1
|
Puel M, Rwayane K, Vieira Martins P, Chbihi M, Rieux‐Laucat F, Rosain J, Jeziorski E, Boisson B, Casanova J, Frémeaux‐Bacchi V, El Sissy C. Two New Kindreds with Complete Factor D Deficiency. Eur J Immunol 2025; 55:e202451536. [PMID: 40071669 PMCID: PMC11898537 DOI: 10.1002/eji.202451536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Inborn deficiencies of the alternative pathway (AP) of the complement system have been associated with life-threatening infections, mainly by encapsulated bacteria. Complete factor D (FD) deficiencies have been reported in only seven families in the literature. We report two new cases of biochemically and genetically confirmed complete FD deficiency, including the first in a Down syndrome patient. The index cases respectively suffered from severe H. influenza and N. meningitidis infections. Their FD activity was undetectable but was restored by adding recombinant human FD. FD levels were undetectable in the plasma of both patients using ELISA. Genetic analysis of the CFD gene identified a homozygous missense variant p.M40R in one patient, and compound heterozygous variants-a nonsense mutation p.Cys148* and a splice site variant c.212+2T>G-in the other. Patients with Down syndrome are more susceptible to infections, but this case highlights the importance of investigating the complement system, particularly the AP, even in those with Down syndrome or other secondary immune deficiencies. A familial study should follow if a congenital deficiency is found. The natural history of patients with inherited complete FD deficiency underscores the necessity of preventive measures against encapsulated bacteria for those receiving therapeutic MASP-3 or FD inhibitors.
Collapse
Affiliation(s)
- Mathilde Puel
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
| | - Kenza Rwayane
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
| | - Paula Vieira Martins
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
| | - Marwa Chbihi
- Pediatric Immunology‐Hematology and Rheumatology Unit, Assistance Publique ‐ Hôpitaux de Paris (APHP)Necker‐Enfants Malades HospitalParisFrance
- Laboratory of Immunogenetics of Pediatric Autoimmune DiseasesImagine Institute INSERM UMR 1163ParisFrance
| | - Frédéric Rieux‐Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune DiseasesImagine Institute INSERM UMR 1163ParisFrance
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163 Necker Hospital for Sick Children, EUParisFrance
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163 Necker Hospital for Sick Children, EUParisFrance
- Study Center for Primary ImmunodeficienciesAssistance Publique Hôpitaux de Paris (AP‐HP)Necker Hospital for Sick Children, EUParisFrance
- St.Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchRockefeller UniversityNew YorkUSA
- University of Paris CitéParisFrance
| | - Eric Jeziorski
- Pathogenesis and Control of Chronic InfectionsINSERM U1058Montpellier UHCUniversity of MontpellierMontpellierFrance
- Department of General PediatricsInfectiology, and Clinical ImmunologyDepartment of EmergencyPost‐Emergency DepartmentUniversity Hospital of MontpellierMontpellierFrance
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163 Necker Hospital for Sick Children, EUParisFrance
| | - Jean‐Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163 Necker Hospital for Sick Children, EUParisFrance
- St.Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchRockefeller UniversityNew YorkUSA
| | - Véronique Frémeaux‐Bacchi
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
- Inflammation, Complement and Cancer TeamCordeliers Research CenterInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche UMRS1138ParisFrance
- COMET « Complement Expertise and Therapeutics »Fédération Hospitalo‐UniversitaireParisFrance
| | - Carine El Sissy
- Department of ImmunologyAssistance Publique‐ Hôpitaux de Paris (AP‐HP)Georges Pompidou European HospitalParisFrance
- University of Paris CitéParisFrance
- Inflammation, Complement and Cancer TeamCordeliers Research CenterInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche UMRS1138ParisFrance
- COMET « Complement Expertise and Therapeutics »Fédération Hospitalo‐UniversitaireParisFrance
| |
Collapse
|
2
|
Jiao J, Gao F, Zhao H, Jiang M, Zhou Y, Liu D, Fang S, Gao D, Wang Z, Yang Z, Yuan H. Exploring the Plasma Proteome: Identifying Hub Proteins linking Aging, Homeostasis, and Organ Function. Int J Med Sci 2025; 22:1109-1123. [PMID: 40027189 PMCID: PMC11866526 DOI: 10.7150/ijms.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
As effectors of interactions between genes and the environment, plasma proteins can monitor homeostasis and reflect the aging state of an organism. However, biomarkers of aging that are associated with homeostasis are still unclear. This study investigates the phenotype-related plasma proteome profiles of healthy individuals and to identify proteins that are specifically related to aging and physiological indices and their expression patterns across the lifespan. From September 2020 to March 2021, 71 participants aged over 20 to 100 years were enrolled in this cross-sectional study. Data were analyzed from April 2021 to December 2023. The plasma proteome was analyzed to identify proteins that are specifically related to aging and their expression patterns across the lifespan. Then, hub proteins were screened through correlation of aging proteins with physiological and biochemical phenotypes. Based on levels of plasma proteins, physiological indices are associated with age. Additionally, these differences in protein expression correlate with age and physiological indices. Finally, we identified 20 hub proteins that correlate with both physiological indices and age, and these proteins are involved in oxidative stress, inflammation and metabolism. Bibliometric analysis confirmed that 8 hub proteins (CD44, CD14, IGF2, CFD, LBP, IGFBP3, EFEMP1, and AHSG) associated with age affect organ function by mediating homeostasis. Plasma proteins associated with both age and physiological indices are involved in oxidative stress, inflammation, and metabolism. This is the first investigation to link aging and homeostasis based on plasma proteins.
