1
|
Choi S, Yoo SA, Ji KY, Jung DH, Lee S, Lee KG, Kim KM, Lee JY, Jung MA, Pyun BJ, Hur J, Choi JY, Rhee CK, Kim WU, Kim T. Asthma Alleviation by Ginsenoside Rb1 via Promotion of Treg Proliferation and Inflammatory T Cell Inhibition. Allergy 2025. [PMID: 40251907 DOI: 10.1111/all.16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Regulatory T cells (Tregs) are living drugs with feasibility, tolerability, and therapeutic benefits. Although Tregs are linked to asthma prognosis through inflammation regulation, no therapeutic agents specifically designed to manage asthma by upregulating Tregs have been developed to date. METHODS We screened a library of 250 natural products using a cytometric bead array. Among the selected candidates, gRb1 was identified for further investigation. The effects of gRb1 on Treg and Th17 populations were evaluated in mouse asthma models and human PBMCs from both healthy donors and asthma patients using flow cytometry and cytokine analysis. RESULTS In inflammatory conditions, ginsenoside Rb1 (gRb1, a major ginseng component) increased IL-10- and TGF-β-expressing Treg populations and decreased the Th17 population; activated phospho-STAT5 and NFAT1 in Tregs; inhibited NFAT1 activation in conventional T cells (Tconvs); increased Treg proliferation and Tconv-Treg differentiation, inhibiting Tconv proliferation; and reduced inflammatory cytokine secretion by Tconvs. In asthma model mice, suppression of asthma symptoms by gRb1 was associated with elevated Treg and lower Th17, Th1, and Th2 counts. gRb1 treatment of stimulated PBMCs from patients with asthma and healthy donors increased IL-10- and TGF-β-expressing Treg populations and decreased IL-17A-, IL-22-, IFN-γ-, and TNF-α-expressing T-cell populations. CONCLUSIONS gRb1 alleviate asthma by shifting the Treg-inflammatory T cell balance. These findings suggest a strategy for enhancing Treg activity through treatment with gRb1. This may provide a novel therapeutic approach for asthma and related disorders.
Collapse
Affiliation(s)
- Susanna Choi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Seung-Ah Yoo
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Saseong Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Gu Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Myo Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Xiong D, Geng H, Lv X, Wang S, Jia L. Inflammatory Response and Anti-Inflammatory Treatment in Persistent Inflammation-Immunosuppression-Catabolism Syndrome (PICS). J Inflamm Res 2025; 18:2267-2281. [PMID: 39968098 PMCID: PMC11834740 DOI: 10.2147/jir.s504694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Many patients now survive their initial critical events but subsequently develop chronic critical illness (CCI). CCI is characterized by prolonged hospital stays, poor outcomes, and significant long-term mortality. The incidence of chronic critical illness (CCI) is estimated to be 34.4 cases per 100,000 population. The incidence varies significantly with age, peaking at 82.1 cases per 100,000 in individuals aged 75-79. The one-year mortality rate among CCI patients approaches 50%. A subset of these patients enters a state of persistent inflammation, immune suppression, and ongoing catabolism, a condition termed persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. In recent years, some progress has been made in treating PICS. For instance, recent advancements such as the persistent expansion of MDSCs (myeloid-derived suppressor cells) and the mechanisms underlying intestinal barrier dysfunction have provided new directions for therapeutic strategies, as discussed below. Persistent inflammation, a key feature of PICS, has received comparatively little research attention. In this review, we examine the potential pathophysiological changes and molecular mechanisms underlying persistent inflammation and its role in PICS. We also discuss current therapies about inflammation and offer recommendations for managing patients with PICS.
Collapse
Affiliation(s)
- Dacheng Xiong
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huixian Geng
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xuechun Lv
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuqi Wang
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lijing Jia
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Nakao T, Shindo T, Takakura H, Narita T, Ise-Nakao Y, Akiyama S, Iizumi Y, Boku S, Watanabe M, Sakai T, Shimizu S, Yamada M, Sowa Y, Mutoh M. Trametinib Suppresses the Stimulated T Cells Through G1 Arrest and Apoptosis. Eur J Immunol 2025; 55:e202350667. [PMID: 39989249 DOI: 10.1002/eji.202350667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 02/25/2025]
Abstract
The development of efficient immunosuppressants may bring significant benefits to patients after organ/stem transplantation and those with allergies or autoimmune diseases. MEK inhibitors were originally developed as anticancer reagents, but recent reports have suggested that they may have the potential to be immunosuppressants. Trametinib is a first-in-class MEK inhibitor. Here, we examined the effects of trametinib on the immune system and revealed its mechanism. Trametinib suppressed both CD4 and CD8 T-cell proliferation and activated T cells, which expressed CD25 and TIM3, in a dose-dependent manner in vitro. Trametinib also suppressed T cell-related cytokine secretion in a dose-dependent manner. Notably, trametinib suppressed T cell proliferation through the induction of G1 arrest and apoptosis in stimulated T cells. In addition, trametinib induced regulatory T cells (Tregs). We confirmed that low concentrations of trametinib (1 and 10 nM) were not toxic toward splenic naïve T cells and normal mouse liver cells. In this study, we demonstrated whether trametinib suppressed CD4 and CD8 T cell proliferation by inducing G1 arrest and apoptosis along with suppression of cytokine secretion.
Collapse
Affiliation(s)
- Toshimasa Nakao
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
- Division of Renal Surgery and Transplantation, Department of Urology, Jichi Medical University, Shimotsuke, Japan
| | - Takero Shindo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Next Generation Development of Genome and Cellular Therapy Program, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideki Takakura
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takumi Narita
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukako Ise-Nakao
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University Hospital, Osaka, Japan
| | - Motoki Watanabe
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masaki Yamada
- Department for Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Zhang W, Cao X. Unfolded protein responses in T cell immunity. Front Immunol 2025; 15:1515715. [PMID: 39845962 PMCID: PMC11750696 DOI: 10.3389/fimmu.2024.1515715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are integral to T cell biology, influencing immune responses and associated diseases. This review explores the interplay between the UPR and T cell immunity, highlighting the role of these cellular processes in T cell activation, differentiation, and function. The UPR, mediated by IRE1, PERK, and ATF6, is crucial for maintaining ER homeostasis and supporting T cell survival under stress. However, the precise mechanisms by which ER stress and the UPR regulate T cell-mediated immunity remain incompletely understood. Emerging evidence suggests that the UPR may be a potential therapeutic target for diseases characterized by T cell dysfunction, such as autoimmune disorders and cancer. Further research is needed to elucidate the complex interactions between ER stress, the UPR, and T cell immunity to develop novel therapeutic strategies for T cell-associated diseases.
Collapse
Affiliation(s)
- Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Vahidinia Z, Barati S, Azami Tameh A, Bagheri-Mohammadi S, Garshasebi A. Bee venom as a promising therapeutic strategy in central nervous system diseases. Neuropeptides 2024; 107:102451. [PMID: 38936137 DOI: 10.1016/j.npep.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Central nervous system (CNS) disorders are one of the leading health problems today, accounting for a large proportion of global morbidity and mortality. Most these disorders are characterized by high levels of oxidative stress and intense inflammatory responses in degenerated neuronal tissues. While extensive research has been conducted on CNS diseases, but few breakthroughs have been made in treatment methods. To date, there are no disease-modifying drugs available for CNS treatment, underscoring the urgent need for finding effective medications. Bee venom (BV), which is produced by honeybee workers' stingers, has been a subject of interest and study across various cultures. Over the past few decades, extensive research has focused on BV and its therapeutic potentials. BV consists a variety of substances, mainly proteins and peptides like melittin and phospholipase A2 (PLA2). Research has proven that BV is effective in various medical conditions, including pain, arthritis and inflammation and CNS disorders such as Multiple sclerosis, Alzheimer's disease and Parkinson's disease. This review provides a comprehensive overview of the existing knowledge concerning the therapeutic effects of BV and its primary compounds on various CNS diseases. Additionally, we aim to shed light on the potential cellular and molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Garshasebi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Gill JS, Bansal B, Guo K, Huang F, Singh H, Hur J, Khan N, Mathur R. Mitochondrial Oxidative Stress Regulates FOXP3+ T-Cell Activity and CD4-Mediated Inflammation in Older Adults with Frailty. Int J Mol Sci 2024; 25:6235. [PMID: 38892421 PMCID: PMC11173216 DOI: 10.3390/ijms25116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy older adults, the immune system generally preserves its response and contributes to a long, healthy lifespan. However, rapid deterioration in immune regulation can lead to chronic inflammation, termed inflammaging, which accelerates pathological aging and diminishes the quality of life in older adults with frailty. A significant limitation in current aging research is the predominant focus on comparisons between young and older populations, often overlooking the differences between healthy older adults and those experiencing pathological aging. Our study elucidates the intricate immunological dynamics of the CD4/Treg axis in frail older adults compared to comparable age-matched healthy older adults. By utilizing publicly available RNA sequencing and single-cell RNA sequencing (scRNAseq) data from peripheral blood mononuclear cells (PBMCs), we identified a specific Treg cell subset and transcriptional landscape contributing to the dysregulation of CD4+ T-cell responses. We explored the molecular mechanisms underpinning Treg dysfunction, revealing that Tregs from frail older adults exhibit reduced mitochondrial protein levels, impairing mitochondrial oxidative phosphorylation. This impairment is driven by the TNF/NF-kappa B pathway, leading to cumulative inflammation. Further, we gained a deeper understanding of the CD4/Treg axis by predicting the effects of gene perturbations on cellular signaling networks. Collectively, these findings highlight the age-related relationship between mitochondrial dysfunction in the CD4/Treg axis and its role in accelerating aging and frailty in older adults. Targeting Treg dysfunction offers a critical basis for developing tailored therapeutic strategies aimed at improving the quality of life in older adults.
