1
|
Wang H, Chang H, Sun D, Wang A, Yan B, Chung E. Therapeutic Challenges of Diabetes Mellitus-Related Erectile Dysfunction and The Potential Therapeutic Role of Medicinal Plants: A Narrative Review. Drug Des Devel Ther 2025; 19:3209-3223. [PMID: 40297311 PMCID: PMC12036596 DOI: 10.2147/dddt.s515403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Erectile dysfunction (ED) is a common male sexual dysfunction and can be induced by diabetes mellitus (DM). Diabetes mellitus-induced erectile dysfunction (DMED) affects various aspects of the patient's quality of life, mental well-being, and relationship dynamics. Given the increasing incidence of DM worldwide, the incidence of DMED is expected to increase accordingly. There are more challenges to treat DMED compared to non-DMED. The efficacy of oral phosphodiesterase-5 inhibitors is often ineffective in DMED and there is a need to search for effective drugs. Medicinal plants such as Eucommia ulmoides Oliv. Leaf, Cordycep militaris have been used in treating DMED in some experiments. And some ingredients from the medicinal plants such as Icariside II, Panax notoginseng Saponins have also shown to be beneficial in improving erectile function in animal models of DMED. These medicinal plants and ingredients may act by regulating hormone levels, ameliorating oxidative damage, and promoting NO/cGMP. We summarize the challenges in treating DMED due to related complicated pathogenesis and limited therapeutic options, while particularly highlight the role of the medicinal plants and their ingredients in DMED.
Collapse
Affiliation(s)
- Hao Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hongyuan Chang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Sun
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Anmin Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bin Yan
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- AndroUrology Centre, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Wang P, Cheng X, Zhang C, Lei J, Wang H, Wang Y, Sun L, Hu B, Qu G, Zhang D, Chen G, Liang C, Tao F, Wu Q, Yao Y, Yang L. Associations of urinary essential metals and their mixture with metabolic syndrome and its components among Chinese community-dwelling older adults. J Trace Elem Med Biol 2025; 88:127623. [PMID: 39986121 DOI: 10.1016/j.jtemb.2025.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/29/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Little is known regarding the joint effect of multiple essential metals (EMs) on metabolic syndrome (MetS). This study aimed to investigate individual and overall correlations of EMs with MetS and its components among Chinese community-dwelling older adults. METHODS Six urine EMs, including molybdenum (Mo), vanadium (V), selenium (Se), calcium (Ca), cobalt (Co), and magnesium (Mg), were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in 2222 older adults. Logistic regression and restricted cubic spline (RCS) models were utilized to assess single EM effects. Quantile-based g-computation (Qgcomp) and Bayesian kernel machine regression (BKMR) models were applied to estimate the overall effects of multiple EMs. RESULTS After controlling for potential confounders, Mo was significantly inversely connected to MetS (OR = 0.852, 95 % CI: 0.750 ∼ 0.967). RCS displayed a negative linear association of Mo with MetS (Pfor overall = 0.039, Pfor nonlinearity = 0.942). Both BKMR and Qgcomp models showed that EM mixture was inversely related to MetS, with Mo having the highest weight. Furthermore, Mo was inversely linked with high blood pressure, and V and Se were inversely linked with low high-density lipoprotein cholesterol (HDL-C), whereas Mg was positively linked with low HDL-C. The EM mixture was negatively correlated with high blood pressure and low HDL-C. CONCLUSIONS Urine Mo is in a linearly inverse correlation with MetS, individually and as a mixture. The EM mixture is connected to decreased MetS risk, mainly driven by Mo, which decreases the risk of high blood pressure.
Collapse
Affiliation(s)
- Panpan Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
| | - Xuqiu Cheng
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
| | - Chen Zhang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jingyuan Lei
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hongli Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuan Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Liang Sun
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Bing Hu
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Guangbo Qu
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Dongmei Zhang
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China
| | - Guimei Chen
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Qingsi Wu
- Department of Blood Transfusion, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Liu Y, Jin B. Mechanism of Traditional Chinese Medicine extract in the treatment of diabetic erectile dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119332. [PMID: 39778785 DOI: 10.1016/j.jep.2025.119332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/28/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic erectile dysfunction (DED) is a prevalent but often overlooked microvascular complication of type 2 diabetes mellitus (T2DM), with strong associations to cardiovascular disease. The pathophysiology of erectile dysfunction (ED) in T2DM patients is more intricate than in non-diabetic individuals, likely involving multiple pathogenic mechanisms such as endothelial dysfunction, vascular alterations, neuropathy, and oxidative stress. Traditional Chinese Medicine (TCM) has long been utilized in the management of DED, drawing on an extensive body of clinical experience. In TCM, DED is typically attributed to imbalances such as renal yang deficiency or insufficiencies in qi and blood. Herbal therapies within the TCM framework offer a multifaceted approach to treatment, targeting not only the replenishment of kidney yang and the regulation of qi and blood but also incorporating strategies for glycemic control and renal protection. This holistic approach has demonstrated effectiveness in alleviating erectile dysfunction in diabetic patients, thereby improving quality of life. However, the complexity of Chinese herbal formulations, with their diverse bioactive constituents, complicates the identification of specific active compounds and the mechanistic understanding of their therapeutic actions. This complexity has contributed to ongoing skepticism regarding the clinical utility of TCM and herbal remedies in the treatment of DED. AIM OF THE STUDY This study aimed to investigate the pathological mechanisms underlying the therapeutic effects of TCM in the treatment of DED, with a specific focus on the associated signaling pathways. By elucidating these mechanisms, the study seeks to provide a scientific basis for novel therapeutic strategies and enhance the viability of TCM-based approaches for DED management. Future research should prioritize the development of efficacious Chinese patent medicines tailored for the treatment of DED. METHODS This study utilizes keywords such as "diabetic erectile dysfunction", "signaling pathways", "traditional Chinese Medicine", "bioactive compounds", "herbal", "herbal monomers", and "herbal extracts" to conduct a comprehensive literature search in databases including Embase, PubMed, Web of Science, CNKI, Wanfang, and VIP, spanning all relevant publications up to February 2024. RESULTS It has been demonstrated that TCM extract can treat the DED by influencing the signaling pathways involved. CONCLUSION A comprehensive literature review was conducted across multiple databases, followed by rigorous screening, exclusion, summarization, synthesis, and analysis of relevant studies. The results indicate that TCM for DED primarily targets key pathological features, including endothelial dysfunction, vascular and neural abnormalities, and oxidative stress. The underlying mechanisms involve the NO/cGMP, eNOS, and PI3K/Akt/mTOR signaling pathways, contributing to significant improvements in erectile function. These findings provide a scientific basis for the use of TCM in DED, offering viable therapeutic options and innovative strategies to advance TCM-based treatment approaches. Furthermore, TCM exhibits notable potential in mitigating the pathological progression of DED. The pharmacological mechanisms and molecular signaling pathways of TCM extracts have been extensively investigated, underscoring their high value for clinical research and therapeutic development.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Medicine, Southeast University, Nanjing, 210003, China
| | - Baofang Jin
- Department of Integrative Medicine and Andrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D. Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis. Nat Rev Cardiol 2025:10.1038/s41569-024-01110-1. [PMID: 39743563 DOI: 10.1038/s41569-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.
