1
|
Kotlyarov SN. Place of lipid theory in history of study of atherosclerosis. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2024; 32:681-689. [DOI: 10.17816/pavlovj636812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
INTRODUCTION: Despite the significant advances in the study of atherosclerosis in recent decades, the diseases associated with it still remain one of the leading problems of modern Western society. In the complicated history of the study of atherosclerosis, various theories have been proposed that attempted to explain its nature from positions of the scientific knowledge of those years.
АIM: To analyze the place of lipid disorders in various theories of atherogenesis that have been proposed in different historic periods and have shaped the current understanding of its nature and are the basis for future research.
The lipid theory, proposed more than a hundred years ago, is still the basis for the prevention and treatment of atherosclerosis. Subsequent findings on the role of endothelial dysfunction, on the importance of immune cells and innate immune mechanisms, and the importance of vascular hemodynamic disturbances, have shaped today's understanding of the pathogenesis of atherosclerosis, which regards it as a complex chain of immune and metabolic events occurring over many years and involving various cells of the vascular wall and the bloodstream. Much of the data on the pathogenesis of atherosclerosis obtained to date have no therapeutic application and are promising areas for future research.
CONCLUSION: The lipid theory of atherogenesis has passed a complicated way from understanding the role of lipids as a simple substrate for development of atherosclerosis to the fact of their performing complex immune and metabolic functions and being an important diagnostic and therapeutic target.
Collapse
|
2
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Alsabri SG, Guedi GG, Najar M, Merimi M, Lavoie F, Grabs D, Fernandes J, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Epigenetic regulation of 15-lipoxygenase-1 expression in human chondrocytes by promoter methylation. Inflamm Res 2023; 72:2145-2153. [PMID: 37874359 DOI: 10.1007/s00011-023-01805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE AND DESIGN 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation. METHODS Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery. The expression of 15-LOX-1 was evaluated using real-time polymerase chain reaction (PCR). The role of DNA methylation in 15-LOX-1 expression was assessed using the DNA methyltransferase inhibitor 5-Aza-2'-desoxycytidine (5-Aza-dC). The effect of CpG methylation on 15-LOX-1 promoter activity was evaluated using a CpG-free luciferase vector. The DNA methylation status of the 15-LOX-1 promoter was determined by pyrosequencing. RESULTS Expression of 15-LOX-1 was upregulated in OA compared to normal cartilage. Treatment with 5-Aza-dC increased 15-LOX-1 mRNA levels in chondrocytes, and in vitro methylation decreased 15-LOX-1 promoter activity. There was no difference in the methylation status of the 15-LOX-1 gene promoter between normal and OA cartilage. CONCLUSION The expression level of 15-LOX-1 was elevated in OA cartilage, which may be part of a repair process. The upregulation of 15-LOX-1 in OA cartilage was not associated with the methylation status of its promoter, suggesting that other mechanisms are involved in its upregulation.
Collapse
Affiliation(s)
- Sami G Alsabri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Gadid G Guedi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Makram Merimi
- LBEES, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Frédéric Lavoie
- Departement of Orthopedic Surgery, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Detlev Grabs
- Department of Anatomy, Research Unit in Clinical and Functional Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Julio Fernandes
- Departement of Orthopedic Surgery, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec, H4J 1C5, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec, H4J 1C5, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
4
|
Heydeck D, Kakularam KR, Labuz D, Machelska H, Rohwer N, Weylandt K, Kuhn H. Transgenic mice overexpressing human ALOX15 under the control of the aP2 promoter are partly protected in the complete Freund's adjuvant-induced paw inflammation model. Inflamm Res 2023; 72:1649-1664. [PMID: 37498393 PMCID: PMC10499711 DOI: 10.1007/s00011-023-01770-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND, OBJECTIVES AND DESIGN Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.
Collapse
Affiliation(s)
- Dagmar Heydeck
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kumar R. Kakularam
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dominika Labuz
- Department of Experimental Anesthesiology, Charité ˗ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology, Charité ˗ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nadine Rohwer
- Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Medical Department B, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Karsten Weylandt
- Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Medical Department B, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5
|
Functional Characterization of Transgenic Mice Overexpressing Human 15-Lipoxygenase-1 (ALOX15) under the Control of the aP2 Promoter. Int J Mol Sci 2023; 24:ijms24054815. [PMID: 36902243 PMCID: PMC10003068 DOI: 10.3390/ijms24054815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory, hyperproliferative, neurodegenerative, and metabolic diseases, but the physiological function of ALOX15 still remains a matter of discussion. To contribute to this discussion, we created transgenic mice (aP2-ALOX15 mice) expressing human ALOX15 under the control of the aP2 (adipocyte fatty acid binding protein 2) promoter, which directs expression of the transgene to mesenchymal cells. Fluorescence in situ hybridization and whole-genome sequencing indicated transgene insertion into the E1-2 region of chromosome 2. The transgene was highly expressed in adipocytes, bone marrow cells, and peritoneal macrophages, and ex vivo activity assays proved the catalytic activity of the transgenic enzyme. LC-MS/MS-based plasma oxylipidome analyses of the aP2-ALOX15 mice suggested in vivo activity of the transgenic enzyme. The aP2-ALOX15 mice were viable, could reproduce normally, and did not show major phenotypic alterations when compared with wildtype control animals. However, they exhibited gender-specific differences with wildtype controls when their body-weight kinetics were evaluated during adolescence and early adulthood. The aP2-ALOX15 mice characterized here can now be used for gain-of-function studies evaluating the biological role of ALOX15 in adipose tissue and hematopoietic cells.
Collapse
|
6
|
Fattahi R, Mohebichamkhorami F, Khani MM, Soleimani M, Hosseinzadeh S. Aspirin effect on bone remodeling and skeletal regeneration: Review article. Tissue Cell 2022; 76:101753. [PMID: 35180553 DOI: 10.1016/j.tice.2022.101753] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 12/21/2022]
Abstract
Bone tissues are one of the most complex tissues in the body that regenerate and repair themselves spontaneously under the right physiological conditions. Within the limitations of treating bone defects, mimicking tissue engineering through the recruitment of scaffolds, cell sources and growth factors, is strongly recommended. Aspirin is one of the non-steroidal anti-inflammatory drugs (NSAIDs) and has been used in clinical studies for many years due to its anti-coagulant effect. On the other hand, aspirin and other NSAIDs activate cytokines and some mediators in osteoclasts, osteoblasts and their progenitor cells in a defect area, thereby promoting bone regeneration. It also stimulates angiogenesis by increasing migration of endothelial cells and the newly developed vessels are of emergency in bone fracture repair. This review covers the role of aspirin in bone tissue engineering and also, highlights its chemical reactions, mechanisms, dosages, anti-microbial and angiogenesis activities.