Collapse
Affiliation(s)
- Jappreet Singh Gill
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58292, USA
| | - Benu Bansal
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58292, USA
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Harpreet Singh
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (K.G.); (F.H.); (J.H.)
| | - Nadeem Khan
- Department of Oral Biology, University of Florida, Gainsville, FL 32603, USA;
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (J.S.G.); (B.B.); (H.S.)
| |
Collapse
|
7
|
Magni S, Sawlekar R, Capelle CM, Tslaf V, Baron A, Zeng N, Mombaerts L, Yue Z, Yuan Y, Hefeng FQ, Gonçalves J. Inferring upstream regulatory genes of FOXP3 in human regulatory T cells from time-series transcriptomic data. NPJ Syst Biol Appl 2024; 10:59. [PMID: 38811598 PMCID: PMC11137136 DOI: 10.1038/s41540-024-00387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
The discovery of upstream regulatory genes of a gene of interest still remains challenging. Here we applied a scalable computational method to unbiasedly predict candidate regulatory genes of critical transcription factors by searching the whole genome. We illustrated our approach with a case study on the master regulator FOXP3 of human primary regulatory T cells (Tregs). While target genes of FOXP3 have been identified, its upstream regulatory machinery still remains elusive. Our methodology selected five top-ranked candidates that were tested via proof-of-concept experiments. Following knockdown, three out of five candidates showed significant effects on the mRNA expression of FOXP3 across multiple donors. This provides insights into the regulatory mechanisms modulating FOXP3 transcriptional expression in Tregs. Overall, at the genome level this represents a high level of accuracy in predicting upstream regulatory genes of key genes of interest.
Collapse
Affiliation(s)
- Stefano Magni
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rucha Sawlekar
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Robotics and Artificial Intelligence, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vera Tslaf
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Zuogong Yue
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ye Yuan
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg.
| | - Jorge Gonçalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Wang CW, Biswas PK, Islam A, Chen MK, Chueh PJ. The Use of Immune Regulation in Treating Head and Neck Squamous Cell Carcinoma (HNSCC). Cells 2024; 13:413. [PMID: 38474377 PMCID: PMC10930979 DOI: 10.3390/cells13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Immunotherapy has emerged as a promising new treatment modality for head and neck cancer, offering the potential for targeted and effective cancer management. Squamous cell carcinomas pose significant challenges due to their aggressive nature and limited treatment options. Conventional therapies such as surgery, radiation, and chemotherapy often have limited success rates and can have significant side effects. Immunotherapy harnesses the power of the immune system to recognize and eliminate cancer cells, and thus represents a novel approach with the potential to improve patient outcomes. In the management of head and neck squamous cell carcinoma (HNSCC), important contributions are made by immunotherapies, including adaptive cell therapy (ACT) and immune checkpoint inhibitor therapy. In this review, we are focusing on the latter. Immune checkpoint inhibitors target proteins such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to enhance the immune response against cancer cells. The CTLA-4 inhibitors, such as ipilimumab and tremelimumab, have been approved for early-stage clinical trials and have shown promising outcomes in terms of tumor regression and durable responses in patients with advanced HNSCC. Thus, immune checkpoint inhibitor therapy holds promise in overcoming the limitations of conventional therapies. However, further research is needed to optimize treatment regimens, identify predictive biomarkers, and overcome potential resistance mechanisms. With ongoing advancements in immunotherapy, the future holds great potential for transforming the landscape of oral tumor treatment and providing new hope for patients.
Collapse
Affiliation(s)
- Che-Wei Wang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Pulak Kumar Biswas
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
| |
Collapse
|
9
|
Cheng S, Wang H, Kang X, Zhang H. Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress. Pharmaceutics 2024; 16:251. [PMID: 38399305 PMCID: PMC10892906 DOI: 10.3390/pharmaceutics16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppressive elements within the tumor microenvironment are the primary drivers of tumorigenesis and malignant advancement. The presence, as well as the crosstalk between myeloid-derived suppressor cells (MDSCs), osteosarcoma-associated macrophages (OS-Ms), regulatory T cells (Tregs), and endothelial cells (ECs) with osteosarcoma cells cause the poor prognosis of OS. In addition, the consequent immunosuppressive factors favor the loss of treatment potential. Nanoparticles offer a means to dynamically and locally manipulate immuno-nanoparticles, which present a promising strategy for transforming OS-TME. Additionally, chimeric antigen receptor (CAR) technology is effective in combating OS. This review summarizes the essential mechanisms of immunosuppressive cells in the OS-TME and the current immune-associated strategies. The last part highlights the limitations of existing therapies and offers insights into future research directions.
Collapse
Affiliation(s)
- Shigao Cheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Hunan Loudi Central Hospital, Loudi 417000, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Hui Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Caldas HC, Gonçalves NDN, Costa DS, Dias C, Caires LP, Baptista MASF, Fernandes-Charpiot IMM, Abbud-Filho M. Different Patterns of Foxp3 Gene Expression in Pre-and Post-Transplantation Kidney Biopsies and the Effect of Use Mammalian Target of Rapamycin Inhibitors. Transplant Proc 2023; 55:1408-1410. [PMID: 37156660 DOI: 10.1016/j.transproceed.2023.03.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Trafficking of regulatory T cells (Tregs) modulates the inflammatory response after kidney transplantation (KTx). There is scarce information on whether circulating and intragraft Tregs are similarly affected by immunosuppressive drugs and the type of deceased kidney donor. METHODS FOXP3 gene expression was measured in the pretransplant kidney biopsies (PIBx) from donors who met extended (ECD) and standard (SCD) criteria donors. In the third month after KTx, the patients were divided according to tacrolimus (Tac) or everolimus (Eve) and the type of kidney they had received. FOXP3 gene expression in the peripheral blood (PB) and kidney biopsies (Bx) was analyzed using real-time polymerase chain reaction. RESULTS FOXP3 gene expression in the PIBx was higher in ECD kidneys. FOXP3 gene expression in the PB and Bx was greater in Eve- than in Tac-treated patients. However, SCD recipients treated with Eve (SCD/Eve) had higher FOXP3 expression than ECD/Eve. CONCLUSION Pretransplant kidney biopsies from ECD kidneys had higher FOXP3 gene expression than SCD, and the use of Eve may affect the expression of the FOXP3 gene only in SCD kidneys.
Collapse
Affiliation(s)
- Heloisa Cristina Caldas
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Naiane do Nascimento Gonçalves
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Douglas Santos Costa
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Cinthia Dias
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Lennon Pereira Caires
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Maria Alice Sperto Ferreira Baptista
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil; Kidney Transplant and Dialysis Unit, Hospital de Base-FUNFARME, Sao Jose do Rio Preto, SP, Brazil
| | - Ida Maria Maximina Fernandes-Charpiot
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil; Kidney Transplant and Dialysis Unit, Hospital de Base-FUNFARME, Sao Jose do Rio Preto, SP, Brazil
| | - Mario Abbud-Filho
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil; Kidney Transplant and Dialysis Unit, Hospital de Base-FUNFARME, Sao Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
11
|
Lee JH, Kim HS, Jang SW, Lee GR. Histone deacetylase 6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation. Sci Rep 2022; 12:22550. [PMID: 36581745 PMCID: PMC9800578 DOI: 10.1038/s41598-022-27230-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by preventing abnormal or excessive immune responses. Histone deacetylase 6 (HDAC6) regulates expression of Foxp3, and thus, Treg cell differentiation; however, its role in Treg cell differentiation is unclear and somewhat controversial. Here, we investigated the role of HDAC6 in TGF-β-induced murine Treg cells. HDAC6 expression was higher in Treg cells than in other T helper cell subsets. Pharmacological inhibitors of HDAC6 selectively inhibited Treg cell differentiation and suppressive function. A specific HDAC6 inhibitor induced changes in global gene expression by Treg cells. Of these changes, genes related to cell division were prominently affected. In summary, HDAC6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation.