Collapse
Affiliation(s)
- Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
| | - Leandro Slipczuk
- Division of Cardiology, Montefiore Healthcare Network/Albert Einstein College of Medicine, New York, NY, USA
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Nitesh Nerlekar
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Carro Vázquez D, Emini L, Rauner M, Hofbauer C, Skalicky S, Wagner A, Grillari J, Diendorfer AB, Hofbauer LC, Hackl M. Differential microRNA expression patterns between TallyHo/JngJ mice and non-diabetic Swiss Webster Random/Jackson mice. JBMR Plus 2025; 9:ziae121. [PMID: 39664932 PMCID: PMC11631062 DOI: 10.1093/jbmrpl/ziae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 12/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases the susceptibility of bone fragility. The underlying mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short single-stranded non-coding RNA molecules with utility as biomarkers due to their easy accessibility and stability in bodily fluids. Here, we aimed to use an unbiased approach to identify miRNAs dysregulated in a polygenic mouse model of T2DM. Genome-wide analysis of miRNAs in serum, BM, and bone from the polygenic TallyHo/JngJ (TH) mice, which recapitulate T2DM in humans, was performed. This analysis was compared to the recommended control Swiss Webster Random/Jackson (SWR/J) and a strain-matched non-diabetic control (TH-ND). When comparing TH mice with TH-ND using an adjusted p-value false discovery rate (FDR) cut-off of 0.2 to identify differentially expressed miRNAs, mmu-miR-466i-5p and mmu-miR-1195 were found to be up-regulated in both serum and in BM. Dysregulated miRNAs were not found in bone tissue. When comparing TH-ND mice with SWR/J using the same FDR cut-off, mmu-miR-351-5p, and mmu-miR-322-3p were upregulated in both BM and serum, while mmu-miR-449a-5p and mmu-miR-6240 were downregulated in BM and serum. Dysregulated miRNAs in BM or cortical bone compared to serum between TH-ND mice and SWR/J were investigated for their cell-type enrichment to identify putative donor cells and their gene target networks. Gene target network analysis revealed genes involved in diabetes-related signaling pathways as well as in diabetic bone disease. Cell-type enrichment analysis identified hsa-miR-449a enriched in immune cells, hsa-miR-592 in hepatocytes and endothelial cells, while hsa-miR-424-3p, hsa-miR-1-3p, and hsa-miR-196b-5p were enriched in mesenchymal stem cells and their derived tissues. In conclusion, our comparative miRNA profiling sheds light on differential expression patterns between SWR/J and both subgroups of TH. No differences were observed between TH and TH-ND, suggesting the genetic background of SWR/J may be responsible for the change of dysregulated miRNA.
Collapse
Affiliation(s)
| | - Lejla Emini
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Christine Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Susanna Skalicky
- TAmiRNA GmbH, Department of Research and Development, 1110 Vienna, Austria
| | - Alisia Wagner
- TAmiRNA GmbH, Department of Research and Development, 1110 Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | | | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Matthias Hackl
- TAmiRNA GmbH, Department of Research and Development, 1110 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
6
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 PMCID: PMC11876825 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y. Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Zygmunciak P, Stróżna K, Błażowska O, Mrozikiewicz-Rakowska B. Extracellular Vesicles in Diabetic Cardiomyopathy-State of the Art and Future Perspectives. Int J Mol Sci 2024; 25:6117. [PMID: 38892303 PMCID: PMC11172920 DOI: 10.3390/ijms25116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular complications are the most deadly and cost-driving effects of diabetes mellitus (DM). One of them, which is steadily attracting attention among scientists, is diabetes-induced heart failure, also known as diabetic cardiomyopathy (DCM). Despite significant progress in the research concerning the disease, a universally accepted definition is still lacking. The pathophysiology of the processes accelerating heart insufficiency in diabetic patients on molecular and cellular levels also remains elusive. However, the recent interest concerning extracellular vesicles (EVs) has brought promise to further clarifying the pathological events that lead to DCM. In this review, we sum up recent investigations on the involvement of EVs in DCM and show their therapeutic and indicatory potential.
Collapse
Affiliation(s)
| | - Katarzyna Stróżna
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Olga Błażowska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
8
|
Wu TW, Wu YJ, Chou CL, Cheng CF, Lu SX, Wang LY. Hemodynamic parameters and diabetes mellitus in community-dwelling middle-aged adults and elders: a community-based study. Sci Rep 2024; 14:12032. [PMID: 38797773 PMCID: PMC11128448 DOI: 10.1038/s41598-024-62866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Hemodynamic parameters have been correlated with stroke, hypertension, and arterial stenosis. While only a few small studies have examined the link between hemodynamics and diabetes mellitus (DM). This case-control study enrolled 417 DM patients and 3475 non-DM controls from a community-based cohort. Peak systolic velocity (PSV), end-diastolic velocity (EDV), blood flow velocity (MFV), pulsatility index (PI), and the resistance index (RI) of the common carotid arteries were measured by color Doppler ultrasonography. Generalized linear regression analyses showed that as compared to the non-DM controls, the age-sex-adjusted means of PSV, EDV, and MFV were - 3.28 cm/sec, - 1.94 cm/sec, and - 2.38 cm/sec, respectively, lower and the age-sex-adjusted means of RI and PI were 0.013 and 0.0061, respectively, higher for the DM cases (all p-values < 0.0005). As compared to the lowest quartiles, the multivariable-adjusted ORs of DM for the highest quartiles of PSV, EDV, MFV, RI, and PI were 0.59 (95% confidence interval [CI] 0.41-0.83), 0.45 (95% CI 0.31-0.66), 0.53 (95% CI 0.37-0.77), 1.61 (95% CI 1.15-2.25), and 1.58 (95% CI 1.12-2.23), respectively. More importantly, the additions of EDV significantly improved the predictabilities of the regression models on DM. As compared to the model contained conventional CVD risk factors alone, the area under the receiver operating curve (AUROC) increased by 1.00% (95% CI 0.29-1.73%; p = 0.0059) and 0.80% (95% CI 0.15-1.46%; p = 0.017) for models that added EDV in continuous and quartile scales, respectively. Additionally, the additions of PSV and MFV also significantly improved the predictabilities of the regression models (all 0.01 < p-value < 0.05). This study reveals a significant correlation between DM and altered hemodynamic parameters. Understanding this relationship could help identify individuals at higher risk of DM and facilitate targeted preventive strategies to reduce cardiovascular complications in DM patients.
Collapse
Affiliation(s)
- Tzu-Wei Wu
- Department of Medicine, MacKay Medical College, No. 46, Sec. 3, Jhong-Jheng Rd., San-Jhih District, New Taipei City, Taiwan.
| | - Yih-Jer Wu
- Department of Medicine, MacKay Medical College, No. 46, Sec. 3, Jhong-Jheng Rd., San-Jhih District, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chao-Liang Chou
- Department of Medicine, MacKay Medical College, No. 46, Sec. 3, Jhong-Jheng Rd., San-Jhih District, New Taipei City, Taiwan
- Department of Neurology, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Chun-Fang Cheng
- Tamsui Health Station, Department of Health, New Taipei City Government, New Taipei City, Taiwan
| | - Shu-Xin Lu
- Department of Neurology, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Li-Yu Wang
- Department of Medicine, MacKay Medical College, No. 46, Sec. 3, Jhong-Jheng Rd., San-Jhih District, New Taipei City, Taiwan.
| |
Collapse
|
9
|
Kaczara P, Czyzynska-Cichon I, Kus E, Kurpinska A, Olkowicz M, Wojnar-Lason K, Pacia MZ, Lytvynenko O, Baes M, Chlopicki S. Liver sinusoidal endothelial cells rely on oxidative phosphorylation but avoid processing long-chain fatty acids in their mitochondria. Cell Mol Biol Lett 2024; 29:67. [PMID: 38724891 PMCID: PMC11084093 DOI: 10.1186/s11658-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND It is generally accepted that endothelial cells (ECs), primarily rely on glycolysis for ATP production, despite having functional mitochondria. However, it is also known that ECs are heterogeneous, and their phenotypic features depend on the vascular bed. Emerging evidence suggests that liver sinusoidal ECs (LSECs), located in the metabolically rich environment of the liver, show high metabolic plasticity. However, the substrate preference for energy metabolism in LSECs remains unclear. METHODS Investigations were conducted in primary murine LSECs in vitro using the Seahorse XF technique for functional bioenergetic assays, untargeted mass spectrometry-based proteomics to analyse the LSEC proteome involved in energy metabolism pathways, liquid chromatography-tandem mass spectrometry-based analysis of acyl-carnitine species and Raman spectroscopy imaging to track intracellular palmitic acid. RESULTS This study comprehensively characterized the energy metabolism of LSECs, which were found to depend on oxidative phosphorylation, efficiently fuelled by glucose-derived pyruvate, short- and medium-chain fatty acids and glutamine. Furthermore, despite its high availability, palmitic acid was not directly oxidized in LSEC mitochondria, as evidenced by the acylcarnitine profile and etomoxir's lack of effect on oxygen consumption. However, together with L-carnitine, palmitic acid supported mitochondrial respiration, which is compatible with the chain-shortening role of peroxisomal β-oxidation of long-chain fatty acids before further degradation and energy generation in mitochondria. CONCLUSIONS LSECs show a unique bioenergetic profile of highly metabolically plastic ECs adapted to the liver environment. The functional reliance of LSECs on oxidative phosphorylation, which is not a typical feature of ECs, remains to be determined.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Edyta Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Mariola Olkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Marta Z Pacia
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Olena Lytvynenko
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Myriam Baes
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, 3000, Leuven, Belgium
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| |
Collapse
|
10
|
Xu M, Wang W, Cheng J, Qu H, Xu M, Wang L. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed Pharmacother 2024; 174:116587. [PMID: 38636397 DOI: 10.1016/j.biopha.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Atherosclerosis, an immunoinflammatory disease of medium and large arteries, is associated with life-threatening clinical events, such as acute coronary syndromes and stroke. Chronic inflammation and impaired lipoprotein metabolism are considered to be among the leading causes of atherosclerosis, while numerous risk factors, including arterial hypertension, diabetes mellitus, obesity, and aging, can contribute to the development of the disease. In recent years, emerging evidence has underlined the key role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. Mitochondrial dysfunction is believed to result in an increase in reactive oxygen species, leading to oxidative stress, chronic inflammation, and intracellular lipid deposition, all of which can contribute to the pathogenesis of atherosclerosis. Critical cells, including endothelial cells, vascular smooth muscle cells, and macrophages, play an important role in atherosclerosis. Mitochondrial function is also involved in maintaining the normal function of these cells. To better understand the relationship between mitochondrial dysfunction and atherosclerosis, this review summarizes the findings of recent studies and discusses the role of mitochondrial dysfunction in the risk factors and critical cells of atherosclerosis. FACTS: OPEN QUESTIONS.
