indicate that the multiplicity of mitochondrial factors as well as their high variability of expression levels can account for the variable severity of mitochondrial diseases and might suggest possible therapeutic approaches.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnologies C. Darwin, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Mkaouar-Rebai E, Chamkha I, Mezghani N, Ben Ayed I, Fakhfakh F. Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study. ACTA ACUST UNITED AC 2013; 24:163-78. [PMID: 23301511 DOI: 10.3109/19401736.2012.748045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the spectrum of common mitochondrial mutations in Tunisia during the years of 2002-2012, 226 patients with mitochondrial disorders were clinically diagnosed with hearing loss, Leigh syndrome (LS), diabetes, cardiomyopathy, Kearns-Sayre syndrome (KSS), Pearson syndrome (PS), myopathy, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) and Wolfram syndrome. Restriction fragment length polymorphism (PCR-RFLP), radioactive PCR, single specific primer-PCR (SSP-PCR) analysis and PCR-sequencing methods were used to identify the mutations. Two cases with m.1555A>G mutation and two families with the novel 12S rRNA m.735A>G transition were detected in patients with hearing loss. Three cases with m.8993T>G mutation, two patients with the novel m.5523T>G and m.5559A>G mutations in the tRNA(Trp) gene, and two individuals with the undescribed m.9478T>C mutation in the cytochrome c oxidase subunit III (COXIII) gene were found with LS. In addition, one case with hypertrophic cardiomyopathy and deafness presented the ND1 m.3395A>G mutation and the tRNA(Ile) m.4316A>G variation. Besides, multiple mitochondrial deletions were detected in patients with KSS, PS, and Wolfram syndrome. The m.14709T>C mutation in the tRNA(Glu) was reported in four maternally inherited diabetes and deafness patients and a novel tRNA(Val) m.1640A>G mutation was detected in a MELAS patient.
Collapse
Affiliation(s)
- Emna Mkaouar-Rebai
- Human Molecular Genetic Laboratory, Faculty of Medicine of Sfax, Avenue Magida Boulila, 3029 Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
27
|
Sobenin IA, Sazonova MA, Ivanova MM, Zhelankin AV, Myasoedova VA, Postnov AY, Nurbaev SD, Bobryshev YV, Orekhov AN. Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS One 2012; 7:e46573. [PMID: 23056349 PMCID: PMC3462756 DOI: 10.1371/journal.pone.0046573] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/31/2012] [Indexed: 01/20/2023] Open
Abstract
This study was undertaken to examine the association between the level of heteroplasmy for the mutation C3256T in human white blood cells and the extent of carotid atherosclerosis, as well as the presence of coronary heart disease (CHD), the major clinical manifestation of atherosclerosis. Totally, 191 participants (84 men, 107 women) aged 65.0 years (SD 9.4) were recruited in the study; 45 (24%) of them had CHD. High-resolution B-mode ultrasonography of carotids was used to estimate the extent of carotid atherosclerosis by measuring of the carotid intima-media thickness (cIMT). DNA samples were obtained from whole venous blood, and then PCR and pyrosequencing were carried out. On the basis of pyrosequencing data, the levels of C3256T heteroplasmy in DNA samples were calculated. The presence of the mutant allele was detected in all study participants; the level of C3256T heteroplasmy in white blood cells ranged from 5% to 74%. The highly significant relationship between C3256T heteroplasmy level and predisposition to atherosclerosis was revealed. In individuals with low predisposition to atherosclerosis the mean level of C3256T heteroplasmy was 16.8%, as compared to 23.8% in moderately predisposed subjects, and further to 25.2% and 28.3% in significantly and highly predisposed subjects, respectively. The level of C3256T heteroplasmy of mitochondrial genome in human white blood cells is a biomarker of mitochondrial dysfunction and risk factor for atherosclerosis; therefore, it can be used as an informative marker of genetic susceptibility to atherosclerosis, coronary heart disease and myocardial infarction.
