1
|
Toumi E, Mezouar S, Plauzolles A, Chiche L, Bardin N, Halfon P, Mege JL. Gut microbiota in SLE: from animal models to clinical evidence and pharmacological perspectives. Lupus Sci Med 2023; 10:10/1/e000776. [PMID: 36813473 PMCID: PMC9950977 DOI: 10.1136/lupus-2022-000776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 02/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease driven by complex interactions between genetics and environmental factors. SLE is characterised by breaking self-immune tolerance and autoantibody production that triggers inflammation and damage of multiple organs. Given the highly heterogeneous nature of SLE, the treatments currently used are still not satisfactory with considerable side effects, and the development of new therapies is a major health issue for better patient management. In this context, mouse models significantly contribute to our knowledge of the pathogenesis of SLE and are an invaluable tool for testing novel therapeutic targets. Here, we discuss the role of the most used SLE mouse models and their contribution to therapeutic improvement. Considering the complexity of developing targeted therapies for SLE, adjuvant therapies are also increasingly proposed. Indeed, murine and human studies have recently revealed that gut microbiota is a potential target and holds great promises for successful new SLE therapies. However, the mechanisms of gut microbiota dysbiosis in SLE remain unclear to date. In this review, we propose an inventory of existing studies investigating the relationship between gut microbiota dysbiosis and SLE to establish microbiome signature that may serve as a potential biomarker of the disease and its severity as well as a new potential therapy target. This approach may open new possibilities for early diagnosis, prevention and therapeutic perspectives of SLE based on gut microbiome.
Collapse
Affiliation(s)
- Eya Toumi
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France .,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France.,R&D Department, Laboratoire Alphabio, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,Aix Marseille Univ, EFS, CNRS, ADES, 'Biologie des Groupes Sanguins', Marseille, France
| | | | - Laurent Chiche
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Nathalie Bardin
- Immunology Department, Hopital de la Conception, Marseille, France
| | - Philippe Halfon
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,R&D Department, Laboratoire Alphabio, Marseille, France,Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Jean Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,Immunology Department, Hopital de la Conception, Marseille, France
| |
Collapse
|
2
|
Xu J, Chen J, Li W, Lian W, Huang J, Lai B, Li L, Huang Z. Additive Therapeutic Effects of Mesenchymal Stem Cells and IL-37 for Systemic Lupus Erythematosus. J Am Soc Nephrol 2020; 31:54-65. [PMID: 31604808 PMCID: PMC6935004 DOI: 10.1681/asn.2019050545] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) might offer a promising strategy for treating SLE, their immunoregulatory plasticity makes their therapeutic effects unpredictable. Whether overexpressing IL-37, an IL-1 family member with immunosuppressive activity, might enhance the therapeutic effects of these cells for SLE is unknown. METHODS We genetically modified MSCs to overexpress IL-37 and assessed their effects on immune suppression in vitro. We also evaluated the effects of such cells versus effects of various controls after transplanting them into MRL/lpr mice (model of SLE). RESULTS Stem cell characteristics did not appear altered in MSCs overexpressing IL-37. These cells had enhanced immunosuppression in vitro in terms of inhibiting splenocyte proliferation, reducing proinflammatory factors (IL-1β, TNF-α, IL-17, and IL-6), and suppressing autoantibodies (anti-dsDNA and anti-ANA). Compared with animals receiving control MSCs or IL-37 treatment alone, MRL/lpr mice transplanted with IL-37-overexpressing cells displayed improved survival and reduced signs of SLE (indicated by urine protein levels, spleen weight, and renal pathologic scores); they also had significantly lower expression of proinflammatory factors, lower total antibody levels in serum and urine, lower autoantibody production, and showed reduced T cell numbers in the serum and kidney. Expression of IL-37 by MSCs can maintain higher serum levels of IL-37, and MSCs had prolonged survival after transplantation, perhaps through IL-37 suppressing the inflammatory microenvironment. CONCLUSIONS Mutually reinforcing interaction between MSCs and IL-37 appears to underlie their additive therapeutic effects. Genetic modification to overexpress IL-37 might offer a way to enhance the stability and effectiveness of MSCs in treating SLE.
Collapse
Affiliation(s)
- Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease and
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Jieting Chen
- Department of Obstetrics, People's Hospital of Baoan, Shenzhen, P.R. China; and
| | - Wenlei Li
- Department of Obstetrics, Women and Children Health Institute of Futian, Shenzhen, P.R. China
| | - Wei Lian
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Jieyong Huang
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Baoyu Lai
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Lingyun Li
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Zhong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease and
- Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
3
|
Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediators Inflamm 2016; 2016:9607946. [PMID: 27594771 PMCID: PMC4995328 DOI: 10.1155/2016/9607946] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.
Collapse
|
4
|
HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8797206. [PMID: 27556043 PMCID: PMC4983322 DOI: 10.1155/2016/8797206] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/08/2016] [Accepted: 06/29/2016] [Indexed: 01/13/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments.