Collapse
Affiliation(s)
- Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, P.R. China
| | - Fei Gao
- Department of Research & Development, Beijing IPE Center for Clinical Laboratory CO, Beijing 100176, P.R. China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yan Zhou
- General Practice Department, Beijing Hospital, Beijing 100730, P.R. China
| | - Dizhi Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| |
Collapse
|
3
|
Kong Y, Wang N, Tong Z, Wang D, Wang P, Yang Q, Yan X, Song W, Jin Z, Zhang M. Role of complement factor D in cardiovascular and metabolic diseases. Front Immunol 2024; 15:1453030. [PMID: 39416783 PMCID: PMC11479899 DOI: 10.3389/fimmu.2024.1453030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
In the genesis and progression of cardiovascular and metabolic diseases (CVMDs), adipose tissue plays a pivotal and dual role. Complement factor D (CFD, also known as adipsin), which is mainly produced by adipocytes, is the rate-limiting enzyme of the alternative pathway. Abnormalities in CFD generation or function lead to aberrant immune responses and energy metabolism. A large number of studies have revealed that CFD is associated with CVMDs. Herein, we will review the current studies on the function and mechanism of CFD in CVMDs such as hypertension, coronary heart disease, ischemia/reperfusion injury, heart failure, arrhythmia, aortic aneurysm, obesity, insulin resistance, and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yingjin Kong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Naixin Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhonghua Tong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Dongni Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Penghe Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qiannan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xiangyu Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Weijun Song
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zexi Jin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Gil E, Noursadeghi M, Brown JS. Streptococcus pneumoniae interactions with the complement system. Front Cell Infect Microbiol 2022; 12:929483. [PMID: 35967850 PMCID: PMC9366601 DOI: 10.3389/fcimb.2022.929483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Host innate and adaptive immunity to infection with Streptococcus pneumoniae is critically dependent on the complement system, demonstrated by the high incidence of invasive S. pneumoniae infection in people with inherited deficiency of complement components. The complement system is activated by S. pneumoniae through multiple mechanisms. The classical complement pathway is activated by recognition of S. pneumoniae by C-reactive protein, serum amyloid P, C1q, SIGN-R1, or natural or acquired antibody. Some S. pneumoniae strains are also recognised by ficolins to activate the mannose binding lectin (MBL) activation pathway. Complement activation is then amplified by the alternative complement pathway, which can also be activated by S. pneumoniae directly. Complement activation results in covalent linkage of the opsonic complement factors C3b and iC3b to the S. pneumoniae surface which promote phagocytic clearance, along with complement-mediated immune adherence to erythrocytes, thereby protecting against septicaemia. The role of complement for mucosal immunity to S. pneumoniae is less clear. Given the major role of complement in controlling infection with S. pneumoniae, it is perhaps unsurprising that S. pneumoniae has evolved multiple mechanisms of complement evasion, including the capsule, multiple surface proteins, and the toxin pneumolysin. There is considerable variation between S. pneumoniae capsular serotypes and genotypes with regards to sensitivity to complement which correlates with ability to cause invasive infections. However, at present we only have a limited understanding of the main mechanisms causing variations in complement sensitivity between S. pneumoniae strains and to non-pathogenic streptococci.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom
- *Correspondence: Eliza Gil,
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
5
|
Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R. Monogenic Adult-Onset Inborn Errors of Immunity. Front Immunol 2021; 12:753978. [PMID: 34867986 PMCID: PMC8635491 DOI: 10.3389/fimmu.2021.753978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Functional Identification of Complement Factor D and Analysis of Its Expression during GCRV Infection in Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2021; 22:ijms222112011. [PMID: 34769442 PMCID: PMC8584590 DOI: 10.3390/ijms222112011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Complement factor D (Df) is a serine protease well known for activating the alternative pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df in the AP and against pathogen infection are far from clear. In the present study, we cloned and characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues representing the catalytic triad and three conserved binding sites in the substrate specificity pocket. Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf and its distinct expression patterns after GCRV infection, which provide a key basis for studying the roles of Df and AP during GCRV infection in the grass carp C. idella.
Collapse
|
7
|
Muri L, Ispasanie E, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G. Alternative Complement Pathway Inhibition Abrogates Pneumococcal Opsonophagocytosis in Vaccine-Naïve, but Not in Vaccinated Individuals. Front Immunol 2021; 12:732146. [PMID: 34707606 PMCID: PMC8543009 DOI: 10.3389/fimmu.2021.732146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
To assess the relative contribution of opsonisation by antibodies, classical and alternative complement pathways to pneumococcal phagocytosis, we analyzed killing of pneumococci by human blood leukocytes collected from vaccine-naïve and PCV13-vaccinated subjects. With serotype 4 pneumococci as model, two different physiologic opsonophagocytosis assays based on either hirudin-anticoagulated whole blood or on washed cells from EDTA-anticoagulated blood reconstituted with active serum, were compared. Pneumococcal killing was measured in the presence of inhibitors targeting the complement components C3, C5, MASP-2, factor B or factor D. The two assay formats yielded highly consistent and comparable results. They highlighted the importance of alternative complement pathway activation for efficient opsonophagocytic killing in blood of vaccine-naïve subjects. In contrast, alternative complement pathway inhibition did not affect pneumococcal killing in PCV13-vaccinated individuals. Independent of amplification by the alternative pathway, even low capsule-specific antibody concentrations were sufficient to efficiently trigger classical pathway mediated opsonophagocytosis. In heat-inactivated or C3-inhibited serum, high concentrations of capsule-specific antibodies were required to trigger complement-independent opsonophagocytosis. Our findings suggest that treatment with alternative complement pathway inhibitors will increase susceptibility for invasive pneumococcal infection in non-immune subjects, but it will not impede pneumococcal clearance in vaccinated individuals.
Collapse
Affiliation(s)
- Lukas Muri
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Emma Ispasanie
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anna Schubart
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Natasa Zamurovic
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Holbro
- Novartis Pharma AG, Global Drug Development, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Ispasanie E, Muri L, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G. Alternative Complement Pathway Inhibition Does Not Abrogate Meningococcal Killing by Serum of Vaccinated Individuals. Front Immunol 2021; 12:747594. [PMID: 34691058 PMCID: PMC8531814 DOI: 10.3389/fimmu.2021.747594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of complement activation causes a number of diseases, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. These conditions can be treated with monoclonal antibodies (mAbs) that bind to the complement component C5 and prevent formation of the membrane attack complex (MAC). While MAC is involved in uncontrolled lysis of erythrocytes in these patients, it is also required for serum bactericidal activity (SBA), i.e. clearance of encapsulated bacteria. Therefore, terminal complement blockage in these patients increases the risk of invasive disease by Neisseria meningitidis more than 1000-fold compared to the general population, despite obligatory vaccination. It is assumed that alternative instead of terminal pathway inhibition reduces the risk of meningococcal disease in vaccinated individuals. To address this, we investigated the SBA with alternative pathway inhibitors. Serum was collected from adults before and after vaccination with a meningococcal serogroup A, C, W, Y capsule conjugate vaccine and tested for meningococcal killing in the presence of factor B and D, C3, C5 and MASP-2 inhibitors. B meningococci were not included in this study since the immune response against protein-based vaccines is more complex. Unsurprisingly, inhibition of C5 abrogated killing of meningococci by all sera. In contrast, both factor B and D inhibitors affected meningococcal killing in sera from individuals with low, but not with high bactericidal anti-capsular titers. While the anti-MASP-2 mAb did not impair SBA, inhibition of C3 impeded meningococcal killing in most, but not in all sera. These data provide evidence that vaccination can provide protection against invasive meningococcal disease in patients treated with alternative pathway inhibitors.