Collapse
Affiliation(s)
- Roya Fattahi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Mohebichamkhorami
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Khani
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Simzar Hosseinzadeh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
8
|
Abstract
Resolution is an active and highly coordinated process that occurs in response to inflammation to limit tissue damage and promote repair. When the resolution program fails, inflammation persists. It is now understood that failed resolution is a major underlying cause of many chronic inflammatory diseases. Here, we will review the major failures of resolution in atherosclerosis, including the imbalance of proinflammatory to pro-resolving mediator production, impaired clearance of dead cells, and functional changes in immune cells that favor ongoing inflammation. In addition, we will briefly discuss new concepts that are emerging as possible regulators of resolution and highlight the translational significance for the field.
Collapse
Affiliation(s)
- Amanda C. Doran
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Molecular Physiology and Biophysics, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
9
|
Aluganti Narasimhulu C, Parthasarathy S. Preparation of LDL , Oxidation , Methods of Detection, and Applications in Atherosclerosis Research. Methods Mol Biol 2022; 2419:213-246. [PMID: 35237967 DOI: 10.1007/978-1-0716-1924-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The concept of lipid peroxidation has been known for a long time. It is now well established that LDL plays a major role in atherosclerosis. Oxidized low-density lipoprotein (Ox-LDL) has been studied for over 35 years. Numerous pro- and anti-atherogenic properties have been attributed to Ox-LDL. Component composition of Ox-LDL is complex due to the influence of various factors, including the source, method of preparation, storage and use. Hence, it is very difficult to clearly define and characterize Ox-LDL. It contains unoxidized and oxidized fatty acid derivatives both in the ester and free forms, their decomposition products, cholesterol and its oxidized products, proteins with oxidized amino acids and cross-links, polypeptides with varying extents of covalent modification with lipid oxidation products and many others. The measurement of lipid oxidation has been a great boon, not only to the understanding of the process but also in providing numerous serendipitous discoveries and methodologies. In this chapter, we outline the methodologies for the preparation and testing of various lipoproteins for oxidation studies.
Collapse
Affiliation(s)
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Specialized Pro-Resolving Lipid Mediators in Neonatal Cardiovascular Physiology and Diseases. Antioxidants (Basel) 2021; 10:antiox10060933. [PMID: 34201378 PMCID: PMC8229722 DOI: 10.3390/antiox10060933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.
Collapse
|
11
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Abstract
Transgenic rabbits have contributed to the progress of biomedical science as human disease models because of their unique features, such as the lipid metabolism system similar to humans and medium body size that facilitates handling and experimental manipulation. In fact, many useful transgenic rabbits have been generated and used in research fields such as lipid metabolism and atherosclerosis, cardiac failure, immunology, and oncogenesis. However, there have been long-term problems, namely that the transgenic efficiency when using pronuclear microinjection is low compared with transgenic mice and production of knockout rabbits is impossible owing to the lack of embryonic stem cells for gene targeting in rabbits. Despite these limitations, the emergence of novel genome editing technology has changed the production of genetically modified animals including the rabbit. We are finally able to produce both transgenic and knockout rabbit models to analyze gain- and loss-of-functions of specific genes. It is expected that the use of genetically modified rabbits will extend to various research fields. In this review, we describe the unique features of rabbits as laboratory animals, the current status of their development and use, and future perspectives of transgenic rabbit models for human diseases.
Collapse
|
13
|
Takagahara S, Shinohara H, Itokawa S, Satomi Y, Ando A, Yamamoto T, Suzuki H, Fujimoto T, Kubo K, Ikeda S. A Novel Orally Available Delta-5 Desaturase Inhibitor Prevents Atherosclerotic Lesions Accompanied by Changes in Fatty Acid Composition and Eicosanoid Production in ApoE Knockout Mice. J Pharmacol Exp Ther 2019; 371:290-298. [PMID: 31488602 DOI: 10.1124/jpet.119.259846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/30/2019] [Indexed: 01/12/2023] Open
Abstract
Delta-5 desaturase (D5D), encoded by fatty acid desaturase 1 (Fads1), is the rate-limiting enzyme for the conversion from dihomo-γ-linolenic acid (DGLA) to arachidonic acid (AA) in the ω-6 polyunsaturated fatty acid pathway. Several AA-derived eicosanoids (e.g., prostaglandins, thromboxanes, and leukotrienes) and DGLA-derived eicosanoids are reported to promote and/or prevent atherosclerosis progression through, at least in part, its proinflammatory or anti-inflammatory effects. To elucidate the effects of D5D inhibition by a D5D inhibitor on atherosclerosis, we generated a potent, orally available and selective D5D inhibitor, 2-(2,2,3,3,3-Pentafluoropropoxy)-3-[4-(2,2,2-trifluoroethoxy) phenyl]-5,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine-4,6-dione, compound-326, and examined its effects on Western-diet fed ApoE knockout (KO) mice. Oral administration of compound-326 (3-10 mg/kg per day for 15 weeks) significantly inhibited the progression of atherosclerotic lesions in the aorta without affecting plasma total cholesterol and triglyceride levels. Compound-326 significantly decreased AA levels, while it increased DGLA levels in the liver and the blood accompanied by decreases in AA-derived eicosanoid production and increases in DGLA-derived eicosanoid production from the blood cells. We conclude that compound-326 prevents the progression of atherosclerosis in Western-diet fed ApoE KO mice by modulating a profile of eicosanoid production, suggesting that D5D inhibitors can be a novel remedy for preventing atherosclerosis and subsequent cardiovascular events. SIGNIFICANCE STATEMENT: This study shows a D5D-specific and orally available potent inhibitor provided the first evidence to support the concept that D5D inhibitors will be a novel remedy for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Shuichi Takagahara
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Hiromi Shinohara
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shigekazu Itokawa
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yoshinori Satomi
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ayumi Ando
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Takeshi Yamamoto
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Hideo Suzuki
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Takuya Fujimoto
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kazuki Kubo
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shota Ikeda
- Cardiovascular and Metabolic Drug Discovery Unit (S.T., H.Sh, S.I., T.Y., H.Su, T.F., K.K., S.I.) and Integrated Technology Research Laboratories (Y.S., A.A.), Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| |
Collapse
|
14
|
Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM, Doran AC, Kovacic JC. Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol 2019; 72:2181-2197. [PMID: 30360827 DOI: 10.1016/j.jacc.2018.08.2147] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is characterized by the retention of modified lipoproteins in the arterial wall. These modified lipoproteins activate resident macrophages and the recruitment of monocyte-derived cells, which differentiate into mononuclear phagocytes that ingest the deposited lipoproteins to become "foam cells": a hallmark of this disease. In this Part 2 of a 4-part review series covering the macrophage in cardiovascular disease, we critically review the contributions and relevant pathobiology of monocytes, macrophages, and foam cells as relevant to atherosclerosis. We also review evidence that via various pathways, a failure of the resolution of inflammation is an additional key aspect of this disease process. Finally, we consider the likely role played by genomics and biological networks in controlling the macrophage phenotype in atherosclerosis. Collectively, these data provide substantial insights on the atherosclerotic process, while concurrently offering numerous molecular and genomic candidates that appear to hold great promise for selective targeting as clinical therapies.