Collapse
|
5
|
Dantec CL, Brooks WH, Renaudineau Y. Epigenomic revolution in autoimmune diseases. World J Immunol 2015; 5:62-67. [DOI: 10.5411/wji.v5.i2.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Autoimmunity is believed to develop when genetically predisposed individuals undergo epigenetic modifications in response to environmental factors. Recent advances in the understanding of epigenetic mechanisms suggest, in autoimmune diseases, a multi-step process involving environmental factors (e.g., drugs, stress) and endogenous factors (e.g., cytokines, gender), both leading to the deregulation of the epigenetic machinery (DNA methylation, histone modifications, miRNA), that in turn specifically affects the immune system and/or the target organ(s). Such effect is reinforced in those patients with risk variants mapping to epigenetically-controlled regulators of immune cells. As a consequence, autoreactive lymphocytes and autoantibodies are produced leading to the development of the autoimmune disease. Potential new therapeutic strategies and biomarkers are also addressed.
Collapse
|
6
|
Naja naja atra Venom Protects against Manifestations of Systemic Lupus Erythematosus in MRL/lpr Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:969482. [PMID: 25093033 PMCID: PMC4100264 DOI: 10.1155/2014/969482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease and effective therapy for this pathology is currently unavailable. We previously reported that oral administration of Naja naja atra venom (NNAV) had anti-inflammatory and immune regulatory actions. We speculated that NNAV may have therapeutic effects in MRL/lpr SLE mice. Twelve-week-old MRL/lpr mice received oral administration of NNAV (20, 40, and 80 μg/kg) or Tripterygium wilfordii polyglycosidium (10 mg/kg) daily for 16 weeks. The effects of NNAV on SLE manifestations, including skin erythema, proteinuria, and anxiety-like behaviors, were assessed with visual inspection and Multistix 8 SG strips and open field test, respectively. The pathology of spleen and kidney was examined with H&E staining. The changes in autoimmune antibodies and cytokines were determined with ELISA kits. The results showed that NNAV protected against the manifestation of SLE, including skin erythema and proteinuria. In addition, although no apparent histological change was found in liver and heart in MRL/lpr SLE mice, NNAV reduced the levels of glutamate pyruvate transaminase and creatine kinase. Furthermore, NNAV increased serum C3 and reduced concentrations of circulating globulin, anti-dsDNA antibody, and inflammatory cytokines IL-6 and TNF-α. NNAV also reduced lymphadenopathy and renal injury. These results suggest that NNAV may have therapeutic values in the treatment of SLE by inhibiting autoimmune responses.
Collapse
|
7
|
Abstract
Epigenetics is a key mechanism regulating the expression of genes. There are three main and interrelated mechanisms: DNA methylation, post-translational modification of histone proteins and non-coding RNA. Gene activation is generally associated with lower levels of DNA methylation in promoters and with distinct histone marks such as acetylation of amino acids in histones. Unlike the genetic code, the epigenome is altered by endogenous (e.g. hormonal) and environmental (e.g. diet, exercise) factors and changes with age. Recent evidence implicates epigenetic mechanisms in the pathogenesis of common rheumatic disease, including RA, OA, SLE and scleroderma. Epigenetic drift has been implicated in age-related changes in the immune system that result in the development of a pro-inflammatory status termed inflammageing, potentially increasing the risk of age-related conditions such as polymyalgia rheumatica. Therapeutic targeting of the epigenome has shown promise in animal models of rheumatic diseases. Rapid advances in computational biology and DNA sequencing technology will lead to a more comprehensive understanding of the roles of epigenetics in the pathogenesis of common rheumatic diseases.
Collapse
Affiliation(s)
- Steffen Gay
- Department of Infection and Immunity, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | |
Collapse
|
8
|
Trichostatin A promotes the generation and suppressive functions of regulatory T cells. Clin Dev Immunol 2013; 2013:679804. [PMID: 23737814 PMCID: PMC3662173 DOI: 10.1155/2013/679804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/22/2022]
Abstract
Regulatory T cells are a specific subset of lymphocytes that suppress immune responses and play a crucial role in the maintenance of self-tolerance. They can be generated in the thymus as well as in the periphery through differentiation of naïve CD4+ T cells. The forkhead box P3 transcription factor (Foxp3) is a crucial molecule regulating the generation and function of Tregs. Here we show that the foxp3 gene promoter becomes hyperacetylated in in vitro differentiated Tregs compared to naïve CD4+ T cells. We also show that the histone deacetylase inhibitor TSA stimulated the in vitro differentiation of naïve CD4+ T cells into Tregs and that this induction was accompanied by a global increase in histone H3 acetylation. Importantly, we also demonstrated that Tregs generated in the presence of TSA have phenotypical and functional differences from the Tregs generated in the absence of TSA. Thus, TSA-generated Tregs showed increased suppressive activities, which could potentially be explained by a mechanism involving the ectonucleotidases CD39 and CD73. Our data show that TSA could potentially be used to enhance the differentiation and suppressive function of CD4+Foxp3+ Treg cells.