Collapse
Affiliation(s)
- Emma Ispasanie
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lukas Muri
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Schubart
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Natasa Zamurovic
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Holbro
- Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Barratt J, Weitz I. Complement Factor D as a Strategic Target for Regulating the Alternative Complement Pathway. Front Immunol 2021; 12:712572. [PMID: 34566967 PMCID: PMC8458797 DOI: 10.3389/fimmu.2021.712572] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Ilene Weitz
- Jane Anne Nohl Division of Hematology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
10
|
Langereis JD, van der Molen RG, de Kat Angelino C, Henriet SS, de Jonge MI, Joosten I, Simons A, Schuurs-Hoeijmakers JH, van Deuren M, van Aerde K, van der Flier M. Complement factor D haplodeficiency is associated with a reduced complement activation speed and diminished bacterial killing. Clin Transl Immunology 2021; 10:e1256. [PMID: 33841879 PMCID: PMC8019133 DOI: 10.1002/cti2.1256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
Objectives Complete deficiency of alternative pathway (AP) complement factors, explained by homozygous mutations, is a well‐known risk factor for invasive bacterial infections; however, this is less obvious for heterozygous mutations. We describe two siblings with a heterozygous NM_001928.3(CFD):c.125C>A p.(Ser42*) mutation in the complement factor D (fD) gene having a history of recurrent bacterial infections. We determined the effect of heterozygous fD deficiency on AP complement activity. Methods We determined the effect of fD levels on complement activation as measured by AP activity, complement C3 binding to the bacterial surface of Neisseria meningitidis (Nm), Streptococcus pneumoniae (Sp) and non‐typeable Haemophilus influenzae (NTHi), and complement‐mediated killing of Nm and NTHi. In addition, we measured the effect of vaccination of complement C3 binding to the bacterial surface and killing of Nm. Results Reconstitution of fD‐deficient serum with fD increased AP activity in a dose‐ and time‐dependent way. Reconstitution of patient serum with fD to normal levels increased complement C3 binding to Sp, Nm and NTHi, as well as complement‐mediated killing of Nm and NTHi. Vaccination increased complement C3 binding and resulted in complete killing of Nm without fD reconstitution. Conclusion We conclude that low fD serum levels (< 0.5 μg mL−1) lead to a reduced speed of complement activation, which results in diminished bacterial killing, consistent with recurrent bacterial infections observed in our index patients. Specific antibodies induced by vaccination are able to overcome the diminished bacterial killing capacity in patients with low fD levels.
Collapse
Affiliation(s)
- Jeroen D Langereis
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Corrie de Kat Angelino
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Stefanie S Henriet
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Annet Simons
- Department of Human Genetics Radboudumc Nijmegen The Netherlands
| | | | - Marcel van Deuren
- Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands.,Department of Internal Medicine Division of Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Koen van Aerde
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands
| | - Michiel van der Flier
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands.,Present address: Pediatric Infectious Diseases and Immunology Wilhelmina Children's Hospital UMC Utrecht Utrecht The Netherlands
| |
Collapse
|
11
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
12
|
Weiss SAI, Rehm SRT, Perera NC, Biniossek ML, Schilling O, Jenne DE. Origin and Expansion of the Serine Protease Repertoire in the Myelomonocyte Lineage. Int J Mol Sci 2021; 22:ijms22041658. [PMID: 33562184 PMCID: PMC7914634 DOI: 10.3390/ijms22041658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.
Collapse
Affiliation(s)
- Stefanie A. I. Weiss
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | - Salome R. T. Rehm
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | | | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
- Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
13
|
Reg4 and complement factor D prevent the overgrowth of E. coli in the mouse gut. Commun Biol 2020; 3:483. [PMID: 32879431 PMCID: PMC7468294 DOI: 10.1038/s42003-020-01219-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The expansion of Enterobacteriaceae, such as E. coli is a main characteristic of gut inflammation and is related to multiple human diseases. However, how to control these E. coli overgrowth is not well understood. Here, we demonstrate that gut complement factor D (CFD) plays an important role in eliminating E. coli. Increased E. coli, which could stimulate inflammatory macrophages to induce colitis, were found in the gut of CFD deficient mice. We also showed that gut Reg4, which is expressed in gut epithelial cells, stimulated complement-mediated attack complexes to eliminate E. coli. Reg4 deficient mice also had increased E. coli. The dominant E. coli were isolated from colitis tissues of mice and found to be sensitive to both CFD- and Reg4-mediated attack complexes. Thus, gut Reg4- and CFD-mediated membrane attack complexes may maintain gut homeostasis by killing inflammatory E. coli. Qi et al. show that gut complement factor D (CFD) plays an important role in eliminating Escherichia coli, using gut specific CFD null mice. They find that E. coli isolated from inflamed guts are sensitive to both CFD and Reg4-mediated attack complexes. This study provides insights into how the level of E. Coli is kept low in the gut to prevent its inflammation.
Collapse
|
14
|
Zhang Y, Keenan A, Dai DF, May KS, Anderson EE, Lindorfer MA, Henrich JB, Pitcher GR, Taylor RP, Smith RJ. C3(H2O) prevents rescue of complement-mediated C3 glomerulopathy in Cfh-/- Cfd-/- mice. JCI Insight 2020; 5:135758. [PMID: 32376801 DOI: 10.1172/jci.insight.135758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic complement inhibition is a major focus for novel drug development. Of upstream targets, factor D (FD) is appealing because it circulates in plasma at low concentrations and has a single function: to cleave factor B to generate C3 convertase of the alternative pathway (AP). Mice with a targeted deletion of factor H (FH; Cfh-/- mice) develop C3 glomerulopathy (C3G) due to uncontrolled AP activity. To assess the impact of FD inhibition, we studied Cfh-/- Cfd-/- mice. We show that C3G in Cfh-/- mice is not rescued by removing FD. We used serum from Cfh-/- Cfd-/- mice to demonstrate that residual AP function occurs even when both FD and FH are missing and that hemolytic activity is present due to the action of C3(H2O). We propose that uncontrolled tick-over leads to slow activation of the AP in Cfh-/- Cfd-/- mice and that a minimal threshold of FH is necessary if tissue deposition of C3 is to be prevented. The FD/FH ratio dictates serum C3 level and renal C3b deposition. In C3G patients with chronic renal disease, the FD/FH ratio correlates inversely with C3 and C5 serum levels, suggesting that continuous AP control may be difficult to achieve by targeting FD.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, and
| | - Adam Keenan
- Molecular Otolaryngology and Renal Research Laboratories, and
| | - Dao-Fu Dai
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kristofer S May
- Molecular Otolaryngology and Renal Research Laboratories, and
| | | | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - John B Henrich
- Molecular Otolaryngology and Renal Research Laboratories, and
| | | | - Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | |
Collapse
|
15
|
Dezfouli M, Bergström S, Skattum L, Abolhassani H, Neiman M, Torabi-Rahvar M, Franco Jarava C, Martin-Nalda A, Ferrer Balaguer JM, Slade CA, Roos A, Fernandez Pereira LM, López-Trascasa M, Gonzalez-Granado LI, Allende-Martinez LM, Mizuno Y, Yoshida Y, Friman V, Lundgren Å, Aghamohammadi A, Rezaei N, Hernández-Gonzalez M, von Döbeln U, Truedsson L, Hara T, Nonoyama S, Schwenk JM, Nilsson P, Hammarström L. Newborn Screening for Presymptomatic Diagnosis of Complement and Phagocyte Deficiencies. Front Immunol 2020; 11:455. [PMID: 32256498 PMCID: PMC7090021 DOI: 10.3389/fimmu.2020.00455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
The clinical outcomes of primary immunodeficiencies (PIDs) are greatly improved by accurate diagnosis early in life. However, it is not common to consider PIDs before the manifestation of severe clinical symptoms. Including PIDs in the nation-wide newborn screening programs will potentially improve survival and provide better disease management and preventive care in PID patients. This calls for the detection of disease biomarkers in blood and the use of dried blood spot samples, which is a part of routine newborn screening programs worldwide. Here, we developed a newborn screening method based on multiplex protein profiling for parallel diagnosis of 22 innate immunodeficiencies affecting the complement system and respiratory burst function in phagocytosis. The proposed method uses a small fraction of eluted blood from dried blood spots and is applicable for population-scale performance. The diagnosis method is validated through a retrospective screening of immunodeficient patient samples. This diagnostic approach can pave the way for an earlier, more comprehensive and accurate diagnosis of complement and phagocytic disorders, which ultimately lead to a healthy and active life for the PID patients.
