1
|
Vadlamani VMK, Gunasinghe KKJ, Chee XW, Rahman T, Harper MT. Human soluble CD39 displays substrate inhibition in a substrate-specific manner. Sci Rep 2023; 13:8958. [PMID: 37268726 DOI: 10.1038/s41598-023-36257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD1) metabolizes extracellular ATP and ADP to AMP. AMP is subsequently metabolized by CD79 to adenosine. CD39 activity is therefore a key regulator of purinergic signalling in cancer, thrombosis, and autoimmune diseases. In this study we demonstrate that soluble, recombinant CD39 shows substrate inhibition with ADP or ATP as the substrate. Although CD39 activity initially increased with increasing substrate concentration, at high concentrations of ATP or ADP, CD39 activity was markedly reduced. Although the reaction product, AMP, inhibits CD39 activity, insufficient AMP was generated under our conditions to account for the substrate inhibition seen. In contrast, inhibition was not seen with UDP or UTP as substrates. 2-methylthio-ADP also showed no substrate inhibition, indicating the nucleotide base is an important determinant of substrate inhibition. Molecular dynamics simulations revealed that ADP can undergo conformational rearrangements within the CD39 active site that were not seen with UDP or 2-methylthio-ADP. Appreciating the existence of substrate inhibition of CD39 will help the interpretation of studies of CD39 activity, including investigations into drugs that modulate CD39 activity.
Collapse
Affiliation(s)
- Venkat M K Vadlamani
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Xavier W Chee
- Swinburne University of Technology Sarawak, Kuching, Malaysia
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
2
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Zhong EH, Ledderose C, De Andrade Mello P, Enjyoji K, Lunderberg JM, Junger W, Robson SC. Structural and functional characterization of engineered bifunctional fusion proteins of CD39 and CD73 ectonucleotidases. Am J Physiol Cell Physiol 2020; 320:C15-C29. [PMID: 33052071 DOI: 10.1152/ajpcell.00430.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular diphosphate and triphosphate nucleotides are released from activated or injured cells to trigger vascular and immune P2 purinergic receptors, provoking inflammation and vascular thrombosis. These metabokines are scavenged by ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1 or CD39). Further degradation of the monophosphate nucleoside end products occurs by surface ecto-5'-nucleotidase (NMPase) or CD73. These ectoenzymatic processes work in tandem to promote adenosinergic responses, which are immunosuppressive and antithrombotic. These homeostatic ectoenzymatic mechanisms are lost in the setting of oxidative stress, which exacerbates inflammatory processes. We have engineered bifunctional enzymes made up from ectodomains (ECDs) of CD39 and CD73 within a single polypeptide. Human alkaline phosphatase-ectodomain (ALP-ECD) and human acid phosphatase-ectodomain (HAP-ECD) fusion proteins were also generated, characterized, and compared with these CD39-ECD, CD73-ECD, and bifunctional fusion proteins. Through the application of colorimetrical functional assays and high-performance liquid chromatography kinetic assays, we demonstrate that the bifunctional ectoenzymes express high levels of CD39-like NTPDase activity and CD73-like NMPase activity. Chimeric CD39-CD73-ECD proteins were superior in converting triphosphate and diphosphate nucleotides into nucleosides when compared with ALP-ECD and HAP-ECD. We also note a pH sensitivity difference between the bifunctional fusion proteins and parental fusions, as well as ectoenzymatic property distinctions. Intriguingly, these innovative reagents decreased platelet activation to exogenous agonists in vitro. We propose that these chimeric fusion proteins could serve as therapeutic agents in inflammatory diseases, acting to scavenge proinflammatory ATP and also generate anti-inflammatory adenosine.
Collapse
Affiliation(s)
- Elizabeth H Zhong
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Paola De Andrade Mello
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Keiichi Enjyoji
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Justin Mark Lunderberg
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Wolfgang Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Chaurasia SN, Kushwaha G, Pandey A, Dash D. Human platelets express functional ectonucleotidases that restrict platelet activation signaling. Biochem Biophys Res Commun 2020; 527:104-109. [PMID: 32446352 DOI: 10.1016/j.bbrc.2020.04.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Platelets play central role in thrombosis and haemostasis. Platelets store adenine nucleotides in their dense granules, which are released upon agonist-stimulation. Level of these nucleotides in extracellular fluid is regulated by activities of ectonucleotidases such as ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and ecto-5'-nucleotidase (CD73) expressed on platelet surface. Here we demonstrate that, expression of surface-bound ectonucleotidases rose significantly in platelets, concomitant with upregulation of their enzymatic activities, when cells were stimulated with thrombin. Interestingly, inhibition of CD73 in thrombin-treated platelets led to enhanced tyrosine phosphorylation of proteins and rise in intracellular free calcium, [Ca2+]i, thus signifying the inhibitory role of the ectonucleotidase on agonist-mediated platelet signaling.
Collapse
Affiliation(s)
- Susheel N Chaurasia
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Geeta Kushwaha
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Pandey
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Characterization of soluble CD39 (SolCD39/NTPDase1) from PiggyBac nonviral system as a tool to control the nucleotides level. Biochem J 2019; 476:1637-1651. [PMID: 31085558 DOI: 10.1042/bcj20190040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/17/2022]
Abstract
Extracellular ATP (eATP) and its metabolites have emerged as key modulators of different diseases and comprise a complex pathway called purinergic signaling. An increased number of tools have been developed to study the role of nucleotides and nucleosides in cell proliferation and migration, influence on the immune system and tumor progression. These tools include receptor agonists/antagonists, engineered ectonucleotidases, interference RNAs and ectonucleotidase inhibitors that allow the control and quantification of nucleotide levels. NTPDase1 (also called apyrase, ecto-ATPase and CD39) is one of the main enzymes responsible for the hydrolysis of eATP, and purified enzymes, such as apyrase purified from potato, or engineered as soluble CD39 (SolCD39), have been widely used in in vitro and in vivo experiments. However, the commercial apyrase had its effects recently questioned and SolCD39 exhibits limitations, such as short half-life and need of high doses to reach the expected enzymatic activity. Therefore, this study investigated a non-viral method to improve the overexpression of SolCD39 and evaluated its impact on other enzymes of the purinergic system. Our data demonstrated that PiggyBac transposon system proved to be a fast and efficient method to generate cells stably expressing SolCD39, producing high amounts of the enzyme from a limited number of cells and with high hydrolytic activity. In addition, the soluble form of NTPDase1/CD39 did not alter the expression or catalytic activity of other enzymes from the purinergic system. Altogether, these findings set the groundwork for prospective studies on the function and therapeutic role of eATP and its metabolites in physiological and pathological conditions.
Collapse
|
6
|
Degen H, Borst O, Ziegler M, Mojica Munoz AK, Jamasbi J, Walker B, Göbel S, Fassbender J, Adler K, Brandl R, Münch G, Lorenz R, Siess W, Gawaz M, Ungerer M. ADPase CD39 Fused to Glycoprotein VI-Fc Boosts Local Antithrombotic Effects at Vascular Lesions. J Am Heart Assoc 2017; 6:JAHA.117.005991. [PMID: 28751543 PMCID: PMC5586441 DOI: 10.1161/jaha.117.005991] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND GPVI (Glycoprotein VI) is the essential platelet collagen receptor in atherothrombosis. Dimeric GPVI-Fc (Revacept) binds to GPVI binding sites on plaque collagen. As expected, it did not increase bleeding in clinical studies. GPVI-Fc is a potent inhibitor of atherosclerotic plaque-induced platelet aggregation at high shear flow, but its inhibition at low shear flow is limited. We sought to increase the platelet inhibitory potential by fusing GPVI-Fc to the ectonucleotidase CD39 (fusion protein GPVI-CD39), which inhibits local ADP accumulation at vascular plaques, and thus to create a lesion-directed dual antiplatelet therapy that is expected to lack systemic bleeding risks. METHODS AND RESULTS GPVI-CD39 effectively stimulated local ADP degradation and, compared with GPVI-Fc alone, led to significantly increased inhibition of ADP-, collagen-, and human plaque-induced platelet aggregation in Multiplate aggregometry and plaque-induced platelet thrombus formation under arterial flow conditions. GPVI-CD39 did not increase bleeding time in an in vitro assay simulating primary hemostasis. In a mouse model of ferric chloride-induced arterial thrombosis, GPVI-CD39 effectively delayed vascular thrombosis but did not increase tail bleeding time in vivo. CONCLUSIONS GPVI-CD39 is a novel approach to increase local antithrombotic activity at sites of atherosclerotic plaque rupture or injury. It enhances GPVI-Fc-mediated platelet inhibition and presents a potentially effective and safe molecule for the treatment of acute atherothrombotic events, with a favorable risk-benefit ratio.
Collapse
Affiliation(s)
| | - Oliver Borst
- Medical Clinic III, University of Tübingen, Germany
| | | | | | - Janina Jamasbi
- IPEK - Institute for Prevention of Cardiovascular Diseases, University of Munich, Germany
| | | | | | | | | | - Richard Brandl
- St. Mary's Square Institute for Vascular Surgery and Phlebology, Munich, Germany
| | - Götz Münch
- advanceCOR - Procorde, Martinsried, Germany
| | - Reinhard Lorenz
- IPEK - Institute for Prevention of Cardiovascular Diseases, University of Munich, Germany
| | - Wolfgang Siess
- IPEK - Institute for Prevention of Cardiovascular Diseases, University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Munich Heart Alliance, Munich, Germany
| | | | | |
Collapse
|
7
|
Maloney JP, Branchford BR, Brodsky GL, Cosmic MS, Calabrese DW, Aquilante CL, Maloney KW, Gonzalez JR, Zhang W, Moreau KL, Wiggins KL, Smith NL, Broeckel U, Di Paola J. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk. FASEB J 2017; 31:2771-2784. [PMID: 28302652 PMCID: PMC6137499 DOI: 10.1096/fj.201600344r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/26/2017] [Indexed: 11/11/2022]
Abstract
Ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) degrades the purines ATP and ADP that are key regulators of inflammation and clotting. We hypothesized that NTPDase1 polymorphisms exist and that they regulate this pathway. We sequenced the ENTPD1 gene (encoding NTPDase1) in 216 subjects then assessed genotypes in 2 cohorts comprising 2213 humans to identify ENTPD1 polymorphisms associated with venous thromboembolism (VTE). The G allele of the intron 1 polymorphism rs3176891 was more common in VTE vs. controls (odds ratio 1.26-1.9); it did not affect RNA splicing, but it was in strong linkage disequilibrium with the G allele of the promoter polymorphism rs3814159, which increased transcriptional activity by 8-fold. Oligonucleotides containing the G allele of this promoter region bound nuclear extracts more avidly. Carriers of rs3176891 G had endothelial cells with increased NTPDase1 activity and protein expression, and had platelets with enhanced aggregation. Thus, the G allele of rs3176891 marks a haplotype associated with increased clotting and platelet aggregation attributable to a promoter variant associated with increased transcription, expression, and activity of NTPDase1. We term this gain-of-function phenotype observed with rs3814159 G "CD39 Denver."-Maloney, J. P., Branchford, B. R., Brodsky, G. L., Cosmic, M. S., Calabrese, D. W., Aquilante, C. L., Maloney, K. W., Gonzalez, J. R., Zhang, W., Moreau, K. L., Wiggins, K. L., Smith, N. L., Broeckel, U., Di Paola, J. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.