Collapse
Affiliation(s)
- Igor A. Sobenin
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Russian Ministry of Health and Social Care, Moscow, Russian Federation
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Margarita A. Sazonova
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Russian Ministry of Health and Social Care, Moscow, Russian Federation
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Maria M. Ivanova
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Andrey V. Zhelankin
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Veronika A. Myasoedova
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
- Department of Clinical Investigations, Institute for Atherosclerosis Research, Skolkovo Innovative Centre, Moscow, Russian Federation
| | - Anton Y. Postnov
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Russian Ministry of Health and Social Care, Moscow, Russian Federation
| | - Serik D. Nurbaev
- Department of Clinical Investigations, Institute for Atherosclerosis Research, Skolkovo Innovative Centre, Moscow, Russian Federation
| | - Yuri V. Bobryshev
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
- Department of Clinical Investigations, Institute for Atherosclerosis Research, Skolkovo Innovative Centre, Moscow, Russian Federation
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| | - Alexander N. Orekhov
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
- Department of Clinical Investigations, Institute for Atherosclerosis Research, Skolkovo Innovative Centre, Moscow, Russian Federation
| |
Collapse
|
28
|
Mitochondrial disorders. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
The novel mitochondrial tRNAAsn gene mutation m.5709T>C produces ophthalmoparesis and respiratory impairment. Eur J Hum Genet 2011; 20:357-60. [PMID: 22189266 DOI: 10.1038/ejhg.2011.238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although mutations in mitochondrial tRNAs constitute the most common mtDNA defect, the presence of pathological variants in mitochondrial tRNA(Asn) is extremely rare. We were able to identify a novel mtDNA tRNA(Asn) gene pathogenic mutation associated with a myopathic phenotype and a previously unreported respiratory impairment. Our proband is an adult woman with ophthalmoparesis and respiratory impairment. Her muscle biopsy presented several cytochrome c oxidase-negative (COX-) fibres and signs of mitochondrial proliferation (ragged red fibres). Sequence analysis of the muscle-derived mtDNA revealed an m.5709T>C substitution, affecting mitochondrial tRNA(Asn) gene. Restriction-fragment length polymorphism analysis of the mutation in isolated muscle fibres showed that a threshold of at least 91.9% mutated mtDNA results in the COX deficiency phenotype. The new phenotype further increases the clinical spectrum of mitochondrial diseases caused by mutations in the tRNA(Asn) gene.
Collapse
|
30
|
Mitochondrial myopathy in a child with a muscle-restricted mutation in the mitochondrial transfer RNAAsn gene. Biochem Biophys Res Commun 2011; 412:518-21. [DOI: 10.1016/j.bbrc.2011.06.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 11/21/2022]
|
31
|
Yang XY, Chen ZW, Xu T, Qu Z, Pan XD, Qin XH, Ren DT, Liu GQ. Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature. THE PLANT CELL 2011; 23:1093-106. [PMID: 21406623 PMCID: PMC3082256 DOI: 10.1105/tpc.110.082420] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/10/2011] [Accepted: 02/21/2011] [Indexed: 05/17/2023]
Abstract
The involvement of cytoskeleton-related proteins in regulating mitochondrial respiration has been revealed in mammalian cells. However, it is unclear if there is a relationship between the microtubule-based motor protein kinesin and mitochondrial respiration. In this research, we demonstrate that a plant-specific kinesin, Kinesin-like protein 1 (KP1; At KIN14 h), is involved in respiratory regulation during seed germination at a low temperature. Using in vitro biochemical methods and in vivo transgenic cell observations, we demonstrate that KP1 is able to localize to mitochondria via its tail domain (C terminus) and specifically interacts with a mitochondrial outer membrane protein, voltage-dependent anion channel 3 (VDAC3). Targeting of the KP1-tail to mitochondria is dependent on the presence of VDAC3. When grown at 4° C, KP1 dominant-negative mutants (TAILOEs) and vdac3 mutants exhibited a higher seed germination frequency. All germinating seeds of the kp1 and vdac3 mutants had increased oxygen consumption; the respiration balance between the cytochrome pathway and the alternative oxidase pathway was disrupted, and the ATP level was reduced. We conclude that the plant-specific kinesin, KP1, specifically interacts with VDAC3 on the mitochondrial outer membrane and that both KP1 and VDAC3 regulate aerobic respiration during seed germination at low temperature.