Collapse
Affiliation(s)
- Mahya Dezfouli
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Lillemor Skattum
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Region Skåne, Lund, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maja Neiman
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Monireh Torabi-Rahvar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Clara Franco Jarava
- Immunology Department, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juana M Ferrer Balaguer
- Immunology, Hospital Universitari Son Espases/Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| | - Charlotte A Slade
- Royal Melbourne Hospital, Melbourne, VIC, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Anja Roos
- Department of Microbiology and Immunology, Sint Antonius Hospital, Nieuwegein, Netherlands
| | | | - Margarita López-Trascasa
- Departamento de Medicina, Hospital La Paz Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid and Complement Research Group, Madrid, Spain
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (I+12), Madrid, Spain
| | - Luis M Allende-Martinez
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (I+12), Madrid, Spain
| | - Yumi Mizuno
- Fukuoka Children's Hospital, Kyushu University, Fukuoka, Japan
| | - Yusuke Yoshida
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Vanda Friman
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Lundgren
- Departments of Infectious Diseases, Central Hospital, Kristianstad, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Manuel Hernández-Gonzalez
- Immunology Department, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ulrika von Döbeln
- Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Lennart Truedsson
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Toshiro Hara
- Fukuoka Children's Hospital, Kyushu University, Fukuoka, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Jochen M Schwenk
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
16
|
Hodeib S, Herberg JA, Levin M, Sancho-Shimizu V. Human genetics of meningococcal infections. Hum Genet 2020; 139:961-980. [PMID: 32067109 PMCID: PMC7272491 DOI: 10.1007/s00439-020-02128-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023]
Abstract
Neisseria meningitidis is a leading cause of bacterial septicaemia and meningitis worldwide. Meningococcal disease is rare but can be life threatening with a tendency to affect children. Many studies have investigated the role of human genetics in predisposition to N. meningitidis infection. These have identified both rare single-gene mutations as well as more common polymorphisms associated with meningococcal disease susceptibility and severity. These findings provide clues to the pathogenesis of N. meningitidis, the basis of host susceptibility to infection and to the aetiology of severe disease. From the multiple discoveries of monogenic complement deficiencies to the associations of complement factor H and complement factor H-related three polymorphisms to meningococcal disease, the complement pathway is highlighted as being central to the genetic control of meningococcal disease. This review aims to summarise the current understanding of the host genetic basis of meningococcal disease with respect to the different stages of meningococcal infection.
Collapse
Affiliation(s)
- Stephanie Hodeib
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Jethro A Herberg
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Michael Levin
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK.
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
17
|
El Sissy C, Rosain J, Vieira-Martins P, Bordereau P, Gruber A, Devriese M, de Pontual L, Taha MK, Fieschi C, Picard C, Frémeaux-Bacchi V. Clinical and Genetic Spectrum of a Large Cohort With Total and Sub-total Complement Deficiencies. Front Immunol 2019; 10:1936. [PMID: 31440263 PMCID: PMC6694794 DOI: 10.3389/fimmu.2019.01936] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/30/2019] [Indexed: 01/11/2023] Open
Abstract
The complement system is crucial for defense against pathogens and the removal of dying cells or immune complexes. Thus, clinical indications for possible complete complement deficiencies include, among others, recurrent mild or serious bacterial infections as well as autoimmune diseases (AID). The diagnostic approach includes functional activity measurements of the classical (CH50) and alternative pathway (AP50) and the determination of the C3 and C4 levels, followed by the quantitative analysis of individual components or regulators. When biochemical analysis reveals the causal abnormality of the complement deficiency (CD), molecular mechanisms remains frequently undetermined. Here, using direct sequencing analysis of the coding region we report the pathogenic variants spectrum that underlie the total or subtotal complement deficiency in 212 patients. We identified 107 different hemizygous, homozygous, or compound heterozygous pathogenic variants in 14 complement genes [C1Qβ (n = 1), C1r (n = 3), C1s (n = 2), C2 (n = 12), C3 (n = 5), C5 (n = 12), C6 (n = 9), C7 (n = 17), C8 β (n = 7), C9 (n = 3), CFH (n = 7), CFI (n = 18), CFP (n = 10), CFD (n = 2)]. Molecular analysis identified 17 recurrent pathogenic variants in 6 genes (C2, CFH, C5, C6, C7, and C8). More than half of the pathogenic variants identified in unrelated patients were also found in healthy controls from the same geographic area. Our study confirms the strong association of meningococcal infections with terminal pathway deficiency and highlights the risk of pneumococcal and auto-immune diseases in the classical and alternative pathways. Results from this large genetic investigation provide evidence of a restricted number of molecular mechanisms leading to complement deficiency and describe the clinical potential adverse events of anti-complement therapy.