Collapse
Affiliation(s)
- Ji Hyeon Lee
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Hyeong Su Kim
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Sung Woong Jang
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Gap Ryol Lee
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| |
Collapse
|
12
|
Devi-Marulkar P, Fastenackels S, Karapentiantz P, Goc J, Germain C, Kaplon H, Knockaert S, Olive D, Panouillot M, Validire P, Damotte D, Alifano M, Murris J, Katsahian S, Lawand M, Dieu-Nosjean MC. Regulatory T cells infiltrate the tumor-induced tertiary lymphoïd structures and are associated with poor clinical outcome in NSCLC. Commun Biol 2022; 5:1416. [PMID: 36566320 PMCID: PMC9789959 DOI: 10.1038/s42003-022-04356-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
On one hand, regulatory T cells (Tregs) play an immunosuppressive activity in most solid tumors but not all. On the other hand, the organization of tumor-infiltrating immune cells into tertiary lymphoid structures (TLS) is associated with long-term survival in most cancers. Here, we investigated the role of Tregs in the context of Non-Small Cell Lung Cancer (NSCLC)-associated TLS. We observed that Tregs show a similar immune profile in TLS and non-TLS areas. Autologous tumor-infiltrating Tregs inhibit the proliferation and cytokine secretion of CD4+ conventional T cells, a capacity which is recovered by antibodies against Cytotoxic T-Lymphocyte-Associated protein-4 (CTLA-4) and Glucocorticoid-Induced TNFR-Related protein (GITR) but not against other immune checkpoint (ICP) molecules. Tregs in the whole tumor, including in TLS, are associated with a poor outcome of NSCLC patients, and combination with TLS-dendritic cells (DCs) and CD8+ T cells allows higher overall survival discrimination. Thus, Targeting Tregs especially in TLS may represent a major challenge in order to boost anti-tumor immune responses initiated in TLS.
Collapse
Affiliation(s)
- Priyanka Devi-Marulkar
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418596.70000 0004 0639 6384Present Address: Institut Curie, Paris, France
| | - Solène Fastenackels
- grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Karapentiantz
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,Present Address: Inserm, Sorbonne Université, université Paris 13, Laboratoire d’informatique médicale et d’ingénierie des connaissances en e-santé, LIMICS, F-75006 Paris, France
| | - Jérémy Goc
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.5386.8000000041936877XPresent Address: Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology and The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, USA
| | - Claire Germain
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,Present Address: Biomunex Pharmaceuticals, Paris, France
| | - Hélène Kaplon
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418301.f0000 0001 2163 3905Present Address: Translational Medicine Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Samantha Knockaert
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418301.f0000 0001 2163 3905Present Address: Translational Medicine Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Daniel Olive
- Inserm U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France ,grid.463833.90000 0004 0572 0656Laboratory « Immunity and Cancer », Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Marylou Panouillot
- grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Validire
- grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.418120.e0000 0001 0626 5681Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Diane Damotte
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.411784.f0000 0001 0274 3893Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin hospital, Paris, France
| | - Marco Alifano
- grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.50550.350000 0001 2175 4109Department of Thoracic Surgery, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Juliette Murris
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.5328.c0000 0001 2186 3954HeKA, INRIA, Paris, France ,Hôpital Européen Georges-Pompidou, Unité d’Epidémiologie et de Recherche Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm, Centre d’Investigation Clinique 1418, Module Epidémiologie Clinique, Paris, France
| | - Sandrine Katsahian
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.5328.c0000 0001 2186 3954HeKA, INRIA, Paris, France ,Hôpital Européen Georges-Pompidou, Unité d’Epidémiologie et de Recherche Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm, Centre d’Investigation Clinique 1418, Module Epidémiologie Clinique, Paris, France
| | - Myriam Lawand
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- grid.503414.7Sorbonne Université, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.410511.00000 0001 2149 7878Université de Paris, UMRS 1138, Cordeliers Research Center, Paris, France ,grid.417925.cLaboratory “Cancer, Immune Control, and Escape”, Inserm U1138, Cordeliers Research Center, Paris, France ,grid.462844.80000 0001 2308 1657UMRS1135 Sorbonne Université, Faculté de Médecine Sorbonne Université, Paris, France ,grid.7429.80000000121866389INSERM U1135, Paris, France ,grid.463810.8Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
13
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
14
|
Graves' disease following commencement of alemtuzumab therapy: Case report discussing clinical considerations and possible pathophysiology. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2022. [DOI: 10.1016/j.jecr.2022.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Ma H, Feng PH, Yu SN, Lu ZH, Yu Q, Chen J. Identification and validation of TNFRSF4 as a high-profile biomarker for prognosis and immunomodulation in endometrial carcinoma. BMC Cancer 2022; 22:543. [PMID: 35562682 PMCID: PMC9107201 DOI: 10.1186/s12885-022-09654-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The interaction between tumor microenvironment (TME) and tumors offers various targets in mounting anti-tumor immunotherapies. However, the prognostic biomarkers in endometrial carcinoma (EC) are still limited. Here, we aimed to analyze the TME features and identify novel prognostic biomarkers for EC. METHODS ESTIMATE, CIBERSORT, protein-protein interaction (PPI) network, univariate and multivariate Cox regression, and functional enrichment analysis were performed to identify immune- and survival-related hub genes as well as possible molecular mechanisms. The limma package and deconvolution algorithm were adopted to estimate the abundance of tumor-infiltrating immune cells (TICs) and their relationship with the target gene. In the validation section, tissue microarrays (TMAs) of EC and multiplex immunohistochemistry (m-IHC) were evaluated to validate the expression of TNFRSF4, and its correlation with immune markers, including CD4, CD8, and FOXP3. Besides, the receiver operating characteristic (ROC) curve was plotted to determine the diagnostic performance of TNFRSF4, CD4, CD8, and FOXP3 in EC. RESULTS Two genes, TNFRSF4 and S1PR4, were screened out from 386 intersection differential expression genes (DEGs) shared by ImmuneScore and StromalScore in EC. Highlighted by TNFRSF4, we found that it was not only positively correlated with the TICs (mainly CD4+ T cells, CD8+ T cells, and Tregs) but significantly related to the prognosis in patients of EC, both verified by data from The Cancer Genome Altas (TCGA)-EC database and clinical samples. At the same time, the expression trend of TNFRSF4 was further confirmed by an integrated meta-analysis based on six microarrays from the Gene Expression Omnibus database (GEO). CONCLUSIONS Collectively, TNFRSF4, a previously unrecognized key player in EC, could serve as a potential biomarker for prognosis prediction and immunomodulation of EC.
Collapse
Affiliation(s)
- Heng Ma
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Peng-Hui Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Shuang-Ni Yu
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Zhao-Hui Lu
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
16
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Huaux F. Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Front Immunol 2021; 12:690375. [PMID: 34489937 PMCID: PMC8417606 DOI: 10.3389/fimmu.2021.690375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Immunostimulation is recognized as an important contribution in lung fibrosis in some animal models and patient subsets. With this review, we illustrate an additional scenario covering the possible implication of immunoregulation during fibrogenesis. Available animal and human data indicate that pulmonary fibrosis also includes diverse and discrete immunoregulating populations comprising regulatory lymphocytes (T and B regs) and myeloid cells (immunosuppressive macrophages and myeloid-derived suppressive cells; MDSC). They are initially recruited to limit the establishment of deleterious inflammation but participate in the development of lung fibrosis by producing immunoregulatory mediators (mainly TGF-β1 and IL-10) that directly or indirectly stimulate fibroblasts and matrix protein deposition. The existence of this silent immunoregulatory environment sustains an alternative mechanism of fibrosis that explains why in some conditions neither pro-inflammatory cytokine deficiency nor steroid and immunosuppressive therapies limit lung fibrosis. Therefore, the persistent presence of immunoregulation is an important parameter to consider for refining therapeutical strategies in lung fibrotic disorders under non-immunostimulatory conditions.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Khan MA, Ashoor GA, Shamma T, Alanazi F, Altuhami A, Kazmi S, Ahmed HA, Mohammed Assiri A, Clemens Broering D. IL-10 Mediated Immunomodulation Limits Subepithelial Fibrosis and Repairs Airway Epithelium in Rejecting Airway Allografts. Cells 2021; 10:1248. [PMID: 34069395 PMCID: PMC8158696 DOI: 10.3390/cells10051248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin-10 plays a vital role in maintaining peripheral immunotolerance and favors a regulatory immune milieu through the suppression of T effector cells. Inflammation-induced microvascular loss has been associated with airway epithelial injury, which is a key pathological source of graft malfunctioning and subepithelial fibrosis in rejecting allografts. The regulatory immune phase maneuvers alloimmune inflammation through various regulatory modulators, and thereby promotes graft microvascular repair and suppresses the progression of fibrosis after transplantation. The present study was designed to investigate the therapeutic impact of IL-10 on immunotolerance, in particular, the reparative microenvironment, which negates airway epithelial injury, and fibrosis in a mouse model of airway graft rejection. Here, we depleted and reconstituted IL-10, and serially monitored the phase of immunotolerance, graft microvasculature, inflammatory cytokines, airway epithelium, and subepithelial collagen in rejecting airway transplants. We demonstrated that the IL-10 depletion suppresses FOXP3+ Tregs, tumor necrosis factor-inducible gene 6 protein (TSG-6), graft microvasculature, and establishes a pro-inflammatory phase, which augments airway epithelial injury and subepithelial collagen deposition while the IL-10 reconstitution facilitates FOXP3+ Tregs, TSG-6 deposition, graft microvasculature, and thereby favors airway epithelial repair and subepithelial collagen suppression. These findings establish a potential reparative modulation of IL-10-associated immunotolerance on microvascular, epithelial, and fibrotic remodeling, which could provide a vital therapeutic option to rescue rejecting transplants in clinical settings.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | | | - Talal Shamma
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Fatimah Alanazi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Abdullah Altuhami
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Shadab Kazmi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| |
Collapse
|
19
|
Yamakawa K, Tajima G, Keegan JW, Nakahori Y, Guo F, Seshadri AJ, Cahill LA, Lederer JA. Trauma induces expansion and activation of a memory-like Treg population. J Leukoc Biol 2021; 109:645-656. [PMID: 32531832 PMCID: PMC10228755 DOI: 10.1002/jlb.4a0520-122r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
CD4+ regulatory T cells (Tregs) are acutely activated by traumatic injury, which suggests that they may react to injury with similar kinetics as memory T cells. Here, we used a mouse burn trauma model to screen for memory-like T cell responses to injury by transferring T cells from sham or burn CD45.1 mice into CD45.2 mice and performing secondary injuries in recipient mice. Among all T cell subsets that were measured, only Tregs expanded in response to secondary injury. The expanded Tregs were a CD44high /CD62Llow subpopulation, markers indicative of memory T cells. CyTOF (cytometry by time-of-flight) mass cytometry was used to demonstrate that injury-expanded Tregs expressed higher levels of CD44, CTLA-4, ICOS, GITR, and Helios than Tregs from noninjured mice. Next, we tested whether a similar population of Tregs might react acutely to burn trauma. We observed that Tregs with a phenotype that matched the injury-expanded Tregs were activated by 6 h after injury. To test if Treg activation by trauma requires functional MHC class II, we measured trauma-induced Treg activation in MHC class II gene deficient (MHCII-/- ) mice or in mice that were given Fab fragment of anti-MHC class II antibody to block TCR activation. Injury-induced Treg activation occurred in normal mice but only partial activation was detected in MHCII-/- mice or in mice that were given Fab anti-MHCII antibody. These findings demonstrate that trauma activates a memory-like Treg subpopulation and that Treg activation by injury is partially dependent on TCR signaling by an MHC class II dependent mechanism.