Collapse
|
9
|
López-Pedrera C, Pérez-Sánchez C, Ramos-Casals M, Santos-Gonzalez M, Rodriguez-Ariza A, Cuadrado MJ. Cardiovascular risk in systemic autoimmune diseases: epigenetic mechanisms of immune regulatory functions. Clin Dev Immunol 2011; 2012:974648. [PMID: 21941583 PMCID: PMC3173726 DOI: 10.1155/2012/974648] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 12/31/2022]
Abstract
Autoimmune diseases (AIDs) have been associated with accelerated atherosclerosis (AT) leading to increased cardio- and cerebrovascular disease risk. Traditional risk factors, as well as systemic inflammation mediators, including cytokines, chemokines, proteases, autoantibodies, adhesion receptors, and others, have been implicated in the development of these vascular pathologies. Yet, the characteristics of vasculopathies may significantly differ depending on the underlying disease. In recent years, many new genes and signalling pathways involved in autoimmunity with often overlapping patterns between different disease entities have been further detected. Epigenetics, the control of gene packaging and expression independent of alterations in the DNA sequence, is providing new directions linking genetics and environmental factors. Epigenetic regulatory mechanisms comprise DNA methylation, histone modifications, and microRNA activity, all of which act upon gene and protein expression levels. Recent findings have contributed to our understanding of how epigenetic modifications could influence AID development, not only showing differences between AID patients and healthy controls, but also showing how one disease differs from another and even how the expression of key proteins involved in the development of each disease is regulated.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Unidad de Investigación e Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Van Beneden K, Geers C, Pauwels M, Mannaerts I, Verbeelen D, van Grunsven LA, Van den Branden C. Valproic acid attenuates proteinuria and kidney injury. J Am Soc Nephrol 2011; 22:1863-75. [PMID: 21868496 DOI: 10.1681/asn.2010111196] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inhibitors of histone deacetylase (HDAC) have anti-inflammatory and antifibrotic effects in several organs and tissues, but their effect on the progression of renal disease is unknown. Here, we studied the effect of valproic acid in adriamycin-induced nephropathy in mice. Administration of valproic acid before kidney injury prevented the development of proteinuria and the onset of glomerulosclerosis. Even after postponing treatment until the peak of adriamycin-induced proteinuria, valproic acid rapidly decreased the quantity of proteinuria and attenuated the progression of renal disease. Valproic acid abrogated the decrease in glomerular acetylation observed during adriamycin-induced nephropathy. Furthermore, valproic acid attenuated the significant upregulation of profibrotic and proinflammatory genes, the deposition of collagen, and the infiltration of macrophages into the kidney. Valproic acid decreased glomerular apoptosis and proliferation induced by adriamycin. Ultrastructural studies further supported the protective effect of valproic acid on podocytes in this model. Taken together, these data suggest that HDACs contribute to the pathogenesis of renal disease and that HDAC inhibitors may have therapeutic potential in CKD.
Collapse
Affiliation(s)
- Katrien Van Beneden
- Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:271694. [PMID: 21403825 PMCID: PMC3042628 DOI: 10.1155/2011/271694] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 12/19/2010] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder. The study of diverse mouse models of lupus has provided clues to the etiology of SLE. Spontaneous mouse models of lupus have led to identification of numerous susceptibility loci from which several candidate genes have emerged. Meanwhile, induced models of lupus have provided insight into the role of environmental factors in lupus pathogenesis as well as provided a better understanding of cellular mechanisms involved in the onset and progression of disease. The SLE-like phenotypes present in these models have also served to screen numerous potential SLE therapies. Due to the complex nature of SLE, it is necessary to understand the effect specific targeted therapies have on immune homeostasis. Furthermore, knowledge gained from mouse models will provide novel therapy targets for the treatment of SLE.
Collapse
|
12
|
Feng D, Sangster-Guity N, Stone R, Korczeniewska J, Mancl ME, Fitzgerald-Bocarsly P, Barnes BJ. Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6003-12. [PMID: 20935208 PMCID: PMC3233222 DOI: 10.4049/jimmunol.1000482] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence indicates a new role for histone deacetylases (HDACs) in the activation of genes governing the host immune response. Virus, along with other pathogenic stimuli, triggers an antiviral defense mechanism through the induction of IFN, IFN-stimulated genes, and other proinflammatory cytokines. Many of these genes have been shown to be regulated by transcription factors of the IFN regulatory factor (IRF) family. Recent studies from IRF5 knockout mice have confirmed a critical role for IRF5 in virus-induced type I IFN expression and proinflammatory cytokines IL-6, IL-12, and TNF-α; yet, little is known of the molecular mechanism of IRF5-mediated proinflammatory cytokine expression. In this study, we show that both HDACs and histone acetyltransferases (HATs) associate with IRF5, leading to alterations in its transactivation ability. Using the HDAC inhibitor trichostatin A, we demonstrate that ISRE, IFNA, and IL6 promoters require HDAC activity for transactivation and transcription, whereas TNFα does not. Mapping the interaction of corepressor proteins (HDAC1, silencing mediator of retinoid and thyroid receptor/nuclear corepressor of retinoid receptor, and Sin3a) and HATs to IRF5 revealed distinct differences, including the dependence of IRF5 phosphorylation on HAT association resulting in IRF5 acetylation. Data presented in this study support a mechanism whereby virus triggers the dynamic conversion of an IRF5-mediated silencing complex to that of an activating complex on promoters of target genes. These data provide the first evidence, to our knowledge, of a tightly controlled transcriptional mechanism whereby IRF5 regulates proinflammatory cytokine expression in conjunction with HATs and HDACs.
Collapse
Affiliation(s)
- Di Feng
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
- New Jersey Medical School University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Niquiche Sangster-Guity
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rivka Stone
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
- New Jersey Medical School University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Justyna Korczeniewska
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
- New Jersey Medical School University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Margo E. Mancl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Patricia Fitzgerald-Bocarsly
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Betsy J. Barnes
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
- New Jersey Medical School University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
13
|
Sun Y, Chin YE, Weisiger E, Malter C, Tawara I, Toubai T, Gatza E, Mascagni P, Dinarello CA, Reddy P. Cutting edge: Negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5899-903. [PMID: 19414739 PMCID: PMC6232841 DOI: 10.4049/jimmunol.0804388] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Histone deacetylase (HDAC) inhibition modulates dendritic cell (DC) functions and regulates experimental graft-vs-host disease and other immune-mediated diseases. The mechanisms by which HDAC inhibition modulates immune responses remain largely unknown. STAT-3 is a transcription factor shown to negatively regulate DC functions. In this study we report that HDAC inhibition acetylates and activates STAT-3, which regulates DCs by promoting the transcription of IDO. These findings demonstrate a novel functional role for posttranslational modification of STAT-3 through acetylation and provide mechanistic insights into HDAC inhibition-mediated immunoregulation by induction of IDO.