Collapse
Affiliation(s)
- James P Maloney
- Division of Pulmonary and Critical Care Medicine, University of Colorado at Denver, Aurora, Colorado, USA;
- Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Brian R Branchford
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Gary L Brodsky
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Maxwell S Cosmic
- Chest, Infectious Disease, and Critical Care Associates, Des Moines, Iowa, USA
| | - David W Calabrese
- Division of Pulmonary and Critical Care Medicine, University of Colorado at Denver, Aurora, Colorado, USA
- Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Christina L Aquilante
- Pharmaceutical Sciences/School of Pharmacy, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kelly W Maloney
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Joseph R Gonzalez
- Otolaryngology-Head and Neck Surgery, University of Colorado at Denver, Aurora, Colorado, USA
| | - Weiming Zhang
- Biostatistics and Informatics/Colorado School of Public Health, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Seattle Epidemiologic Research and Information Center, Seattle, Washington, USA
- Veterans Affairs Office of Research and Development, Seattle, Washington, USA
- Group Health Research Institutes, Group Health Cooperative, Seattle, Washington, USA
| | - Ulrich Broeckel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jorge Di Paola
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| |
Collapse
|
8
|
Development of a novel strategy to target CD39 antithrombotic activity to the endothelial-platelet microenvironment in kidney ischemia-reperfusion injury. Purinergic Signal 2017; 13:259-265. [PMID: 28343356 DOI: 10.1007/s11302-017-9558-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
Kidney ischemia-reperfusion injury (IRI) is common during transplantation. IRI is characterised by inflammation and thrombosis and associated with acute and chronic graft dysfunction. P-selectin and its ligand PSGL-1 are cell adhesion molecules that control leukocyte-endothelial and leukocyte-platelet interactions under inflammatory conditions. CD39 is the dominant vascular nucleotidase that facilitates adenosine generation via extracellular ATP/ADP-phosphohydrolysis. Adenosine signalling is protective in renal IRI, but CD39 catalytic activity is lost with exposure to oxidant stress. We designed a P-selectin targeted CD39 molecule (rsol.CD39-PSGL-1) consisting of recombinant soluble CD39 that incorporates 20 residues of PSGL-1 that bind P-selectin. We hypothesised that rsol.CD39-PSGL-1 would maintain endothelial integrity by focusing the ectonucleotidase platelet-inhibitory activity and reducing leukocyte adhesion at the injury site. The rsol.CD39-PSGL-1 displayed ADPase activity and inhibited platelet aggregation ex vivo, as well as bound with high specificity to soluble P-selectin and platelet surface P-selectin. Importantly, mice injected with rsol.CD39-PSGL-1 and subjected to renal IRI showed significantly less kidney damage both biochemically and histologically, compared to those injected with solCD39. Furthermore, the equivalent dose of rsol.CD39-PSGL-1 had no effect on tail template bleeding times. Hence, targeting recombinant CD39 to the injured vessel wall via PSGL-1 binding resulted in substantial preservation of renal function and morphology after IRI without toxicity. These studies indicate potential translational importance to clinical transplantation and nephrology.
Collapse
|
9
|
Barth A, Brucker N, Moro AM, Nascimento S, Goethel G, Souto C, Fracasso R, Sauer E, Altknecht L, da Costa B, Duarte M, Menezes CB, Tasca T, Arbo MD, Garcia SC. Association between inflammation processes, DNA damage, and exposure to environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:353-362. [PMID: 27718115 DOI: 10.1007/s11356-016-7772-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Environmental exposure to pollutants, especially polycyclic aromatic hydrocarbons (PAHs), could lead to carcinogenesis development. However, there is a gap on the mechanisms involved in this effect. Therefore, the aim of this study was to investigate the potential relationship between exposure to environmental air pollution and inflammation process in DNA damage in taxi drivers. This study included 45 taxi drivers and 40 controls; non-smokers composed both groups. Biological monitoring was performed through quantification of urinary 1-hydroxypyrene (1-OHP). ICAM-1 (CD54) expression, NTPDase activity, inflammatory cytokine (IL-1β, IL-6, IL-10, TNF-α and IFN-γ) levels, and comet and micronucleus assays were evaluated. The results demonstrated that 1-OHP levels, ICAM-1 expression, NTPDase activity, and DNA damage biomarkers (% tail DNA and micronucleus frequency) were increased in taxi drivers compared to the control group (p < 0.01). Moreover, significant associations were found between 1-OHP levels and ICAM-1 expression, % tail DNA, and micronucleus frequency (p < 0.05). Besides, pro-inflammatory cytokine levels were positively correlated to % tail DNA and micronucleus frequency (p < 0.001). Our findings suggest an important association between environmental exposure to air pollution with increase of ICAM-1 expression and NTPDase activity in taxi drivers. Additionally, the multiple regression linear-analysis demonstrated association between IL-6 and DNA damage. Thus, the present study has provided important evidence that, in addition to environmental exposure to air pollutants, the inflammation process may contribute to DNA damage.
Collapse
Affiliation(s)
- Anelise Barth
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Goethel
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Souto
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Rafael Fracasso
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Louise Altknecht
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Bárbara da Costa
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
| | - Marta Duarte
- Department of Health Sciences, Lutheran University of Brazil, Santa Maria, RS, Brazil
| | - Camila B Menezes
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Research in Parasitology, Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Research in Parasitology, Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo D Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP.: 90610-000, Brazil.
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Institute of Cardiology, University Cardiology Foundation, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Cuker A, Husseinzadeh H, Lebedeva T, Marturano JE, Massefski W, Lowery TJ, Lambert MP, Abrams CS, Weisel JW, Cines DB. Rapid Evaluation of Platelet Function With T2 Magnetic Resonance. Am J Clin Pathol 2016; 146:681-693. [PMID: 28028118 PMCID: PMC5225753 DOI: 10.1093/ajcp/aqw189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objectives: The clinical diagnosis of qualitative platelet disorders (QPDs) based on light transmission aggregometry (LTA) requires significant blood volume, time, and expertise, all of which can be barriers to utilization in some populations and settings. Our objective was to develop a more rapid assay of platelet function by measuring platelet-mediated clot contraction in small volumes (35 µL) of whole blood using T2 magnetic resonance (T2MR). Methods: We established normal ranges for platelet-mediated clot contraction using T2MR, used these ranges to study patients with known platelet dysfunction, and then evaluated agreement between T2MR and LTA with arachidonic acid, adenosine diphosphate, epinephrine, and thrombin receptor activator peptide. Results: Blood from 21 healthy donors was studied. T2MR showed 100% agreement with LTA with each of the four agonists and their cognate inhibitors tested. T2MR successfully detected abnormalities in each of seven patients with known QPDs, with the exception of one patient with a novel mutation leading to Hermansky-Pudlak syndrome. T2MR appeared to detect platelet function at similar or lower platelet counts than LTA. Conclusions: T2MR may provide a clinically useful approach to diagnose QPDs using small volumes of whole blood, while also providing new insight into platelet biology not evident using plasma-based platelet aggregation tests.
Collapse
Affiliation(s)
- Adam Cuker
- From the Departments of Medicine
- Pathology and Laboratory Medicine
| | | | | | | | | | | | - Michele P Lambert
- Hematology Division, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Charles S Abrams
- From the Departments of Medicine
- Pathology and Laboratory Medicine
| | - John W Weisel
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia
| | - Douglas B Cines
- From the Departments of Medicine
- Pathology and Laboratory Medicine
| |
Collapse
|
11
|
Apostolova P, Zeiser R. The Role of Purine Metabolites as DAMPs in Acute Graft-versus-Host Disease. Front Immunol 2016; 7:439. [PMID: 27818661 PMCID: PMC5073102 DOI: 10.3389/fimmu.2016.00439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) causes high mortality in patients undergoing allogeneic hematopoietic cell transplantation. An early event in the classical pathogenesis of acute GvHD is tissue damage caused by the conditioning treatment or infection that consecutively leads to translocation of bacterial products [pathogen-associated molecular patterns (PAMPs)] into blood or lymphoid tissue, as well as danger-associated molecular patterns (DAMPs), mostly intracellular components that act as pro-inflammatory agents, once they are released into the extracellular space. A subtype of DAMPs is nucleotides, such as adenosine triphosphate released from dying cells that can activate the innate and adaptive immune system by binding to purinergic receptors. Binding to certain purinergic receptors leads to a pro-inflammatory microenvironment and promotes allogeneic T cell priming. After priming, T cells migrate to the acute GvHD target organs, mainly skin, liver, and the gastrointestinal tract and induce cell damage that further amplifies the release of intracellular components. This review summarizes the role of different purinergic receptors in particular P2X7 and P2Y2 as well as nucleotides in the pathogenesis of GvHD.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg , Freiburg , Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg , Freiburg , Germany
| |
Collapse
|
12
|
Hohmann JD, Peter K. Activated-platelet targeting of CD39 as a potential way forward. The quest for efficient antithrombotic therapy without associated bleeding complications. Hamostaseologie 2015; 36:17-25. [PMID: 26328528 DOI: 10.5482/hamo-14-12-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/27/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Antiplatelet therapy is given to millions of patients and has saved numerous lives. However, it is also associated with complications including fatal bleedings. Clinically used antiplatelet drugs seem to follow the rule of an inherent link of improved anti-thrombotic potency with increased risk of bleeding complications. Therefore, there is an ongoing quest to develop drugs that are able to break this link that has prevented many patients from receiving antiplatelet protection and has resulted in substantial mortality and morbidity. We describe a new antiplatelet approach that is based on an recombinant antibody protein, a drug format that has recently attracted major interest. Two unique components are genetically combined in this molecule: 1) The ecto-nucleoside triphosphate diphosphohydrolase NTPDase CD39, which enzymatically degrades ATP and ADP to AMP, which is then further degraded to adenosine by the endothelially expressed CD73. Thereby, the platelet activating ADP is reduced and replaced by the platelet inhibiting adenosine resulting in a strong antiplatelet effect. 2) A single-chain antibody (scFv) that specifically binds to the activated GPIIb/IIIa receptor and thus allows targeting to activated platelets. The described fusion protein results in strong enrichment of CD39's antiplatelet effect, resulting in potent inhibition of platelet adhesion and aggregation and thrombosis in mice. The activated platelet targeting allows using a low systemic concentration that does not interfere with normal haemostasis and thus does not cause bleeding time prolongation in mice. CONCLUSION We describe a new antiplatelet approach that promises to deliver strong localized antithrombotic effects without associated bleeding problems.