Collapse
Affiliation(s)
- Kazuma Yamakawa
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Goro Tajima
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Emergency Medicine, Unit of Clinical Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Joshua W. Keegan
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yasutaka Nakahori
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Fei Guo
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anupamaa J. Seshadri
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Cahill
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Wang C, Lin W, Wang Y, Fu L. Suppression of Hippo Pathway by Food Allergen Exacerbates Intestinal Epithelia Instability and Facilitates Hypersensitivity. Mol Nutr Food Res 2021; 65:e2000593. [PMID: 33245584 DOI: 10.1002/mnfr.202000593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/15/2020] [Indexed: 12/30/2022]
Abstract
SCOPE Hippo signaling is a crucial pathway in innate immune responses, but the relationship between food allergy and Hippo pathway is unknown. The aim of this work is to investigate the regulation of food allergy by Hippo pathway and reveal the molecular mechanisms. METHODS AND RESULTS Two food allergens tropomyosin and ovalbumin are used to challenge a mouse model and CMT93 intestinal epithelia cell model. The allergic responses and the activation of Hippo pathway are tested in these models. In the mouse model, both allergens trigged significant allergic responses, and Hippo pathway is suppressed after allergen challenge. In CMT93, both allergens upregulate the expression of allergic cytokines thymic stromal lymphopoietin, interleukin (IL)-25, and IL-33. In TAZ KD CMT93, the Hippo pathway is blocked, and the expression of allergenic cytokines are also suppressed. CONCLUSIONS Both in vivo and in vitro data demonstrate that the two food allergens suppressed Hippo pathway by downregulating TAZ expression, resulting in intestinal epithelia instability, and finally leading to hypersensitivity reactions. These findings provide potential therapeutic targets and molecular markers for food allergy, and provide dietary guidelines for allergenic individuals.
Collapse
Affiliation(s)
- Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Wanglei Lin
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| |
Collapse
|
21
|
Increased infiltration of regulatory T cells in hepatocellular carcinoma of patients with hepatitis B virus pre-S2 mutant. Sci Rep 2021; 11:1136. [PMID: 33441885 PMCID: PMC7807072 DOI: 10.1038/s41598-020-80935-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent and deadly human cancer worldwide that is intimately associated with chronic hepatitis B virus (HBV) infection. Pre-S2 mutant is a HBV oncoprotein that plays important roles in HCC development and is linked to poor prognosis in HCC patients. However, the profiles of tumor-infiltrating lymphocytes in HCC tissues of pre-S2 mutant-positive patients remain unknown. In this study, we performed fluorescent immunohistochemistry staining to detect the infiltration of 'anti-tumor' cytotoxic T lymphocytes (CTLs) and 'pro-tumor' regulatory T cells (Tregs) in pre-S2 mutant-positive and -negative HCC patients. We showed that pre-S2 mutant-positive patients had a significantly higher infiltration of CD4+CD25+ cells and forkhead box P3 (Foxp3)-expressing cells but similar CTLs and lower granzyme B-expressing cells in HCC tissues compared with pre-S2 mutant-negative patients. Moreover, the percentage of pre-S2 plus pre-S1 + pre-S2 deletion (pre-S2 mutant) was positively correlated with the density of CD4+CD25+ cells and Foxp3-expressing cells but negatively with granzyme B-expressing cells in HCC tissues. Considering that increased intratumoral Tregs have been shown to promote tumor immune evasion, our data may provide new insights into the pathogenesis of HBV pre-S2 mutant-induced HCC and suggest that therapeutics targeting Tregs may be a promising strategy for treating pre-S2 mutant-positive high-risk patient population.
Collapse
|
22
|
Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med 2020; 18:456. [PMID: 33267824 PMCID: PMC7713035 DOI: 10.1186/s12967-020-02632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremendous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of disease.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
23
|
Zhou W, Chen K, Lu Q, Luo Y, Zhang C, Zheng Y, Zhuo Z, Guo K, Wang J, Chen H, Sha W. The Protective Effect of Rosavin from Rhodiola rosea on Radiation-Induced Intestinal Injury. Chem Biodivers 2020; 17:e2000652. [PMID: 33089958 DOI: 10.1002/cbdv.202000652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023]
Abstract
Bioactive constituents from Rhodiola rosea L. (RRL) exhibit multiple pharmacological effects on diverse diseases. However, whether they are suitable for the treatment of radiation-induced intestinal injury (RIII) remains unclear. This study aims to investigate their roles and mechanisms in the RIII rat model. The radioprotective effects of the four bioactive constituents of RRL (salidroside, herbacetin, rosavin and arbutin) were evaluated by the cell viability of irradiated IEC-6 cells. Intestinal tissues were collected for histological analysis, localized inflammation and oxidative stress assessments. Our work showed that salidroside, rosavin and arbutin improved the cell viability of the irradiated IEC-6 cells, with the highest improvement in 12.5 μM rosavin group. The rosavin treatment significantly improved survival rate and intestinal damage in irradiated rats by modulating the inflammatory response and oxidative stress. Our work indicated that rosavin may be the optimal constituent of RRL for RIII treatment, providing an attractive candidate for radioprotection.