Collapse
Affiliation(s)
- Carine El Sissy
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Jérémie Rosain
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Paula Vieira-Martins
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Pauline Bordereau
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Aurélia Gruber
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Magali Devriese
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Loïc de Pontual
- Pediatrics Department, Jean Verdier Hospital, Assistance Publique des Hôpitaux de Paris, Paris 13 University, Bondy, France
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infection and National Reference Center for Meningococci, Pasteur Institut, Paris, France
| | - Claire Fieschi
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm U1126, Centre Hayem, Hôpital Saint-Louis, Paris, France
| | - Capucine Picard
- Paris University, INSERM UMR1163, Imagine Institute, Paris, France.,Study Center for Primary Immunodeficiencies (AP-HP), Hôpital Necker-Enfants maladies Hospital, Paris, France
| | - Véronique Frémeaux-Bacchi
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Complement and Diseases Team, Paris, France
| |
Collapse
|
18
|
Zhang SY, Jouanguy E, Zhang Q, Abel L, Puel A, Casanova JL. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr Opin Immunol 2019; 59:88-100. [PMID: 31121434 PMCID: PMC6774828 DOI: 10.1016/j.coi.2019.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Studies of vertebrate immunity have traditionally focused on professional cells, including circulating and tissue-resident leukocytes. Evidence that non-professional cells are also intrinsically essential (i.e. not via their effect on leukocytes) for protective immunity in natural conditions of infection has emerged from three lines of research in human genetics. First, studies of Mendelian resistance to infection have revealed an essential role of DARC-expressing erythrocytes in protection against Plasmodium vivax infection, and an essential role of FUT2-expressing intestinal epithelial cells for protection against norovirus and rotavirus infections. Second, studies of inborn errors of non-hematopoietic cell-extrinsic immunity have shown that APOL1 and complement cascade components secreted by hepatocytes are essential for protective immunity to trypanosome and pyogenic bacteria, respectively. Third, studies of inborn errors of non-hematopoietic cell-intrinsic immunity have suggested that keratinocytes, pulmonary epithelial cells, and cortical neurons are essential for tissue-specific protective immunity to human papillomaviruses, influenza virus, and herpes simplex virus, respectively. Various other types of genetic resistance or predisposition to infection in human populations are not readily explained by inborn variants of genes operating in leukocytes and may, therefore, involve defects in other cells. The probing of this unchartered territory by human genetics is reshaping immunology, by scaling immunity to infection up from the immune system to the whole organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
19
|
van den Broek B, van der Flier M, de Groot R, de Jonge MI, Langereis JD. Common Genetic Variants in the Complement System and their Potential Link with Disease Susceptibility and Outcome of Invasive Bacterial Infection. J Innate Immun 2019; 12:131-141. [PMID: 31269507 DOI: 10.1159/000500545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/19/2019] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae and Neisseria meningitidis are pathogens that frequently colonize the nasopharynx in an asymptomatic manner but are also a cause of invasive bacterial infections mainly in young children. The complement system plays a crucial role in humoral immunity, complementing the ability of antibodies to clear microbes, thereby protecting the host against bacterial infections, including S. pneumoniae and N. meningitidis. While it is widely accepted that complement deficiencies due to rare genetic variants increase the risk for invasive bacterial infection, not much is known about the common genetic variants in the complement system in relation to disease susceptibility. In this review, we provide an overview of the effects of common genetic variants on complement activation and on complement-mediated inflammation.
Collapse
Affiliation(s)
- Bryan van den Broek
- Paediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Nijmegen, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Paediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Nijmegen, The Netherlands.,Expertise Center for Immunodeficiency and Auto inflammation (REIA), Radboudumc, Nijmegen, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands, .,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands,
| |
Collapse
|
20
|
Sng CCT, O'Byrne S, Prigozhin DM, Bauer MR, Harvey JC, Ruhle M, Challis BG, Lear S, Roberts LD, Workman S, Janowitz T, Magiera L, Doffinger R, Buckland MS, Jodrell DJ, Semple RK, Wilson TJ, Modis Y, Thaventhiran JED. A type III complement factor D deficiency: Structural insights for inhibition of the alternative pathway. J Allergy Clin Immunol 2018; 142:311-314.e6. [PMID: 29522842 PMCID: PMC6034011 DOI: 10.1016/j.jaci.2018.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/24/2023]
Affiliation(s)
| | - Sorcha O'Byrne
- Department of Clinical Immunology, Cambridge University Hospitals National Health Service Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Daniil M Prigozhin
- Molecular Immunity Unit, Department of Medicine, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Matthias R Bauer
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jennifer C Harvey
- Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Michelle Ruhle
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ben G Challis
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sara Lear
- Department of Clinical Immunology, Cambridge University Hospitals National Health Service Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds Institute of Genetics, Health and Therapeutics (LIGHT) Laboratories, University of Leeds, Leeds, United Kingdom
| | - Sarita Workman
- Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Tobias Janowitz
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Lukasz Magiera
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Rainer Doffinger
- Department of Clinical Immunology, Cambridge University Hospitals National Health Service Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Matthew S Buckland
- Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Duncan J Jodrell
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Robert K Semple
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; University of Edinburgh Centre for Cardiovascular Sciences, Queen's Medical Research Institute, Little France Crescent, Edinburgh, United Kingdom
| | | | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - James E D Thaventhiran
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom; Department of Clinical Immunology, Cambridge University Hospitals National Health Service Trust, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
21
|
Casanova JL, Abel L. Human genetics of infectious diseases: Unique insights into immunological redundancy. Semin Immunol 2018; 36:1-12. [PMID: 29254755 PMCID: PMC5910248 DOI: 10.1016/j.smim.2017.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 01/18/2023]
Abstract
For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious conditions.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU.
| |
Collapse
|
22
|
Wu X, Hutson I, Akk AM, Mascharak S, Pham CTN, Hourcade DE, Brown R, Atkinson JP, Harris CA. Contribution of Adipose-Derived Factor D/Adipsin to Complement Alternative Pathway Activation: Lessons from Lipodystrophy. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29531168 DOI: 10.4049/jimmunol.1701668] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Factor D (FD) is an essential component of the complement alternative pathway (AP). It is an attractive pharmaceutical target because it is an AP-specific protease circulating in blood. Most components of the complement activation pathways are produced by the liver, but FD is highly expressed by adipose tissue. Two critical questions are: 1) to what degree does adipose tissue contribute to circulating FD levels and 2) what quantity of FD is sufficient to maintain a functional AP? To address these issues, we studied a novel mouse strain with complete lipodystrophy (LD), the fld mouse with partial LD, an FD-deficient mouse, and samples from lipodystrophic patients. FD was undetectable in the serum of LD mice, which also showed minimal AP function. Reconstitution with purified FD, serum mixing experiments, and studies of partial LD mice all demonstrated that a low level of serum FD is sufficient for normal AP activity in the mouse system. This conclusion was further supported by experiments in which wild-type adipose precursors were transplanted into LD mice. Our results indicate that almost all FD in mouse serum is derived from adipose tissue. In contrast, FD levels were reduced ∼50% in the sera of patients with congenital generalized LD. Our studies further demonstrate that a relatively small amount of serum FD is sufficient to facilitate significant time-dependent AP activity in humans and in mice. Furthermore, this observation highlights the potential importance of obtaining nearly complete inhibition of FD in treating alternative complement activation in various autoimmune and inflammatory human diseases.
Collapse
Affiliation(s)
- Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
| | - Irina Hutson
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Antonina M Akk
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Smita Mascharak
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Christine T N Pham
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Section of Rheumatology, Department of Medicine, St. Louis Veterans Affairs Medical Center, St. Louis, MO 63106
| | - Dennis E Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Rebecca Brown
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814; and
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Charles A Harris
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Section of Endocrinology, Department of Medicine, St. Louis Veterans Affairs Medical Center, St. Louis, MO 63106
| |
Collapse
|
23
|
Bertile F, Fouillen L, Wasselin T, Maes P, Le Maho Y, Van Dorsselaer A, Raclot T. The Safety Limits Of An Extended Fast: Lessons from a Non-Model Organism. Sci Rep 2016; 6:39008. [PMID: 27991520 PMCID: PMC5171797 DOI: 10.1038/srep39008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 02/03/2023] Open
Abstract
While safety of fasting therapy is debated in humans, extended fasting occurs routinely and safely in wild animals. To do so, food deprived animals like breeding penguins anticipate the critical limit of fasting by resuming feeding. To date, however, no molecular indices of the physiological state that links spontaneous refeeding behaviour with fasting limits had been identified. Blood proteomics and physiological data reveal here that fasting-induced body protein depletion is not unsafe “per se”. Indeed, incubating penguins only abandon their chick/egg to refeed when this state is associated with metabolic defects in glucose homeostasis/fatty acid utilization, insulin production and action, and possible renal dysfunctions. Our data illustrate how the field investigation of “exotic” models can be a unique source of information, with possible biomedical interest.