Collapse
Affiliation(s)
| | - K Peter
- Prof. Karlheinz Peter, Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria 8008, Australia,
| |
Collapse
|
13
|
Hajjar KA. Aaron J. Marcus: in pursuit of perfection. J Clin Invest 2015; 125:2912-3. [PMID: 26168221 DOI: 10.1172/jci83303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Kanthi Y, Hyman MC, Liao H, Baek AE, Visovatti SH, Sutton NR, Goonewardena SN, Neral MK, Jo H, Pinsky DJ. Flow-dependent expression of ectonucleotide tri(di)phosphohydrolase-1 and suppression of atherosclerosis. J Clin Invest 2015; 125:3027-36. [PMID: 26121751 DOI: 10.1172/jci79514] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/21/2015] [Indexed: 01/18/2023] Open
Abstract
The ability of cells to detect and respond to nucleotide signals in the local microenvironment is essential for vascular homeostasis. The enzyme ectonucleotide tri(di)phosphohydrolase-1 (ENTPD1, also known as CD39) on the surface of leukocytes and endothelial cells metabolizes locally released, intravascular ATP and ADP, thereby eliminating these prothrombotic and proinflammatory stimuli. Here, we evaluated the contribution of CD39 to atherogenesis in the apolipoprotein E-deficient (ApoE-deficient) mouse model of atherosclerosis. Compared with control ApoE-deficient animals, plaque burden was markedly increased along with circulating markers of platelet activation in Cd39+/-Apoe-/- mice fed a high-fat diet. Plaque analysis revealed stark regionalization of endothelial CD39 expression and function in Apoe-/- mice, with CD39 prominently expressed in atheroprotective, stable flow regions and diminished in atheroprone areas subject to disturbed flow. In mice, disturbed flow as the result of partial carotid artery ligation rapidly suppressed endothelial CD39 expression. Moreover, unidirectional laminar shear stress induced atheroprotective CD39 expression in human endothelial cells. CD39 induction was dependent upon the vascular transcription factor Krüppel-like factor 2 (KLF2) binding near the transcriptional start site of CD39. Together, these data establish CD39 as a regionalized regulator of atherogenesis that is driven by shear stress.
Collapse
|
15
|
Tomaszewski KA, Radomski MW, Santos-Martinez MJ. Nanodiagnostics, nanopharmacology and nanotoxicology of platelet–vessel wall interactions. Nanomedicine (Lond) 2015; 10:1451-75. [DOI: 10.2217/nnm.14.232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In physiological conditions, the interactions between blood platelets and endothelial cells play a major role in vascular reactivity and hemostasis. By contrast, increased platelet activation contributes to the pathogenesis of vascular pathology such as atherosclerosis, thrombosis, diabetes mellitus, hypertension and carcinogenesis. Nanomedicine, including nanodiagnostics and nanotherapeutics is poised to be used in the management of vascular diseases. However, the inherent risk and potential toxicity resultant from the use of nanosized (<100 nm) materials need to be carefully considered. This review, basing on a systematic search of literature provides state-of-the-art and focuses on new discoveries, as well as the potential benefits and threats in the field of nanodiagnostics, nanopharmacology and nanotoxicology of platelet–vessel wall interactions.
Collapse
Affiliation(s)
- Krzysztof A Tomaszewski
- School of Pharmacy & Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland
- Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika St, 31–034 Krakow, Poland
| | - Marek W Radomski
- School of Pharmacy & Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland
- Kardio-Med Silesia, Zabrze, Poland
- Medical University of Silesia, Katowice, Poland
| | - Maria Jose Santos-Martinez
- School of Pharmacy & Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland
- School of Medicine, The University of Dublin Trinity College, Dublin, Ireland
| |
Collapse
|
16
|
Adeoye OO, Silpanisong J, Williams JM, Pearce WJ. Role of the sympathetic autonomic nervous system in hypoxic remodeling of the fetal cerebral vasculature. J Cardiovasc Pharmacol 2015; 65:308-16. [PMID: 25853949 PMCID: PMC4391294 DOI: 10.1097/fjc.0000000000000192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fetal hypoxia triggers compensatory angiogenesis and remodeling through mechanisms not fully elucidated. In response to hypoxia, hypoxia-inducible factor drives expression of cytokines that exert multiple effects on cerebral structures. Among these, the artery wall is composed of a heterogeneous cell mix and exhibits distinct patterns of cellular differentiation and reactivity. Governing these patterns are the vascular endothelium, smooth muscle (SM), adventitia, sympathetic perivascular nerves (SPN), and the parenchyma. Although an extensive literature details effects of nonneuronal factors on cerebral arteries, the trophic role of perivascular nerves remains unclear. Hypoxia increases sympathetic innervation with subsequent release of norepinephrine (NE), neuropeptide-Y (NPY), and adenosine triphosphate, which exert motor and trophic effects on cerebral arteries and influence dynamic transitions among SM phenotypes. Our data also suggest that the cerebrovasculature reacts very differently to hypoxia in fetuses and adults, and we hypothesize that these differences arise from age-related differences in arterial SM phenotype reactivity and proximity to trophic factors, particularly of neural origin. We provide an integration of recent literature focused on mechanisms by which SPN mediate hypoxic remodeling. Our recent findings suggest that trophic effects of SPN on cerebral arteries accelerate functional maturation through shifts in SM phenotype in an age-dependent manner.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adult
- Age Factors
- Animals
- Cerebrovascular Circulation
- Fetal Hypoxia/complications
- Fetal Hypoxia/metabolism
- Fetal Hypoxia/physiopathology
- Humans
- Hypoxia, Brain/complications
- Hypoxia, Brain/metabolism
- Hypoxia, Brain/physiopathology
- Muscle, Smooth, Vascular/innervation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/physiopathology
- Neuropeptide Y/metabolism
- Norepinephrine/metabolism
- Sympathetic Nervous System/metabolism
- Sympathetic Nervous System/physiopathology
- Vascular Remodeling
Collapse
Affiliation(s)
- Olayemi O Adeoye
- Divisions of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | | | | | | |
Collapse
|
17
|
Paavilainen S, Guidotti G. Interactions between the transmembrane domains of CD39: identification of interacting residues by yeast selection. SCIENCEOPEN RESEARCH 2014; 2014. [PMID: 26258004 DOI: 10.14293/s2199-1006.1.sorlife.aeeerm.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rat CD39, a membrane-bound ectonucleoside triphosphate diphosphohydrolase that hydrolyzes extracellular nucleoside tri- and diphosphates, is anchored to the membrane by two transmembrane domains at the two ends of the molecule. The transmembrane domains are important for enzymatic activity, as mutants lacking one or both of these domains have a fraction of the enzymatic activity of the wild-type CD39. We investigated the interactions between the transmembrane domains by using a strain of yeast that requires surface expression of CD39 for growth. Random mutagenesis of selected amino acid residues in the N-terminal transmembrane domain revealed that the presence of charged amino acids at these positions prevents expression of functional protein. Rescue of the growth of these mutants by complementary mutations on selected residues of the C-terminal transmembrane domain indicates that there is contact between particular faces of the transmembrane domains.
Collapse
Affiliation(s)
- Sari Paavilainen
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Guido Guidotti
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Bodnár T, Fasano A, Sequeira A. Mathematical Models for Blood Coagulation. FLUID-STRUCTURE INTERACTION AND BIOMEDICAL APPLICATIONS 2014. [DOI: 10.1007/978-3-0348-0822-4_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Kindlin-2 regulates hemostasis by controlling endothelial cell-surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism. Blood 2013; 122:2491-9. [PMID: 23896409 DOI: 10.1182/blood-2013-04-497669] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Kindlin-2, a widely distributed cytoskeletal protein, has been implicated in integrin activation, and its absence is embryonically lethal in mice. In the present study, we tested whether hemostasis might be perturbed in kindlin-2(+/-) mice. Bleeding time and carotid artery occlusion time were significantly prolonged in kindlin-2(+/-) mice. Whereas plasma concentrations/activities of key coagulation/fibrinolytic proteins and platelet counts and aggregation were similar in wild-type and kindlin-2(+/-) mice, kindlin-2(+/-) endothelial cells (ECs) showed enhanced inhibition of platelet aggregation induced by adenosine 5'-diphosphate (ADP) or low concentrations of other agonists. Cell-surface expression of 2 enzymes involved in ADP/adenosine 5'-monophosphate (AMP) degradation, adenosine triphosphate (ATP) diphosphohydrolase (CD39) and ecto-5'-nucleotidase (CD73) were increased twofold to threefold on kindlin-2(+/-) ECs, leading to enhanced ATP/ADP catabolism and production of adenosine, an inhibitor of platelet aggregation. Trafficking of CD39 and CD73 at the EC surface was altered in kindlin-2(+/-) mice. Mechanistically, this was attributed to direct interaction of kindlin-2 with clathrin heavy chain, thereby controlling endocytosis and recycling of CD39 and CD73. The interaction of kindlin-2 with clathrin was independent of its integrin binding site but still dependent on a site within its F3 subdomain. Thus, kindlin-2 regulates trafficking of EC surface enzymes that control platelet responses and hemostasis.