Collapse
Affiliation(s)
- Weijie Zhou
- School of Medicine, South China University of Technology, Guangzhou, 510030, P. R. China
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Kequan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510030, P. R. China
| | - Quan Lu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Chen Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Yue Zheng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| | - Weihong Sha
- School of Medicine, South China University of Technology, Guangzhou, 510030, P. R. China
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, P. R. China
| |
Collapse
|
24
|
Jafarzadeh A, Nemati M, Jafarzadeh S, Chauhan P, Saha B. The immunomodulatory potentials of interleukin-27 in airway allergies. Scand J Immunol 2020; 93:e12959. [PMID: 32797730 DOI: 10.1111/sji.12959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Allergic airway disorders such as asthma and allergic rhinitis are mainly caused by inhaled allergen-induced improper activation and responses of immune and non-immune cells. One important response is the production of IL-27 by macrophages and dendritic cells (DCs) during the early stage of airway allergies. IL-27 exerts powerful modulatory influences on the cells of innate immunity [eg neutrophils, eosinophils, mast cells, monocytes, macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs), natural killer (NK) cells and NKT cells)] and adaptive immunity (eg Th1, Th2, Th9, Th17, regulatory T, CD8+ cytotoxic T and B cells). The IL-27-mediated signalling pathways may be modulated to attenuate asthma and allergic rhinitis. In this review, a comprehensive discussion concerning the roles carried out by IL-27 in asthma and allergic rhinitis was provided, while evidences are presented favouring the use of IL-27 in the treatment of airway allergies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, India.,Trident Academy of Creative Technology, Bhubaneswar, India
| |
Collapse
|
25
|
Effendi WI, Nagano T, Hasan H, Yudhawati R. Immunoregulatory Property of C-Type Lectin-Like Receptors in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 21:E3665. [PMID: 32455964 PMCID: PMC7279300 DOI: 10.3390/ijms21103665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
The innate immune system identifies exogenous threats or endogenous stress through germline-encoded receptors called pattern recognition receptors (PRRs) that initiate consecutive downstream signaling pathways to control immune responses. However, the contribution of the immune system and inflammation to fibrosing interstitial lung diseases (ILD) remains poorly understood. Immunoreceptor tyrosine-based motif-bearing C-type lectin-like receptors (CTLRs) may interact with various immune cells during tissue injury and wound repair processes. Dectin-1 is a CTLR with dominant mechanisms manifested through its intracellular signaling cascades, which regulate fibrosis-promoting properties through gene transcription and cytokine activation. Additionally, immune impairment in ILD facilitates microbiome colonization; hence, Dectin-1 is the master protector in host pulmonary defense against fungal invasion. Recent progress in determining the signaling pathways that control the balance of fibrosis has implicated immunoreceptor tyrosine-based motif-bearing CTLRs as being involved, either directly or indirectly, in the pathogenesis of fibrosing ILD.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Helmia Hasan
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| | - Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| |
Collapse
|
26
|
Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B 2020; 10:414-433. [PMID: 32140389 PMCID: PMC7049610 DOI: 10.1016/j.apsb.2019.08.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
The T cell co-stimulatory molecule OX40 and its cognate ligand OX40L have attracted broad research interest as a therapeutic target in T cell-mediated diseases. Accumulating preclinical evidence highlights the therapeutic efficacy of both agonist and blockade of the OX40-OX40L interaction. Despite this progress, many questions about the immuno-modulator roles of OX40 on T cell function remain unanswered. In this review we summarize the impact of the OX40-OX40L interaction on T cell subsets, including Th1, Th2, Th9, Th17, Th22, Treg, Tfh, and CD8+ T cells, to gain a comprehensive understanding of anti-OX40 mAb-based therapies. The potential therapeutic application of the OX40-OX40L interaction in autoimmunity diseases and cancer immunotherapy are further discussed; OX40-OX40L blockade may ameliorate autoantigen-specific T cell responses and reduce immune activity in autoimmunity diseases. We also explore the rationale of targeting OX40-OX40L interactions in cancer immunotherapy. Ligation of OX40 with targeted agonist anti-OX40 mAbs conveys activating signals to T cells. When combined with other therapeutic treatments, such as anti-PD-1 or anti-CTLA-4 blockade, cytokines, chemotherapy, or radiotherapy, the anti-tumor activity of agonist anti-OX40 treatment will be further enhanced. These data collectively suggest great potential for OX40-mediated therapies.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| |
Collapse
|
27
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
28
|
Payandeh Z, Yarahmadi M, Nariman-Saleh-Fam Z, Tarhriz V, Islami M, Aghdam AM, Eyvazi S. Immune therapy of melanoma: Overview of therapeutic vaccines. J Cell Physiol 2019; 234:14612-14621. [PMID: 30706472 DOI: 10.1002/jcp.28181] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Melanoma is the most serious type of skin cancer which develops from the occurrence of genetic mutations in the melanocytes. Based on the features of melanoma tumors such as location, genetic profile and stage, there are several therapeutic strategies including surgery, chemotherapy, and radiotherapy. However, because of the appearance resistance mechanisms, the efficiency of these treatments strategies may be reduced. It has been demonstrated that therapeutic monoclonal antibodies can improve the efficiency of melanoma therapies. Recently, several mAbs, such as nivolumab, pembrolizumab, and ipilimumab, were approved for the immunotherapy of melanoma. The antibodies inhibit immune checkpoint receptors such as CTL4 and pd-1. Another therapeutic strategy for the treatment of melanoma is cancer vaccines, which improve clinical outcomes in patients. The combination therapy using antibodies and gene vaccine give us a new perspective in the treatment of melanoma patients. Herein, we present the recent progressions in the melanoma immunotherapy, especially dendritic cells mRNA vaccines by reviewing recent literature.
Collapse
Affiliation(s)
- Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maral Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Islami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Biotechnology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Hu Y, Li N, Jiang P, Cheng L, Ding B, Liu XM, He K, Zhu YQ, Liu BL, Cao X, Zhou H, Mao XM. Elevated thyroglobulin level is associated with dysfunction of regulatory T cells in patients with thyroid nodules. Endocr Connect 2019; 8:309-317. [PMID: 30822273 PMCID: PMC6432874 DOI: 10.1530/ec-18-0545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Thyroid nodules are usually accompanied by elevated thyroglobulin (Tg) level and autoimmune thyroid diseases (AITDs). However, the relationship between Tg and AITDs is not fully understood. Dysfunction of regulatory T cells (Tregs) plays an important role in the development of AITDs. We aimed to evaluate the effects of Tg on the function of Tregs in patients with thyroid nodules. METHODS Tg levels and the functions of Tregs in peripheral blood and thyroid tissues of patients with thyroid nodules from Nanjing First Hospital were evaluated. The effects of Tg on the function of Tregs from healthy donors were also assessed in vitro. The function of Tregs was defined as an inhibitory effect of Tregs on the effector T cell (CD4+ CD25- T cell) proliferation rate. RESULTS The level of Tg in peripheral blood correlated negatively with the inhibitory function of Tregs (R = 0.398, P = 0.03), and Tregs function declined significantly in the high Tg group (Tg >77 μg/L) compared with the normal Tg group (11.4 ± 3.9% vs 27.5 ± 3.5%, P < 0.05). Compared with peripheral blood, the function of Tregs in thyroid declined significantly (P < 0.01), but the proportion of FOXP3+ Tregs in thyroid increased (P < 0.01). High concentration of Tg (100 μg/mL) inhibited the function of Tregs and downregulated FOXP3, TGF-β and IL-10 mRNA expression in Tregs in vitro. CONCLUSIONS Elevated Tg level could impair the function of Tregs, which might increase the risk of AITDs in patient with thyroid nodules.
Collapse
Affiliation(s)
- Yun Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
- Department of Immunology, Nanjing Medical University, Jiangsu, China
| | - Na Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Peng Jiang
- Department of Thyroid and Breast Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Liang Cheng
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiao-Mei Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Ke He
- Department of Endocrinology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Yun-Qing Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Bing-li Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Xin Cao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Jiangsu, China
- Correspondence should be addressed to H Zhou or X-M Mao: or
| | - Xiao-Ming Mao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
- Correspondence should be addressed to H Zhou or X-M Mao: or
| |
Collapse
|
30
|
Interplay between dendritic cells and cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:179-215. [DOI: 10.1016/bs.ircmb.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Vanichanan J, Udomkarnjananun S, Avihingsanon Y, Jutivorakool K. Common viral infections in kidney transplant recipients. Kidney Res Clin Pract 2018; 37:323-337. [PMID: 30619688 PMCID: PMC6312768 DOI: 10.23876/j.krcp.18.0063] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/22/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Infectious complications have been considered as a major cause of morbidity and mortality after kidney transplantation, especially in the Asian population. Therefore, prevention, early detection, and prompt treatment of such infections are crucial in kidney transplant recipients. Among all infectious complications, viruses are considered to be the most common agents because of their abundance, infectivity, and latency ability. Herpes simplex virus, varicella zoster virus, Epstein-Barr virus, cytomegalovirus, hepatitis B virus, BK polyomavirus, and adenovirus are well-known etiologic agents of viral infections in kidney transplant patients worldwide because of their wide range of distribution. As DNA viruses, they are able to reactivate after affected patients receive immunosuppressive agents. These DNA viruses can cause systemic diseases or allograft dysfunction, especially in the first six months after transplantation. Pretransplant evaluation and immunization as well as appropriate prophylaxis and preemptive approaches after transplant have been established in the guidelines and are used effectively to reduce the incidence of these viral infections. This review will describe the etiology, diagnosis, prevention, and treatment of viral infections that commonly affect kidney transplant recipients.
Collapse
Affiliation(s)
- Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Renal Immunology and Therapeutic Apheresis Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Renal Immunology and Therapeutic Apheresis Research Unit, Chulalongkorn University, Bangkok, Thailand.,Excellence Center of Immunology and Immune-mediated Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kamonwan Jutivorakool
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
32
|
Empowering dendritic cell cancer vaccination: the role of combinatorial strategies. Cytotherapy 2018; 20:1309-1323. [PMID: 30360963 DOI: 10.1016/j.jcyt.2018.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are bone marrow-derived immune cells that play a crucial role in inducing the adaptive immunity and supporting the innate immune response independently from T cells. In the last decade, DCs have become a hopeful instrument for cancer vaccines that aims at re-educating the immune system, leading to a potent anti-cancer immune response able to overcome the immunosuppressive tumor microenvironment (TME). Although several studies have indicated that DC-based vaccines are feasible and safe, the clinical advantages of DC vaccination as monotherapy for most of the neoplasms remain a distant target. Recently, many reports and clinical trials have widely used innovative combinatorial therapeutic strategies to normalize the immune function in the TME and synergistically enhance DC function. This review will describe the most relevant and updated evidence of the anti-cancer combinatorial approaches to boost the clinical potency of DC-based vaccines.