Collapse
Affiliation(s)
- Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Department of Pathology and Cell Biology, Columbia University, New York, New York; Department of Physiology, Columbia University, New York, New York
| | - Johan L M Björkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
15
|
Snodgrass RG, Brüne B. Regulation and Functions of 15-Lipoxygenases in Human Macrophages. Front Pharmacol 2019; 10:719. [PMID: 31333453 PMCID: PMC6620526 DOI: 10.3389/fphar.2019.00719] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the stereo-specific peroxidation of polyunsaturated fatty acids (PUFAs) to their corresponding hydroperoxy derivatives. Human macrophages express two arachidonic acid (AA) 15-lipoxygenating enzymes classified as ALOX15 and ALOX15B. ALOX15, which was first described in 1975, has been extensively characterized and its biological functions have been investigated in a number of cellular systems and animal models. In macrophages, ALOX15 functions to generate specific phospholipid (PL) oxidation products crucial for orchestrating the nonimmunogenic removal of apoptotic cells (ACs) as well as synthesizing precursor lipids required for production of specialized pro-resolving mediators (SPMs) that facilitate inflammation resolution. The discovery of ALOX15B in 1997 was followed by comprehensive analyses of its structural properties and reaction specificities with PUFA substrates. Although its enzymatic properties are well described, the biological functions of ALOX15B are not fully understood. In contrast to ALOX15 whose expression in human monocyte-derived macrophages is strictly dependent on Th2 cytokines IL-4 and IL-13, ALOX15B is constitutively expressed. This review aims to summarize the current knowledge on the regulation and functions of ALOX15 and ALOX15B in human macrophages.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
16
|
Fredman G. Can Inflammation-Resolution Provide Clues to Treat Patients According to Their Plaque Phenotype? Front Pharmacol 2019; 10:205. [PMID: 30899222 PMCID: PMC6416173 DOI: 10.3389/fphar.2019.00205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation-resolution is an active process that is governed in part by specialized pro-resolving mediators (SPMs) such as lipoxins, resolvins, protectins, and maresins. SPMs, which are endogenously biosynthesized, quell inflammation and repair tissue damage in a manner that does not compromise host defense. Importantly, failed inflammation-resolution is an important driving force in the progression of several prevalent diseases including atherosclerosis. Atherosclerosis is a leading cause of death worldwide and uncovering mechanisms that underpin defective inflammation-resolution and whether SPMs themselves can revert the progression of the disease are of utmost clinical interest. Because atherosclerosis is a disease in which low-grade persistent inflammation results in tissue injury, SPMs have garnered immense interest as a potential treatment strategy. This mini review will highlight recent work that describes mechanisms associated with defective inflammation-resolution in atherosclerosis, as well as the protective actions of SPMs and their potential use as a therapeutic.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
17
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
18
|
Kasikara C, Doran AC, Cai B, Tabas I. The role of non-resolving inflammation in atherosclerosis. J Clin Invest 2018; 128:2713-2723. [PMID: 30108191 PMCID: PMC6025992 DOI: 10.1172/jci97950] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-resolving inflammation drives the development of clinically dangerous atherosclerotic lesions by promoting sustained plaque inflammation, large necrotic cores, thin fibrous caps, and thrombosis. Resolution of inflammation is not merely a passive return to homeostasis, but rather an active process mediated by specific molecules, including fatty acid-derived specialized pro-resolving mediators (SPMs). In advanced atherosclerosis, there is an imbalance between levels of SPMs and proinflammatory lipid mediators, which results in sustained leukocyte influx into lesions, inflammatory macrophage polarization, and impaired efferocytosis. In animal models of advanced atherosclerosis, restoration of SPMs limits plaque progression by suppressing inflammation, enhancing efferocytosis, and promoting an increase in collagen cap thickness. This Review discusses the roles of non-resolving inflammation in atherosclerosis and highlights the unique therapeutic potential of SPMs in blocking the progression of clinically dangerous plaques.
Collapse
Affiliation(s)
| | | | | | - Ira Tabas
- Department of Medicine
- Department of Physiology, and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
19
|
Kroschwald S, Chiu CY, Heydeck D, Rohwer N, Gehring T, Seifert U, Lux A, Rothe M, Weylandt KH, Kuhn H. Female mice carrying a defective Alox15 gene are protected from experimental colitis via sustained maintenance of the intestinal epithelial barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:866-880. [PMID: 29702245 DOI: 10.1016/j.bbalip.2018.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
Lipoxygenases (ALOXs) are involved in the regulation of cellular redox homeostasis. They also have been implicated in the biosynthesis of pro- and anti-inflammatory lipid mediators and play a role in the pathogenesis of inflammatory diseases, which constitute a major health challenge owing to increasing incidence and prevalence in all industrialized countries around the world. To explore the pathophysiological role of Alox15 (leukocyte-type 12-LOX) in mouse experimental colitis we tested the impact of systemic inactivation of the Alox15 gene on the extent of dextrane sulfate sodium (DSS) colitis. We found that in wildtype mice expression of the Alox15 gene was augmented during DSS-colitis while expression of other Alox genes (Alox5, Alox15b) was hardly altered. Systemic Alox15 (leukocyte-type 12-LOX) deficiency induced less severe colitis symptoms and suppressed in vivo formation of 12-hydroxyeicosatetraenoic acid (12-HETE), the major Alox15 (leukocyte-type 12-LOX) product in mice. These alterations were paralleled by reduced expression of pro-inflammatory gene products, by sustained expression of the zonula occludens protein 1 (ZO-1) and by a less impaired intestinal epithelial barrier function. These results are consistent with in vitro incubations of colon epithelial cells, in which addition of 12S-HETE compromised enantioselectively transepithelial electric resistance. Consistent with these data transgenic overexpression of human ALOX15 intensified the inflammatory symptoms. In summary, our results indicate that systemic Alox15 (leukocyte-type 12-LOX) deficiency protects mice from DSS-colitis. Since exogenous 12-HETE compromises the expression of the tight junction protein ZO-1 the protective effect has been related to a less pronounced impairment of the intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Saskia Kroschwald
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, D-10117 Berlin, Germany; Institute for Molecular and Clinical Immunology, Medical Faculty of the Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Cheng-Ying Chiu
- Division of Medicine, Department of Hepatology, Gastroenterology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, D-10117 Berlin, Germany
| | - Nadine Rohwer
- Division of Medicine, Department of Hepatology, Gastroenterology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tatjana Gehring
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, D-10117 Berlin, Germany
| | - Ulrike Seifert
- Institute for Molecular and Clinical Immunology, Medical Faculty of the Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Anke Lux
- Institute for Molecular and Clinical Immunology, Medical Faculty of the Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Karsten-Henrich Weylandt
- Division of Medicine, Department of Hepatology, Gastroenterology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Division of Medicine, Department of Gastroenterology and Oncology, Ruppiner Kliniken, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
20
|
12/15 lipoxygenase: A crucial enzyme in diverse types of cell death. Neurochem Int 2018; 118:34-41. [PMID: 29627380 DOI: 10.1016/j.neuint.2018.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022]
Abstract
The 12/15-lipoxygenase (12/15-LOX) enzymes react with polyunsaturated fatty acids producing active lipid metabolites that are involved in plethora of human diseases including neurological disorders. A great many of elegant studies over the last decades have contributed to unraveling the mechanism how 12/15-lipoxygenase play a role in these diseases. And the way it works is mainly through apoptosis. However, recent years have found that the way 12/15-lipoxygenase works is also related to autophagy and ferroptosis, a newly defined type of cell death by Stockwell's lab in 2012. Figuring out how 12/15-lipoxygenase participate in these modes of cell death is of vital importance to understand its role in disease. The review aims to give a sight on our current knowledge on the role of this enzyme in apoptosis, autophagy and ferroptosis. And the relevant diseases that 12/15-lipoxygenase may be involved.