Collapse
|
20
|
Chiu TY, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood JL, Clark G, Roux SJ. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1913-25. [PMID: 23034877 DOI: 10.1093/pcp/pcs131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases; apyrases) (EC 3.6.1.5) hydrolyze di- and triphosphate nucleotides, but not monophosphate nucleotides. They are categorized as E-type ATPases, have a broad divalent cation (Mg(2+), Ca(2+)) requirement for activation and are insensitive to inhibitors of F-type, P-type and V-type ATPases. Among the seven NTPDases identified in Arabidopsis, only APYRASE 1 (AtAPY1) and APYRASE 2 (AtAPY2) have been previously characterized. In this work, either AtAPY1 or AtAPY2 tagged with C-terminal green fluorescent protein (GFP) driven by their respective native promoter can rescue the apy1 apy2 double knockout (apy1 apy2 dKO) successfully, and confocal microscopy reveals that these two Arabidopsis apyrases reside in the Golgi apparatus. In Saccharomyces cerevisiae, both AtAPY1 and AtAPY2 can complement the Golgi-localized GDA1 mutant, rescuing its aberrant protein glycosylation phenotype. In Arabidopsis, microsomes of the wild type show higher substrate preferences toward UDP compared with other NDP substrates. Loss-of-function Arabidopsis AtAPY1 mutants exhibit reduced microsomal UDPase activity, and this activity is even more significantly reduced in the loss-of-function AtAPY2 mutant and in the AtAPY1/AtAPY2 RNA interference (RNAi) technology repressor lines. Microsomes from wild-type plants also have detectable GDPase activity, which is significantly reduced in apy2 but not apy1 mutants. The GFP-tagged AtAPY1 or AtAPY2 constructs in the apy1 apy2 dKO plants can restore microsomal UDP/GDPase activity, confirming that they both also have functional competency. The cell walls of apy1, apy2 and the RNAi-silenced lines all have an increased composition of galactose, but the transport efficiency of UDP-galactose across microsomal membranes was not altered. Taken together, these results reveal that AtAPY1 and AtAPY2 are Golgi-localized nucleotide diphosphatases and are likely to have roles in regulating UDP/GDP concentrations in the Golgi lumen.
Collapse
Affiliation(s)
- Tsan-Yu Chiu
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ectonucleotidases in solid organ and allogeneic hematopoietic cell transplantation. J Biomed Biotechnol 2012; 2012:208204. [PMID: 23125523 PMCID: PMC3482062 DOI: 10.1155/2012/208204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023] Open
Abstract
Extracellular nucleotides are ubiquitous signalling molecules which modulate distinct physiological and pathological processes. Nucleotide concentrations in the extracellular space are strictly regulated by cell surface enzymes, called ectonucleotidases, which hydrolyze nucleotides to the respective nucleosides. Recent studies suggest that ectonucleotidases play a significant role in inflammation by adjusting the balance between ATP, a widely distributed proinflammatory danger signal, and the anti-inflammatory mediator adenosine. There is increasing evidence for a central role of adenosine in alloantigen-mediated diseases such as solid organ graft rejection and acute graft-versus-host disease (GvHD). Solid organ and hematopoietic cell transplantation are established treatment modalities for a broad spectrum of benign and malignant diseases. Immunological complications based on the recognition of nonself-antigens between donor and recipient like transplant rejection and GvHD are still major challenges which limit the long-term success of transplantation. Studies in the past two decades indicate that purinergic signalling influences the severity of alloimmune responses. This paper focuses on the impact of ectonucleotidases, in particular, NTPDase1/CD39 and ecto-5'-nucleotidase/CD73, on allograft rejection, acute GvHD, and graft-versus-leukemia effect, and on possible clinical implications for the modulation of purinergic signalling after transplantation.
Collapse
|
22
|
Rooklin DW, Lu M, Zhang Y. Revelation of a catalytic calcium-binding site elucidates unusual metal dependence of a human apyrase. J Am Chem Soc 2012; 134:15595-603. [PMID: 22928549 PMCID: PMC3461190 DOI: 10.1021/ja307267y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human soluble calcium-activated nucleotidase 1 (hSCAN-1) represents a new family of apyrase enzymes that catalyze the hydrolysis of nucleotide di- and triphosphates, thereby modulating extracellular purinergic and pyrimidinergic signaling. Among well-characterized phosphoryl transfer enzymes, hSCAN-1 is unique not only in its unusual calcium-dependent activation, but also in its novel phosphate-binding motif. Its catalytic site does not utilize backbone amide groups to bind phosphate, as in the common P-loop, but contains a large cluster of acidic ionizable side chains. By employing a state-of-the-art computational approach, we have revealed a previously uncharacterized catalytic calcium-binding site in hSCAN-1, which elucidates the unusual calcium-dependence of its apyrase activity. In a high-order coordination shell, the newly identified calcium ion organizes the active site residues to mediate nucleotide binding, to orient the nucleophilic water, and to facilitate the phosphoryl transfer reaction. From ab initio QM/MM molecular dynamics simulations with umbrella sampling, we have characterized a reverse protonation catalytic mechanism for hSCAN-1 and determined its free energy reaction profile. Our results are consistent with available experimental studies and provide new detailed insight into the structure-function relationship of this novel calcium-activated phosphoryl transfer enzyme.
Collapse
Affiliation(s)
- David W. Rooklin
- Department of Chemistry, New York University, New York, NY 10003
| | - Min Lu
- Public Health Research Institute Center, Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
| |
Collapse
|
23
|
Yegutkin GG, Wieringa B, Robson SC, Jalkanen S. Metabolism of circulating ADP in the bloodstream is mediated via integrated actions of soluble adenylate kinase-1 and NTPDase1/CD39 activities. FASEB J 2012; 26:3875-83. [PMID: 22637533 DOI: 10.1096/fj.12-205658] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracellular ATP and ADP trigger inflammatory, vasodilatatory, and prothrombotic signaling events in the vasculature, and their turnover is governed by networks of membrane-associated enzymes. The contribution of soluble activities to intravascular nucleotide homeostasis remains controversial. By using thin-layer chromatographic assays, we revealed transphosphorylation of [γ-(32)P]ATP and AMP by human and murine sera, which was progressively inhibited by specific adenylate kinase (AK) inhibitor Ap(5)A. This phosphotransfer reaction was diminished markedly in serum from knockout mice lacking the major AK isoform, AK1, and in human serum immunodepleted of AK1. We also showed that ∼75% ADP in cell-free serum is metabolized via reversible AK1 reaction 2ADP ↔ ATP + AMP. The generated ATP and AMP are then metabolized through the coupled nucleotide pyrophosphatase/phosphodiesterase and 5'-nucleotidase/CD73 reactions, respectively. Constitutive presence of another nucleotide-converting enzyme, nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, known as CD39), was ascertained by the relative deficiency of serum from CD39-null mice to dephosphorylate [(3)H]ADP and [γ-(32)P]ATP, and also by diminished [(3)H]ADP hydrolysis by human serum pretreated with NTPDase1 inhibitors, POM-1 and ARL-67156. In summary, we have identified hitherto unrecognized soluble forms of AK1 and NTPDase1/CD39 that contribute in the active cycling between the principal platelet-recruiting agent ADP and other circulating nucleotides.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520 Turku, Finland.
| | | | | | | |
Collapse
|
24
|
Bertoncheli CDM, Zimmermann CEP, Jaques JADS, Leal CAM, Ruchel JB, Rocha BC, Pinheiro KDV, Souza VDCG, Stainki DR, Luz SCA, Schetinger MRC, Leal DBR. Increased NTPDase activity in lymphocytes during experimental sepsis. ScientificWorldJournal 2012; 2012:941906. [PMID: 22645477 PMCID: PMC3354756 DOI: 10.1100/2012/941906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022] Open
Abstract
We investigated in rats induced to sepsis the activity of ectonucleoside triphosphate diphosphohydrolase (NTPDase; CD39; E.C. 3.6.1.5), an enzyme involved in the modulation of immune responses. After 12 hours of surgery, lymphocytes were isolated from blood and NTPDase activity was determined. It was also performed the histology of kidney, liver, and lung. The results demonstrated an increase in the hydrolysis of adenosine-5′-triphosphate (ATP) (P < 0.01), but no changes regarding adenosine-5′-monophosphate (ADP) hydrolysis (P > 0.05). Histological analysis showed several morphological changes in the septic group, such as vascular congestion, necrosis, and infiltration of mononuclear cells. It is known that the intracellular milieu contains much more ATP nucleotides than the extracellular. In this context, the increased ATPasic activity was probably induced as a dynamic response to clean up the elevated ATP levels resulting from cellular death.
Collapse
Affiliation(s)
- Claudia de Mello Bertoncheli
- Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Platelets have attracted a growing interest among basic scientists and clinicians, as they have been shown to play an important role in many physiological and pathophysiological conditions. Beyond hemostasis, platelets participate in wound healing, inflammation, infectious diseases, maintenance of the endothelial barrier function, angiogenesis, and tumor metastasis. Over the last 50 years enormous progress has been made in our understanding of the role of platelets in hemostasis. Platelets circulate in blood in a resting state, but they are able to react immediately upon a vessel wall injury by adhering to the exposed collagen, followed by platelet-platelet interaction to form a plug that effectively seals the injured vessel wall to prevent excessive blood loss. Comparable events will take place on a rupturing atherosclerotic plaque, which may result in a platelet-rich thrombus. This chapter will address the molecular basis of platelet adhesion and aggregation, the regulation of platelet function and the interaction of primary and secondary hemostasis.
Collapse
Affiliation(s)
- Philip G de Groot
- Department of Clinical Chemistry and Haematology (G03.550), University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | |
Collapse
|
26
|
Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase) 1. J Mol Biol 2011; 415:288-306. [PMID: 22100451 DOI: 10.1016/j.jmb.2011.10.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 12/15/2022]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a physiologically important class of membrane-bound ectonucleotidases responsible for the regulation of extracellular levels of nucleotides. CD39 or NTPDase1 is the dominant NTPDase of the vasculature. By hydrolyzing proinflammatory ATP and platelet-activating ADP to AMP, it blocks platelet aggregation and supports blood flow. Thus, great interest exists in understanding the structure and dynamics of this prototype member of the eukaryotic NTPDase family. Here, we report the crystal structure of a variant of soluble NTPDase1 lacking a putative membrane interaction loop identified between the two lobes of the catalytic domain. ATPase and ADPase activities of this variant are determined via a newly established kinetic isothermal titration calorimetry assay and compared to that of the soluble NTPDase1 variant characterized previously. Complex structures with decavanadate and heptamolybdate show that both polyoxometallates bind electrostatically to a loop that is involved in binding of the nucleobase. In addition, a comparison of the domain orientations of the four independent proteins in the crystal asymmetric unit provides the first direct experimental evidence for a domain motion of NTPDases. An interdomain rotation angle of up to 7.4° affects the active site cleft between the two lobes of the protein. Comparison with a previously solved bacterial NTPDase structure indicates that the domains may undergo relative rotational movements of more than 20°. Our data support the idea that the influence of transmembrane helix dynamics on activity is achieved by coupling to a domain motion.