Collapse
|
33
|
Khan MA, Alanazi F, Ahmed HA, Vater A, Assiri AM, Broering DC. C5a Blockade Increases Regulatory T Cell Numbers and Protects Against Microvascular Loss and Epithelial Damage in Mouse Airway Allografts. Front Immunol 2018; 9:1010. [PMID: 29881374 PMCID: PMC5976734 DOI: 10.3389/fimmu.2018.01010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Microvascular injury during acute rejection has been associated with massive infiltration of CD4+ T effector cells, and the formation of complement products (C3a and C5a). Regulatory T cells (Tregs) are potent immunosuppressors of the adaptive immune system and have proven sufficient to rescue microvascular impairments. Targeting C5a has been linked with improved microvascular recovery, but its effects on the Treg and T effector balance is less well known. Here, we demonstrate the impact of C5a blockade on Treg induction and microvascular restoration in rejecting mouse airway allografts. BALB/c→C57BL/6 allografts were treated with a C5a-neutralizing l-aptamer (10 mg/kg, i.p. at d0 and every second day thereafter), and allografts were serially monitored for Treg infiltration, tissue oxygenation (tpO2), microvascular blood flow, and functional microvasculature between donor and recipients during allograft rejection. We demonstrated that C5a blocking significantly leads to enhanced presence of Tregs in the allograft, reinstates donor-recipient functional microvasculature, improves tpO2, microvascular blood flow, and epithelial repair, followed by an upregulation of IL-5, TGF-β, IL-10 vascular endothelial growth factor, and ANGPT1 gene expression, while it maintained a healthy epithelium and prevented subepithelial collagen deposition at d28 posttransplantation. Together, these data indicate that inhibition of C5a signaling has potential to preserve microvasculature and rescue allograft from a sustained hypoxic/ischemic phase, limits airway tissue remodeling through the induction of Treg-mediated immune tolerance. These findings may be useful in designing anti-C5a therapy in combination with existing immunosuppressive regimens to rescue tissue/organ rejection.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fatimah Alanazi
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Falcão PL, Campos TPRD. The role of regulatory T cells, interleukin-10 and in vivo scintigraphy in autoimmune and idiopathic diseases - Therapeutic perspectives and prognosis. ACTA ACUST UNITED AC 2018; 63:1090-1099. [PMID: 29489986 DOI: 10.1590/1806-9282.63.12.1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/07/2017] [Indexed: 12/29/2022]
Abstract
Previous studies have demonstrated the expression of the CD25 marker on the surface of naturally occurring T cells (Tregs) of mice, which have a self-reactive cellular profile. Recently, expression of other markers that aid in the identification of these cells has been detected in lymphocyte subtypes of individuals suffering of autoimmune and idiopathic diseases, including: CD25, CTLA-4 (cytotoxic T-lymphocyte antigen 4), HLA-DR (human leukocyte antigen) and Interleukin 10 (IL-10), opening new perspectives for a better understanding of an association between such receptors present on the cell surface and the prognosis of autoimmune diseases. The role of these molecules has already been described in the literature for the modulation of the inflammatory response in infectious and parasitic diseases. Thus, the function, phenotype and frequency of expression of the a-chain receptor of IL-2 (CD25) and IL-10 in lymphocyte subtypes were investigated. Murine models have been used to demonstrate a possible correlation between the expression of the CD25 marker (on the surface of CD4 lymphocytes) and the control of self-tolerance mechanisms. These studies provided support for the presentation of a review of the role of cells expressing IL-2, IL-10, HLA-DR and CTLA-4 receptors in the monitoring of immunosuppression in diseases classified as autoimmune, providing perspectives for understanding peripheral regulation mechanisms and the pathophysiology of these diseases in humans. In addition, a therapeutic approach based on the manipulation of the phenotype of these cells and ways of scintigraphically monitoring the manifestations of these diseases by labeling their receptors is discussed as a perspective. In this paper, we have included the description of experiments in ex vivo regulation of IL-10 and synthesis of thio-sugars and poly-sugars to produce radiopharmaceuticals for monitoring inflammation. These experiments may yield benefits for the treatment and prognosis of autoimmune diseases.
Collapse
Affiliation(s)
- Patrícia Lima Falcão
- Departament of Nuclear Engineering, Program of Nuclear Science and Techniques, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcisio Passos Ribeiro de Campos
- Departament of Nuclear Engineering, Program of Nuclear Science and Techniques, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
35
|
Jung NC, Lee JH, Chung KH, Kwak YS, Lim DS. Dendritic Cell-Based Immunotherapy for Solid Tumors. Transl Oncol 2018; 11:686-690. [PMID: 29627706 PMCID: PMC6154348 DOI: 10.1016/j.tranon.2018.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
As a treatment for solid tumors, dendritic cell (DC)-based immunotherapy has not been as effective as expected. Here, we review the reasons underlying the limitations of DC-based immunotherapy for solid tumors and ask what can be done to improve immune cell-based cancer therapies. Several reports show that, rather than a lack of immune induction, the limited efficacy of DC-based immunotherapy in cases of renal cell carcinoma (RCC) likely results from inhibition of immune responses by tumor-secreted TGF-β and an increase in the number of regulatory T (Treg) cells in and around the solid tumor. Indeed, unlike DC therapy for solid tumors, cytotoxic T lymphocyte (CTL) responses induced by DC therapy inhibit tumor recurrence after surgery; CTL responses also limit tumor metastasis induced by additional tumor-challenge in RCC tumor-bearing mice. Here, we discuss the mechanisms underlying the poor efficacy of DC-based therapy for solid tumors and stress the need for new and improved DC immunotherapies and/or combination therapies with killer cells to treat resistant solid tumors.
Collapse
Affiliation(s)
- Nam-Chul Jung
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea; Pharos Vaccine Inc., Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Jun-Ho Lee
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea; Pharos Vaccine Inc., Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Kwang-Hoe Chung
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Yi Sub Kwak
- Department of Physical Education, Dong-Eui University, College of Arts and Sports Science, Busan 47340, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
36
|
Badalamenti G, Fanale D, Incorvaia L, Barraco N, Listì A, Maragliano R, Vincenzi B, Calò V, Iovanna JL, Bazan V, Russo A. Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone? Cell Immunol 2018; 343:103753. [PMID: 29395859 DOI: 10.1016/j.cellimm.2018.01.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/30/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
In recent years, multiple strategies for eliciting anti-tumor immunity have been developed in different clinical studies. Currently, immunotherapy was clinically validated as effective treatment option for many tumors such as melanoma, non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC). Some surface receptors of immune cells, called immune checkpoint receptors, may inhibit activity of proinflammatory lymphocytes, following binding with specific ligands. Cancer cells exploit these mechanisms to inactivate tumor-infiltrating lymphocytes (TILs) to escape from immunosurveillance. Among the different tumor-infiltrating immune cell populations, including leucocytes, macrophages, dendritic cells and mast cells, TILs are considered a selected population of T-cells with a higher specific immunological reactivity against tumor cells than the non-infiltrating lymphocytes. In this review we will discuss the promising role of TILs as biomarkers reflecting the immune response to the tumor, describing their potential ability to predict the prognosis and clinical outcome of immunotherapy in some solid tumors.
Collapse
Affiliation(s)
- Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Rossella Maragliano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Bruno Vincenzi
- Medical Oncology Department, University Campus Bio-Medico, 00128 Rome, Italy
| | - Valentina Calò
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Unité 1068, Institut National de la Santé et de la Recherche Médicale, Marseille F-13009, France
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
37
|
Infection, Oxidative Stress, and Changes in Circulating Regulatory T Cells of Heart Failure Patients Supported by Continuous-Flow Ventricular Assist Devices. ASAIO J 2018; 63:128-133. [PMID: 27922883 DOI: 10.1097/mat.0000000000000487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the changes in oxidative stress (OS) and circulating regulatory T cells (Tregs) of the immune system in patients supported by continuous-flow ventricular assist device (CF-VAD) with or without infection. We recruited 16 CF-VAD patients (5 with infection and 11 without infection) and 7 healthy volunteers. Generation of reactive oxygen species (ROS) from lymphocytes, superoxide dismutase (SOD) in erythrocyte, total antioxidant capacity (TAC), and oxidized low-density lipoprotein (oxLDL) in plasma were measured. Circulating Tregs were evaluated by flow cytometry. Heart failure (HF) patients had elevated OS than healthy volunteers as evident from higher lymphocyte ROS, elevated oxLDL, as well as depleted SOD and TAC levels. At baseline, HF patients had decreased percentage of Tregs (5.12 ± 1.5% vs. 8.14 ± 3.01%, p < 0.01) when compared with healthy volunteers. Postimplant patients with infection illustrated 35% and 44% rise in ROS and oxLDL, respectively, 31% decrease in TAC, and marked rise in percentage of Tregs (14.27 ± 3.17% vs. 9.38 ± 3.41%, p < 0.01) when compared with the patients without infection. Elevated OS and rise in Tregs were more prominent in CF-VAD patients with infection. In conclusion, OS and compromised immune system may be important indicators of systemic response of the body to CF-VAD among HF patients with infection.