Collapse
|
32
|
Moustris A, Edwards MJ, Bhatia KP. Movement disorders and mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2011; 100:173-92. [PMID: 21496577 DOI: 10.1016/b978-0-444-52014-2.00010-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andreas Moustris
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | | | | |
Collapse
|
33
|
A novel mutation in the mitochondrial tRNAAla gene (m.5636T>C) in a patient with progressive external ophthalmoplegia. Mitochondrion 2011; 11:228-33. [DOI: 10.1016/j.mito.2010.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/21/2010] [Accepted: 08/20/2010] [Indexed: 11/23/2022]
|
34
|
Zsurka G, Kunz WS. Mitochondrial dysfunction in neurological disorders with epileptic phenotypes. J Bioenerg Biomembr 2010; 42:443-8. [DOI: 10.1007/s10863-010-9314-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Yan N, Cai S, Guo B, Mou Y, Zhu J, Chen J, Zhang T, Li R, Liu X. A novel mitochondrial tRNA(Val) T1658C mutation identified in a CPEO family. Mol Vis 2010; 16:1736-42. [PMID: 20806033 PMCID: PMC2927373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/20/2010] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To analyze mitochondrial DNA (mt DNA) gene mutations in a 19-year-old female patient, who presented with chronic progressive external ophthalmoplegia (CPEO), together with her mother and younger sister. METHODS The diagnosis of mitochondrial myopathy was made based on clinical and biologic analysis. Histochemical methods were used to detect ragged-red fibers (RRFs) and ragged-blue fibers (RBFs) on a muscle biopsy of the patient. All mitochondrial gene DNA fragments of the patient, her mother, and younger sister were amplified by polymerase chain reaction. The products were sequenced and compared with reference databases. RESULTS A novel T1658C mutation and a known A10006G mutation were identified in the mitochondrial tRNA(Val) gene and the tRNA(Gly) gene, respectively, in the patient, her mother, and younger sister. The T1658C mutation changes the T loop structure of mitochondrial tRNA(Val) and the A10006G mutation disturbs the D loop of mitochondrial tRNA(Gly). CONCLUSIONS The T1658C and A10006G mutations of mtDNA may be responsible for the pathogenesis of the patient with CPEO.
Collapse
Affiliation(s)
- Naihong Yan
- Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Shuping Cai
- Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Bo Guo
- Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yi Mou
- Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jing Zhu
- Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jun Chen
- Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Zhang
- Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ronghua Li
- Department of Medical Genetics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xuyang Liu
- Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
36
|
Siqueira LFM. Progressive myoclonic epilepsies: review of clinical, molecular and therapeutic aspects. J Neurol 2010; 257:1612-9. [DOI: 10.1007/s00415-010-5641-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/21/2010] [Indexed: 11/24/2022]
|
37
|
The inheritance of pathogenic mitochondrial DNA mutations. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1097-102. [PMID: 19303927 PMCID: PMC2785871 DOI: 10.1016/j.bbadis.2009.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 02/06/2023]
Abstract
Mitochondrial DNA mutations cause disease in > 1 in 5000 of the population, and ∼ 1 in 200 of the population are asymptomatic carriers of a pathogenic mtDNA mutation. Many patients with these pathogenic mtDNA mutations present with a progressive, disabling neurological syndrome that leads to major disability and premature death. There is currently no effective treatment for mitochondrial disorders, placing great emphasis on preventing the transmission of these diseases. An empiric approach can be used to guide genetic counseling for common mtDNA mutations, but many families transmit rare or unique molecular defects. There is therefore a pressing need to develop techniques to prevent transmission based on a solid understanding of the biological mechanisms. Several recent studies have cast new light on the genetics and cell biology of mtDNA inheritance, but these studies have also raised new controversies. Here we compare and contrast these findings and discuss their relevance for the transmission of human mtDNA diseases.