Collapse
|
27
|
Corti F, Olson KE, Marcus AJ, Levi R. The expression level of ecto-NTP diphosphohydrolase1/CD39 modulates exocytotic and ischemic release of neurotransmitters in a cellular model of sympathetic neurons. J Pharmacol Exp Ther 2011; 337:524-32. [PMID: 21325440 PMCID: PMC3083107 DOI: 10.1124/jpet.111.179994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 11/22/2022] Open
Abstract
Once released, norepinephrine is removed from cardiac synapses via reuptake into sympathetic nerves, whereas transmitter ATP is catabolized by ecto-NTP diphosphohydrolase 1 (E-NTPDase1)/CD39, an ecto-ATPase. Because ATP is known to modulate neurotransmitter release at prejunctional sites, we questioned whether this action may be ultimately controlled by the expression of E-NTPDase1/CD39 at sympathetic nerve terminals. Accordingly, we silenced E-NTPDase1/CD39 expression in nerve growth factor-differentiated PC12 cells, a cellular model of sympathetic neuron, in which dopamine is the predominant catecholamine. We report that E-NTPDase1/CD39 deletion markedly increases depolarization-induced exocytosis of ATP and dopamine and increases ATP-induced dopamine release. Moreover, overexpression of E-NTPDase1/CD39 resulted in enhanced removal of exogenous ATP, a marked decrease in exocytosis of ATP and dopamine, and a large decrease in ATP-induced dopamine release. Administration of a recombinant form of E-NTPDase1/CD39 reproduced the effects of E-NTPDase1/CD39 overexpression. Exposure of PC12 cells to simulated ischemia elicited a release of ATP and dopamine that was markedly increased in E-NTPDase1/CD39-silenced cells and decreased in E-NTPDase1/CD39-overexpressing cells. Therefore, transmitter ATP acts in an autocrine manner to promote its own release and that of dopamine, an action that is controlled by the level of E-NTPDase1/CD39 expression. Because ATP availability greatly increases in myocardial ischemia, recombinant E-NTPDase1/CD39 therapeutically used may offer a novel approach to reduce cardiac dysfunctions caused by excessive catecholamine release.
Collapse
Affiliation(s)
- Federico Corti
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065-4896, USA
| | | | | | | |
Collapse
|
28
|
Straub A, Krajewski S, Hohmann JD, Westein E, Jia F, Bassler N, Selan C, Kurz J, Wendel HP, Dezfouli S, Yuan Y, Nandurkar H, Jackson S, Hickey MJ, Peter K. Evidence of platelet activation at medically used hypothermia and mechanistic data indicating ADP as a key mediator and therapeutic target. Arterioscler Thromb Vasc Biol 2011; 31:1607-16. [PMID: 21512161 DOI: 10.1161/atvbaha.111.226373] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Hypothermia is used in various clinical settings to inhibit ischemia-related organ damage. However, prothrombotic effects have been described as potential side effects. This study aimed to elucidate the mechanism of hypothermia-induced platelet activation and subsequent prothrombotic events and to develop preventative pharmacological strategies applicable during clinically used hypothermia. METHODS AND RESULTS Platelet function was investigated ex vivo and in vivo at clinically used hypothermia (28°C/18°C). Hypothermic mice demonstrated increased expression of platelet activation marker P-selectin, platelet-leukocyte aggregate formation, and thrombocytopenia. Intravital microscopy of FeCl(3)-injured murine mesenteric arteries revealed increased platelet thrombus formation with hypothermia. Ex vivo flow chamber experiments indicated increased platelet-fibrinogen adhesion under hypothermia. We show that hypothermia results in reduced ADP hydrolysis via reduction of CD39 (E-NTPDase1) activity, resulting in increased levels of ADP and subsequent augmented primary and secondary platelet activation. In vivo administration of ADP receptor P(2)Y(12) antagonists and recombinant soluble CD39 prevented hypothermia-induced thrombus formation and thrombocytopenia, respectively. CONCLUSIONS The platelet agonist ADP plays a key role in hypothermia-induced platelet activation. Inhibition of receptor binding or hydrolysis of ADP has the potential to protect platelets against hypothermia-induced activation. Our findings provide a rational basis for further evaluation of novel antithrombotic strategies in clinically applied hypothermia.
Collapse
Affiliation(s)
- Andreas Straub
- Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, PO Box 6492 St Kilda Rd Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Knowles AF. The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 2011; 7:21-45. [PMID: 21484095 DOI: 10.1007/s11302-010-9214-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023] Open
Abstract
The first comprehensive review of the ubiquitous "ecto-ATPases" by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA,
| |
Collapse
|
30
|
Oliveira CB, Da Silva AS, Vargas LB, Bitencourt PER, Souza VCG, Costa MM, Leal CAM, Moretto MB, Leal DBR, Lopes STA, Monteiro SG. Activities of adenine nucleotide and nucleoside degradation enzymes in platelets of rats infected by Trypanosoma evansi. Vet Parasitol 2011; 178:9-14. [PMID: 21273003 DOI: 10.1016/j.vetpar.2010.12.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/23/2010] [Accepted: 12/22/2010] [Indexed: 01/28/2023]
Abstract
Nucleotide and nucleoside-degrading enzymes, such as nucleoside triphosphate diphosphohydrose (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are present in the surface membranes of platelets, involved in clotting disturbances of Trypanosoma evansi-infected animals. Thus, this study was aimed at evaluating the activities of these enzymes in platelets of rats experimentally infected with T. evansi. Animals were divided into four groups, according to the level of parasitemia. Blood samples were collected on days 3 (group A: at the beginning of parasitemia), 5 (group B: high parasitemia) and 15 (group C: chronic infection), post-infection. Group D (control group) was composed of non-infected animals for platelet count, separation and enzymatic assays. Animals from groups A and B showed marked thrombocytopenia, but platelet count was not affected in chronically infected rats. NTPDase, 5'-nucleotidase and ADA activities decreased (p<0.05) in platelets from rats of groups A and B, when compared to the control group. In group C, only NTPDase and 5'-nucleoside activities decreased (p<0.001). The correlations between platelet count and nucleotide/nucleoside hydrolysis were positive and statistically significant (p<0.05) in groups A and B. Platelet aggregation was decreased in all infected groups, in comparison to the control group (p<0.05). It is concluded that the alterations observed in the activities of NTPDase, 5'-nucleotidase and ADA in platelets of T. evansi-infected animals might be related to thrombocytopenia, that by reducing the number of platelets, there was less release of ATP and ADP. Another possibility being suggested is that changes have occurred in the membrane of these cells, decreasing the expression of these enzymes in the cell membrane.
Collapse
Affiliation(s)
- Camila B Oliveira
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Souza CGD, Böhmer AE, Müller AP, Oses JP, Viola GG, Lesczinski DN, Souza DGD, Knorr L, Moreira JD, Lhullier F, Souza DO, Perry MLS. Effects of a highly palatable diet on lipid and glucose parameters, nitric oxide, and ectonucleotidases activity. Appl Physiol Nutr Metab 2010; 35:591-7. [PMID: 20962914 DOI: 10.1139/h10-048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity has reached epidemic proportions worldwide and is stimulated by the ready availability of food rich in fat and sugar (highly palatable diet). This type of diet increases the risks of obesity-associated pathologies, such as insulin resistance and cardiovascular disease. Nitric oxide, a potent endogenous vasodilator, is decreased in these pathologies, mostly as a result of insulin resistance. Ectonucleotidases are ecto and soluble enzymes that regulate the availability of the nucleotides ATP, ADP, and AMP and the nucleoside adenosine in the vascular system, thereby affecting vasoconstriction, vasodilatation, and platelet aggregation homeostasis. The aim of this study was to evaluate the effects of a highly palatable diet on serum lipid and glucose parameters, nitric oxide, and ectonucleotidase activity. Forty male Wistar rats were fed 1 of 2 diets for either 45 days or 4 months: standard chow (SC, n = 10) or a highly palatable diet enriched with sucrose (HP, n = 10). Body mass, visceral fat mass, glucose tolerance, cholesterol (total, high-density lipoprotein (HDL) and non-HDL), serum triacylglycerol, liver triacylglycerol, and free glycerol were increased in the HP group after 45 days and after 4 months, whereas insulin levels were not different between the groups at either time. Furthermore, levels of nitric oxide metabolites and ATP, ADP, and AMP hydrolysis were significantly lower in the HP group (p < 0.05) after 4 months. In conclusion, the consumption of the HP diet for 4 months induced overall corporal and metabolic changes, and decreased nitric oxide metabolites and ectonucleotidase activity, thereby promoting an appropriate environment for the development of cardiovascular diseases, without apparent changes in insulin levels.
Collapse
Affiliation(s)
- Carolina Guerini de Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600 anexo, CEP 90035003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Nitric oxide (NO) is a structurally simple, highly versatile molecule that was originally discovered over 30 years ago as an endothelium-derived relaxing factor. In addition to its vasorelaxing effects, NO is now recognized a key determinant of vascular health, exerting antiplatelet, antithrombotic, and anti-inflammatory properties within the vasculature. This short-lived molecule exerts its inhibitory effect on platelets largely through cGMP-dependent mechanisms, resulting in a multitude of molecular effects by which platelet activation and aggregation are prevented. The biosynthesis of NO occurs via the catalytic activity of nitric oxide synthase (NOS), an oxido-reductase found in many cell types. Nitric oxide insufficiency can be attributed to limited substrate/cofactor availability as well as interactions with reactive oxygen species (ROS). Impaired NO bioavailability represents the central feature of endothelial dysfunction, a common abnormality found in many vascular diseases. In this review, we present an overview of NO synthesis and biochemistry, discuss the mechanisms of action of NO in regulating platelet and endothelial function, and review the effects of vascular disease states on NO bioavailability.
Collapse
Affiliation(s)
- Richard C Jin
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Vivian JP, Riedmaier P, Ge H, Le Nours J, Sansom FM, Wilce MCJ, Byres E, Dias M, Schmidberger JW, Cowan PJ, d'Apice AJF, Hartland EL, Rossjohn J, Beddoe T. Crystal structure of a Legionella pneumophila ecto -triphosphate diphosphohydrolase, a structural and functional homolog of the eukaryotic NTPDases. Structure 2010; 18:228-38. [PMID: 20159467 DOI: 10.1016/j.str.2009.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/16/2009] [Accepted: 11/24/2009] [Indexed: 12/20/2022]
Abstract
Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes. To address the function of bacterial NTPDases, we describe the structures of an NTPDase from the pathogen Legionella pneumophila (Lpg1905/Lp1NTPDase) in its apo state and in complex with the ATP analog AMPPNP and the subtype-specific NTPDase inhibitor ARL 67156. Lp1NTPDase is structurally and catalytically related to eukaryotic NTPDases and the structure provides a basis for NTPDase-specific inhibition. Furthermore, we demonstrate that the activity of Lp1NTPDase correlates directly with intracellular replication of Legionella within macrophages. Collectively, these findings provide insight into the mechanism of this enzyme and highlight its role in host-pathogen interactions.