Collapse
Affiliation(s)
- Yaping Sun
- Departments of Internal Medicine and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Y. Eugene Chin
- Department of Surgery, Brown University Medical School, Providence, RI
| | - Elizabeth Weisiger
- Departments of Internal Medicine and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Chelsea Malter
- Departments of Internal Medicine and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Isao Tawara
- Departments of Internal Medicine and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Tomomi Toubai
- Departments of Internal Medicine and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Erin Gatza
- Departments of Internal Medicine and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | | | | | - Pavan Reddy
- Departments of Internal Medicine and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| |
Collapse
|
14
|
Hoshi N, Watanabe H, Kobayashi H, Sekine H, Hoshi N, Sugino T, Suzuki T, Sato Y, Ohira H. Inhibitory oligodeoxynucleotide improves glomerulonephritis and prolongs survival in MRL-lpr/lpr mice. Fukushima J Med Sci 2008; 53:70-84. [PMID: 18402287 DOI: 10.5387/fms.53.70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inhibitory oligodeoxynucleotides (ODNs), which are capable of blocking CpG-induced inflammation, have been anticipated to be beneficial therapeutic agents for autoimmune diseases. In this study, we show that GpC ODN, which inverted the cytosine guanine sequence of CpG motif to guanine cytosine sequence, is an inhibitory ODN. The inhibitory effects of GpC ODN on CpG ODN-induced immune activation were confirmed by cytokine assay using splenocytes from lupus-prone MRL-lpr/lpr mice. In vivo, injecting MRL-lpr/lpr mice with GpC ODN did not reduce the deposition of IgG and C3 in the glomeruli, the serum level of IL-12, the serum level of rheumatoid factors and anti-ds DNA antibody, or alter the composition of IgG isotypes of anti-ds DNA antibody. However, the mice in the GpC group showed less proteinuria, significantly lower blood urea nitrogen levels (BUN) and significantly prolonged survival. Our results suggest that inhibitory ODNs, such as GpC ODN, have the potential to become a treatment for autoimmune diseases, like lupus nephritis.
Collapse
Affiliation(s)
- Namiko Hoshi
- Department of Internal Medicine II, Fukushima Medical University, Fukushima, 960-1295, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen. Proc Natl Acad Sci U S A 2008; 105:4796-801. [PMID: 18347343 DOI: 10.1073/pnas.0712051105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In allogeneic hematopoietic cell transplantation (HCT), donor T cell-mediated graft versus host leukemia (GVL) and graft versus autoimmune (GVA) activity play critical roles in treatment of hematological malignancies and refractory autoimmune diseases. However, graft versus host disease (GVHD), which sometimes can be fatal, remains a major obstacle in classical HCT, where recipients are conditioned with total body irradiation or high-dose chemotherapy. We previously reported that anti-CD3 conditioning allows donor CD8(+) T cells to facilitate engraftment and mediate GVL without causing GVHD. However, the clinical application of this radiation-free and GVHD preventative conditioning regimen is hindered by the cytokine storm syndrome triggered by anti-CD3 and the high-dose donor bone marrow (BM) cells required for induction of chimerism. Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are known to induce apoptosis of cancer cells and reduce production of proinflammatory cytokines by nonmalignant cells. Here, we report that SAHA inhibits the proliferative and cytotoxic activity of anti-CD3-activated T cells. Administration of low-dose SAHA reduces cytokine production and ameliorates the cytokine storm syndrome triggered by anti-CD3. Conditioning with anti-CD3 and SAHA allows induction of chimerism with lower doses of donor BM cells in old nonautoimmune and autoimmune lupus mice. In addition, conditioning with anti-CD3 and SAHA allows donor CD8(+) T cell-mediated GVA activity to reverse lupus glomerulonephritis without causing GVHD. These results indicate that conditioning with anti-CD3 and HDAC inhibitors represent a radiation-free and GVHD-preventative regimen with clinical application potential.
Collapse
|
16
|
Atkinson C, Qiao F, Song H, Gilkeson GS, Tomlinson S. Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:1231-8. [PMID: 18178863 DOI: 10.4049/jimmunol.180.2.1231] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement appears to play a dual role in the progression of systemic lupus erythematosus, serving a beneficial role in enhancing immune complex clearance, while serving a pathogenic role in inducing local inflammation. To investigate these different roles of complement in a therapeutic setting, MRL/lpr mice were treated with the targeted murine C3 complement inhibitor, CR2-Crry, from 16 to 24 wk of age (after the development of proteinuria). The targeting moiety, CR2, binds to C3 breakdown products deposited at sites of complement activation and has the potential to provide complement inhibition locally without causing systemic inhibition. Administration of CR2-Crry i.v., at a dose of 0.25 mg once a week, was associated with a significant survival benefit, improved kidney function, and a significant reduction in glomerulonephritis and renal vasculitis. The presence of skin lesions and lung bronchiolar and vascular inflammation was also dramatically reduced by CR2-Crry treatment. CR2-Crry treatment also resulted in a significant reduction in autoantibody production, as measured by anti-dsDNA Ab levels, and did not cause an increase in circulating immune complex levels. These effects on autoimmunity and circulating immune complexes represent significant potential advantages over the use of Crry-Ig in MRL/lpr mice, a systemic counterpart of CR2-Crry. CR2-Crry localized preferentially to the kidneys in 16-wk MRL/lpr mice with a kidney-localized half-life of approximately 24 h. Thus, targeted complement inhibition at the C3 level is an effective treatment in murine lupus, even beginning after onset of disease.