Collapse
|
21
|
Fan J, Chen Y, Yan H, Niimi M, Wang Y, Liang J. Principles and Applications of Rabbit Models for Atherosclerosis Research. J Atheroscler Thromb 2018; 25:213-220. [PMID: 29046488 PMCID: PMC5868506 DOI: 10.5551/jat.rv17018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 02/02/2023] Open
Abstract
Rabbits are one of the most used experimental animals for biomedical research, particularly as a bioreactor for the production of antibodies. However, many unique features of the rabbit have also made it as an excellent species for examining a number of aspects of human diseases such as atherosclerosis. Rabbits are phylogenetically closer to humans than rodents, in addition to their relatively proper size, tame disposition, and ease of use and maintenance in the laboratory facility. Due to their short life spans, short gestation periods, high numbers of progeny, low cost (compared with other large animals) and availability of genomics and proteomics, rabbits usually serve to bridge the gap between smaller rodents (mice and rats) and larger animals, such as dogs, pigs and monkeys, and play an important role in many translational research activities such as pre-clinical testing of drugs and diagnostic methods for patients. The principle of using rabbits rather than other animals as an experimental model is very simple: rabbits should be used for research, such as translational research, that is difficult to accomplish with other species. Recently, rabbit genome sequencing and transcriptomic profiling of atherosclerosis have been successfully completed, which has paved a new way for researchers to use this model in the future. In this review, we provide an overview of the recent progress using rabbits with specific reference to their usefulness for studying human atherosclerosis.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Jingyan Liang
- Research Center for Vascular Biology, Yangzhou University School of Medicine, Yangzhou, China
| |
Collapse
|
22
|
Sansbury BE, Spite M. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology. Circ Res 2017; 119:113-30. [PMID: 27340271 DOI: 10.1161/circresaha.116.307308] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
Abstract
Acute inflammation is a host-protective response that is mounted in response to tissue injury and infection. Initiated and perpetuated by exogenous and endogenous mediators, acute inflammation must be resolved for tissue repair to proceed and for homeostasis to be restored. Resolution of inflammation is an actively regulated process governed by an array of mediators as diverse as those that initiate inflammation. Among these, resolvins have emerged as a genus of evolutionarily conserved proresolving mediators that act on specific cellular receptors to regulate leukocyte trafficking and blunt production of inflammatory mediators, while also promoting clearance of dead cells and tissue repair. Given that chronic unresolved inflammation is emerging as a central causative factor in the development of cardiovascular diseases, an understanding of the endogenous processes that govern normal resolution of acute inflammation is critical for determining why sterile maladaptive cardiovascular inflammation perpetuates. Here, we provide an overview of the process of resolution with a focus on the enzymatic biosynthesis and receptor-dependent actions of resolvins and related proresolving mediators in immunity, thrombosis, and vascular biology. We discuss how nutritional and current therapeutic approaches modulate resolution and propose that harnessing resolution concepts could potentially lead to the development of new approaches for treating chronic cardiovascular inflammation in a manner that is not host disruptive.
Collapse
Affiliation(s)
- Brian E Sansbury
- From the Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Matthew Spite
- From the Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
23
|
Targeting of 12/15-Lipoxygenase in retinal endothelial cells, but not in monocytes/macrophages, attenuates high glucose-induced retinal leukostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:636-645. [PMID: 28351645 DOI: 10.1016/j.bbalip.2017.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/27/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022]
Abstract
AIMS Our previous studies have established a role for 12/15-lipoxygenase (LO) in mediating the inflammatory response in diabetic retinopathy (DR). However, the extent at which the local or systemic induction of 12/15-LO activity involved is unclear. Thus, the current study aimed to characterize the relative contribution of retinal endothelial versus monocytic/macrophagic 12/15-LO to inflammatory responses in DR. MATERIALS & METHODS We first generated a clustered heat map for circulating bioactive lipid metabolites in the plasma of streptozotocin (STZ)-induced diabetic mice using liquid chromatography coupled with mass-spectrometry (LC-MS) to evaluate changes in circulating 12/15-LO activity. This was followed by comparing the in vitro mouse endothelium-leukocytes interaction between leukocytes isolated from 12/15-LO knockout (KO) versus those isolated from wild type (WT) mice using the myeloperoxidase (MPO) assay. Finally, we examined the effects of knocking down or inhibiting endothelial 12/15-LO on diabetes-induced endothelial cell activation and ICAM-1 expression. RESULTS Analysis of plasma bioactive lipids' heat map revealed that the activity of circulating 12/15-LO was not altered by diabetes as evident by no significant changes in the plasma levels of major metabolites derived from 12/15-lipoxygenation of different PUFAs, including linoleic acid (13-HODE), arachidonic acid (12- and 15- HETEs), eicosapentaenoic acid (12- and 15- HEPEs), or docosahexaenoic acid (17-HDoHE). Moreover, leukocytes from 12/15-LO KO mice displayed a similar increase in adhesion to high glucose (HG)-activated endothelial cells as do leukocytes from WT mice. Furthermore, abundant proteins of 12-LO and 15-LO were detected in human retinal endothelial cells (HRECs), while it was undetected (15-LO) or hardly detectable (12-LO) in human monocyte-like U937 cells. Inhibition or knock down of endothelial 12/15-LO in HRECs blocked HG-induced expression of ICAM-1, a well-known identified important molecule for leukocyte adhesion in DR. CONCLUSION Our data support that endothelial, rather than monocytic/macrophagic, 12/15-LO has a critical role in hyperglycemia-induced ICAM-1 expression, leukocyte adhesion, and subsequent local retinal barrier dysfunction. This may facilitate the development of more precisely targeted treatment strategies for DR.
Collapse
|
24
|
Specialized pro-resolving mediators in cardiovascular diseases. Mol Aspects Med 2017; 58:65-71. [PMID: 28257820 DOI: 10.1016/j.mam.2017.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/26/2017] [Indexed: 12/31/2022]
Abstract
The resolution of inflammation is a highly regulated process enacted by endogenous mediators including specialized pro-resolving lipid mediators (SPMs): the lipoxins, resolvins, protectins and maresins. SPMs activate specific cellular receptors to temper the production of pro-inflammatory mediators, diminish the recruitment of neutrophils, and promote the clearance of dead cells by macrophages. These mediators also enhance host-defense and couple resolution of inflammation to subsequent phases of tissue repair. Given that unresolved inflammation plays a causal role in the development of cardiovascular diseases, an understanding of these endogenous pro-resolving processes is critical for determining why cardiovascular inflammation does not resolve. Here, we discuss the receptor-dependent actions of resolvins and related pro-resolving mediators and highlight their emerging roles in the cardiovascular system. We propose that stimulating resolution could be a novel approach for treating chronic cardiovascular inflammation without promoting immunosuppression.