Collapse
Affiliation(s)
- Minwen Xu
- Clinical Skills Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Wenjun Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingpei Cheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Basic Medical College, Gannan Medical University, Ganzhou 341000, China
| | - Hongen Qu
- Gannan Normal University, Ganzhou 341000, China.
| | - Minjuan Xu
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Basic Medical College, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
11
|
Kuroshima T, Kawaguchi S, Okada M. Current Perspectives of Mitochondria in Sepsis-Induced Cardiomyopathy. Int J Mol Sci 2024; 25:4710. [PMID: 38731929 PMCID: PMC11083471 DOI: 10.3390/ijms25094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt β-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
| | | | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (T.K.); (S.K.)
| |
Collapse
|
12
|
Wang N, Zhang C. Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression. Int J Mol Sci 2024; 25:3086. [PMID: 38542060 PMCID: PMC10970506 DOI: 10.3390/ijms25063086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/03/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of chronic kidney disease (CKD), and it heightens the risk of cardiovascular incidents. The pathogenesis of DKD is thought to involve hemodynamic, inflammatory, and metabolic factors that converge on the fibrotic pathway. Genetic predisposition and unhealthy lifestyle practices both play a significant role in the development and progression of DKD. In spite of the recent emergence of angiotensin receptors blockers (ARBs)/angiotensin converting enzyme inhibitor (ACEI), sodium-glucose cotransporter 2 (SGLT2) inhibitors, and nonsteroidal mineralocorticoid receptors antagonists (NS-MRAs), current therapies still fail to effectively arrest the progression of DKD. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), a promising class of agents, possess the potential to act as renal protectors, effectively slowing the progression of DKD. Other agents, including pentoxifylline (PTF), selonsertib, and baricitinib hold great promise as potential therapies for DKD due to their anti-inflammatory and antifibrotic properties. Multidisciplinary treatment, encompassing lifestyle modifications and drug therapy, can effectively decelerate the progression of DKD. Based on the treatment of heart failure, it is recommended to use multiple drugs in combination rather than a single-use drug for the treatment of DKD. Unearthing the mechanisms underlying DKD is urgent to optimize the management of DKD. Inflammatory and fibrotic factors (including IL-1, MCP-1, MMP-9, CTGF, TNF-a and TGF-β1), along with lncRNAs, not only serve as diagnostic biomarkers, but also hold promise as therapeutic targets. In this review, we delve into the potential mechanisms and the current therapies of DKD. We also explore the additional value of combing these therapies to develop novel treatment strategies. Drawing from the current understanding of DKD pathogenesis, we propose HIF inhibitors, AGE inhibitors, and epigenetic modifications as promising therapeutic targets for the future.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
13
|
Hidalgo Santiago JC, Perelló Martínez J, Vargas Romero J, Luis Pallares J, Michan Doña A, Gómez-Fernández P. Association of aortic stiffness with abdominal vascular and coronary calcifications in patients with stage 3 and 4 chronic kidney disease. Nefrologia 2024; 44:256-267. [PMID: 38555207 DOI: 10.1016/j.nefroe.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/03/2023] [Indexed: 04/02/2024] Open
Abstract
RATIONALE AND OBJECTIVES Increased central (aortic) arterial stiffness has hemodynamic repercussions that affect the incidence of cardiovascular and renal disease. In chronic kidney disease (CKD) there may be an increase in aortic stiffness secondary to multiple metabolic alterations including calcification of the vascular wall (VC). The objective of this study was to analyze the association of central aortic pressures and aortic stiffness with the presence of VC in abdominal aorta (AAC) and coronary arteries(CAC). MATERIALS AND METHODS We included 87 pacientes with CKD stage 3 and 4. Using applanation tonometry, central aortic pressures and aortic stiffness were studied. We investigated the association of aortic pulse wave velocity (Pvc-f) and Pvc-f adjusted for age, blood pressure, sex and heart rate (Pvc-f index) with AAC obtained on lumbar lateral radiography and CAC assessed by multidetector computed tomography. AAC and CAC were scored according to Kauppila and Agatston methods, respecti-vely. For the study of the association between Pvc-f index, Kauppila score, Agatston score, central aortic pressures, clinical parameters and laboratory data, multiple and logistic regression were used. We investigated the diagnosis performance of the Pvc-f index for prediction of VC using receiver-operating characteristic (ROC). RESULTS Pvc-f and Pvc-f index were 11.3 ± 2.6 and 10.6 m/s, respectively. The Pvc-f index was higher when CKD coexisted with diabetes mellitus (DM). AAC and CAC were detected in 77% and 87%, respectively. Albuminuria (β = 0.13, p = 0.005) and Kauppila score (β = 0.36, p = 0.001) were independently associated with Pvc-f index. In turn, Pvc-f index (β = 0.39, p = 0.001), DM (β = 0.46, p = 0.01), and smoking (β = 0.53; p = 0.006) were associated with Kauppila score, but only Pvc-f index predicted AAC [OR: 3.33 (95% CI: 1.6-6.9; p = 0.001)]. The Kauppila score was independently associated with the Agatston score (β = 1.53, p = 0.001). The presence of AAC identified patients with CAC with a sensitivity of 73%, a specificity of 100%, a positive predictive value of 100% and a negative predictive value of 38%. The Vpc-f index predicted the presence of CAC [OR: 3.35 (95% CI: 1.04-10.2, p = 0.04)]. In the ROC curves, using the Vpc-f index, the AUC for AAC and CAC was 0.82 (95%CI: 0.71-0.93, p = 0.001) and 0.81 (95% CI: 0.67-0.96, p = 0.02), respectively. CONCLUSIONS When stage 3-4 CKD coexists with DM there is an increase in aortic stiffness determined by the Vpc-f index. In stage 3-4 CKD, AAC and CAC are very prevalent and both often coexist. The Vpc-f index is independently associated with AAC and CAC and may be useful in identifying patients with VC in these territories.