Collapse
|
38
|
Jiang XP, Huang XL, Yang ZP, Wang SC, Xie W, Miao L, Tang L, Huang ZM. Iguratimod ameliorates inflammatory responses by modulating the Th17/Treg paradigm in dextran sulphate sodium-induced murine colitis. Mol Immunol 2018; 93:9-19. [DOI: 10.1016/j.molimm.2017.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/16/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022]
|
39
|
Dwyer CJ, Bayer AL, Fotino C, Yu L, Cabello-Kindelan C, Ward NC, Toomer KH, Chen Z, Malek TR. Altered homeostasis and development of regulatory T cell subsets represent an IL-2R-dependent risk for diabetes in NOD mice. Sci Signal 2017; 10:10/510/eaam9563. [PMID: 29259102 DOI: 10.1126/scisignal.aam9563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytokine interleukin-2 (IL-2) is critical for the functions of regulatory T cells (Tregs). The contribution of polymorphisms in the gene encoding the IL-2 receptor α subunit (IL2RA), which are associated with type 1 diabetes, is difficult to determine because autoimmunity depends on variations in multiple genes, where the contribution of any one gene product is small. We investigated the mechanisms whereby a modest reduction in IL-2R signaling selectively in T lymphocytes influenced the development of diabetes in the NOD mouse model. The sensitivity of IL-2R signaling was reduced by about two- to threefold in Tregs from mice that coexpressed wild-type IL-2Rβ and a mutant subunit (IL-2RβY3) with reduced signaling (designated NOD-Y3). Male and female NOD-Y3 mice exhibited accelerated diabetes onset due to intrinsic effects on multiple activities in Tregs Bone marrow chimera and adoptive transfer experiments demonstrated that IL-2RβY3 Tregs resulted in impaired homeostasis of lymphoid-residing central Tregs and inefficient development of highly activated effector Tregs and that they were less suppressive. Pancreatic IL-2RβY3 Tregs showed impaired development into IL-10-secreting effector Tregs The pancreatic lymph nodes and pancreases of NOD-Y3 mice had increased numbers of antigen-experienced CD4+ effector T cells, which was largely due to impaired Tregs, because adoptively transferred pancreatic autoantigen-specific CD4+ Foxp3- T cells from NOD-Y3 mice did not accelerate diabetes in NOD.SCID recipients. Our study indicates that the primary defect associated with chronic, mildly reduced IL-2R signaling is due to impaired Tregs that cannot effectively produce and maintain highly functional tissue-seeking effector Treg subsets.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Allison L Bayer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carmen Fotino
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cecilia Cabello-Kindelan
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Natasha C Ward
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Zhibin Chen
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
40
|
Shin J, Jin M. Potential Immunotherapeutics for Immunosuppression in Sepsis. Biomol Ther (Seoul) 2017; 25:569-577. [PMID: 29081088 PMCID: PMC5685425 DOI: 10.4062/biomolther.2017.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a syndrome characterized by systemic inflammatory responses to a severe
infection. Acute hyper-inflammatory reactions in the acute phase of sepsis have been
considered as a primary reason for organ dysfunction and mortality, and advances in
emergency intervention and improved intensive care management have reduced
mortalities in the early phase. However it has been recognized that increased deaths
in the late phase still maintain sepsis mortality high worldwide. Patients recovered
from early severe illness are unable to control immune system with sepsis-induced
immunosuppression such as immunological tolerance, exhaustion and apoptosis, which
make them vulnerable to nosocomial and opportunistic infections ultimately leading to
threat to life. Based on strategies to reverse immunosuppression, recent developments
in sepsis therapy are focused on molecules having immune enhancing activities. These
efforts are focused on defining and revising the immunocompromised status associated
with long-term mortality.
Collapse
Affiliation(s)
- Jinwook Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
41
|
Zhou H, Wang L, Xu Q, Liu Q, Liu H, Qiu W, Hu T, Lv Y, Zhang Q. ID3 may protect mice from anti‑GBM glomerulonephritis by regulating the differentiation of Th17 and Treg cells. Mol Med Rep 2017; 16:9086-9094. [PMID: 28990057 DOI: 10.3892/mmr.2017.7724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/31/2017] [Indexed: 11/05/2022] Open
Abstract
Anti‑glomerular basement membrane glomerulonephritis (anti‑GBM GN) is an autoimmune disease that leads to severe and rapidly progressive renal injury. Inhibition of DNA‑binding factor 3 (ID3) serves a key role in autoimmune diseases, such as asthma and Sjögren's syndrome, and in experimental allergic encephalitis models. However, the role of ID3 in the progression of anti‑GBM GN remains unknown. In the present study, ID3 mRNA expression increased between 3‑ and 20‑fold in the renal tissues of anti‑GBM GN mice compared with the Control group, with a peak at day 14 post‑induction. In addition, ID3 protein expression was upregulated from day 7 onwards. The expression of ID3 was also examined in the spleen, and was demonstrated to be increased in the spleen of nephritic mice. T helper 17 (Th17) cells and regulatory T (Treg) cells were present throughout the entire period of observation (from day 7 to day 28) in anti‑GBM GN mice, which may vary at different time points, accompanied with the expression of ID3. In vitro, ID3 expression was increased when CD4+ T cells differentiated into Tregs; however, expression was lower in Th17 cells. Following treatment with ID3 small interfering RNA, RAR‑related orphan receptor γt, but not forkhead box P3, expression increased. Furthermore, increased expression of interleukin‑17A was also observed when ID3 was blocked. In addition, ID3 was able to interact with transcription factor E2A. A significant increase in binding between ID3 and E2A was observed in anti‑GBM GN from day 7 onwards, with a peak at day 14 in both renal tissue and spleen. In conclusion, ID3 may be involved in the differentiation of Th17 and Tregs by downregulating Th17 cells, which is probably associated with binding to E2A. The present results suggested that ID3 may offer protection against anti‑GBM GN in mice.
Collapse
Affiliation(s)
- Huan Zhou
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Le Wang
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qing Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qingquan Liu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Liu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wenhui Qiu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tingyang Hu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yongman Lv
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Zhang
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
42
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
43
|
Verbeke CS, Gordo S, Schubert DA, Lewin SA, Desai RM, Dobbins J, Wucherpfennig KW, Mooney DJ. Multicomponent Injectable Hydrogels for Antigen-Specific Tolerogenic Immune Modulation. Adv Healthc Mater 2017; 6:10.1002/adhm.201600773. [PMID: 28116870 PMCID: PMC5518671 DOI: 10.1002/adhm.201600773] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore-forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide-co-glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle-based delivery leads to antigen-specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel-based peptide delivery, transient expansion of endogenous antigen-specific T cells is observed in the draining lymph nodes. Antigen-specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen-specific CD4+ T cells in the gels are Tregs. Antigen-specific T cells are also enriched in the pancreatic islets, and administration of peptide-loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen-specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
Collapse
Affiliation(s)
- Catia S Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Susana Gordo
- Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Sarah A Lewin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rajiv M Desai
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | | | | | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
44
|
Dempke WCM, Fenchel K, Uciechowski P, Dale SP. Second- and third-generation drugs for immuno-oncology treatment-The more the better? Eur J Cancer 2017; 74:55-72. [PMID: 28335888 DOI: 10.1016/j.ejca.2017.01.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 01/20/2023]
Abstract
Recent success in cancer immunotherapy (anti-CTLA-4, anti-PD1/PD-L1) has confirmed the hypothesis that the immune system can control many cancers across various histologies, in some cases producing durable responses in a way not seen with many small-molecule drugs. However, only less than 25% of all patients do respond to immuno-oncology drugs and several resistance mechanisms have been identified (e.g. T-cell exhaustion, overexpression of caspase-8 and β-catenin, PD-1/PD-L1 gene amplification, MHC-I/II mutations). To improve response rates and to overcome resistance, novel second- and third-generation immuno-oncology drugs are currently evaluated in ongoing phase I/II trials (either alone or in combination) including novel inhibitory compounds (e.g. TIM-3, VISTA, LAG-3, IDO, KIR) and newly developed co-stimulatory antibodies (e.g. CD40, GITR, OX40, CD137, ICOS). It is important to note that co-stimulatory agents strikingly differ in their proposed mechanism of action compared with monoclonal antibodies that accomplish immune activation by blocking negative checkpoint molecules such as CTLA-4 or PD-1/PD-1 or others. Indeed, the prospect of combining agonistic with antagonistic agents is enticing and represents a real immunologic opportunity to 'step on the gas' while 'cutting the brakes', although this strategy as a novel cancer therapy has not been universally endorsed so far. Concerns include the prospect of triggering cytokine-release syndromes, autoimmune reactions and hyper immune stimulation leading to activation-induced cell death or tolerance, however, toxicity has not been a major issue in the clinical trials reported so far. Although initial phase I/II clinical trials of agonistic and novel antagonistic drugs have shown highly promising results in the absence of disabling toxicity, both in single-agent studies and in combination with chemotherapy or other immune system targeting drugs; however, numerous questions remain about dose, schedule, route of administration and formulation as well as identifying the appropriate patient populations. In our view, with such a wealth of potential mechanisms of action and with the ability to fine-tune monoclonal antibody structure and function to suit particular requirements, the second and third wave of immuno-oncology drugs are likely to provide rapid advances with new combinations of novel immunotherapy (especially co-stimulatory antibodies). Here, we will review the mechanisms of action and the clinical data of these new antibodies and discuss the major issues facing this rapidly evolving field.