Collapse
|
25
|
Viola JR, Lemnitzer P, Jansen Y, Csaba G, Winter C, Neideck C, Silvestre-Roig C, Dittmar G, Döring Y, Drechsler M, Weber C, Zimmer R, Cenac N, Soehnlein O. Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circ Res 2016; 119:1030-1038. [PMID: 27531933 DOI: 10.1161/circresaha.116.309492] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Atheroprogression is a consequence of nonresolved inflammation, and currently a comprehensive overview of the mechanisms preventing resolution is missing. However, in acute inflammation, resolution is known to be orchestrated by a switch from inflammatory to resolving lipid mediators. Therefore, we hypothesized that lesional lipid mediator imbalance favors atheroprogression. OBJECTIVE To understand the lipid mediator balance during atheroprogression and to establish an interventional strategy based on the delivery of resolving lipid mediators. METHODS AND RESULTS Aortic lipid mediator profiling of aortas from Apoe-/- mice fed a high-fat diet for 4 weeks, 8 weeks, or 4 months revealed an expansion of inflammatory lipid mediators, Leukotriene B4 and Prostaglandin E2, and a concomitant decrease of resolving lipid mediators, Resolvin D2 (RvD2) and Maresin 1 (MaR1), during advanced atherosclerosis. Functionally, aortic Leukotriene B4 and Prostaglandin E2 levels correlated with traits of plaque instability, whereas RvD2 and MaR1 levels correlated with the signs of plaque stability. In a therapeutic context, repetitive RvD2 and MaR1 delivery prevented atheroprogression as characterized by halted expansion of the necrotic core and accumulation of macrophages along with increased fibrous cap thickness and smooth muscle cell numbers. Mechanistically, RvD2 and MaR1 induced a shift in macrophage profile toward a reparative phenotype, which secondarily stimulated collagen synthesis in smooth muscle cells. CONCLUSIONS We present evidence for the imbalance between inflammatory and resolving lipid mediators during atheroprogression. Delivery of RvD2 and MaR1 successfully prevented atheroprogression, suggesting that resolving lipid mediators potentially represent an innovative strategy to resolve arterial inflammation.
Collapse
Affiliation(s)
- Joana R Viola
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Patricia Lemnitzer
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Yvonne Jansen
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Gergely Csaba
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Carla Winter
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Carlos Neideck
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Carlos Silvestre-Roig
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Gunnar Dittmar
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Maik Drechsler
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Ralf Zimmer
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Nicolas Cenac
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.).
| |
Collapse
|
26
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
27
|
The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:123-30. [DOI: 10.1016/j.pbiomolbio.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
|
28
|
Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol 2016; 84:1-7. [PMID: 27256928 DOI: 10.1016/j.vph.2016.05.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/26/2016] [Accepted: 05/28/2016] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a progressive disease in which endothelial cell dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation, lead to the loss of vascular homeostasis. Oxidized low-density lipoprotein (oxLDL) may play a pre-eminent function in atherosclerotic lesion formation, even if their role is still debated. Several types of scavenger receptors (SRs) such as SR-AI/II, SRBI, CD36, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), toll-like receptors (TLRs) and others can promote the internalization of oxLDL. They are expressed on the surface of vascular wall cells (endothelial cells, macrophages and smooth muscle cells) and they mediate the cellular effects of oxLDL. The key influence of both oxLDL and SRs on the atherogenic process has been established in atherosclerosis-prone animals, in which antioxidant treatment and/or silencing of SRs has been shown to reduce atherogenesis. Despite some discrepancies, the indication from cohort studies that there is an association between oxLDL and cardiovascular (CV) events seems to point toward a role for oxLDL in atherosclerotic plaque progress and disruption. Finally, randomized clinical trials using antioxidants have demonstrated benefits only in high-risk patients, suggesting that additional proofs are still needed to better define the involvement of each type of modified LDL in the development of atherosclerosis.
Collapse
|
29
|
Abstract
The immune response comprises not only pro-inflammatory and anti-inflammatory pathways but also pro-resolution mechanisms that serve to balance the need of the host to target microbial pathogens while preventing excess inflammation and bystander tissue damage. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids to serve as a novel class of immunoresolvents that limit acute responses and orchestrate the clearance of tissue pathogens, dying cells and debris from the battlefield of infectious inflammation. SPMs are composed of lipoxins, E-series and D-series resolvins, protectins and maresins. Individual members of the SPM family serve as agonists at cognate receptors to induce cell-type specific responses. Important regulatory roles for SPMs have been uncovered in host responses to several microorganisms, including bacterial, viral, fungal and parasitic pathogens. SPMs also promote the resolution of non-infectious inflammation and tissue injury. Defects in host SPM pathways contribute to the development of chronic inflammatory diseases. With the capacity to enhance host defence and modulate inflammation, SPMs represent a promising translational approach to enlist host resolution programmes for the treatment of infection and excess inflammation.
Here, the authors detail our current understanding of specialized pro-resolving mediators (SPMs), a family of endogenous mediators that have important roles in promoting the resolution of inflammation. With a focus on the lungs, they discuss the contribution of SPMs to infectious and chronic inflammatory diseases and their emerging therapeutic potential. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation — that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection.
Collapse
|
30
|
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573:1-32. [PMID: 26216303 PMCID: PMC6728142 DOI: 10.1016/j.gene.2015.07.073] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, eucarya) and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 has extensively been characterized and its biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its implication in cellular physiology and in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
31
|
Takahashi Y, Otsuki A, Mori Y, Kawakami Y, Ito H. Inhibition of leukocyte-type 12-lipoxygenase by guava tea leaves prevents development of atherosclerosis. Food Chem 2015; 186:2-5. [DOI: 10.1016/j.foodchem.2015.03.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
|
32
|
Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice. Gene Ther 2015; 22:645-52. [PMID: 25871825 DOI: 10.1038/gt.2015.33] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
Abstract
Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.
Collapse
|
33
|
Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther 2015; 146:104-19. [PMID: 25277507 PMCID: PMC4304984 DOI: 10.1016/j.pharmthera.2014.09.009] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan.