Collapse
Affiliation(s)
| | | | - Javier Vargas Romero
- Unidad de Radiodiagnóstico, Hospital Universitario de Jerez, Jerez de la Frontera, Spain
| | - José Luis Pallares
- Unidad de Radiodiagnóstico, Hospital Universitario de Jerez, Jerez de la Frontera, Spain
| | - Alfredo Michan Doña
- Unidad de medicina Interna, Hospital Universitario de Jerez, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Jerez de la Frontera, Spain
| | - Pablo Gómez-Fernández
- Unidad de Factores de Riesgo Vascular, Hospital Universitario de Jerez, Jerez de la Frontera, Spain.
| |
Collapse
|
14
|
Liu Y, Zhong C, Chen S, Xue Y, Wei Z, Dong L, Kang L. Circulating exosomal mir-16-2-3p is associated with coronary microvascular dysfunction in diabetes through regulating the fatty acid degradation of endothelial cells. Cardiovasc Diabetol 2024; 23:60. [PMID: 38336726 PMCID: PMC10858495 DOI: 10.1186/s12933-024-02142-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is a frequent complication of diabetes mellitus (DM) characterized by challenges in both diagnosis and intervention. Circulating levels of microRNAs are increasingly recognized as potential biomarkers for cardiovascular diseases. METHODS Serum exosomes from patients with DM, DM with coronary microvascular dysfunction (DM-CMD) or DM with coronary artery disease (DM-CAD) were extracted for miRNA sequencing. The expression of miR-16-2-3p was assessed in high glucose-treated human aortic endothelial cells and human cardiac microvascular endothelial cells. Fluorescence in situ hybridization (FISH) was used to detect miR-16-2-3p within the myocardium of db/db mice. Intramyocardial injection of lentivirus overexpressing miR-16-2-3p was used to explore the function of the resulting gene in vivo. Bioinformatic analysis and in vitro assays were carried out to explore the downstream function and mechanism of miR-16-2-3p. Wound healing and tube formation assays were used to explore the effect of miR-16-2-3p on endothelial cell function. RESULTS miR-16-2-3p was upregulated in circulating exosomes from DM-CMD, high glucose-treated human cardiac microvascular endothelial cells and the hearts of db/db mice. Cardiac miR-16-2-3p overexpression improved cardiac systolic and diastolic function and coronary microvascular reperfusion. In vitro experiments revealed that miR-16-2-3p could regulate fatty acid degradation in endothelial cells, and ACADM was identified as a potential downstream target. MiR-16-2-3p increased cell migration and tube formation in microvascular endothelial cells. CONCLUSIONS Our findings suggest that circulating miR-16-2-3p may serve as a biomarker for individuals with DM-CMD. Additionally, miR-16-2-3p appears to alleviate coronary microvascular dysfunction in diabetes by modulating ACADM-mediated fatty acid degradation in endothelial cells.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Chongxia Zhong
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Shan Chen
- Department of General Medicine, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Yanan Xue
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Zhonghai Wei
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Li Dong
- Department of Geriatrics, Nanjing Central Hospital, Nanjing, 210018, China.
| | - Lina Kang
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China.
| |
Collapse
|
15
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
16
|
Wang P, Wei R, Cui X, Jiang Z, Yang J, Zu L, Hong T. Fatty acid β-oxidation and mitochondrial fusion are involved in cardiac microvascular endothelial cell protection induced by glucagon receptor antagonism in diabetic mice. J Diabetes 2023; 15:1081-1094. [PMID: 37596940 PMCID: PMC10755618 DOI: 10.1111/1753-0407.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid β-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid β-oxidation and mitochondrial fusion in CMECs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Rui Wei
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Zongzhe Jiang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jin Yang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Lingyun Zu
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
17
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
18
|
Li H, Zheng J, Wu Y, Zhou H, Zeng S, Li Q. Dendrobium officinale polysaccharide decreases podocyte injury in diabetic nephropathy by regulating IRS-1/AKT signal and promoting mitophagy. Aging (Albany NY) 2023; 15:10291-10306. [PMID: 37812195 PMCID: PMC10599763 DOI: 10.18632/aging.205075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUNDS High glucose (HG) caused oxidative stress and mitochondrial dysfunction, resulting in insulin resistance in podocytes, a key mechanism of diabetic nephropathy. Dendrobium officinale polysaccharide (DOP) was able to improve insulin resistance and antioxidant capability. OBJECTIVE The purpose of this study is to explore the mechanism by which DOP decreases the podocyte injury induced by HG. METHODS MPC5 cells were treated with HG, DOP, and IRS-1/2 inhibitor NT157. Afterwards, glucose consumption, generations of ROS and MDA were measured using the detection kits. Mitophagy was monitored using both MtphagTracyker and LysoTracker. The mitochondrial membrane potential was evaluated by JC-1 staining. DOP was also used in a mouse model of diabetes, with the measurements of urine albumin, blood creatinine and blood urea nitrogen. RESULTS Treatment with DOP suppressed the HG-induced reduction of glucose consumption, the phosphorylation of IRS-1 (phospho Y632), AKT (phospho Ser473 and Thr308) and Nephrin. In addition, HG-induced augment of ROS and MDA, formation of γ-H2A.X foci and translocation of AKT to nucleus were inhibited by DOP. DOP enhanced mitophagy, which was associated with decreased mitochondrial membrane potential and ROS production. DOP conferred protective effect on podocyte in the diabetic mouse by reducing the albumin/creatinine ratio and blood urea nitrogen, and restoring Nephrin expression in podocytes. CONCLUSIONS DOP alleviates HG-induced podocyte injuryby regulating IRS-1/AKT signal and promoting mitophagy.
Collapse
Affiliation(s)
- Huahua Li
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Jin Zheng
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Yacen Wu
- Department of Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Hong Zhou
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Suli Zeng
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Quanqing Li
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| |
Collapse
|
19
|
Li H, Gao Y, Lin Y. Progress in molecular mechanisms of coronary microvascular dysfunction. Microcirculation 2023; 30:e12827. [PMID: 37608689 DOI: 10.1111/micc.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Coronary microvascular dysfunction is a high-risk factor for many cardiovascular events. However, because of multiple risk factors and limited understanding about its underlying pathophysiological mechanisms, it was easily misdiagnosed. Therefore, its clinical diagnosis and treatment were greatly restricted. Coronary microcirculation refers to microvessels that play an important role in the physiological regulation of myocardial perfusion and regulating blood flow distribution, fulfilling myocardial metabolic needs and moderating peripheral vascular resistance. In coronary microvascular dysfunction, vascular endothelial celldamage is a critical link. The main feature of early coronary microvascular dysfunction is the impairment of endothelial cell proliferation, adhesion, migration, apoptosis, and secretion. Moreover, coronary microvascular dysfunction risk factors include hyperglycemia, lipid metabolism disorders, ischemia-reperfusion injury, aging, and hypertension, similar to coronary atherosclerosis. There are various mechanisms by which these risk factors harm endothelial function and cause microcirculatory disturbances. Therefore, we reviewed coronary microvascular dysfunction's risk factors and pathogenesis in this article.
Collapse
Affiliation(s)
- Hao Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuping Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
20
|
An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y, Jiang ZZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 2023; 22:237. [PMID: 37660030 PMCID: PMC10475205 DOI: 10.1186/s12933-023-01965-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by long-term hyperglycaemia, which leads to microangiopathy and macroangiopathy and ultimately increases the mortality of diabetic patients. Endothelial dysfunction, which has been recognized as a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy, is characterized by a reduction in NO bioavailability. Oxidative stress, which is the main pathogenic factor in diabetes, is one of the major triggers of endothelial dysfunction through the reduction in NO. In this review, we summarize the four sources of ROS in the diabetic vasculature and the underlying molecular mechanisms by which the pathogenic factors hyperglycaemia, hyperlipidaemia, adipokines and insulin resistance induce oxidative stress in endothelial cells in the context of diabetes. In addition, we discuss oxidative stress-targeted interventions, including hypoglycaemic drugs, antioxidants and lifestyle interventions, and their effects on diabetes-induced endothelial dysfunction. In summary, our review provides comprehensive insight into the roles of oxidative stress in diabetes-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Bu-Tuo Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Xiu-Mei Ma
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
21
|
Zhu M, Dagah OMA, Silaa BB, Lu J. Thioredoxin/Glutaredoxin Systems and Gut Microbiota in NAFLD: Interplay, Mechanism, and Therapeutical Potential. Antioxidants (Basel) 2023; 12:1680. [PMID: 37759983 PMCID: PMC10525532 DOI: 10.3390/antiox12091680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common clinical disease, and its pathogenesis is closely linked to oxidative stress and gut microbiota dysbiosis. Recently accumulating evidence indicates that the thioredoxin and glutaredoxin systems, the two thiol-redox dependent antioxidant systems, are the key players in the NAFLD's development and progression. However, the effects of gut microbiota dysbiosis on the liver thiol-redox systems are not well clarified. This review explores the role and mechanisms of oxidative stress induced by bacteria in NAFLD while emphasizing the crucial interplay between gut microbiota dysbiosis and Trx mediated-redox regulation. The paper explores how dysbiosis affects the production of specific gut microbiota metabolites, such as trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), amino acids, bile acid, and alcohol. These metabolites, in turn, significantly impact liver inflammation, lipid metabolism, insulin resistance, and cellular damage through thiol-dependent redox signaling. It suggests that comprehensive approaches targeting both gut microbiota dysbiosis and the thiol-redox antioxidant system are essential for effectively preventing and treating NAFLD. Overall, comprehending the intricate relationship between gut microbiota dysbiosis and thiol-redox systems in NAFLD holds significant promise in enhancing patient outcomes and fostering the development of innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.Z.); (O.M.A.D.); (B.B.S.)