Collapse
Affiliation(s)
- Julian P Vivian
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li CS, Lee Y, Knowles AF. The stability of chicken nucleoside triphosphate diphosphohydrolase 8 requires both of its transmembrane domains. Biochemistry 2010; 49:134-46. [PMID: 20000380 DOI: 10.1021/bi901820c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chicken nucleoside triphosphate diphosphohydrolase 8 (NTPDase8) is a cell surface ectonucleotidase with a large extracellular domain (ECD) containing the active site and is anchored to the membrane by two transmembrane domains (TMDs) at the N- and C-termini. Unlike other cell surface NTPDases that have been characterized, the chicken NTPDase8 is not susceptible to substrate inactivation or agents that cause membrane perturbation. To determine if the stability of the enzyme is inherent in its ECD, the cDNA construct of the soluble chicken NTPDase8 was expressed and the protein purified. The ATPase activity of the purified soluble chicken NTPDase8 was less than 15% of that of the purified full-length enzyme. Strikingly, in contrast to the membrane-bound enzyme, the activity of the soluble chicken NTPDase8 decreased with time in a temperature-dependent manner as a result of inactivation by ATP, ADP, and P(i). Truncated mutants in which the ECD is anchored by a single TMD at either the N- or the C-terminus by the native chicken NTPDase TMDs or a TMD from a different NTPDase, human NTPDase2, also displayed a nonlinear time course of ATP hydrolysis. While removal of the N- or C-terminal TMD affected protein expression differently, the truncated mutants were generally similar to the soluble chicken NTPDase8 with respect to ATP, ADP, and P(i) inactivation. Other biochemical characteristics, e.g., ATPase/ADPase ratios, inhibition by azide, and affinity for ATP, were also altered when one or both of the TMDs were removed from the chicken NTPDase8. These results indicate that (1) both TMDs of the chicken NTPDase8 are required to maintain stability of the enzyme and maximal catalytic activity and (2) the conformations of the ectodomain in the soluble enzyme and the truncated mutants differ from that of the full-length chicken NTPDase8.
Collapse
Affiliation(s)
- Cheryl S Li
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, USA
| | | | | |
Collapse
|
35
|
Drosopoulos JHF, Kraemer R, Shen H, Upmacis RK, Marcus AJ, Musi E. Human solCD39 inhibits injury-induced development of neointimal hyperplasia. Thromb Haemost 2009; 103:426-34. [PMID: 20024507 DOI: 10.1160/th09-05-0305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 11/01/2009] [Indexed: 12/13/2022]
Abstract
Blood platelets provide the initial response to vascular endothelial injury, becoming activated as they adhere to the injured site. Activated platelets recruit leukocytes, and initiate proliferation and migration of vascular smooth muscle cells (SMC) within the injured vessel wall, leading to development of neointimal hyperplasia. Endothelial CD39/NTPDase1 and recombinant solCD39 rapidly metabolise nucleotides, including stimulatory ADP released from activated platelets, thereby suppressing additional platelet reactivity. Using a murine model of vascular endothelial injury, we investigated whether circulating human solCD39 could reduce platelet activation and accumulation, thus abating leukocyte infiltration and neointimal formation following vascular damage. Intraperitoneally-administered solCD39 ADPase activity in plasma peaked 1 hour (h) post-injection, with an elimination half-life of 43 h. Accordingly, mice were administered solCD39 or saline 1 h prior to vessel injury, then either sacrificed 24 h post-injury or treated with solCD39 or saline (three times weekly) for an additional 18 days. Twenty-four hours post-injury, solCD39-treated mice displayed a reduction in platelet activation and recruitment, P-selectin expression, and leukocyte accumulation in the arterial lumen. Furthermore, repeated administration of solCD39 modulated the late stage of vascular injury by suppressing leukocyte deposition, macrophage infiltration and smooth muscle cell (SMC) proliferation/migration, resulting in abrogation of neointimal thickening. In contrast, injured femoral arteries of saline-injected mice exhibited massive platelet thrombus formation, marked P-selectin expression, and leukocyte infiltration. Pronounced neointimal growth with macrophage and SMC accretion was also observed (intimal-to-medial area ratio 1.56 +/- 0.34 at 19 days). Thus, systemic administration of solCD39 profoundly affects injury-induced cellular responses, minimising platelet deposition and leukocyte recruitment, and suppressing neointimal hyperplasia.
Collapse
Affiliation(s)
- J H F Drosopoulos
- Thrombosis Research Laboratory, Room 13026W, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, N.Y. 10010-5050, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Gaddie KJ, Kirley TL. Conserved polar residues stabilize transmembrane domains and promote oligomerization in human nucleoside triphosphate diphosphohydrolase 3. Biochemistry 2009; 48:9437-47. [PMID: 19743837 DOI: 10.1021/bi900909g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polar residues play essential roles in the functions of transmembrane helices by mediating and stabilizing their helical interactions. To investigate the structural and functional roles of the conserved polar residues in the N- and C-terminal transmembrane helices of human nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) (N-terminus, S33, S39, T41, and Q44; C-terminus, T490, T495, and C501), each was singly mutated to alanine. The mutant proteins were analyzed for enzymatic activities, glycosylation status, expression level, and Triton X-100 detergent sensitivity. The Q44A mutation decreased Mg-ATPase activity by approximately 70% and abolished Triton X-100 detergent inhibition of Ca-dependent nucleotidase activities while greatly attenuating Triton X-100 inhibition of Mg-dependent nucleotidase activities. The polar residues were also mutated to cysteine, singly and in pairs, to allow a disulfide cross-linking strategy to map potential inter- and intramolecular hydrogen bond interactions. The results support the centrality of Q44 for the strong intermolecular interactions driving the association of the N-terminal helices of two NTPDase3 monomers in a dimer, and the possibility that T41 may play a role in the specificity of this interaction. In addition, S33 and C501 form an intramolecular association, while S39 and T495 may contribute to helical interactions involved in forming higher-order oligomers. Lastly, Tween 20 substantially and selectively increases NTPDase3 activity, mediated by the transmembrane helices containing the conserved polar residues. Taken together, the data suggest a model for putative hydrogen bond interactions of the conserved polar residues in the transmembrane domain of native, oligomeric NTPDase3. These interactions are important for proper protein expression, full enzymatic activity, and susceptibility to membrane perturbations.
Collapse
Affiliation(s)
- Keith J Gaddie
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | | |
Collapse
|
37
|
Activities of the enzymes that hydrolyze adenine nucleotides in platelets from multiple sclerosis patients. J Neurol 2009; 257:24-30. [PMID: 19629564 DOI: 10.1007/s00415-009-5258-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/27/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis (MS) is the most common chronic disabling neurological disease in young adults. Alterations in platelet function have been observed in MS; however, the mechanism and the relevance of this blood cell disorder with regard to MS pathogenesis are not yet understood. The aim of this study was to evaluate activities of ectonucleoside thiphosphate diphosphohydrolase (NTPDase, CD39), ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP), 5'-nucleotidase and adenosine deaminase (ADA) in platelets from patients with the relapsing-remitting form of MS (RRMS), as well as to analyze platelet aggregation and expression of NTPDase. The results obtained show that NTPDase, 5'-nucleotidase, E-NPP and ADA activities were decreased in platelets of RRMS patients when compared with the control group (p < 0.05). In addition, NTPDase expression in platelets was also decreased in these patients (p < 0.05); however, no differences were observed in platelet aggregation between RRMS patients and the control group. Our results suggest that the alterations in NTPDase, E-NPP, 5'-nucleotidase and ADA may have contributed to the alterations in platelet function in MS by altering the levels of nucleotides and nucleosides in the circulation.
Collapse
|
38
|
Sugimoto S, Lin X, Lai J, Okazaki M, Das NA, Li W, Krupnick AS, Chen R, Jeong SS, Patterson GA, Kreisel D, Gelman AE. Apyrase treatment prevents ischemia-reperfusion injury in rat lung isografts. J Thorac Cardiovasc Surg 2009; 138:752-9. [PMID: 19698866 DOI: 10.1016/j.jtcvs.2009.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/27/2009] [Accepted: 04/23/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelial cells express the ectoenzyme ectonucleoside adenosine triphosphate diphosphohydrolase, an apyrase that inhibits vascular inflammation by catalyzing the hydrolysis of adenosine triphosphate and adenosine diphosphate. However, ectonucleoside adenosine triphosphate diphosphohydrolase expression is rapidly lost following oxidative stress, leading to the potential for adenosine triphosphate and related purigenic nucleotides to exacerbate acute solid organ inflammation and injury. We asked if administration of a soluble recombinant apyrase APT102 attenuates lung graft injury in a cold ischemia reperfusion model of rat syngeneic orthotopic lung transplantation. METHODS Male Fisher 344 donor lungs were cold preserved in a low-potassium dextrose solution in the presence or absence of APT102 for 18 hours prior to transplantation into syngeneic male Fisher 344 recipients. Seven minutes after reperfusion, lung transplant recipients received either a bolus of APT102 or vehicle (saline solution). Four hours after reperfusion, APT102- and saline solution-treated groups were evaluated for lung graft function and inflammation. RESULTS APT102 significantly reduced lung graft extracellular pools of adenosine triphosphate and adenosine diphosphate, improved oxygenation, and protected against pulmonary edema. Apyrase treatment was associated with attenuated neutrophil graft sequestration and less evidence of tissue inflammation as assessed by myeloperoxidase activity, expression of proinflammatory mediators, and numbers of apoptotic endothelial cells. CONCLUSIONS Administration of a soluble recombinant apyrase promotes lung function and limits the tissue damage induced by prolonged cold storage, indicating that extracellular purigenic nucleotides play a key role in promoting ischemia-reperfusion injury following lung transplantation.