Collapse
|
38
|
Virgilio R, Ronchi D, Bordoni A, Fassone E, Bonato S, Donadoni C, Torgano G, Moggio M, Corti S, Bresolin N, Comi GP. Mitochondrial DNA G8363A mutation in the tRNA Lys gene: clinical, biochemical and pathological study. J Neurol Sci 2009; 281:85-92. [PMID: 19278689 DOI: 10.1016/j.jns.2009.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/22/2009] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
Abstract
The G8363A is a very rare mtDNA tRNA(Lys) gene mutation that has been associated to MERRF-like syndrome, cardiomyopathy or Leigh syndrome. Here, we describe the clinical and molecular features of a new large multigenerational family and we review the literature of cases with this mutation. In our family seven members presented a heterogeneous mitochondrial disease phenotype, from MERRF-like syndrome to isolated psychiatric disorder, associated with the G8363A mutation. The two probands are dizygotic twin sisters affected by mental retardation, neural deafness, myopathy, myoclonic epilepsy and ataxia. Twins' muscle biopsies showed a severe cytochrome c oxidase (COX) deficiency and ragged-red fibers. Their mitochondrial respiratory chain was defective in complexes I and IV in muscle. A severe reduction in complex IV activity was also observed in fibroblasts and myoblasts. Molecular analysis showed a G8363A transition in the mtDNA tRNA(Lys) gene. The mutation was almost homoplasmic (>90%) in muscle and blood of the twins and heteroplasmic (55+/-8%) in blood sample from affected maternal relatives. Based on our family data and the meta-analysis of the literature, we confirm that mutational load directly correlates with severity of the disease (severe vs mild/moderate phenotype; P=0.00168) and with disease onset (P<0.00001). However the presence of several exceptions and overlaps among patients with different clinical severity limits the clinical usefulness of this observation. Although the pathogenicity of the G8363A mutation is well established, counselling is a difficult task for clinicians because of the large phenotypical variability. Our study contributes further data on the clinical spectrum and its relation with the level of G8363A tRNA(Lys) mtDNA mutation.
Collapse
Affiliation(s)
- Roberta Virgilio
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kudin AP, Zsurka G, Elger CE, Kunz WS. Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 2009; 218:326-32. [PMID: 19268667 DOI: 10.1016/j.expneurol.2009.02.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Mitochondrial dysfunction has been identified as a potential cause of epileptic seizures and therapy-resistant forms of severe epilepsy. Thus, a broad variety of mutation in mitochondrial DNA or nuclear genes leading to the impairment of mitochondrial respiratory chain or of mitochondrial ATP synthesis has been associated with epileptic phenotypes. Additionally, with a variety of different methods impaired mitochondrial function has been reported for the seizure focus of patients with temporal lobe epilepsy and Ammon's horn sclerosis and of animal models of temporal lobe epilepsy. Since mitochondrial oxidative phosphorylation provides the major source of ATP in neurons and mitochondria participate in cellular Ca(2+) homeostasis, their dysfunction strongly affects neuronal excitability and synaptic transmission, which is proposed to be highly relevant for seizure generation. Additionally, mitochondrial dysfunction is known to trigger neuronal cell death, which is a prominent feature of therapy-resistant temporal lobe epilepsy. Therefore, mitochondria have to be considered as promising targets for neuroprotective strategies in epilepsy.
Collapse
Affiliation(s)
- Alexei P Kudin
- Department of Epileptology, University Bonn Medical Center, Germany
| | | | | | | |
Collapse
|
40
|
Pierron D, Rocher C, Amati-Bonneau P, Reynier P, Martin-Négrier ML, Allouche S, Batandier C, Mousson de Camaret B, Godinot C, Rotig A, Feldmann D, Bellanne-Chantelot C, Arveiler B, Pennarun E, Rossignol R, Crouzet M, Murail P, Thoraval D, Letellier T. New evidence of a mitochondrial genetic background paradox: impact of the J haplogroup on the A3243G mutation. BMC MEDICAL GENETICS 2008; 9:41. [PMID: 18462486 PMCID: PMC2409300 DOI: 10.1186/1471-2350-9-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/07/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND The A3243G mutation in the tRNALeu gene (UUR), is one of the most common pathogenic mitochondrial DNA (mtDNA) mutations in France, and is associated with highly variable and heterogeneous disease phenotypes. To define the relationships between the A3243G mutation and mtDNA backgrounds, we determined the haplogroup affiliation of 142 unrelated French patients - diagnosed as carriers of the A3243G mutation - by control-region sequencing and RFLP survey of their mtDNAs. RESULTS The analysis revealed 111 different haplotypes encompassing all European haplogroups, indicating that the 3243 site might be a mutational hot spot. However, contrary to previous findings, we observed a statistically significant underepresentation of the A3243G mutation on haplogroup J in patients (p = 0.01, OR = 0.26, C.I. 95%: 0.08-0.83), suggesting that might be due to a strong negative selection at the embryo or germ line stages. CONCLUSION Thus, our study supports the existence of mutational hotspot on mtDNA and a "haplogroup J paradox," a haplogroup that may increase the expression of mtDNA pathogenic mutations, but also be beneficial in certain environmental contexts.