| |
Collapse
|
22
|
Bhasin H, O'Brien SC, Cordner ZA, Aston SA, Tamashiro KLK, Moran TH. Activity-based anorexia in adolescent female rats causes changes in brain mitochondrial dynamics. Physiol Behav 2023; 261:114072. [PMID: 36599403 DOI: 10.1016/j.physbeh.2022.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Anorexia Nervosa (AN) is associated with a high rate of morbidity and mortality as well as a high rate of relapse. The molecular mechanisms underlying the progression of the disorder or the relapses are largely unknown. Patients with AN have been shown to have increased oxidative stress, but its involvement in the development in the disease is unknown. We have previously shown that adolescent female rats undergoing the activity-based anorexia (ABA) paradigm also show signs of oxidative stress. Due to their role in the release of reactive oxygen species (ROS), mitochondria are of high interest in diseases exhibiting oxidative stress. In this study, the impact of ABA on brain mitochondrial dynamics was examined. We found transient changes in the medial prefrontal cortex, hypothalamus, and hippocampus following 25% weight loss and changes in the amygdala at a 10-day weight recovery timepoint. These changes point towards damage in the mitochondria contributing to the oxidative stress.
Collapse
Affiliation(s)
- Harshit Bhasin
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Shannon C O'Brien
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - Zachary A Cordner
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - S Andrew Aston
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - Kellie L K Tamashiro
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - Timothy H Moran
- The Johns Hopkins University School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America.
| |
Collapse
|
23
|
Proteomics- and Metabolomics-Based Analysis of Metabolic Changes in a Swine Model of Pulmonary Hypertension. Int J Mol Sci 2023; 24:ijms24054870. [PMID: 36902298 PMCID: PMC10003314 DOI: 10.3390/ijms24054870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary vein stenosis (PVS) causes a rare type of pulmonary hypertension (PH) by impacting the flow and pressure within the pulmonary vasculature, resulting in endothelial dysfunction and metabolic changes. A prudent line of treatment in this type of PH would be targeted therapy to relieve the pressure and reverse the flow-related changes. We used a swine model in order to mimic PH after PVS using pulmonary vein banding (PVB) of the lower lobes for 12 weeks to mimic the hemodynamic profile associated with PH and investigated the molecular alterations that provide an impetus for the development of PH. Our current study aimed to employ unbiased proteomic and metabolomic analyses on both the upper and lower lobes of the swine lung to identify regions with metabolic alterations. We detected changes in the upper lobes for the PVB animals mainly pertaining to fatty acid metabolism, reactive oxygen species (ROS) signaling and extracellular matrix (ECM) remodeling and small, albeit, significant changes in the lower lobes for purine metabolism.
Collapse
|
24
|
Kurlawala Z, Singh P, Hill BG, Haberzettl P. Fine Particulate Matter (PM2.5)-Induced Pulmonary Oxidative Stress Contributes to Changes in the Plasma Lipidome and Liver Transcriptome in Mice. Toxicol Sci 2023; 192:kfad020. [PMID: 36857595 PMCID: PMC10109534 DOI: 10.1093/toxsci/kfad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Fine particulate matter (PM2.5) air pollution exposure increases the cardiovascular disease risk. Although the specific mechanisms remain elusive, it is thought that PM2.5-induced oxidative stress and endothelial dysfunction contribute to this pathogenesis. Our previous findings indicate that PM2.5 impairs vascular health via a circulating factor and that plasma lipid changes contribute to the observed vascular effects. In the current study, we extend on these findings by further characterizing PM2.5-induced changes in circulating lipids and examining whether the observed changes were accompanied by related alterations in the liver transcriptome. To address the role of pulmonary oxidative stress, we exposed wild-type (WT) mice and mice that overexpress extracellular superoxide dismutase (ecSOD-Tg) in the lungs to concentrated ambient PM2.5 (CAP, 9 days). We found that CAP decreased circulating complex lipids and increased free fatty acids and acylcarnitines in WT, but not ecSOD-Tg mice. These plasma lipid changes were accompanied by transcriptional changes in genes that regulate lipid metabolism (e.g., upregulation of lipid biosynthesis, downregulation of mitochondrial/peroxisomal FA metabolism) in the liver. The CAP-induced changes in lipid homeostasis and liver transcriptome were accompanied by pulmonary but not hepatic oxidative stress and were largely absent in ecSOD-Tg mice. Our results suggest that PM2.5 impacts hepatic lipid metabolism; however, it remains unclear whether the transcriptional changes in the liver contribute to PM2.5-induced changes in plasma lipids. Regardless, PM2.5-induced changes in the plasma lipidome and hepatic transcriptome are, at least in part, mediated by pulmonary oxidative stress.
Collapse
Affiliation(s)
- Zimple Kurlawala
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Parul Singh
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Petra Haberzettl
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
25
|
Fatty Acid Metabolism in Endothelial Cell. Genes (Basel) 2022; 13:genes13122301. [PMID: 36553568 PMCID: PMC9777652 DOI: 10.3390/genes13122301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
The endothelium is a monolayer of cells lining the inner blood vessels. Endothelial cells (ECs) play indispensable roles in angiogenesis, homeostasis, and immune response under normal physiological conditions, and their dysfunction is closely associated with pathologies such as cardiovascular diseases. Abnormal EC metabolism, especially dysfunctional fatty acid (FA) metabolism, contributes to the development of many diseases including pulmonary hypertension (PH). In this review, we focus on discussing the latest advances in FA metabolism in ECs under normal and pathological conditions with an emphasis on PH. We also highlight areas of research that warrant further investigation.
Collapse
|
26
|
Legaard GE, Feineis CS, Johansen MY, Hansen KB, Vaag AA, Larsen EL, Poulsen HE, Almdal TP, Karstoft K, Pedersen BK, Ried-Larsen M. Effects of an exercise-based lifestyle intervention on systemic markers of oxidative stress and advanced glycation endproducts in persons with type 2 diabetes: Secondary analysis of a randomised clinical trial. Free Radic Biol Med 2022; 188:328-336. [PMID: 35764194 DOI: 10.1016/j.freeradbiomed.2022.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS This secondary analysis aimed to investigate the effects of a 12 months intensive exercise-based lifestyle intervention on systemic markers of oxidative stress in persons with type 2 diabetes. We hypothesized lifestyle intervention to be superior to standard care in decreasing levels of oxidative stress. METHODS The study was based on the single-centre, assessor-blinded, randomised, controlled U-turn trial (ClinicalTrial.gov NCT02417012). Persons with type 2 diabetes ˂ 10 years, ˂ 3 glucose lowering medications, no use of insulin, BMI 25-40 kg/m2 and no severe diabetic complications were included. Participants were randomised (2:1) to either intensive exercise-based lifestyle intervention and standard (n = 64) or standard care alone (n = 34). Standard care included individual education in diabetes management, advice on a healthy lifestyle and regulation of medication by a blinded endocrinologist. The lifestyle intervention included five to six aerobic exercise sessions per week, combined with resistance training two to three times per week and an adjunct dietary intervention aiming at reduction of ∼500 kcal/day (month 0-4). The diet was isocaloric from months 5-12. The primary outcome of this secondary analysis was change in oxidative stress measured by 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and secondarily in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), as markers of RNA and DNA oxidation, respectively, from baseline to 12-months follow-up. RESULTS A total of 77 participants, 21 participants receiving standard care and 56 participants receiving the lifestyle intervention, were included in the analysis. Mean age at baseline was 54.1 years (SD 9.1), 41% were women and mean duration of type 2 diabetes was 5.0 years (SD 2.8). From baseline to follow-up the lifestyle group experienced a 7% decrease in 8-oxoGuo (-0.15 nmol/mmol creatinine [95% CI -0.27, -0.03]), whereas standard care conversely was associated with a 8.5% increase in 8-oxoGuo (0.19 nmol/mmol creatinine [95% CI 0.00, 0.40]). The between group difference in 8-oxoGuo was -0.35 nmol/mmol creatinine [95% CI -0.58, -0.12,], p = 0.003. No between group difference was observed in 8-oxodG. CONCLUSION/INTERPRETATION A 12 months intensive exercise-based lifestyle intervention was associated with a decrease in RNA, but not DNA, oxidation in persons with type 2 diabetes.