Collapse
Affiliation(s)
- Fabrice Bertile
- CNRS, UMR7178, 67037 Strasbourg, France.,Université de Strasbourg, IPHC, Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, 67087 Strasbourg, France
| | - Laetitia Fouillen
- CNRS, UMR7178, 67037 Strasbourg, France.,Université de Strasbourg, IPHC, Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, 67087 Strasbourg, France
| | - Thierry Wasselin
- CNRS, UMR7178, 67037 Strasbourg, France.,Université de Strasbourg, IPHC, Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, 67087 Strasbourg, France
| | - Pauline Maes
- CNRS, UMR7178, 67037 Strasbourg, France.,Université de Strasbourg, IPHC, Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, 67087 Strasbourg, France
| | - Yvon Le Maho
- CNRS, UMR7178, 67037 Strasbourg, France.,Université de Strasbourg, IPHC, Département Ecologie, Physiologie et Ethologie, 23 rue Becquerel, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- CNRS, UMR7178, 67037 Strasbourg, France.,Université de Strasbourg, IPHC, Laboratoire de Spectrométrie de Masse Bio-Organique, 25 rue Becquerel, 67087 Strasbourg, France
| | - Thierry Raclot
- CNRS, UMR7178, 67037 Strasbourg, France.,Université de Strasbourg, IPHC, Département Ecologie, Physiologie et Ethologie, 23 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
24
|
Yuan X, Gavriilaki E, Thanassi JA, Yang G, Baines AC, Podos SD, Huang Y, Huang M, Brodsky RA. Small-molecule factor D inhibitors selectively block the alternative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Haematologica 2016; 102:466-475. [PMID: 27810992 PMCID: PMC5394948 DOI: 10.3324/haematol.2016.153312] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome are diseases of excess activation of the alternative pathway of complement that are treated with eculizumab, a humanized monoclonal antibody against the terminal complement component C5. Eculizumab must be administered intravenously, and moreover some patients with paroxysmal nocturnal hemoglobinuria on eculizumab have symptomatic extravascular hemolysis, indicating an unmet need for additional therapeutic approaches. We report the activity of two novel small-molecule inhibitors of the alternative pathway component Factor D using in vitro correlates of both paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Both compounds bind human Factor D with high affinity and effectively inhibit its proteolytic activity against purified Factor B in complex with C3b. When tested using the traditional Ham test with cells from paroxysmal nocturnal hemoglobinuria patients, the Factor D inhibitors significantly reduced complement-mediated hemolysis at concentrations as low as 0.01 μM. Additionally the compound ACH-4471 significantly decreased C3 fragment deposition on paroxysmal nocturnal hemoglobinuria erythrocytes, indicating a reduced potential relative to eculizumab for extravascular hemolysis. Using the recently described modified Ham test with serum from patients with atypical hemolytic uremic syndrome, the compounds reduced the alternative pathway-mediated killing of PIGA-null reagent cells, thus establishing their potential utility for this disease of alternative pathway of complement dysregulation and validating the modified Ham test as a system for pre-clinical drug development for atypical hemolytic uremic syndrome. Finally, ACH-4471 blocked alternative pathway activity when administered orally to cynomolgus monkeys. In conclusion, the small-molecule Factor D inhibitors show potential as oral therapeutics for human diseases driven by the alternative pathway of complement, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.
Collapse
Affiliation(s)
- Xuan Yuan
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eleni Gavriilaki
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Andrea C Baines
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Robert A Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 2015; 112:E7128-37. [PMID: 26621750 PMCID: PMC4697435 DOI: 10.1073/pnas.1521651112] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper reviews the developments that have occurred in the field of human genetics of infectious diseases from the second half of the 20th century onward. In particular, it stresses and explains the importance of the recently described monogenic inborn errors of immunity underlying resistance or susceptibility to specific infections. The monogenic component of the genetic theory provides a plausible explanation for the occurrence of severe infectious diseases during primary infection. Over the last 20 y, increasing numbers of life-threatening infectious diseases striking otherwise healthy children, adolescents, and even young adults have been attributed to single-gene inborn errors of immunity. These studies were inspired by seminal but neglected findings in plant and animal infections. Infectious diseases typically manifest as sporadic traits because human genotypes often display incomplete penetrance (most genetically predisposed individuals remain healthy) and variable expressivity (different infections can be allelic at the same locus). Infectious diseases of childhood, once thought to be archetypal environmental diseases, actually may be among the most genetically determined conditions of mankind. This nascent and testable notion has interesting medical and biological implications.
Collapse
MESH Headings
- Adolescent
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Child
- Complement System Proteins/genetics
- Encephalitis, Herpes Simplex/genetics
- Encephalitis, Herpes Simplex/immunology
- Epidermodysplasia Verruciformis/genetics
- Epidermodysplasia Verruciformis/immunology
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/immunology
- Genetic Predisposition to Disease
- Humans
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Infections/genetics
- Infections/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Malaria/genetics
- Malaria/immunology
- Models, Genetic
- Models, Immunological
- Mycobacterium Infections/genetics
- Mycobacterium Infections/immunology
- Neisseria/immunology
- Neisseria/pathogenicity
- Pneumococcal Infections/genetics
- Pneumococcal Infections/immunology
- Tinea/genetics
- Tinea/immunology
- Young Adult
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; Howard Hughes Medical Institute, New York, NY 10065; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France; Imagine Institute, Paris Descartes University, 75015 Paris, France; Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France
| |
Collapse
|
26
|
Applying complement therapeutics to rare diseases. Clin Immunol 2015; 161:225-40. [PMID: 26341313 DOI: 10.1016/j.clim.2015.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/06/2023]
Abstract
Around 350 million people worldwide suffer from rare diseases. These may have a genetic, infectious, or autoimmune basis, and several include an inflammatory component. Launching of effective treatments can be very challenging when there is a low disease prevalence and limited scientific insights into the disease mechanisms. As a key trigger of inflammatory processes, complement has been associated with a variety of diseases and has become an attractive therapeutic target for conditions involving inflammation. In view of the clinical experience acquired with drugs licensed for the treatment of rare diseases such as hereditary angioedema and paroxysmal nocturnal hemoglobinuria, growing evidence supports the safety and efficacy of complement therapeutics in restoring immune balance and preventing aggravation of clinical outcomes. This review provides an overview of the candidates currently in the pharmaceutical pipeline with potential to treat orphan diseases and discusses the molecular mechanisms triggered by complement involved with the disease pathogenesis.