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Teruo Watanabe
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Kotla S, Singh NK, Traylor JG, Orr AW, Rao GN. ROS-dependent Syk and Pyk2-mediated STAT1 activation is required for 15(S)-hydroxyeicosatetraenoic acid-induced CD36 expression and foam cell formation. Free Radic Biol Med 2014; 76:147-62. [PMID: 25152235 PMCID: PMC4253592 DOI: 10.1016/j.freeradbiomed.2014.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 02/02/2023]
Abstract
15(S)-Hydroxyeicosatetraenoic acid (15(S)-HETE), the major 15-lipoxygenase 1/2 (15-LO1/2) metabolite of arachidonic acid (AA), induces CD36 expression through xanthine oxidase and NADPH oxidase-dependent ROS production and Syk and Pyk2-dependent STAT1 activation. In line with these observations, 15(S)-HETE also induced foam cell formation involving ROS, Syk, Pyk2, and STAT1-mediated CD36 expression. In addition, peritoneal macrophages from Western diet-fed ApoE(-/-) mice exhibited elevated levels of xanthine oxidase and NADPH oxidase activities, ROS production, Syk, Pyk2, and STAT1 phosphorylation, and CD36 expression compared to those from ApoE(-/-):12/15-LO(-/-) mice and these events correlated with increased lipid deposits, macrophage content, and lesion progression in the aortic roots. Human atherosclerotic arteries also showed increased 15-LO1 expression, STAT1 phosphorylation, and CD36 levels as compared to normal arteries. Together, these findings suggest that 12/15-LO metabolites of AA, particularly 12/15(S)-HETE, might play a crucial role in atherogenesis by enhancing foam cell formation.
Collapse
Affiliation(s)
- Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | - James G Traylor
- Department of Pathology, Louisiana State University Health Science Center, 1501 King׳s Hwy, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Science Center, 1501 King׳s Hwy, Shreveport, LA 71130, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
35
|
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:308-30. [PMID: 25316652 DOI: 10.1016/j.bbalip.2014.10.002] [Citation(s) in RCA: 455] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Swathi Banthiya
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts Genrel Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
36
|
Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510:92-101. [PMID: 24899309 PMCID: PMC4263681 DOI: 10.1038/nature13479] [Citation(s) in RCA: 2208] [Impact Index Per Article: 200.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Advances in our understanding of the mechanisms that bring about the resolution of acute inflammation have uncovered a new genus of pro-resolving lipid mediators that include the lipoxin, resolvin, protectin and maresin families, collectively called specialized pro-resolving mediators. Synthetic versions of these mediators have potent bioactions when administered in vivo. In animal experiments, the mediators evoke anti-inflammatory and novel pro-resolving mechanisms, and enhance microbial clearance. Although they have been identified in inflammation resolution, specialized pro-resolving mediators are conserved structures that also function in host defence, pain, organ protection and tissue remodelling. This Review covers the mechanisms of specialized pro-resolving mediators and omega-3 essential fatty acid pathways that could help us to understand their physiological functions.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Zhao L, Grosser T, Fries S, Kadakia L, Wang H, Zhao J, Falotico R. Lipoxygenase and prostaglandin G/H synthase cascades in cardiovascular disease. Expert Rev Clin Immunol 2014; 2:649-58. [DOI: 10.1586/1744666x.2.4.649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Wuest SJA, Horn T, Marti-Jaun J, Kühn H, Hersberger M. Association of polymorphisms in the ALOX15B gene with coronary artery disease. Clin Biochem 2013; 47:349-55. [PMID: 24373925 DOI: 10.1016/j.clinbiochem.2013.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Atherosclerosis is a multifactorial disease and the underlying cause of coronary artery disease (CAD), myocardial infarction and stroke. Two main features are involved in the progression of atherosclerosis, lipid retention and inflammation. 12/15-lipoxygenases are involved in inflammation and have been implicated in atherosclerosis. Genetic association studies of the 15-lipoxygenase 1 (ALOX15) in humans revealed a neutral to atheroprotective role of the enzyme. Recently the epidermis-type 15-lipoxygenase 2 (ALOX15B) has been identified in human atherosclerotic plaques but its role in human atherosclerosis is still unclear. METHODS We screened the ALOX15B gene for polymorphisms and investigated the association of 18 detected polymorphisms with angiographically documented CAD in a case-control study (n=496). In addition, we measured in vitro the enzyme activity and Michaelis-Menten kinetics of the detected non-synonymous polymorphic variants p.Arg486His (c.1457G>A), p.Gln656Arg (c.1967A>G) and p.Ile676Val (c.2026A>G). RESULTS We found that the linked polymorphisms at position c.1458-38G>C, c.1579+71C>T and c.1656G>A are associated with CAD (OR: 0.51 (0.27-0.94), p-value: 0.03). In addition, we show that the activity and the kinetics of the three non-synonymous ALOX15B enzyme variants (p.Arg486His, p.Gln656Arg and p.Ile676Val) are similar to the wild-type enzyme. CONCLUSIONS Our data indicate that the ALOX15B gene may be associated with coronary artery disease. However, larger studies would be necessary to confirm the association of these polymorphisms with CAD. In contrast, our study did not find frequent non-synonymous polymorphisms in ALOX15B altering enzyme activity in Europeans.
Collapse
Affiliation(s)
- Sophia J A Wuest
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and Center for Integrative Human Physiology, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Thomas Horn
- Institute of Biochemistry, University Medicine Berlin - Charité, Charitéplatz 1, D-10117 Berlin, Germany
| | - Jacqueline Marti-Jaun
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and Center for Integrative Human Physiology, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Hartmut Kühn
- Institute of Biochemistry, University Medicine Berlin - Charité, Charitéplatz 1, D-10117 Berlin, Germany
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich and Center for Integrative Human Physiology, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland; Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
39
|
Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype. Prostaglandins Other Lipid Mediat 2013; 107:85-94. [DOI: 10.1016/j.prostaglandins.2013.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 02/05/2023]
|
40
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
41
|
Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi GP, Calò LA. The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm 2013; 2013:714653. [PMID: 24222937 PMCID: PMC3816061 DOI: 10.1155/2013/714653] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023] Open
Abstract
The oxidative modification hypothesis of atherosclerosis, which assigns to oxidized low-density lipoproteins (LDLs) a crucial role in atherosclerosis initiation and progression, is still debated. This review examines the role played by oxidized LDLs in atherogenesis taking into account data derived by studies based on molecular and clinical approaches. Experimental data carried out in cellular lines and animal models of atherosclerosis support the proatherogenic role of oxidized LDLs: (a) through chemotactic and proliferating actions on monocytes/macrophages, inciting their transformation into foam cells; (b) through stimulation of smooth muscle cells (SMCs) recruitment and proliferation in the tunica intima; (c) through eliciting endothelial cells, SMCs, and macrophages apoptosis with ensuing necrotic core development. Moreover, most of the experimental data on atherosclerosis-prone animals benefiting from antioxidant treatment points towards a link between oxidative stress and atherosclerosis. The evidence coming from cohort studies demonstrating an association between oxidized LDLs and cardiovascular events, notwithstanding some discrepancies, seems to point towards a role of oxidized LDLs in atherosclerotic plaque development and destabilization. Finally, the results of randomized clinical trials employing antioxidants completed up to date, despite demonstrating no benefits in healthy populations, suggest a benefit in high-risk patients. In conclusion, available data seem to validate the oxidative modification hypothesis of atherosclerosis, although additional proofs are still needed.