Collapse
Affiliation(s)
- Grit E Legaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Camilla S Feineis
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mette Y Johansen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Allan A Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Emil L Larsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | - Henrik E Poulsen
- Department of Cardiology, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas P Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Denmark; Department of Immunology & Microbiology, University of Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
27
|
Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants (Basel) 2022; 11:antiox11040784. [PMID: 35453469 PMCID: PMC9030255 DOI: 10.3390/antiox11040784] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes is a redox disease. Oxidative stress and chronic inflammation induce a switch of metabolic homeostatic set points, leading to glucose intolerance. Several diabetes-specific mechanisms contribute to prominent oxidative distress in the heart, resulting in the development of diabetic cardiomyopathy. Mitochondrial overproduction of reactive oxygen species in diabetic subjects is not only caused by intracellular hyperglycemia in the microvasculature but is also the result of increased fatty oxidation and lipotoxicity in cardiomyocytes. Mitochondrial overproduction of superoxide anion radicals induces, via inhibition of glyceraldehyde 3-phosphate dehydrogenase, an increased polyol pathway flux, increased formation of advanced glycation end-products (AGE) and activation of the receptor for AGE (RAGE), activation of protein kinase C isoforms, and an increased hexosamine pathway flux. These pathways not only directly contribute to diabetic cardiomyopathy but are themselves a source of additional reactive oxygen species. Reactive oxygen species and oxidative distress lead to cell dysfunction and cellular injury not only via protein oxidation, lipid peroxidation, DNA damage, and oxidative changes in microRNAs but also via activation of stress-sensitive pathways and redox regulation. Investigations in animal models of diabetic cardiomyopathy have consistently demonstrated that increased expression of the primary antioxidant enzymes attenuates myocardial pathology and improves cardiac function.
Collapse
|
28
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
29
|
Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, Alibhai FJ, Gustafson D, Raju S, Wu R, Zarrin Khat D, Wang Y, Caballero A, Meagher P, Lau E, Pepic L, Cheng HS, Galant NJ, Howe KL, Li RK, Connelly KA, Husain M, Delgado-Olguin P, Fish JE. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol 2022; 21:31. [PMID: 35209901 PMCID: PMC8876371 DOI: 10.1186/s12933-022-01458-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Background Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. Methods The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). Results We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid β-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid β-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. Conclusions MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01458-z.
Collapse
Affiliation(s)
- Shawn Veitch
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark Chandy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ahsan Siraj
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - HaoQi Mak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kai Yu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Zhiqi Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dakota Gustafson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dorrin Zarrin Khat
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amalia Caballero
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Meagher
- Keenan Biomedical Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lejla Pepic
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry S Cheng
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Natalie J Galant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kim A Connelly
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada. .,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada. .,Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
30
|
Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, Alibhai FJ, Gustafson D, Raju S, Wu R, Zarrin Khat D, Wang Y, Caballero A, Meagher P, Lau E, Pepic L, Cheng HS, Galant NJ, Howe KL, Li RK, Connelly KA, Husain M, Delgado-Olguin P, Fish JE. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol 2022; 21:31. [PMID: 35209901 PMCID: PMC8876371 DOI: 10.1186/s12933-022-01458-z 10.2174/1566523222666220303102951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. METHODS The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). RESULTS We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid β-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid β-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. CONCLUSIONS MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart.
Collapse
Affiliation(s)
- Shawn Veitch
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark Chandy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ahsan Siraj
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - HaoQi Mak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kai Yu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Zhiqi Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dakota Gustafson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sneha Raju
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dorrin Zarrin Khat
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amalia Caballero
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Meagher
- Keenan Biomedical Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lejla Pepic
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry S Cheng
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Natalie J Galant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kim A Connelly
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
31
|
Huang S, Zhong D, Lv Z, Cheng J, Zou X, Wang T, Wen Y, Wang C, Yu S, Huang H, Li L, Nie Z. Associations of multiple plasma metals with the risk of metabolic syndrome: A cross-sectional study in the mid-aged and older population of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113183. [PMID: 35032729 DOI: 10.1016/j.ecoenv.2022.113183] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Metal exposures have been reported to be related to the progress of metabolic syndrome (MetS), however, the currents results were still controversial, and the evidence about the effect of multi-metal exposure on MetS were limited. In this study, we intended to evaluate the relationships between metal mixture exposure and the prevalence of MetS in a mid-aged and older population of China. METHODS The plasma levels of 13 metals (aluminum, magnesium, calcium, iron, manganese, cobalt, copper, arsenic, zinc, selenium, cadmium, molybdenum and thallium) were detected by inductively coupled plasma mass spectrometry (ICP-MS) in 1277 adults recruited from the Eighth Affiliated Hospital of Sun Yat-Sen University (Shenzhen, China). Logistic regression, the adaptive least absolute shrinkage and selectionator operator (LASSO) penalized regression analysis and restricted cubic spline (RCS) analysis were used to explore the associations and dose-response relationships of plasma metals with MetS. To evaluate the cumulative effect of metals, the Bayesian Kernel Machine Regression (BKMR) model was applied. RESULTS The concentrations of magnesium and molybdenum were lower in the MetS group (p < 0.05). In the single-metal model, the adjusted ORs (95%CI) in the highest quartiles were 0.44 (0.35, 0.76) for magnesium and 0.30 (0.17, 0.51) for molybdenum compared with the lowest quartile. The negative associations and dose-dependent relationships of magnesium and molybdenum with MetS were further validated by the stepwise model, adaptive LASSO penalized regression and RCS analysis. The BKMR models showed that the metal mixture were associated with decreased MetS when the chemical mixtures were≥ 25th percentile compared to their medians, and Mg, Mo were the major contributors to the combined effect. Moreover, concentrations of magnesium were significantly related to blood glucose, and molybdenum was related with BMI, blood glucose and blood pressure. CONCLUSIONS Elevated levels of plasma magnesium and molybdenum were associated with decreased prevalence of MetS. Further investigations in larger perspective cohorts are needed to confirm our findings.
Collapse
Affiliation(s)
- Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Danrong Zhong
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Department of Cardiovascular Medicine, Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tian Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shuyuan Yu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Lu Li
- Department of Cardiovascular Medicine, Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Zhiqiang Nie
- Department of Cardiology, Hypertension Research Laboratory, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
32
|
Luk C, Haywood NJ, Bridge KI, Kearney MT. Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Front Cardiovasc Med 2022; 9:882923. [PMID: 35557517 PMCID: PMC9086712 DOI: 10.3389/fcvm.2022.882923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 02/02/2023] Open
Abstract
The vascular endothelium traditionally viewed as a simple physical barrier between the circulation and tissue is now well-established as a key organ mediating whole organism homeostasis by release of a portfolio of anti-inflammatory and pro-inflammatory vasoactive molecules. Healthy endothelium releases anti-inflammatory signaling molecules such as nitric oxide and prostacyclin; in contrast, diseased endothelium secretes pro-inflammatory signals such as reactive oxygen species, endothelin-1 and tumor necrosis factor-alpha (TNFα). Endothelial dysfunction, which has now been identified as a hallmark of different components of the cardiometabolic syndrome including obesity, type 2 diabetes and hypertension, initiates and drives the progression of tissue damage in these disorders. Recently it has become apparent that, in addition to vasoactive molecules, the vascular endothelium has the potential to secrete a diverse range of small molecules and proteins mediating metabolic processes in adipose tissue (AT), liver, skeletal muscle and the pancreas. AT plays a pivotal role in orchestrating whole-body energy homeostasis and AT dysfunction, characterized by local and systemic inflammation, is central to the metabolic complications of obesity. Thus, understanding and targeting the crosstalk between the endothelium and AT may generate novel therapeutic opportunities for the cardiometabolic syndrome. Here, we provide an overview of the role of the endothelial secretome in controlling the function of AT. The endothelial-derived metabolic regulatory factors are grouped and discussed based on their physical properties and their downstream signaling effects. In addition, we focus on the therapeutic potential of these regulatory factors in treating cardiometabolic syndrome, and discuss areas of future study of potential translatable and clinical significance. The vascular endothelium is emerging as an important paracrine/endocrine organ that secretes regulatory factors in response to nutritional and environmental cues. Endothelial dysfunction may result in imbalanced secretion of these regulatory factors and contribute to the progression of AT and whole body metabolic dysfunction. As the vascular endothelium is the first responder to local nutritional changes and adipocyte-derived signals, future work elucidating the changes in the endothelial secretome is crucial to improve our understanding of the pathophysiology of cardiometabolic disease, and in aiding our development of new therapeutic strategies to treat and prevent cardiometabolic syndrome.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
33
|
Lee CH, Lee SW. Vasculopathy in Diabetic Foot. DIABETIC FOOT RECONSTRUCTION 2022:11-23. [DOI: 10.1007/978-981-16-9816-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
34
|
Kawaguchi S, Okada M. Cardiac Metabolism in Sepsis. Metabolites 2021; 11:metabo11120846. [PMID: 34940604 PMCID: PMC8707959 DOI: 10.3390/metabo11120846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanism of sepsis-induced cardiac dysfunction is believed to be different from that of myocardial ischemia. In sepsis, chemical mediators, such as endotoxins, cytokines, and nitric oxide, cause metabolic abnormalities, mitochondrial dysfunction, and downregulation of β-adrenergic receptors. These factors inhibit the production of ATP, essential for myocardial energy metabolism, resulting in cardiac dysfunction. This review focuses on the metabolic changes in sepsis, particularly in the heart. In addition to managing inflammation, interventions focusing on metabolism may be a new therapeutic strategy for cardiac dysfunction due to sepsis.