Collapse
Affiliation(s)
- Seiichiro Sugimoto
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Mo 63110-1013, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sun D, McNicol A, James AA, Peng Z. Expression of functional recombinant mosquito salivary apyrase: A potential therapeutic platelet aggregation inhibitor. Platelets 2009; 17:178-84. [PMID: 16702045 DOI: 10.1080/09537100500460234] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Excessive platelet activation and accumulation can lead to vessel occlusion and thus present major therapeutic challenges in cardiovascular medicine. Apyrase, an ecto-enzyme with ADPase and ATPase activities, rapidly metabolizes ADP and ATP released from platelets and endothelial cells, thereby reducing platelet activation and recruitment. In the present study, we expressed a 68-kDa recombinant mosquito (Aedes aegypti) salivary apyrase using a baculovirus/insect cell expression system and purified it to homogeneity using anion-exchange chromatography on a large scale. A yield of 18 mg of purified recombinant apyrase was obtained from 1 litre of the medium. Kinetic analysis indicated that the recombinant apyrase had a K(m) of 12.5 microM for ADP and a K(m) of 15.0 microM for ATP. The recombinant apyrase inhibited ADP-, collagen- and thrombin-induced human platelet aggregation in a dose-dependent manner, indicating that the recombinant protein retained nucleotidase activity in a whole cell system, which suggests that it may serve as a therapeutic agent for inhibition of platelet-mediated thrombosis.
Collapse
Affiliation(s)
- Dongfeng Sun
- Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Manitoba, Canada
| | | | | | | |
Collapse
|
40
|
Lunkes DS, Lunkes GI, Ahmed M, Morsch AL, Zanin RF, Maldonado PA, Corrêa M, Schetinger MRC, Morsch VM. Effect of different vasodilators on NTPDase activity in healthy and hypertensive patients. Thromb Res 2009; 124:268-74. [DOI: 10.1016/j.thromres.2008.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
|
41
|
Hyman MC, Petrovic-Djergovic D, Visovatti SH, Liao H, Yanamadala S, Bouïs D, Su EJ, Lawrence DA, Broekman MJ, Marcus AJ, Pinsky DJ. Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J Clin Invest 2009; 119:1136-49. [PMID: 19381014 DOI: 10.1172/jci36433] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 02/18/2009] [Indexed: 11/17/2022] Open
Abstract
Leukocyte and platelet accumulation at sites of cerebral ischemia exacerbate cerebral damage. The ectoenzyme CD39 on the plasmalemma of endothelial cells metabolizes ADP to suppress platelet accumulation in the ischemic brain. However, the role of leukocyte surface CD39 in regulating monocyte and neutrophil trafficking in this setting is not known. Here we have demonstrated in mice what we believe to be a novel mechanism by which CD39 on monocytes and neutrophils regulates their own sequestration into ischemic cerebral tissue, by catabolizing nucleotides released by injured cells, thereby inhibiting their chemotaxis, adhesion, and transmigration. Bone marrow reconstitution and provision of an apyrase, an enzyme that hydrolyzes nucleoside tri- and diphosphates, each normalized ischemic leukosequestration and cerebral infarction in CD39-deficient mice. Leukocytes purified from Cd39-/- mice had a markedly diminished capacity to phosphohydrolyze adenine nucleotides and regulate platelet reactivity, suggesting that leukocyte ectoapyrases modulate the ambient vascular nucleotide milieu. Dissipation of ATP by CD39 reduced P2X7 receptor stimulation and thereby suppressed baseline leukocyte alphaMbeta2-integrin expression. As alphaMbeta2-integrin blockade reversed the postischemic, inflammatory phenotype of Cd39-/- mice, these data suggest that phosphohydrolytic activity on the leukocyte surface suppresses cell-cell interactions that would otherwise promote thrombosis or inflammation. These studies indicate that CD39 on both endothelial cells and leukocytes reduces inflammatory cell trafficking and platelet reactivity, with a consequent reduction in tissue injury following cerebral ischemic challenge.
Collapse
Affiliation(s)
- Matthew C Hyman
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol Mol Biol Rev 2009; 72:765-81, Table of Contents. [PMID: 19052327 DOI: 10.1128/mmbr.00013-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In humans, purinergic signaling plays an important role in the modulation of immune responses through specific receptors that recognize nucleoside tri- and diphosphates as signaling molecules. Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) have important roles in the regulation of purinergic signaling by controlling levels of extracellular nucleotides. This process is key to pathophysiological protective responses such as hemostasis and inflammation. Ecto-NTPDases are found in all higher eukaryotes, and recently it has become apparent that a number of important parasitic pathogens of humans express surface-located NTPDases that have been linked to virulence. For those parasites that are purine auxotrophs, these enzymes may play an important role in purine scavenging, although they may also influence the host response to infection. Although ecto-NTPDases are rare in bacteria, expression of a secreted NTPDase in Legionella pneumophila was recently described. This ecto-enzyme enhances intracellular growth of the bacterium and potentially affects virulence. This discovery represents an important advance in the understanding of the contribution of other microbial NTPDases to host-pathogen interactions. Here we review other progress made to date in the characterization of ecto-NTPDases from microbial pathogens, how they differ from mammalian enzymes, and their association with organism viability and virulence. In addition, we postulate how ecto-NTPDases may contribute to the host-pathogen interaction by reviewing the effect of selected microbial pathogens on purinergic signaling. Finally, we raise the possibility of targeting ecto-NTPDases in the development of novel anti-infective agents based on potential structural and clear enzymatic differences from the mammalian ecto-NTPDases.
Collapse
|
43
|
Kaizer RR, Loro VL, Schetinger MRC, Morsch VM, Tabaldi LA, Rosa CSD, Garcia LDO, Becker AG, Baldisserotto B. NTPDase and acetylcholinesterase activities in silver catfish, Rhamdia quelen (Quoy & Gaimard, 1824) (Heptapteridae) exposed to interaction of oxygen and ammonia levels. NEOTROPICAL ICHTHYOLOGY 2009. [DOI: 10.1590/s1679-62252009000400012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of various levels of oxygen saturation and ammonia concentration on NTPDase (ecto-nucleoside triphosphate diphosphohydrolase, E.C. 3.6.1.5) and acetylcholinesterase (AChE, E.C. 3.1.1.7) activities in whole brain of teleost fish (Rhamdia quelen) were investigated. The fish were exposed to one of two different dissolved oxygen levels, including high oxygen (6.5 mg.L-1) or low oxygen (3.5 mg.L-1), and one of two different ammonia levels, including high ammonia (0.1 mg.L-1) or low ammonia (0.03 mg.L-1) levels. The four experimental groups included the following (A) control, or high dissolved oxygen plus low NH3; (B) low dissolved oxygen plus low NH3; (C) high dissolved oxygen plus high NH3; (D) low dissolved oxygen plus high NH3. We found that enzyme activities were altered after 24 h exposure in groups C and D. ATP and ADP hydrolysis in whole brain of fish was enhanced in group D after 24 h exposure by 100% and 119%, respectively, compared to the control group. After 24 h exposure, AChE activity presented an increase of 34% and 39% in groups C and D, respectively, when compared to the control group. These results are consistent with the hypothesis that low oxygen levels increase ammonia toxicity. Moreover, the hypoxic events may increase blood flow by hypoxia increasing NTPDase activity, thus producing adenosine, a potent vasodilator.
Collapse
|
44
|
Chiang WC, Knowles AF. Transmembrane domain interactions affect the stability of the extracellular domain of the human NTPDase 2. Arch Biochem Biophys 2008; 472:89-99. [PMID: 18295590 DOI: 10.1016/j.abb.2008.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/07/2008] [Accepted: 02/09/2008] [Indexed: 01/15/2023]
Abstract
Human NTPDase2 and chicken NTPDase8 are cell surface nucleotidases that contain two transmembrane domains (TMD) and five apyrase conserved regions (ACRs). ACR1 is located near the N-terminal TMD whereas ACR5 is located near the C-terminal TMD. The human NTPDase2 activity is decreased by low concentration of NP-40 and at temperatures higher than 37 degrees C, and undergoes substrate inactivation, whereas the chicken NTPDase8 activity is not. When freed from membrane anchorage, the soluble human NTPDase2 is no longer inactivated by detergents, high temperature, and substrate. These characteristics are retained in the hu-ck ACR1,5 chimera in which the extracellular domain is anchored to the membrane by the two TMDs of the chicken NTPDase8. The hu-ck ACR1,5 chimera is the first chimeric NTPDase reported that shows a resistance to membrane perturbation and substrate inactivation. Our results indicate that the strengths of interaction of the respective TMD pairs of the human NTPDase2 and chicken NTPDase8 determine their different responses to membrane perturbation and substrate.
Collapse
Affiliation(s)
- Wei-Chieh Chiang
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | | |
Collapse
|
45
|
Schaefer U, Machida T, Broekman MJ, Marcus AJ, Levi R. Targeted deletion of ectonucleoside triphosphate diphosphohydrolase 1/CD39 leads to desensitization of pre- and postsynaptic purinergic P2 receptors. J Pharmacol Exp Ther 2007; 322:1269-77. [PMID: 17565006 DOI: 10.1124/jpet.107.125328] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that ATP coreleased with norepinephrine from cardiac sympathetic nerves activates presynaptic P2X purinoceptors (P2XR), thereby enhancing norepinephrine exocytosis. Blockade of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) potentiates norepinephrine exocytosis, whereas recombinant soluble CD39 (solCD39) in-hibits it. This suggested that CD39 gene (Entpd1) deletion would enhance purinergic and adrenergic signaling by preserving ATP and its norepinephrine-releasing activity. However, we found that the neurogenic contractile response of vasa deferentia from Entpd1-null (CD39(-/-)) mice was attenuated and accompanied by reduced activity of pre- and postsynaptic P2XR, whereas contractile responses to K(+) or norepinephrine remained intact. In addition, the magnitude of ATP and norepinephrine exocytosis from cardiac synaptosomes was decreased in CD39(-/-) mice. Inhibition of E-NTPDase1/CD39, or solCD39 administration, did not affect the attenuated contractile response of vasa deferentia from CD39(-/-) mice. Notably, Entpd1 deletion and pharmacological P2XR desensitization in control mice similarly attenuated vasa deferentia responses. Thus, excessive and prolonged ATP exposure resulting from CD39 deletion desensitizes pre- and postjunctional P2XR at the sympathetic neuromuscular junction. This diminishes purinergic activity directly and adrenergic activity indirectly. It remains to be determined whether this desensitization results from receptor internalization, changes in receptor conformation or phosphorylation. Shutdown of ATP signaling in CD39(-/-) mice may represent a defense mechanism for the prevention of purinergic overstimulation. Our findings emphasize the cardioprotective role of neuronal CD39: by reducing presynaptic facilitatory effects of neurotransmitter ATP, CD39 attenuates norepinephrine release and its dysfunctional consequences. Moreover, by virtue of its antithrombotic action CD39 can potentially prevent the transition from myocardial ischemia to infarction.