Collapse
Affiliation(s)
- Denis Pierron
- 1Université Bordeaux 1, Laboratoire d'Anthropologie des Populations du Passé, UMR 5199 PACEA, 33400 Talence, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Scaglia F, Wong LJC. Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve 2008; 37:150-71. [PMID: 17999409 DOI: 10.1002/mus.20917] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human mitochondrial genome encodes 13 proteins. All are subunits of the respiratory chain complexes involved in energy metabolism. These proteins are translated by a set of 22 mitochondrial transfer RNAs (tRNAs) that are required for codon reading. Human mitochondrial tRNA genes are hotspots for pathogenic mutations and have attracted interest over the last two decades with the rapid discovery of point mutations associated with a vast array of neuromuscular disorders and diverse clinical phenotypes. In this review, we use a scoring system to determine the pathogenicity of the mutations and summarize the current knowledge of structure-function relationships of these mutant tRNAs. We also provide readers with an overview of a large variety of mechanisms by which mutations may affect the mitochondrial translation machinery and cause disease.
Collapse
Affiliation(s)
- Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
42
|
Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med 2008; 25:383-99. [PMID: 18294221 DOI: 10.1111/j.1464-5491.2008.02359.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maternally inherited diabetes and deafness (MIDD) affects up to 1% of patients with diabetes but is often unrecognized by physicians. It is important to make an accurate genetic diagnosis, as there are implications for clinical investigation, diagnosis, management and genetic counselling. This review summarizes the range of clinical phenotypes associated with MIDD; outlines the advances in genetic diagnosis and pathogenesis of MIDD; summarizes the published prevalence data and provides guidance on the clinical management of these patients and their families.
Collapse
Affiliation(s)
- R Murphy
- Institute of Biomedical Sciences, Peninsula Medical School, Exeter, UK.
| | | | | | | |
Collapse
|
43
|
Yehezkel G, Abu-Hamad S, Shoshan-Barmatz V. An N-terminal nucleotide-binding site in VDAC1: involvement in regulating mitochondrial function. J Cell Physiol 2007; 212:551-61. [PMID: 17503466 DOI: 10.1002/jcp.21048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a previous study, we presented evidence for the existence of a nucleotide-binding site (NBS) in the N-terminal region of the voltage-dependent anion channel (VDAC1). In this study, further localization and possible roles of the proposed VDAC1-NBS were investigated using site-directed mutagenesis. The predicated NBS of murine VDAC1 (mVDAC1) was mutated by replacing two glycine residues with alanines or a conserved lysine residue with a serine. Expression of the G21A,G23A- and K20S-mVDAC1s in human T-REx-293 cells in which endogenous VDAC1 expression had been silenced affected cell growth and cytosolic ATP levels. While G21A,G23A-mVDAC1-expressing cells displayed growth rates similar to native-mVDAC1-expressing cells, the K20S-mVDAC1-expressing cells displayed significantly retarded growth and increased resistance to cell death. Cells expressing either mVDAC1 mutant also displayed significantly reduced cellular ATP levels. When K20S-mutant mVDAC1 was expressed in porin1-less yeast, the transformed cells grew slower on non-fermentable carbon sources, while isolated mitochondria expressing either mVDAC1 mutant showed significant reduction in ATP synthesis. Purified K20S-mVDAC1 displayed a significant decrease in [alpha-(32)P]BzATP-binding and altered channel properties, that is, reduced ion selectivity, while the G21A,G23A-mutant protein displayed only a mild reduction in channel selectivity. These results suggest that mutations in the proposed VDAC1-NBS, particularly the K20S, altered channel activity, thereby interfering with VDAC function as the major pathway for the transport of metabolites and adenine nucleotides across the outer mitochondrial membrane. Finally, involvement of the VDAC1-NBS in the control of mitochondrial ATP synthesis, cell growth and viability is discussed.