Collapse
Affiliation(s)
- Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Bloomington, IN 46202, USA;
| | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Correspondence: ; Tel.: +81-166-68-2852
| |
Collapse
|
35
|
Yahyazadeh R, Ghasemzadeh Rahbardar M, Razavi BM, Karimi G, Hosseinzadeh H. The effect of Elettaria cardamomum (cardamom) on the metabolic syndrome: Narrative review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1462-1469. [PMID: 35317114 PMCID: PMC8917848 DOI: 10.22038/ijbms.2021.54417.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MetS), as a health-threatening factor, consists of various symptoms including insulin resistance, high blood sugar, hypertension, dyslipidemia, inflammation, and abdominal obesity that raise the risk of diabetes mellitus and cardiovascular disease. Cardiovascular diseases are important causes of mortality among the world population. Recently, there has been a growing interest in using phytomedicine and natural compounds in the prevention and treatment of various diseases. The data was gathered by searching various standard electronic databases (Google Scholar, Scopus, Web of Science, and PubMed) for English articles with no time limitations. All in vivo, in vitro, and clinical studies were included. Elettaria cardamomum (cardamom) is a rich source of phenolic compounds, volatile oils, and fixed oils. Cardamom and its pharmacologically effective substances have shown broad-spectrum activities including antihypertensive, anti-oxidant, lipid-modifying, anti-inflammatory, anti-atherosclerotic, anti-thrombotic, hepatoprotective, hypocholesterolemic, anti-obesity, and antidiabetic effects. This review aims to highlight the therapeutic effects of cardamom on MetS and its components including diabetes, hyperlipidemia, obesity, and high blood pressure as well as the underlying mechanisms in the management of MetS. Finally, it can be stated that cardamom has beneficial effects on the treatment of MetS and its complications.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
The Blood-Brain Barrier, Oxidative Stress, and Insulin Resistance. Antioxidants (Basel) 2021; 10:antiox10111695. [PMID: 34829566 PMCID: PMC8615183 DOI: 10.3390/antiox10111695] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a network of specialized endothelial cells that regulates substrate entry into the central nervous system (CNS). Acting as the interface between the periphery and the CNS, the BBB must be equipped to defend against oxidative stress and other free radicals generated in the periphery to protect the CNS. There are unique features of brain endothelial cells that increase the susceptibility of these cells to oxidative stress. Insulin signaling can be impacted by varying levels of oxidative stress, with low levels of oxidative stress being necessary for signaling and higher levels being detrimental. Insulin must cross the BBB in order to access the CNS, levels of which are important in peripheral metabolism as well as cognition. Any alterations in BBB transport due to oxidative stress at the BBB could have downstream disease implications. In this review, we cover the interactions of oxidative stress at the BBB, how insulin signaling is related to oxidative stress, and the impact of the BBB in two diseases greatly affected by oxidative stress and insulin resistance: diabetes mellitus and Alzheimer’s disease.
Collapse
|
37
|
Penlioglou T, Stoian AP, Papanas N. Diabetes, Vascular Aging and Stroke: Old Dogs, New Tricks? J Clin Med 2021; 10:jcm10194620. [PMID: 34640636 PMCID: PMC8509285 DOI: 10.3390/jcm10194620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Stroke remains a leading cause of death and disability throughout the world. It is well established that Diabetes Mellitus (DM) is a risk factor for stroke, while other risk factors include dyslipidaemia and hypertension. Given that the global prevalence of diabetes steadily increases, the need for adequate glycaemic control and prevention of DM-related cardiovascular events remains a challenge for the medical community. Therefore, a re-examination of the latest data related to this issue is of particular importance. OBJECTIVE This review aims to summarise the latest data on the relationship between DM and stroke, including epidemiology, risk factors, pathogenesis, prevention and biomarkers. METHODS For this purpose, comprehensive research was performed on the platforms PubMed, Google Scholar and EMBASE with a combination of the following keywords: diabetes mellitus, stroke, macrovascular complications, diabetic stroke, cardiovascular disease. CONCLUSIONS Much progress has been made in stroke in people with DM in terms of prevention and early diagnosis. In the field of prevention, the adaptation of the daily habits and the regulation of co-morbidity of individuals play a particularly important role. Simultaneously, the most significant revolution has been brought by the relatively new treatment options that offer protection to the cardiovascular system. Moreover, many prognostic and diagnostic biomarkers have been identified, paving the way for early and accurate diagnoses. However, to date, there are crucial points that remain controversial and need further clarification.
Collapse
Affiliation(s)
- Theano Penlioglou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece;
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, “Carol Davila” University of Medicine, 020021 Bucharest, Romania;
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece;
- Correspondence: ; Fax: +30-25513-51723
| |
Collapse
|
38
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
39
|
Hansen C, Olsen K, Pilegaard H, Bangsbo J, Gliemann L, Hellsten Y. High metabolic substrate load induces mitochondrial dysfunction in rat skeletal muscle microvascular endothelial cells. Physiol Rep 2021; 9:e14855. [PMID: 34288561 PMCID: PMC8290479 DOI: 10.14814/phy2.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
The influence of glucose and palmitic acid (PA) on mitochondrial respiration and emission of hydrogen peroxide (H2 O2 ) was determined in skeletal muscle-derived microvascular endothelial cells. Measurements were assessed in intact and permeabilized (cells treated with 0.025% saponin) low passage endothelial cells with acute-or prolonged (3 days) incubation with regular (1.7 mM) or elevated (2.2 mM) PA concentrations and regular (5 mM) or elevated (11 mM) glucose concentrations. In intact cells, acute incubation with 1.7 mM PA alone or with 1.7 mM PA + 5 mM glucose (p < .001) led to a lower mitochondrial respiration (p < 0.01) and markedly higher H2 O2 /O2 emission (p < 0.05) than with 5 mM glucose alone. Prolonged incubation of intact cells with 1.7 mM PA +5 mM glucose led to 34% (p < 0.05) lower respiration and 2.5-fold higher H2 O2 /O2 emission (p < 0.01) than incubation with 5 mM glucose alone. Prolonged incubation of intact cells with elevated glucose led to 60% lower (p < 0.05) mitochondrial respiration and 4.6-fold higher H2 O2 /O2 production than incubation with 5 mM glucose in intact cells (p < 0.001). All effects observed in intact cells were present also in permeabilized cells (State 2). In conclusion, our results show that acute and prolonged lipid availability, as well as prolonged hyperglycemia, induces mitochondrial dysfunction as evidenced by lower mitochondrial respiration and enhanced H2 O2/ O2 emission. Elevated plasma substrate availability may lead to microvascular dysfunction in skeletal muscle by impairing endothelial mitochondrial function.