Collapse
Affiliation(s)
- Giuseppe Maiolino
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giacomo Rossitto
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Paola Caielli
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Valeria Bisogni
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Gian Paolo Rossi
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Lorenzo A. Calò
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
42
|
Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, Bhatnagar A, Srivastava S. Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2013; 33:1162-70. [PMID: 23559625 DOI: 10.1161/atvbaha.112.300572] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Atherosclerotic lesions are associated with the accumulation of reactive aldehydes derived from oxidized lipids. Although inhibition of aldehyde metabolism has been shown to exacerbate atherosclerosis and enhance the accumulation of aldehyde-modified proteins in atherosclerotic plaques, no therapeutic interventions have been devised to prevent aldehyde accumulation in atherosclerotic lesions. APPROACH AND RESULTS We examined the efficacy of carnosine, a naturally occurring β-alanyl-histidine dipeptide, in preventing aldehyde toxicity and atherogenesis in apolipoprotein E-null mice. In vitro, carnosine reacted rapidly with lipid peroxidation-derived unsaturated aldehydes. Gas chromatography mass-spectrometry analysis showed that carnosine inhibits the formation of free aldehydes 4-hydroxynonenal and malonaldialdehyde in Cu(2+)-oxidized low-density lipoprotein. Preloading bone marrow-derived macrophages with cell-permeable carnosine analogs reduced 4-hydroxynonenal-induced apoptosis. Oral supplementation with octyl-D-carnosine decreased atherosclerotic lesion formation in aortic valves of apolipoprotein E-null mice and attenuated the accumulation of protein-acrolein, protein-4-hydroxyhexenal, and protein-4-hydroxynonenal adducts in atherosclerotic lesions, whereas urinary excretion of aldehydes as carnosine conjugates was increased. CONCLUSIONS The results of this study suggest that carnosine inhibits atherogenesis by facilitating aldehyde removal from atherosclerotic lesions. Endogenous levels of carnosine may be important determinants of atherosclerotic lesion formation, and treatment with carnosine or related peptides could be a useful therapy for the prevention or the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Oleg A Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ariel A, Timor O. Hanging in the balance: endogenous anti-inflammatory mechanisms in tissue repair and fibrosis. J Pathol 2012; 229:250-63. [DOI: 10.1002/path.4108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Amiram Ariel
- Department of Biology, Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Orly Timor
- Department of Biology, Faculty of Natural Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
44
|
Peng X. Transgenic rabbit models for studying human cardiovascular diseases. Comp Med 2012; 62:472-479. [PMID: 23561880 PMCID: PMC3527751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 06/02/2023]
Abstract
Cardiovascular diseases involve the heart or blood vessels and remain a leading cause of morbidity and mortality in developed countries. A variety of animal models have been used to study cardiovascular diseases and have contributed to our understanding of their pathophysiology and treatment. However, mutations or abnormal expression of specific genes play important roles in the pathophysiology of some heart diseases, for which a closely similar animal model often is not naturally available. With the advent of techniques for specific genomic modification, several transgenic and knockout mouse models have been developed for cardiovascular conditions that result from spontaneous mutations. However, mouse and human heart show marked electrophysiologic differences. In addition, cardiac studies in mouse models are extremely difficult because of their small heart size and fast heart rate. Therefore, larger genetically engineered animal models are needed to overcome the limitations of the mouse models. This review summarizes the transgenic rabbit models that have been developed to study cardiovascular diseases.
Collapse
Affiliation(s)
- Xuwen Peng
- Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
| |
Collapse
|
45
|
Li Z, He T, Du K, Xing YQ, Yan Y, Chen Z, Zhang H, Shen Y. Overexpression of 15-lipoxygenase-1 in oxygen-induced ischemic retinopathy inhibits retinal neovascularization via downregulation of vascular endothelial growth factor-A expression. Mol Vis 2012; 18:2847-59. [PMID: 23233787 PMCID: PMC3519379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022] Open
Abstract
PURPOSE 15-Lipoxygenase-1 (15-LOX-1) plays an important role in regulating angiogenesis, but the mechanism to date is controversial, even contradictory. The goal of our study was to investigate whether 15-LOX-1 plays a role in inhibiting retinal neovascularization (RNV) in a mouse model of oxygen-induced retinopathy (OIR) and the underlying mechanism. METHODS Experiments were performed using retinas from a mouse model of OIR that was treated with and without intravitreous injection of adenoviral-15-lipoxygenase-1 (Ad-15-LOX-1) or adenoviral-green fluorescence protein (Ad-GFP) at postnatal day 12 (P12). At P17, the efficacy of the gene transfer was assessed with immunofluorescence staining. RNV was evaluated with fluorescein angiography on flatmounted retinas and quantified by counting the preretinal neovascular cells. Expression of 15-LOX-1 and vascular endothelial growth factor-A (VEGF-A) were determined with real-time PCR and western blot. RESULTS RNV during OIR was associated with decreased 15-LOX-1 expression, and retinal 15-LOX-1 levels were negatively correlated with the progression of RNV. In the intravitreous injected Ad-15-LOX-1 mice with OIR, retinal 15-LOX-1 expression was significantly increased at the protein and mRNA levels at P17. 15-LOX-1 expression was clearly demonstrated, primarily in the outer plexiform layer, inner nuclear layer, and ganglion cell layer retinas, five days after gene delivery. Fluorescein retinal angiography and quantification of the preretinal neovascular cells demonstrated that RNV was significantly inhibited. Meanwhile, the expression levels of VEGF-A were significantly decreased at the transcriptional and translational levels. CONCLUSIONS Our results suggest that overexpression of 15-LOX-1 inhibits RNV in a mouse model of OIR via downregulation of VEGF-A expression, and 15-LOX-1 may be a novel therapeutic target for ocular neovascularization diseases.