Collapse
|
27
|
Abstract
Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
28
|
Silva AS, Teixeira AG, Bavia L, Lin F, Velletri R, Belfort R, Isaac L. Plasma levels of complement proteins from the alternative pathway in patients with age-related macular degeneration are independent of Complement Factor H Tyr⁴⁰²His polymorphism. Mol Vis 2012; 18:2288-99. [PMID: 22969267 PMCID: PMC3436886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/28/2012] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the influence of the Factor H (CFH) Tyr⁴⁰²His polymorphism on the plasma levels of the alternative pathway proteins CFH, C3, Factor B (FB), Factor D (FD), and Factor I (FI) and the inflammatory marker C-reactive protein (CRP) in 119 patients with age-related macular degeneration (AMD) and 152 unrelated control individuals. METHODS Patients with AMD and the control group were separated according to CFH polymorphism, age, and gender. Plasma complement proteins and CRP concentrations were determined with enzyme-linked immunosorbent assay, immunodiffusion, or nephelometry. RESULTS Significant differences in the concentrations of FD and FI were observed between the patients with AMD and the control individuals. We observed significantly reduced FD plasma levels in patients with AMD. We also identified a significant decrease in CFH plasma levels in female patients with AMD in relation to female controls. Plasma FI levels were significantly increased in patients with AMD compared to the control group. Regarding gender, a significant increase in FI plasma levels was observed in male patients. Finally, we found no significant correlation between the CFH Tyr(402)His polymorphism and the CFH, C3, FB, FD, FI, and CRP plasma levels. CONCLUSIONS Patients with AMD present altered levels of FD and FI in a manner independent of this CFH polymorphism, and gender apparently contributes to the plasma levels of these two proteins in patients with AMD and control individuals.
Collapse
Affiliation(s)
- Aldacilene Souza Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lorena Bavia
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabio Lin
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberta Velletri
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Woehrl B, Brouwer MC, Murr C, Heckenberg SGB, Baas F, Pfister HW, Zwinderman AH, Morgan BP, Barnum SR, van der Ende A, Koedel U, van de Beek D. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J Clin Invest 2011; 121:3943-53. [PMID: 21926466 DOI: 10.1172/jci57522] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/03/2011] [Indexed: 01/05/2023] Open
Abstract
Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been established. Here, we have performed a robust prospective nationwide genetic association study in patients with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP (rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with these human data, C5a receptor-deficient mice with pneumococcal meningitis had lower CSF wbc counts and decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis.
Collapse
Affiliation(s)
- Bianca Woehrl
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ram S, Lewis LA, Agarwal S. Meningococcal group W-135 and Y capsular polysaccharides paradoxically enhance activation of the alternative pathway of complement. J Biol Chem 2011; 286:8297-8307. [PMID: 21245150 DOI: 10.1074/jbc.m110.184838] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although capsular polysaccharide (CPS) is critical for meningococcal virulence, the molecular basis of alternative complement pathway (AP) regulation by meningococcal CPSs remains unclear. Using serum with only the AP active, the ability of strains to generate C3a (a measure of C3 activation) and subsequently deposit C3 fragments on bacteria was studied in encapsulated group A, B, C, W-135, and Y strains and their isogenic unencapsulated mutants. To eliminate confounding AP regulation by membrane-bound factor H (fH; AP inhibitor) and lipooligosaccharide sialic acid, the meningococcal fH ligands (fHbp and NspA) and lipooligosaccharide sialylation were deleted in all strains. Group A CPS expression did not affect C3a generation or C3 deposition. C3a generated by encapsulated and unencapsulated group B and C strains was similar, but CPS expression was associated with reduced C3 deposition, suggesting that these CPSs blocked C3 deposition on membrane targets. Paradoxically, encapsulated W-135 and Y strains (including the wild-type parent strains) enhanced C3 activation and showed marked C3 deposition as early as 10 min; at this time point C3 was barely activated by the unencapsulated mutants. W-135 and Y CPSs themselves served as a site for C3 deposition; this observation was confirmed using immobilized purified CPSs. Purified CPSs bound to unencapsulated meningococci, simulated findings with naturally encapsulated strains. These data highlight the heterogeneity of AP activation on the various meningococcal serogroups that may contribute to differences in their pathogenic mechanisms.
Collapse
Affiliation(s)
- Sanjay Ram
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| | - Lisa A Lewis
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sarika Agarwal
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
31
|
Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis. BMC Nephrol 2010; 11:34. [PMID: 21134272 PMCID: PMC3004895 DOI: 10.1186/1471-2369-11-34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 12/06/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The complement system is vital for innate immunity and is implicated in the pathogenesis of inflammatory diseases and the mechanism of host defense. Complement deficiencies occasionally cause life-threatening diseases. In hemodialysis (HD) patients, profiles on complement functional activity and deficiency are still obscure. The objectives of the present study were to measure the functional complement activities of the classical pathway (CP), lectin pathway (LP) and alternative pathway (AP) using a novel method and consequently to elucidate the rates of deficiencies among HD patients. METHODS In the present study, 244 HD patients at one dialysis center and 204 healthy controls were enrolled. Functional complement activities were measured simultaneously using the Wielisa®-kit. The combination of the results of these three pathway activities allows us to speculate which candidate complement is deficient; subsequently, the deficient complement was determined. RESULTS All three functional complement activities were significantly higher in the HD patients than in the control group (P < 0.01 for all cases). After identifying candidates in both groups with complement deficiencies using the Wielisa®-kit, 16 sera (8.8%) with mannose-binding lectin (MBL) deficiency, 1 serum (0.4%) with C4 deficiency, 1 serum (0.4%) with C9 deficiency, and 1 serum (0.4%) with B deficiency were observed in the HD group, and 18 sera (8.8%) with MBL deficiency and 1 serum (0.5%) with B deficiency were observed in the control group. There were no significant differences in the 5-year mortality rate between each complement-deficient group and the complement-sufficient group among the HD patients. CONCLUSION This is the first report that profiles complement deficiencies by simultaneous measurement of functional activities of the three complement pathways in HD patients. Hemodialysis patients frequently suffer from infections or malignancies, but functional complement deficiencies do not confer additional risk of mortality.
Collapse
|
32
|
Prescott MA, Pastey MK. Identification of Unique Blood and Urine Biomarkers in Influenza Virus and Staphylococcus aureus Co-infection: A Preliminary Study. Biomark Insights 2010; 5:145-51. [PMID: 21151588 PMCID: PMC2999991 DOI: 10.4137/bmi.s6257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Each year, there are estimated to be approximately 200,000 hospitalizations and 36,000 deaths due to influenza in the United States. Reports have indicated that most deaths are not directly due to influenza virus, but to secondary bacterial pneumonia, predominantly staphylococcal in origin. Here we identify the presence of candidate blood and urine biomarkers in mice with Staphyococcus aureus and influenza virus co-infection. In this pilot study, mice were grouped into four treatments: co-infected with influenza virus and S. aureus, singly infected with influenza virus or S. aureus, and a control group of uninfected mice (PBS treated). Gene expression changes were identified by DNA-microarrays from blood samples taken at day five post infection. Proteomic changes were obtained from urine samples collected at three and five days post infection using 2-D DIGE followed by protein ID by mass spectrometry. Differentially expressed genes and/or proteins were identified as candidate biomarkers for future validation in larger studies.