Collapse
Affiliation(s)
- Carl Atkinson
- Department of Microbiology and Immunology and Children's Research Institute, Medical University ofSouth Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
17
|
Avila AM, Burnett BG, Taye AA, Gabanella F, Knight MA, Hartenstein P, Cizman Z, Di Prospero NA, Pellizzoni L, Fischbeck KH, Sumner CJ. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 2007; 117:659-71. [PMID: 17318264 PMCID: PMC1797603 DOI: 10.1172/jci29562] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 12/20/2006] [Indexed: 01/20/2023] Open
Abstract
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by mutation of the telomeric survival motor neuron 1 (SMN1) gene with retention of the centromeric SMN2 gene. We sought to establish whether the potent and specific hydroxamic acid class of histone deacetylase (HDAC) inhibitors activates SMN2 gene expression in vivo and modulates the SMA disease phenotype when delivered after disease onset. Single intraperitoneal doses of 10 mg/kg trichostatin A (TSA) in nontransgenic and SMA model mice resulted in increased levels of acetylated H3 and H4 histones and modest increases in SMN gene expression. Repeated daily doses of TSA caused increases in both SMN2-derived transcript and SMN protein levels in neural tissues and muscle, which were associated with an improvement in small nuclear ribonucleoprotein (snRNP) assembly. When TSA was delivered daily beginning on P5, after the onset of weight loss and motor deficit, there was improved survival, attenuated weight loss, and enhanced motor behavior. Pathological analysis showed increased myofiber size and number and increased anterior horn cell size. These results indicate that the hydroxamic acid class of HDAC inhibitors activates SMN2 gene expression in vivo and has an ameliorating effect on the SMA disease phenotype when administered after disease onset.
Collapse
Affiliation(s)
- Amy M. Avila
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Barrington G. Burnett
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Addis A. Taye
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Francesca Gabanella
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Melanie A. Knight
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Parvana Hartenstein
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Ziga Cizman
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Nicholas A. Di Prospero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Livio Pellizzoni
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Kenneth H. Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| | - Charlotte J. Sumner
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA.
Dulbecco Telethon Institute, Institute of Cell Biology (CNR), Rome, Italy
| |
Collapse
|
18
|
Tenbrock K, Juang YT, Leukert N, Roth J, Tsokos GC. The transcriptional repressor cAMP response element modulator alpha interacts with histone deacetylase 1 to repress promoter activity. THE JOURNAL OF IMMUNOLOGY 2006; 177:6159-64. [PMID: 17056544 DOI: 10.4049/jimmunol.177.9.6159] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional repression is a fundamental mechanism of gene regulation. cAMP response element (CRE) modulator (CREM)alpha is an ubiquitously expressed transcription factor and a counterpart of the activator CREB. In T cells, CREM is responsible for the termination of the IL-2 expression by a chromatin-dependent mechanism. We demonstrate in this study that CREMalpha associates with histone deacetylase (HDAC)1 through its H domain, which is located between the kinase inducible and DNA binding domains. The CREMalpha-mediated recruitment of HDAC1 to the CRE sites of the IL-2 and c-Fos promoter causes histone deacetylation and inaccessibility to restriction enzymes and limited transcriptional activity. Importantly, the CRE sites of these promoters are crucial for the activity and binding of HDAC1. Therefore, CREMalpha exerts its repressor activity by a mechanism that involves recruitment of HDAC1, increased deacetylation of histones, and repression of promoter activity.
Collapse
Affiliation(s)
- Klaus Tenbrock
- Department of Pediatrics, Division of Rheumatology, University Hospital, University of Muenster, Röntgenstrasse 21, 48149 Muenster, Germany.
| | | | | | | | | |
Collapse
|
19
|
Yoshikawa M, Hishikawa K, Marumo T, Fujita T. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol 2006; 18:58-65. [PMID: 17135397 DOI: 10.1681/asn.2005111187] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Histone acetylation plays an important role in regulating gene expressions by modulating chromatin structure. Histone deacetylase (HDAC) inhibitors have been reported to have an antifibrogenic effect in some organs, such as the liver, skin, and lung, but the underlying mechanisms remain to be clarified. In the kidney, bone morphologic protein 7 (BMP-7) and hepatocyte growth factor are reported to antagonize TGF-beta1-induced tubular epithelial-to-mesenchymal transition (EMT), but nothing is known concerning the effect of HDAC inhibitors on EMT. It was shown that trichostatin A (TSA), an HDAC inhibitor, prevented TGF-beta1-induced EMT in cultured human renal proximal tubular epithelial cells. Treatment with TGF-beta1 induced morphologic changes such as EMT in human renal proximal tubular epithelial cells. However, co-treatment with TSA completely prevented TGF-beta1-induced morphologic changes and significantly prevented TGF-beta1-induced downregulation of E-cadherin and upregulation of collagen type I. Treatment with TSA did not alter TGF-beta1-induced phosphorylation of Smad2 and Smad3 but induced several inhibitory factors of TGF-beta1 signals, such as inhibitors of DNA binding/differentiation 2 (Id2) and BMP-7. Chromatin immunoprecipitation assay confirmed that histone acetylation was involved in the downregulation of E-cadherin and upregulation of Id2 and BMP-7. These results suggest that TSA and other HDAC inhibitors could be new therapeutic agents for tubular EMT.