Collapse
Affiliation(s)
- Ulrich Schaefer
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave., New York, NY, USA
| | | | | | | | | |
Collapse
|
46
|
Barat C, Martin G, Beaudoin AR, Sévigny J, Tremblay MJ. The nucleoside triphosphate diphosphohydrolase-1/CD39 is incorporated into human immunodeficiency type 1 particles, where it remains biologically active. J Mol Biol 2007; 371:269-82. [PMID: 17560607 PMCID: PMC5239664 DOI: 10.1016/j.jmb.2007.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) carries a variety of host proteins in addition to virus-encoded structural proteins, both in its envelope and inside the viral particle. Previous studies have reported that the HIV-1 life-cycle is affected by such virus-associated host cell surface proteins. The nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), also known as CD39, is a plasma membrane-bound ectoenzyme that hydrolyzes extracellular ATP and ADP to AMP. It has been shown that CD39 inhibits platelet function, and is thus a critical thromboregulatory molecule. We demonstrate here that host-derived CD39 is acquired by both laboratory-adapted and clinical variants of HIV-1 produced in cellular reservoirs of the virus. Moreover, purified CD39-bearing virions, but not isogenic viruses lacking CD39, display strong ATPase and ADPase activities. It is of particular interest that virions bearing this cellular enzyme can inhibit ADP-induced platelet aggregation, an effect blocked by an NTPDase inhibitor. On the basis of published and the present data on the functionality of human cellular proteins embedded within HIV-1, it can be proposed that these proteins might contribute to some of the immunologic deficiencies seen in infected individuals.
Collapse
Affiliation(s)
- Corinne Barat
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine Laval University, Quebec Canada G1V 4G2
| | - Geneviève Martin
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine Laval University, Quebec Canada G1V 4G2
| | - Adrien R. Beaudoin
- Centre de Recherche en Rhumatologie et Immunologie CHUL Research Center and Faculty of Medicine Laval University, Quebec Canada G1V 4G2
| | - Jean Sévigny
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine Laval University, Quebec Canada G1V 4G2
| | - Michel J. Tremblay
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine Laval University, Quebec Canada G1V 4G2
| |
Collapse
|
47
|
Pulte ED, Broekman MJ, Olson KE, Drosopoulos JHF, Kizer JR, Islam N, Marcus AJ. CD39/NTPDase-1 activity and expression in normal leukocytes. Thromb Res 2007; 121:309-17. [PMID: 17555802 PMCID: PMC2255570 DOI: 10.1016/j.thromres.2007.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/17/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION CD39/NTPDase-1 is a cell surface enzyme expressed on leukocytes and endothelial cells that metabolizes ATP to ADP and AMP. CD39 is expressed on numerous different types of normal leukocytes, but details of its expression have not been determined previously. METHODS We examined CD39 expression and activity in leukocytes isolated from healthy volunteers. Expression of CD39 on leukocytes was measured by FACS and activity of CD39 in lymphocytes and neutrophils was determined by an enzymatic radio-TLC assay. RESULTS We established that CD39 is expressed on neutrophils, lymphocytes, and monocytes. The enzyme is found on >90% of monocytes, neutrophils, and B-lymphocytes, and 6% of T-lymphocytes and natural killer cells. Per cell density of expression varied, with the highest expression on monocytes and B-lymphocytes. ATPase and ADPase activities were highest on B-lymphocytes, lower on neutrophils, lowest on T-lymphocytes. The ratio of ADPase:ATPase activity was 1.8 for neutrophils and B-lymphocytes and 1.4 for T-lymphocytes. Hypertensive volunteers had lower levels of CD39 on their T-lymphocytes and NK cells. No correlation between age, gender, ethnic background, or cholesterol level and CD39 expression was observed. CONCLUSIONS We conclude that CD39 activity and expression are present to varying degrees on all leukocytes types examined. Differences between leukocyte types should be considered when examining CD39 in disease states.
Collapse
Affiliation(s)
- E Dianne Pulte
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
- Medicine-Hematology/Oncology, Weill Medical College of Cornell University, New York, NY 10021
| | - M Johan Broekman
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
- Medicine-Hematology/Oncology, Weill Medical College of Cornell University, New York, NY 10021
| | - Kim E Olson
- Medicine-Hematology/Oncology, Weill Medical College of Cornell University, New York, NY 10021
| | - Joan H F Drosopoulos
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
- Medicine-Hematology/Oncology, Weill Medical College of Cornell University, New York, NY 10021
| | - Jorge R Kizer
- Medicine and Public Health, Weill Medical College of Cornell University, New York, NY 10021
| | - Naziba Islam
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
- Medicine-Hematology/Oncology, Weill Medical College of Cornell University, New York, NY 10021
| | - Aaron J Marcus
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
- Medicine-Hematology/Oncology, Weill Medical College of Cornell University, New York, NY 10021
- Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021
| |
Collapse
|
48
|
Pulte D, Olson KE, Broekman MJ, Islam N, Ballard HS, Furman RR, Olson AE, Marcus AJ. CD39 activity correlates with stage and inhibits platelet reactivity in chronic lymphocytic leukemia. J Transl Med 2007; 5:23. [PMID: 17480228 PMCID: PMC1885243 DOI: 10.1186/1479-5876-5-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 05/04/2007] [Indexed: 01/10/2023] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) is characterized by accumulation of mature appearing lymphocytes and is rarely complicated by thrombosis. One possible explanation for the paucity of thrombotic events in these patients may be the presence of the ecto-nucleotidase CD39/NTDPase-1 on the surface of the malignant cells in CLL. CD39 is the major promoter of platelet inhibition in vivo via its metabolism of ADP to AMP. We hypothesize that if CD39 is observed on CLL cells, then patients with CLL may be relatively protected against platelet aggregation and recruitment and that CD39 may have other effects on CLL, including modulation of the disease, via its metabolism of ATP. Methods Normal and malignant lymphocytes were isolated from whole blood from patients with CLL and healthy volunteers. Enzyme activity was measured via radio-TLC assay and expression via FACS. Semi-quantititative RT-PCR for CD39 splice variants and platelet function tests were performed on several samples. Results Functional assays demonstrated that ADPase and ATPase activities were much higher in CLL cells than in total lymphocytes from the normal population on a per cell basis (p-value < 0.00001). CD39 activity was elevated in stage 0–2 CLL compared to stage 3–4 (p < 0.01). FACS of lymphocytes demonstrated CD39 expression on > 90% of normal and malignant B-lymphocytes and ~8% of normal T-lymphocytes. RT-PCR showed increased full length CD39 and splice variant 1.5, but decreased variant 1.3 in CLL cells. Platelet function tests showed inhibition of platelet activation and recruitment to ADP by CLL cells. Conclusion CD39 is expressed and active on CLL cells. Enzyme activity is higher in earlier stages of CLL and decreased enzyme activity may be associated with worsening disease. These results suggest that CD39 may play a role in the pathogenesis of malignancy and protect CLL patients from thrombotic events.
Collapse
MESH Headings
- Adenosine Diphosphate/pharmacology
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apyrase/genetics
- Apyrase/metabolism
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Chromatography, Thin Layer
- Female
- Flow Cytometry
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Lymphocyte Subsets/metabolism
- Male
- Middle Aged
- Platelet Activation/drug effects
- Platelet Activation/physiology
- Platelet Aggregation/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Dianne Pulte
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
- Medicine-Hematology/Oncology, Weill Medical College Cornell University, New York, NY 10021, USA
| | - Kim E Olson
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
- Medicine-Hematology/Oncology, Weill Medical College Cornell University, New York, NY 10021, USA
| | - M Johan Broekman
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
- Medicine-Hematology/Oncology, Weill Medical College Cornell University, New York, NY 10021, USA
| | - Naziba Islam
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
- Medicine-Hematology/Oncology, Weill Medical College Cornell University, New York, NY 10021, USA
| | - Harold S Ballard
- Medical Service, VA NY Harbor Healtcare System, New York, NY 10010, USA
| | - Richard R Furman
- Medicine-Hematology/Oncology, Weill Medical College Cornell University, New York, NY 10021, USA
| | - Ashley E Olson
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
| | - Aaron J Marcus
- Research Service, Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
- Medicine-Hematology/Oncology, Weill Medical College Cornell University, New York, NY 10021, USA
- Medical Service, VA NY Harbor Healtcare System, New York, NY 10010, USA
- Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| |
Collapse
|
49
|
Abstract
The coagulation cascade is now recognized to be a series of proteolytic events mainly localized to the surface of activated platelets. Once platelets become activated by exposure to activated endothelium, they release mediators such as P-selectin and von Willebrand factor that promote microvesicle formation and platelet adherence. The microvesicles fuse with the activated platelet membrane, providing tissue factor and its ligand, factor VIIa. Clotting factors bind to adjacent receptors on the membrane, enabling the cascading proteolytic cleavages of zymogens to active enzymes, culminating in thrombin generation. Fibrin formation thus occurs in the sheltered environment of the platelet membrane, where it is localized to the site of injury and protected from circulating inhibitors.
Collapse
Affiliation(s)
- David Green
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
50
|
Weitz JI, Linkins LA. Beyond heparin and warfarin: the new generation of anticoagulants. Expert Opin Investig Drugs 2007; 16:271-82. [PMID: 17302522 DOI: 10.1517/13543784.16.3.271] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heparin and warfarin are widely used for the prevention and treatment of venous and arterial thromboembolism. Although effective, both agents have important limitations; for example, both drugs must be monitored, which is inconvenient for patients and for physicians. Heparin requires parenteral administration and can cause heparin-induced thrombocytopenia, an immune-mediated process that can lead to life-threatening thrombosis. Warfarin also has its limitations. Due to its slow onset of action, warfarin must be overlapped with heparin (or another rapidly acting anticoagulant) when treating patients with established thrombosis or who are at high risk for thrombosis. Warfarin dosing is variable because its activity is influenced by dietary intake of vitamin K, genetic polymorphisms in enzymes that are involved in its metabolism and numerous drug-drug interactions that promote or reduce its activity. New anticoagulants have been developed to overcome these problems. Building on a better understanding of coagulation pathways, advances in structure-based drug design and information derived from natural anticoagulants isolated from hematophagous organisms, most of the new anticoagulants target specific coagulation enzymes. Focussing on drugs that have at least completed Phase II evaluation, this article briefly reviews the coagulation pathways and its natural regulators; outlines the limitations of existing anticoagulants and identifies the opportunities for new ones; highlights the properties of selected new anticoagulants; describes the clinical trial results with these agents; and provides a perspective on their potential strengths and weaknesses.
Collapse
Affiliation(s)
- Jeffrey I Weitz
- McMaster University and Henderson Research Centre, 711 Concession Street, Hamilton, Ontario, L8V 1C3, Canada.
| | | |
Collapse
|