Collapse
Affiliation(s)
- Meagan A Prescott
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
33
|
Abstract
Both Neisseria gonorrhoeae and N. meningitidis bind to factor H which enhances their ability to evade complement-dependent killing. While porin is the ligand for human fH on gonococci, meningococci use a lipoprotein called factor H binding protein (fHbp) to bind to factor H and enhance their ability to evade complement-dependent killing. This protein is currently being intensively investigated as a meningococcal vaccine candidate antigen. Consistent with the observation that meningococci cause natural infection only in humans, the organism resists human complement, and are more readily killed by complement from lower animals. This human species-specific complement evasion has important implications for evaluation of vaccine-elicited antibodies using non-human complement sources and development of animal models of disease.
Collapse
Affiliation(s)
- Jo Anne Welsch
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | |
Collapse
|
34
|
Kugelberg E, Gollan B, Tang CM. Mechanisms in Neisseria meningitidis for resistance against complement-mediated killing. Vaccine 2009; 26 Suppl 8:I34-9. [PMID: 19388162 PMCID: PMC2686086 DOI: 10.1016/j.vaccine.2008.11.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial meningitis and septicaemia is a global health problem often caused by Neisseria meningitidis. The complement system is the most important aspect of host defence against this pathogen, and the critical interaction between the two is influenced by genetic polymorphisms on both the bacterial and the host side; variations of the meningococcus may lead to increased survival in human sera, whereas humans with complement deficiencies are more susceptible to meningococcal infections. Here we discuss the mechanisms of meningococcal resistance against complement-mediated killing and the influence of both bacterial and host genetic factors.
Collapse
Affiliation(s)
- Elisabeth Kugelberg
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
35
|
Madico G, Welsch JA, Lewis LA, McNaughton A, Perlman DH, Costello CE, Ngampasutadol J, Vogel U, Granoff DM, Ram S. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. THE JOURNAL OF IMMUNOLOGY 2006; 177:501-10. [PMID: 16785547 PMCID: PMC2248442 DOI: 10.4049/jimmunol.177.1.501] [Citation(s) in RCA: 331] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis binds factor H (fH), a key regulator of the alternative complement pathway. A approximately 29 kD fH-binding protein expressed in the meningococcal outer membrane was identified by mass spectrometry as GNA1870, a lipoprotein currently under evaluation as a broad-spectrum meningococcal vaccine candidate. GNA1870 was confirmed as the fH ligand on intact bacteria by 1) abrogation of fH binding upon deleting GNA1870, and 2) blocking fH binding by anti-GNA1870 mAbs. fH bound to whole bacteria and purified rGNA1870 representing each of the three variant GNA1870 families. We showed that the amount of fH binding correlated with the level of bacterial GNA1870 expression. High levels of variant 1 GNA1870 expression (either by allelic replacement of gna1870 or by plasmid-driven high-level expression) in strains that otherwise were low-level GNA1870 expressers (and bound low amounts of fH by flow cytometry) restored high levels of fH binding. Diminished fH binding to the GNA1870 deletion mutants was accompanied by enhanced C3 binding and increased killing of the mutants. Conversely, high levels of GNA1870 expression and fH binding enhanced serum resistance. Our findings support the hypothesis that inhibiting the binding of a complement down-regulator protein to the neisserial surface by specific Ab may enhance intrinsic bactericidal activity of the Ab, resulting in two distinct mechanisms of Ab-mediated vaccine efficacy. These data provide further support for inclusion of this molecule in a meningococcal vaccine. To reflect the critical function of this molecule, we suggest calling it fH-binding protein.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adult
- Amino Acid Sequence
- Antibodies, Monoclonal/metabolism
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Adhesion/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Binding Sites, Antibody
- Binding, Competitive/immunology
- Blood Bactericidal Activity/genetics
- Blood Bactericidal Activity/immunology
- Complement Factor H/antagonists & inhibitors
- Complement Factor H/immunology
- Complement Factor H/metabolism
- Complement Pathway, Alternative/genetics
- Complement Pathway, Alternative/immunology
- Gene Deletion
- Genetic Variation
- Humans
- Ligands
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Meningococcal Vaccines/metabolism
- Molecular Sequence Data
- Neisseria meningitidis/genetics
- Neisseria meningitidis/immunology
- Neisseria meningitidis/metabolism
- Porins/metabolism
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
Collapse
Affiliation(s)
- Guillermo Madico
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118
| | - Jo Anne Welsch
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | - Lisa A. Lewis
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118
| | - Anne McNaughton
- Department of Biochemistry, Trinity College, Dublin, Ireland
| | - David H. Perlman
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
| | | | - Jutamas Ngampasutadol
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ulrich Vogel
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Dan M. Granoff
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Address correspondence and reprint requests to Dr. Sanjay Ram, Division of Infectious Diseases and Immunology, Lazare Research Building, Room 322, 364 Plantation Street, Worcester, MA 01605. E-mail address:
| |
Collapse
|
36
|
Xu Y, Ma M, Ippolito GC, Schroeder HW, Carroll MC, Volanakis JE. Complement activation in factor D-deficient mice. Proc Natl Acad Sci U S A 2001; 98:14577-82. [PMID: 11724962 PMCID: PMC64724 DOI: 10.1073/pnas.261428398] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2001] [Indexed: 01/12/2023] Open
Abstract
To assess the contribution of the alternative pathway in complement activation and host defense and its possible role in the regulation of systemic energy balance in vivo, factor D-deficient mice were generated by gene targeting. The mutant mice have no apparent abnormality in development and their body weights are similar to those of factor D-sufficient littermates. Complement activation could not be initiated in the serum of deficient mice by the alternative pathway activators rabbit erythrocytes and zymosan. Surprisingly, injection of cobra venom factor (CVF) caused a profound and reproducible reduction in serum C3 levels, whereas, as expected, there was no C3 reduction in factor B-deficient mice treated similarly. Studies of C3 and factor B activation in vitro by CVF demonstrated that in factor D-deficient serum the alpha chain of C3 was cleaved gradually over a period of 60 min without detectable cleavage of factor B. CVF-dependent C3 cleavage in the deficient serum required the presence of Mg(2+), whereas in normal mouse serum the presence of divalent cations was not required. These results suggest that in mouse proteolytic cleavage of factor B by factor D is not an absolute requirement for the zymogen to active enzyme conformational transition of CVF-bound factor B. Kinetics of opsonization of Streptococcus pneumoniae by C3 fragments was much slower in factor D-deficient serum, suggesting a significant contribution of the alternative pathway to antibacterial host defense early after infection.
Collapse
Affiliation(s)
- Y Xu
- Department of Medicine, University of Alabama, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|