Collapse
Affiliation(s)
- Wolfram C M Dempke
- Kyowa Kirin Pharmaceutical Development, Galashiels, United Kingdom; University of Munich, University Hospital of Grosshadern, Department of Haematology and Oncology, Germany.
| | | | - Peter Uciechowski
- RWTH Aachen University, Medical Faculty, Institute of Immunology, Germany
| | - Stephen P Dale
- Kyowa Kirin Pharmaceutical Development, Galashiels, United Kingdom
| |
Collapse
|
45
|
Khan MA. T regulatory cell mediated immunotherapy for solid organ transplantation: A clinical perspective. Mol Med 2017; 22:892-904. [PMID: 27878210 PMCID: PMC5319206 DOI: 10.2119/molmed.2016.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
T regulatory cells (Tregs) play a vital role in suppressing heightened immune responses, and thereby promote a state of immunological tolerance. Tregs modulate both innate and adaptive immunity, which make them a potential candidate for cell-based immunotherapy to suppress uncontrolled activation of graft specific inflammatory cells and their toxic mediators. These grafts specific inflammatory cells (T effector cells) and other inflammatory mediators (Immunoglobulins, active complement mediators) are mainly responsible for graft vascular deterioration followed by acute/chronic rejection. Treg mediated immunotherapy is under investigation to induce allospecific tolerance in various ongoing clinical trials in organ transplant recipients. Treg immunotherapy is showing promising results but the key issues regarding Treg immunotherapy are not yet fully resolved including their mechanism of action, and specific Treg cell phenotype responsible for a state of tolerance. This review highlights the involvement of various subsets of Tregs during immune suppression, novelty of Tregs functions, effects on angiogenesis, emerging technologies for effective Treg expansion, plasticity and safety associated with clinical applications. Altogether this information will assist in designing single/combined Treg mediated therapies for successful clinical trials in solid organ transplantations.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia 11211
| |
Collapse
|
46
|
Khan MA, Alanazi F, Ahmed HA, Al-Mohanna FH, Assiri AM, Broering DC. FOXP3 + regulatory T cell ameliorates microvasculature in the rejection of mouse orthotopic tracheal transplants. Clin Immunol 2017; 174:84-98. [PMID: 27939405 DOI: 10.1016/j.clim.2016.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/23/2016] [Accepted: 11/20/2016] [Indexed: 12/18/2022]
Abstract
Microvascular loss may be a root cause of chronic rejection in lung transplants, which leads to the bronchiolitis obliterans syndrome. Previous research implicates T regulatory cell (Treg) as a key component of immune modulation, however, Treg has never been examined as a reparative mediator to salvage microvasculature during transplantation. Here, we reconstituted purified Tregs in to allografts, and serially monitored allografts for tissue oxygenation, microvascular perfusion for four weeks. We demonstrated that Tregs reconstitution of allografts significantly improve tissue oxygenation, microvascular flow, epithelial repair, number of CD4+CD25highFOXP3+ Tregs, followed by an upregulation of proinflammatory, angiogenic and regulatory genes, while prevented subepithelial deposition of CD4+T cells at d10, and collagen at d28 post-transplantation. Altogether, these findings concluded that Treg-mediated immunotherapy has potential to preserve microvasculature and rescue allograft from sustained hypoxic/ischemic phase, limits airway tissue remodeling, and therefore may be a useful therapeutic tool to prevent chronic rejection after organ transplantation.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Fatimah Alanazi
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Falah Hassan Al-Mohanna
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | - Dieter Clemens Broering
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
47
|
Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget 2016; 7:6506-20. [PMID: 26646699 PMCID: PMC4872729 DOI: 10.18632/oncotarget.6467] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer related death in women. While current diagnostic modalities provide opportunities for early medical intervention, significant proportions of breast tumours escape treatment and metastasize. Gaining increasing recognition as a factor in tumour metastasis is the local immuno-surveillance environment. Following identification of the role played by the enzyme indoleamine dioxygenase 1 (IDO1) in mediating maternal foetal tolerance, the kynurenine pathway (KP) of tryptophan metabolism has emerged as a key metabolic pathway contributing to immune escape. In inflammatory conditions activation of the KP leads to the production of several immune-modulating metabolites including kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, picolinic acid and quinolinic acid. KP over-activation was first described in BrCa patients in the early 1960s. More evidence has since emerged to suggest that the IDO1 is elevated in advanced BrCa patients and is associated with poor prognosis. Further, IDO1 positive breast tumours have a positive correlation with the density of immune suppressive Foxp3+ T regulatory cells and lymph node metastasis. The analysis of clinical microarray data in invasive BrCa compared to normal tissue showed, using two microarray databank (cBioportal and TCGA), that 86.3% and 91.4% BrCa patients have altered KP enzyme expression respectively. Collectively, these data highlight the key roles played by KP activation in BrCa, particularly in basal BrCa subtypes where expression of most KP enzymes was altered. Accordingly, the use of KP enzyme inhibitors in addition to standard chemotherapy regimens may present a viable therapeutic approach.
Collapse
|
48
|
Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model. Immunol Res 2016; 64:508-17. [PMID: 26471021 DOI: 10.1007/s12026-015-8726-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD4+ T regulatory cells (Tregs) play a pivotal role in the anti-inflammatory immune response following trauma. The mechanisms of CD4+ Treg activation are mostly unknown. Here, we hypothesize that platelets regulate CD4+ Treg activation following trauma. In a murine burn injury model (male C57Bl/6N mice), depletion of platelets or CD4+ Tregs was conducted. Draining lymph nodes, blood and spleen were harvested 2 h and 7 days after trauma. CD4+ Treg activation was measured using phospho- and conventional flow cytometry. Platelet activation was analyzed using thromboelastometry and flow cytometry. Trauma differentially activates CD4+ T cells, early after trauma only CD4+ Tregs are activated. Following burn injury, platelets augment the activation of CD4+ Tregs. This effect could only be seen early after trauma. While CD4+ Tregs influence hemostasis early following trauma, platelet activation markers were unchanged. Beyond their role in hemostasis, platelets are able to modulate the immunologic host response to trauma-induced injury by augmenting the activation of CD4+ Tregs. CD4+ Treg activation following trauma is considered protective. In addition, CD4+ Tregs are capable of modulating the hemostatic function of platelets. For the first time, we could show reciprocal activation of platelets and CD4+ Tregs as part of the protective immune response following trauma.
Collapse
|
49
|
Soufli I, Toumi R, Rafa H, Touil-Boukoffa C. Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther 2016; 7:353-360. [PMID: 27602236 PMCID: PMC4986402 DOI: 10.4292/wjgpt.v7.i3.353] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis are complex disorders with undetermined etiology. Several hypotheses suggest that IBDs result from an abnormal immune response against endogenous flora and luminal antigens in genetically susceptible individuals. The dysfunction of the mucosal immune response is implicated in the pathogenesis of IBD. The balance between pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, and IL-17A], anti-inflammatory cytokines (IL-4 and IL-13), and immunoregulatory cytokines (IL-10 and transforming growth factors β) is disturbed. Moreover, evidence from animal and clinical studies demonstrate a positive correlation between an increased concentration of nitric oxide (NO) and the severity of the disease. Interestingly, proinflammatory cytokines are involved in the up-regulation of inducible oxide synthase (iNOS) expression in IBD. However, anti-inflammatory and immunoregulatory cytokines are responsible for the negative regulation of iNOS. A positive correlation between NO production and increased pro-inflammatory cytokine levels (TNF-α, IL-6, IL-17, IL-12, and interferon-γ) were reported in patients with IBD. This review focuses on the role of cytokines in intestinal inflammation and their relationship with NO in IBD.
Collapse
|
50
|
Abstract
Cancer heterogeneity, a hallmark enabling clonal survival and therapy resistance, is shaped by active immune responses. Antigen-specific T cells can control cancer, as revealed clinically by immunotherapeutics such as adoptive T-cell transfer and checkpoint blockade. The host immune system is thus a powerful tool that, if better harnessed, could significantly enhance the efficacy of cytotoxic therapy and improve outcomes for cancer sufferers. To realize this vision, however, a number of research frontiers must be tackled. These include developing strategies for neutralizing tumor-promoting inflammation, broadening T-cell repertoires (via vaccination), and elucidating the mechanisms by which immune cells organize tumor microenvironments to regulate T-cell activity. Such efforts will pave the way for identifying new targets for combination therapies that overcome resistance to current treatments and promote long-term cancer control.
Collapse
|