Collapse
Affiliation(s)
- Galit Yehezkel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
44
|
Taylor RW, Chinnery PF, Turnbull DM. Investigation of metabolic myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:193-204. [PMID: 18809001 DOI: 10.1016/s0072-9752(07)86009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
45
|
Abstract
Cytochrome c oxidase (COX) deficiency is an important cause of myopathy or encephalomyopathy. Considering the structural complexity of COX, its dual genetic control, and the several nuclear genes needed for its proper assembly, the phenotypic heterogeneity is not surprising. From a morphologic view point, the application of histochemistry and immunohistochemistry to the study of COX deficiency in muscle has revealed specific patterns that -we believe- are helpful both for diagnosis and for directing sequencing studies of either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) genes. Similar studies in brain have shown that patients with mutations in mtDNA appear to have different patterns of COX deficiency from patients with mutations in nDNA genes. The recent discovery of mutations in COX assembly genes coupled with the potential to generate knock-out mice with these mutations holds the promise of providing the neuropathologist with the animal models needed to study the pathogenesis of COX deficiency in brain and muscle.
Collapse
Affiliation(s)
- Kurenai Tanji
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Eduardo Bonilla
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|
46
|
Abu-Hamad S, Sivan S, Shoshan-Barmatz V. The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci U S A 2006; 103:5787-92. [PMID: 16585511 PMCID: PMC1458651 DOI: 10.1073/pnas.0600103103] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria not only generate cellular energy, but also act as the point for cellular decisions leading to apoptosis. The voltage-dependent anion channel (VDAC), as a major mitochondrial outer-membrane transporter, has an important role in energy production by controlling metabolite traffic and is also recognized as a key protein in mitochondria-mediated apoptosis. In this study, the role of VDAC1 in regulating cell survival and death was investigated by silencing endogenous human (h)VDAC1 expression by using a short hairpin RNA (shRNA)-expressing vector. The shRNA effectively down-regulated the expression in human T-REx-293 cells of hVDAC1 but not murine (m)VDAC1. Cells in which hVDAC1 expression was decreased by approximately 90% proliferated extremely slowly. Normal growth was, however, restored upon expression of mVDAC1 in a tetracycline-regulated manner. Although low tetracycline concentrations promoted cell growth, high concentrations induced mVDAC1 overexpression, leading to cell death. Cells with low levels of VDAC1 showed 4-fold-lower ATP-synthesis capacity and contained low ATP and ADP levels, with a strong correlation between ATP levels and cell growth, suggesting limited metabolite exchange between mitochondria and cytosol. The possibility of suppressing endogenous hVDAC1 expression and introducing native and mutated mVDAC1 is used to further explore the involvement of VDAC1 in apoptosis. Cells suppressed for hVDAC1 but expressing either native mVDAC1 or an E72Q mutant underwent apoptosis induced by various stimuli that can be inhibited by ruthenium red in the native cells but not in the mutated cells, suggesting that VDAC1 regulates apoptosis independent of the apoptosis-inducing pathway.
Collapse
Affiliation(s)
- Salah Abu-Hamad
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sara Sivan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Cassandrini D, Calevo MG, Tessa A, Manfredi G, Fattori F, Meschini MC, Carrozzo R, Tonoli E, Pedemonte M, Minetti C, Zara F, Santorelli FM, Bruno C. A new method for analysis of mitochondrial DNA point mutations and assess levels of heteroplasmy. Biochem Biophys Res Commun 2006; 342:387-93. [PMID: 16483543 DOI: 10.1016/j.bbrc.2006.01.152] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
Determination of mitochondrial DNA (mtDNA) heteroplasmy for the diagnosis of patients with mitochondrial disorders is a difficult task due to the coexistence of wild-type and mutant genomes. We have developed a new method for genotyping and quantification of heteroplasmic point mutations in mtDNA based on the SNaPshot technology. We compared the data of this method with the widely used "last hot-cycle" PCR-RFLP method by studying 15 patients carrying mtDNA mutations. We showed that SNaPshot is an accurate, reproducible, and sensitive technique for the determination of heteroplasmic mtDNA mutations in different tissues from patients, and it is a promising system to be used in prenatal and postnatal diagnosis of mtDNA-associated disorders.