Collapse
Affiliation(s)
- Zhi Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China,Department of Ophthalmology, Xiangyang Center Hospital, Xiangyang, China
| | - Tao He
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Du
- Department of Oncology, Xiangyang Center Hospital, Xiangyang, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Yan
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military, Wuhan, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Xiangyang Center Hospital, Xiangyang, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Expression and regulation of 12/15-lipoxygenases in human primary macrophages. Atherosclerosis 2012; 225:121-7. [DOI: 10.1016/j.atherosclerosis.2012.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/06/2012] [Accepted: 07/13/2012] [Indexed: 11/20/2022]
|
47
|
Yan Y, He T, Shen Y, Chen X, Diao B, Li Z, Liu Q, Xing YQ. Adenoviral 15-lipoxygenase-1 gene transfer inhibits hypoxia-induced proliferation of retinal microvascular endothelial cells in vitro. Int J Ophthalmol 2012; 5:562-9. [PMID: 23166865 DOI: 10.3980/j.issn.2222-3959.2012.05.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/10/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate whether 15-Lipoxygenase-1 (15-LOX-1) plays an important role in the regulation of angiogenesis, inhibiting hypoxia-induced proliferation of retinal microvascular endothelial cells (RMVECs) and the underlying mechanism. METHODS Primary RMVECs were isolated from the retinas of C57/BL6J mice and identified by an evaluation for FITC-marked CD31. The hypoxia models were established with the Bio-bag and evaluated with a blood-gas analyzer. Experiments were performed using RMVECs treated with and without transfer Ad-15-LOX-1 or Ad-vector both under hypoxia and normoxia condition at 12, 24, 48, 72 hours. The efficacy of the gene transfer was assessed by immunofluorescence staining. Cells proliferation was evaluated by the CCK-8 method. RNA and protein expressions of 15-LOX-1, VEGF-A, VEGFR-2, eNOs and PPAR-r were analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot. RESULTS Routine evaluation for FITC-marked CD31 showed that cells were pure. The results of blood-gas analysis showed that when the cultures were exposed to hypoxia for more than 2 hours, the Po2 was 4.5 to 5.4 Kpa. We verified RMVECs could be infected with Ad-15-LOX-1 or Ad-vector via Fluorescence microscopy. CCK-8 analysis revealed that the proliferative capacities of RMVECs in hypoxic group were significantly higher at each time point than they were in normoxic group (P<0.05). In a hypoxic condition, the proliferative capacities of RMVECs in 15-LOX-1 group were significantly inhibited (P<0.05). Real-time RT-PCR analysis revealed that the expressions of VEGF-A, VEGF-R2 and eNOs mRNA increased in hypoxia group compared with normoxia group (P<0.01). However, the expressions of 15-LOX-1, PPAR-r mRNA decreased in hypoxia group compared with normoxia group (P<0.01). It also showed that in a hypoxic condition, the expressions of VEGF-A, VEGF-R2 and eNOs mRNA decreased significantly in 15-LOX-1 group compared with hypoxia group (P<0.01). However, 15-LOX-1 and PPAR-r mRNA increased significantly in 15-LOX-1 group compared with hypoxia group (P<0.01). There was no significant difference of the mRNA expressions between vector group and hypoxia group (P>0.05). Western blot analysis revealed that the expressions of relative proteins were also ranked in that order. CONCLUSION Our results suggested that 15-LOX-1 and PPAR-r might act as a negative regulator of retinal angiogenesis. And the effect of 15-LOX-1 overexpression is an anti-angiogenic factor in hypoxia-induced retinal neovascularization (RNV). Overexpression 15-LOX-1 on RMVECs of hypoxia-induced RNV blocked signaling cascades by inhibiting hypoxia-induced increases in VEGF family. PPAR-r effect on VEGFR(2) could be an additional mechanism whereby 15-LOX-1 inhibited the hypoxia-induced RNV.
Collapse
Affiliation(s)
- Ying Yan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China ; Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Command of Chinese PLA, Wuhan 430070, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Uderhardt S, Krönke G. 12/15-lipoxygenase during the regulation of inflammation, immunity, and self-tolerance. J Mol Med (Berl) 2012; 90:1247-56. [PMID: 22983484 DOI: 10.1007/s00109-012-0954-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
12/15-Lipoxygenase (12/15-LO) catalyzes the oxidation of free and esterified fatty acids thereby generating a whole spectrum of bioactive lipid mediators. This enzyme is involved in the regulation of various homeostatic processes as well as in the pathogenesis of multiple diseases. During the innate and adaptive immune response, 12/15-LO and its products exert both pro- and anti-inflammatory effects. Likewise, this enzyme has been implicated in the pathogenesis of autoimmune disease as well as in the maintenance of self-tolerance. This review will summarize our current knowledge about the role of 12/15-LO and will try to examine the two faces of this enzyme within the context of inflammation and immunity.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | |
Collapse
|
49
|
Rossaint J, Nadler JL, Ley K, Zarbock A. Eliminating or blocking 12/15-lipoxygenase reduces neutrophil recruitment in mouse models of acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R166. [PMID: 22973824 PMCID: PMC3682261 DOI: 10.1186/cc11518] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute lung injury (ALI) is a common disease in critically ill patients with a high morbidity and mortality. 12/15-lipoxygenase (12/15-LO) is an enzyme generating 12-hydroxy-eicosatetraenoic acid (12-HETE) and 15-HETE from arachidonic acid. It has been shown that 12/15-LO is involved in the regulation of vascular permeability during ALI. METHODS To test whether 12/15-LO participates in leukocyte recruitment into the lung, we investigated the role of 12/15-LO in mouse models of lipopolysaccharide (LPS)-induced pulmonary inflammation and acid-induced ALI, a clinically relevant model of acute lung injury. RESULTS The increase in neutrophil recruitment following LPS inhalation was reduced in 12/15-LO-deficient (Alox15(-/-)) mice and in wild-type (WT) mice after the blocking of 12/15-LO with a pharmacological inhibitor. Bone marrow chimeras revealed that 12/15-LO in hematopoietic cells regulates neutrophil accumulation in the interstitial and alveolar compartments, whereas the accumulation of neutrophils in the intravascular compartment is regulated by 12/15-LO in non-hematopoietic and hematopoietic cells. Mechanistically, the increased plasma levels of the chemokine CXCL1 in Alox15(-/-) mice led to a reduced response of the neutrophil chemokine receptor CXCR2 to stimulation with CXCL1, which in turn abrogated neutrophil recruitment. Alox15(-/-) mice also showed decreased edema formation, reduced neutrophil recruitment and improved gas exchange in an acid-induced ALI model. CONCLUSIONS Our findings suggest that 12/15-LO modulates neutrophil recruitment into the lung by regulating chemokine/chemokine receptor homeostasis.
Collapse
|
50
|
Magnusson LU, Lundqvist A, Karlsson MN, Skålén K, Levin M, Wiklund O, Borén J, Hultén LM. Arachidonate 15-lipoxygenase type B knockdown leads to reduced lipid accumulation and inflammation in atherosclerosis. PLoS One 2012; 7:e43142. [PMID: 22912809 PMCID: PMC3422220 DOI: 10.1371/journal.pone.0043142] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/17/2012] [Indexed: 01/20/2023] Open
Abstract
Inflammation in the vascular wall is important for development of atherosclerosis. We have shown previously that arachidonate 15-lipoxygenase type B (ALOX15B) is more highly expressed in human atherosclerotic lesions than in healthy arteries. This enzyme oxidizes fatty acids to substances that promote local inflammation and is expressed in lipid-loaded macrophages (foam cells) present in the atherosclerotic lesions. Here, we investigated the role of ALOX15B in foam cell formation in human primary macrophages and found that silencing of human ALOX15B decreased cellular lipid accumulation as well as proinflammatory cytokine secretion from macrophages. To investigate the role of ALOX15B in promoting the development of atherosclerosis in vivo, we used lentiviral shRNA silencing and bone marrow transplantation to knockdown mouse Alox15b gene expression in LDL-receptor-deficient (Ldlr(-/-)) mice. Knockdown of mouse Alox15b in vivo decreased plaque lipid content and markers of inflammation. In summary, we have shown that ALOX15B influences progression of atherosclerosis, indicating that this enzyme has an active proatherogenic role.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|