Collapse
Affiliation(s)
- Masahiro Yoshikawa
- Department of Internal Medicine, Division of Nephrology and Endocrinology, The University Hospital of Tokyo, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
20
|
Brogdon JL, Xu Y, Szabo SJ, An S, Buxton F, Cohen D, Huang Q. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 2006; 109:1123-30. [PMID: 17008546 DOI: 10.1182/blood-2006-04-019711] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylases (HDACs) play a critical role in regulating gene expression and key biological processes. However, how HDACs are involved in innate immunity is little understood. Here, in this first systematic investigation of the role of HDACs in immunity, we show that HDAC inhibition by a small-molecule HDAC inhibitor (HDACi), LAQ824, alters Toll-like receptor 4 (TLR4)-dependent activation and function of macrophages and dendritic cells (DCs). Surprisingly, pan-HDAC inhibition modulates only a limited set of genes involved in distinct arms of immune responses. Specifically, it inhibited DC-controlled T helper 1 (Th1) effector but not Th2 effector cell activation and migration. It also inhibited macrophage- and DC-mediated monocyte but not neutrophil chemotaxis. These unexpected findings demonstrate the high specificity of HDAC inhibition in modulating innate and adaptive immune responses, and highlight the potential for HDACi to alter the Th1 and Th2 balance in therapeutic settings.
Collapse
Affiliation(s)
- Jennifer L Brogdon
- Department of Developmental & Molecular Pathways, Novartis Institute for BioMedical Research, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Ballestar E, Esteller M, Richardson BC. The epigenetic face of systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2006; 176:7143-7. [PMID: 16751355 DOI: 10.4049/jimmunol.176.12.7143] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an archetypical systemic, autoimmune inflammatory disease characterized by the production of autoantibodies to multiple nuclear Ags. Apoptotic defects and impaired removal of apoptotic cells contribute to an overload of autoantigens that become available to initiate an autoimmune response. Besides the well-recognized genetic susceptibility to SLE, epigenetic factors are important in the onset of the disease, as even monozygotic twins are usually discordant for the disease. Changes in DNA methylation and histone modifications, the major epigenetic marks, are a hallmark in genes that undergo epigenetic deregulation in disease. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur. Moreover, histone deacetylase inhibitors reverse the skewed expression of multiple genes involved in SLE. In the present study, we discuss the implications of epigenetic alterations in the development and progression of SLE and how epigenetic drugs constitute a promising source of therapy to treat this disease.
Collapse
Affiliation(s)
- Esteban Ballestar
- Cancer Epigenetics Laboratory, Molecular Pathology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain.
| | | | | |
Collapse
|
22
|
Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, Mascagni P, Fantuzzi G, Dinarello CA, Siegmund B. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:5015-22. [PMID: 16585598 DOI: 10.4049/jimmunol.176.8.5015] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inhibitors of histone deacetylases (HDAC) are being studied for their antiproliferative effects in preclinical cancer trials. Recent studies suggest an anti-inflammatory role for this class of compounds. Because inflammatory bowel disease is associated with an increased risk of malignancies, agents with antiproliferative and anti-inflammatory properties would be of therapeutic interest. HDAC inhibitors from various classes were selected and evaluated for their in vitro capacity to suppress cytokine production and to induce apoptosis and histone acetylation. Valproic acid (VPA) and suberyolanilide hydroxamic acid (SAHA) were chosen for further studies in dextran sulfate sodium- and trinitrobenzene sulfonic acid-induced colitis in mice. In vitro, inhibition of HDAC resulted in a dose-dependent suppression of cytokine synthesis and apoptosis induction requiring higher concentrations of HDAC inhibitors for apoptosis induction compared with cytokine inhibition. Oral administration of either VPA or SAHA reduced disease severity in dextran sulfate sodium-induced colitis. The macroscopic and histologic reduction of disease severity was associated with a marked suppression of colonic proinflammatory cytokines. In parallel to the beneficial effect observed, a dose-dependent increase in histone 3 acetylation at the site of inflammation was shown under VPA treatment. Furthermore, SAHA as well as VPA treatment resulted in amelioration of trinitrobenzene sulfonic acid-induced colitis, which was associated with an increase of apoptosis of lamina propria lymphocytes. Inhibitors of HDAC reveal strong protective effects in different models of experimental colitis by inducing apoptosis and suppressing proinflammatory cytokines, thereby representing a promising class of compounds for clinical studies in human inflammatory bowel disease.
Collapse
Affiliation(s)
- Rainer Glauben
- Department of Medicine I, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dinarello CA. Inhibitors of histone deacetylases as anti-inflammatory drugs. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:45-60. [PMID: 16331856 DOI: 10.1007/3-540-37673-9_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review addresses the issue of histone deacetylase (HDAC) inhibitors as developed for the treatment of cancer and for the investigation of the inhibition of inflammation. The review focuses on both in vitro and in vivo models of inflammation and autoimmunity. Of particular interest is the inhibition of pro-inflammatory cytokines. Although the reduction in cytokines appears paradoxical at first, upon examination, some genes that are anti-inflammatory are upregulated by inhibition of HDAC. Whether skin diseases will be affected by inhibitors of HDAC remains to be tested.