Collapse
Affiliation(s)
- Denise Cassandrini
- Unit of Muscular and Neurodegenerative Diseases, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vilmi T, Moilanen JS, Finnilä S, Majamaa K. Sequence variation in the tRNA genes of human mitochondrial DNA. J Mol Evol 2005; 60:587-97. [PMID: 15983868 DOI: 10.1007/s00239-003-0202-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 11/07/2004] [Indexed: 10/25/2022]
Abstract
Recent analyses have shown that nonsynonymous variation in human mitochondrial DNA (mtDNA) contains nonneutral variants, suggesting the presence of mildly deleterious mutations. Many of the disease-causing mutations in mtDNA occur in the genes encoding the tRNAs. Nucleotide sequence variation in these genes has not been studied in human populations, nor have the structural consequences of nucleotide substitutions in tRNA molecules been examined. We therefore determined the nucleotide sequences of the 22 tRNA genes in the mtDNA of 477 Finns and, also, obtained 435 European sequences from the MitoKor database. No differences in population polymorphism indices were found between the two data sets. We assessed selective constraints against various tRNA domains by comparing allele frequencies between these domains and the synonymous and nonsynonymous sites, respectively. All tRNA domains except the variable loop were more conserved than synonymous sites, and T stem and D stem were more conserved than the respective loops. We also analyzed the energetic consequences of the 96 polymorphisms recovered in the two data sets or in the Mitomap database. The minimum free energy (DeltaG) was calculated using the free energy rules as implemented in mfold version 3.1. The DeltaG's were normally distributed among the 22 wild-type tRNA genes, whereas the 96 polymorphic tRNAs departed significantly from a normal distribution. The largest differences in DeltaG between the wild-type and the polymorphic tRNAs in the Finnish population tended to be in the polymorphisms that were present at low frequencies. Allele frequency distributions and minimum free energy calculations both suggested that some polymorphisms in tRNA genes are nonneutral.
Collapse
Affiliation(s)
- Tiina Vilmi
- Department of Neurology, University of Oulu, Finland
| | | | | | | |
Collapse
|
49
|
Disorders of the mitochondrial respiratory chain. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
Finsterer J, Fellinger J. Nuclear and mitochondrial genes mutated in nonsyndromic impaired hearing. Int J Pediatr Otorhinolaryngol 2005; 69:621-47. [PMID: 15850684 DOI: 10.1016/j.ijporl.2004.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 12/06/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Half of the cases with congenital impaired hearing are hereditary (HIH). HIH may occur as part of a multisystem disease (syndromic HIH) or as disorder restricted to the ear and vestibular system (nonsyndromic HIH). Since nonsyndromic HIH is almost exclusively caused by cochlear defects, affected patients suffer from sensorineural hearing loss. One percent of the total human genes, i.e. 300-500, are estimated to cause syndromic and nonsyndromic HIH. Of these, approximately 120 genes have been cloned thus far, approximately 80 for syndromic HIH and 42 for nonsyndromic HIH. In the majority of the cases, HIH manifests before (prelingual), and rarely after (postlingual) development of speech. Prelingual, nonsyndromic HIH follows an autosomal recessive trait (75-80%), an autosomal dominant trait (10-20%), an X-chromosomal, recessive trait (1-5%), or is maternally inherited (0-20%). Postlingual nonsyndromic HIH usually follows an autosomal dominant trait. Of the 41 mutated genes that cause nonsyndromic HIH, 15 cause autosomal dominant HIH, 15 autosomal recessive HIH, 6 both autosomal dominant and recessive HIH, 2 X-linked HIH, and 3 maternally inherited HIH. Mutations in a single gene may not only cause autosomal dominant, nonsyndromic HIH, but also autosomal recessive, nonsyndromic HIH (GJB2, GJB6, MYO6, MYO7A, TECTA, TMC1), and even syndromic HIH (CDH23, COL11A2, DPP1, DSPP, GJB2, GJB3, GJB6, MYO7A, MYH9, PCDH15, POU3F4, SLC26A4, USH1C, WFS1). Different mutations in the same gene may cause variable phenotypes within a family and between families. Most cases of recessive HIH result from mutations in a single locus, but an increasing number of disorders is recognized, in which mutations in two different genes (GJB2/GJB6, TECTA/KCNQ4), or two different mutations in a single allele (GJB2) are involved. This overview focuses on recent advances in the genetic background of nonsyndromic HIH.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Krankenanstalt Rudolfstiftung, Vienna, Austria.
| | | |
Collapse
|