Collapse
Affiliation(s)
- C A Dinarello
- University of Colorado Health Sciences Center, Denver 80262, USA.
| |
Collapse
|
24
|
Nakamura T, Kukita T, Shobuike T, Nagata K, Wu Z, Ogawa K, Hotokebuchi T, Kohashi O, Kukita A. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-beta production. THE JOURNAL OF IMMUNOLOGY 2005; 175:5809-16. [PMID: 16237073 DOI: 10.4049/jimmunol.175.9.5809] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoclasts are bone-resorptive multinucleated cells that are differentiated from hemopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-kappaB ligand (RANKL) and M-CSF. Downstream signaling molecules of the receptor of RANKL, RANK, modulate the differentiation and the activation of osteoclasts. We recently found that histone deacetylase inhibitors (HDIs), known as anticancer agents, selectively suppressed osteoclastogenesis in vitro. However, the molecular mechanism underlying inhibitory action of HDIs in osteoclastogenesis and the effect of HDIs on pathological bone destruction are still not remained to be elucidated. In this study, we show that a depsipeptide, FR901228, inhibited osteoclast differentiation by not only suppressing RANKL-induced nuclear translocation of NFATc1 but also increasing the mRNA level of IFN-beta, an inhibitor of osteoclastogenesis. The inhibition of osteoclast formation by FR901228 was abrogated by the addition of IFN-beta-neutralizing Ab. In addition, treatment of adjuvant-induced arthritis in rats revealed that FR901228 inhibited not only disease development in a prophylactic model but also bone destruction in a therapeutic model. Furthermore, immunostaining of the joints of therapeutically treated rats revealed significant production of IFN-beta in synovial cells. Taken together, these data suggest that a HDI inhibits osteoclastogenesis and bone destruction by a novel action to induce the expression of osteoclast inhibitory protein, IFN-beta.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Pathology and Biodefense, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY. Trichostatin A attenuates airway inflammation in mouse asthma model. Clin Exp Allergy 2005; 35:89-96. [PMID: 15649272 DOI: 10.1111/j.1365-2222.2004.02006.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibition has been demonstrated to change the expression of a restricted set of cellular genes. T cells are essential in the pathogenesis of allergen-induced airway inflammation. It was recently reported that treatment with HDAC inhibitors induces a T cell-suppressive effect. OBJECTIVE The purpose of this study was to determine whether treatment with trichostatin A (TSA), a representative HDAC inhibitor, would reduce allergen-induced airway inflammation in a mouse asthma model. METHODS BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and challenged with an aerosol of OVA. TSA (1 mg/kg body weight) was injected intraperitoneally every 2 days beginning on day 1. Mouse lungs were assayed immunohistochemically for HDAC1, a major HDAC subtype, and for infiltration of CD4+ cells. The effect of TSA on airway hyper-responsiveness (AHR) was determined, and the bronchoalveolar lavage fluid (BALF) of these mice was assayed for the number and types of inflammatory cells, and for the concentrations of IL-4, IL-5, and IgE. RESULTS HDAC1 was localized within most airway cells and infiltrating inflammatory cells of asthmatic lungs. Treatment with TSA significantly attenuated AHR, as well as the numbers of eosinophils and lymphocytes in BALF. TSA also reduced infiltration of CD4+ and inflammatory cells and mucus occlusions in lung tissue, and decreased the concentrations of IL-4, IL-5, and IgE in BALF. CONCLUSION TSA attenuated the development of allergic airway inflammation by decreasing expression of the Th2 cytokines, IL-4 and IL-5, and IgE, which resulted from reduced T cell infiltration. Our results suggest that HDAC inhibition may attenuate the development of asthma by a T cell suppressive effect.
Collapse
Affiliation(s)
- J-H Choi
- Department of Veterinary Pathology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Reilly CM, Mishra N, Miller JM, Joshi D, Ruiz P, Richon VM, Marks PA, Gilkeson GS. Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. THE JOURNAL OF IMMUNOLOGY 2004; 173:4171-8. [PMID: 15356168 DOI: 10.4049/jimmunol.173.6.4171] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epigenetic regulation of gene expression is involved in the development of many diseases. Histone acetylation is a posttranslational modification of the nucleosomal histone tails that is regulated by the balance of histone deacetylases and histone acetyltransferases. Alterations in the balance of histone acetylation have been shown to cause aberrant expression of genes that are a hallmark of many diseases, including systemic lupus erythematosus. In this study, we determined whether suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor: 1) inhibits inflammatory mediator production in vitro and 2) modulates lupus progression in vivo. Mesangial cells isolated from 10-wk-old MRL/lpr mice were stimulated with LPS/IFN-gamma and incubated with SAHA. TNF-alpha, IL-6, NO, and inducible NO synthase expression were inhibited by SAHA. We then treated MRL/lpr mice with daily injections of SAHA from age 10 to 20 wk. The animals treated with SAHA had decreased spleen size and a concomitant decrease in CD4-CD8- (double-negative) T cells compared with controls. Serum autoantibody levels and glomerular IgG and C3 deposition in SAHA-treated mice were similar to controls. In contrast, proteinuria and pathologic renal disease were significantly inhibited in the mice receiving SAHA. These data indicate that SAHA blocks mesangial cell inflammatory mediator production in vitro and disease progression in vivo in MRL/lpr mice.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Autoantibodies/biosynthesis
- CD3 Complex/biosynthesis
- CD4-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/drug effects
- Cells, Cultured
- Disease Progression
- Female
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/immunology
- Glomerular Mesangium/metabolism
- Glomerular Mesangium/pathology
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/metabolism
- Histone Deacetylase Inhibitors
- Hydroxamic Acids/administration & dosage
- Hydroxamic Acids/pharmacology
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/pharmacology
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Injections, Intraperitoneal
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Lupus Erythematosus, Systemic/prevention & control
- Lymphopenia/chemically induced
- Lymphopenia/immunology
- Mice
- Mice, Inbred MRL lpr
- Organ Size/drug effects
- Proteinuria/prevention & control
- Proteinuria/urine
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Vorinostat
Collapse
Affiliation(s)
- Christopher M Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University and Edward Via College of Osteopathic Medicine, Blacksburg, 24060, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sanderson L, Taylor GW, Aboagye EO, Alao JP, Latigo JR, Coombes RC, Vigushin DM. Plasma pharmacokinetics and metabolism of the histone deacetylase inhibitor trichostatin a after intraperitoneal administration to mice. Drug Metab Dispos 2004; 32:1132-8. [PMID: 15269190 DOI: 10.1124/dmd.104.000638] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trichostatin A is a potent and specific histone deacetylase inhibitor with promising antitumor activity in preclinical models. Plasma pharmacokinetics of trichostatin A were studied following single-dose intraperitoneal administration of 80 mg/kg (high dose) or 0.5 mg/kg (low dose) to female BALB/c mice. Plasma trichostatin A concentrations were quantified by high performance liquid chromatography (HPLC)-UV assay (high dose) or by HPLC-multiple reaction monitoring assay (low dose). Trichostatin A was rapidly absorbed from the peritoneum and detectable in plasma within 2 min. Cmax of 40 microg/ml and 8 ng/ml occurred within 5 min, followed by rapid exponential decay in plasma trichostatin A concentration with t1/2 of 6.3 min and 9.6 min (high and low doses, respectively). Phase I metabolites at the high dose were identified by simultaneous UV and positive ion electrospray mass spectrometry. Trichostatin A underwent extensive metabolism: primary metabolic pathways were N-demethylation, reduction of the hydroxamic acid to the corresponding trichostatin A amide, and oxidative deamination to trichostatic acid. N-Monomethyl trichostatin A amide was the major plasma metabolite. No didemethylated compounds were identified. Trichostatic acid underwent further biotransformation: reduction and beta-oxidation of the carboxylic acid, with or without N-demethylation, resulted in formation of dihydro trichostatic acid and dinor dihydro trichostatic acids. HPLC fractions corresponding to trichostatin A and N-demethylated trichostatin A exhibited histone deacetylase-inhibitory activity; no other fractions were biologically active. We conclude that trichostatin A is rapidly and extensively metabolized in vivo following intraperitoneal administration to mice, and N-demethylation does not compromise histone deacetylase-inhibitory activity.
Collapse
Affiliation(s)
- L Sanderson
- Department of Cancer Medicine, 6th Floor MRC Cyclotron Building, Imperial College London (Hammersmith Hospital Campus), Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Reddy P, Maeda Y, Hotary K, Liu C, Reznikov LL, Dinarello CA, Ferrara JLM. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc Natl Acad Sci U S A 2004; 101:3921-6. [PMID: 15001702 PMCID: PMC374345 DOI: 10.1073/pnas.0400380101] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acute graft-versus-host disease (GVHD) and leukemic relapse are the two major obstacles to successful outcomes after allogeneic bone marrow transplantation (BMT), an effective therapy for hematological malignancies. Several studies have demonstrated that the dysregulation of proinflammatory cytokines and the loss of gastrointestinal tract integrity contribute to GVHD, whereas the donor cytotoxic responses are critical for graft-versus-leukemia (GVL) preservation. Suberoylanilide hydroxamic acid (SAHA) is currently in clinical trials as an antitumor agent; it inhibits the activity of histone deacetylases and at low doses exhibits antiinflammatory effects by reducing the production of proinflammatory cytokines. Using two well characterized mouse models of BMT, we have studied the effects of SAHA on GVHD severity and GVL activity. Administration of SAHA from day +3 to day +7 after BMT reduced serum levels of the proinflammatory cytokines and decreased intestinal histopathology, clinical severity, and mortality from acute GVHD compared with vehicle-treated animals. However, SAHA had no effect on donor T cell proliferative and cytotoxic responses to host antigens in vivo or in vitro. When mice received lethal doses of tumor cells at the time of BMT, administration of SAHA did not impair GVL activity and resulted in significantly improved leukemia-free survival by using two different tumor and donor/recipient combinations. These findings reveal a critical role for histone deacetylase inhibition in the proinflammatory events contributing to GVHD and suggest that this class of pharmacologic agents may provide a strategy to reduce GVHD while preserving cytotoxic T cell responses to host antigens and maintaining beneficial GVL effects.
Collapse
Affiliation(s)
- Pavan Reddy
- Department of Internal Medicine, University of Michigan Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0942, USA.
| | | | | | | | | | | | | |
Collapse
|