Collapse
Affiliation(s)
- Camilla Hansen
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Karina Olsen
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Henriette Pilegaard
- Department of BiologySection of Cell Biology and PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
40
|
Erkens R, Totzeck M, Brum A, Duse D, Bøtker HE, Rassaf T, Kelm M. Endothelium-dependent remote signaling in ischemia and reperfusion: Alterations in the cardiometabolic continuum. Free Radic Biol Med 2021; 165:265-281. [PMID: 33497796 DOI: 10.1016/j.freeradbiomed.2021.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Intact endothelial function plays a fundamental role for the maintenance of cardiovascular (CV) health. The endothelium is also involved in remote signaling pathway-mediated protection against ischemia/reperfusion (I/R) injury. However, the transfer of these protective signals into clinical practice has been hampered by the complex metabolic alterations frequently observed in the cardiometabolic continuum, which affect redox balance and inflammatory pathways. Despite recent advances in determining the distinct roles of hyperglycemia, insulin resistance (InR), hyperinsulinemia, and ultimately diabetes mellitus (DM), which define the cardiometabolic continuum, our understanding of how these conditions modulate endothelial signaling remains challenging. It is widely accepted that endothelial cells (ECs) undergo functional changes within the cardiometabolic continuum. Beyond vascular tone and platelet-endothelium interaction, endothelial dysfunction may have profound negative effects on outcome during I/R. In this review, we summarize the current knowledge of the influence of hyperglycemia, InR, hyperinsulinemia, and DM on endothelial function and redox balance, their influence on remote protective signaling pathways, and their impact on potential therapeutic strategies to optimize protective heterocellular signaling.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hans Erik Bøtker
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
41
|
|
42
|
Yankova G, Tur D, Parshin D, Cherevko A, Akulov A. Cerebral arterial architectonics and CFD simulation in mice with type 1 diabetes mellitus of different duration. Sci Rep 2021; 11:3969. [PMID: 33597584 PMCID: PMC7889636 DOI: 10.1038/s41598-021-83484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 11/09/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease that affects tens of millions of people. Diabetes mellitus is one of the strongest factors in the development of cerebrovascular diseases. In this study we used NOD.CB17 Prkdcscid mice and the pharmacological model of type 1 diabetes mellitus of different duration to study changes in the cerebral vasculature. We used two combined approaches using magnetic resonance angiography both steady and transient CFD blood flow modeling. We identified the influence of type 1 diabetes on the architectonics and hemodynamics of the large blood vessels of the brain as the disease progresses. For the first time, we detected a statistically significant change in angioarchitectonics (the angles between the vessels of the circle of Willis, cross-sections areas of vessels) and hemodynamic (maximum blood flow rate, hydraulic resistance) in animals with diabetes duration of 2 months, that is manifested by the development of asymmetry of cerebral blood flow. The result shows the negative effect of diabetes on cerebral circulation as well as the practicability of CFD modeling. This may be of extensive interest, in pharmacological and preclinical studies.
Collapse
Affiliation(s)
- Galina Yankova
- Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Darya Tur
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Daniil Parshin
- Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Cherevko
- Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey Akulov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
43
|
Aboul-Hassan SS, Stankowski T, Marczak J, Peksa M, Nawotka M, Stanislawski R, Moskal L, Lipowski A, Sá MPBO, Cichon R. Impact of Preoperative Aspirin on Long-Term Outcomes in Diabetic Patients Following Coronary Artery Bypass Grafting: a Propensity Score Matched Study. Braz J Cardiovasc Surg 2020; 35:859-868. [PMID: 33306311 PMCID: PMC7731840 DOI: 10.21470/1678-9741-2020-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction This study aimed to determine the effect of preoperative aspirin administration on early and long-term clinical outcomes in patients suffering from diabetes mellitus (DM) undergoing coronary artery bypass grafting (CABG). Methods In this observational study, a total of 315 patients were included and grouped according to the time interval between their last aspirin dose and the time of surgery; patients who had been continued aspirin intake with last administered dose ≤ 24-hours before CABG (n=144) and those who had been given the last dose of aspirin between 24 to 48 hours before CABG (n=171). Results Multivariable analysis showed that the continuation of preoperative aspirin intake ≤ 24 hours before CABG in patients with DM is associated with reduced incidence of 30-day major adverse cardiac and cerebral events (MACCE) (P=0.004) as well as reduced incidence of composite 30-day mortality/MACCE (P=0.012). During mean follow-up of 37±17.5 months, the unadjusted hazard ratio (HR) showed that aspirin ≤ 24 hours prior CABG in patients with DM significantly reduced the incidence of MACCE and composite of mortality/MACCE during follow-up (HR: 0.50; 95% confidence interval [CI]: 0.29-0.87; P=0.014 and HR: 0.61; 95% CI: 0.38-0.97; P=0.039, respectively). However, after propensity score (PS) matching, the PS-adjusted HR showed a non-significant trend towards the reduction of MACCE during follow-up (HR: 0.58; 95% CI: 0.31-1.06; P=0.081). Conclusion Continuation of preoperative aspirin intake ≤ 24 hours before CABG in patients with DM is associated with reduced incidence of early MACCE, but without significant influence on long-term outcomes.
Collapse
Affiliation(s)
| | - Tomasz Stankowski
- Department of Cardiac Surgery, Sana-Heart Center Cottbus, Cottbus, Germany
| | - Jakub Marczak
- Department of Cardiac Surgery, Trent Cardiac Centre, Nottingham University Hospital, Nottingham, United Kingdom
| | - Maciej Peksa
- Department of Cardiac Surgery, Medinet Heart Center Ltd, Nowa Sol, Poland
| | - Marcin Nawotka
- Department of Cardiac Surgery, Medinet Heart Center Ltd, Nowa Sol, Poland
| | | | - Lukasz Moskal
- Department of Cardiac Surgery, Medinet Heart Center Ltd, Wroclaw, Poland
| | - Adam Lipowski
- Department of Vascular Surgery, Nowa Sol Multidisciplinary Hospital, Nowa Sol, Poland
| | - Michel Pompeu B O Sá
- Division of Cardiovascular Surgery of Pronto Socorro Cardiologico de Pernambuco, PROCAPE, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Romuald Cichon
- Department of Cardiac Surgery, Medinet Heart Center Ltd, Nowa Sol, Poland.,Department of Cardiac Surgery, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
44
|
Abdolahipour R, Nowrouzi A, Khalili MB, Meysamie A, Ardalani S. Aqueous Cichorium intybus L. seed extract may protect against acute palmitate-induced impairment in cultured human umbilical vein endothelial cells by adjusting the Akt/eNOS pathway, ROS: NO ratio and ET-1 concentration. J Diabetes Metab Disord 2020; 19:1045-1059. [PMID: 33520822 PMCID: PMC7843711 DOI: 10.1007/s40200-020-00603-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Endothelial dysfunction, which is a vascular response to oxidative stress and inflammation, involves a cascade of downstream events that lead to decreased synthesis of insulin-mediated vasodilator nitric oxide (NO) and increased production of vasoconstrictor protein endothelin-1 (ET-1). NO, and ET-1 production by endothelial cells is regulated by phosphatidylinositol 3-kinase (PI3K)-Akt-eNOS axis and mitogen-activated protein kinase (MAPK) axis of the insulin signaling pathway, respectively. METHODS After treating the human umbilical vein endothelial cells (HUVECs) with either palmitate complexed with bovine serum albumin (BSA) (abbreviated as PA) or the aqueous Cichorium intybus L. (chicory) seed extract (chicory seed extract, abbreviated as CSE) alone, and simultaneously together (PA + CSE), for 3, 12, and 24 h, we evaluated the capacity of CSE to reestablish the PA-induced imbalance between PI3K/Akt/eNOS and MAPK signaling pathways. The level of oxidative stress was determined by fluorimeter. Insulin-induced levels of NO and ET-1 were measured by Griess and ELISA methods, respectively. Western blotting was used to determine the extent of Akt and eNOS phosphorylation. RESULTS Contrary to PA that caused an increase in the reactive oxygen species (ROS) levels and attenuated NO production, CSE readjusted the NO/ROS ratio within 12 h. CSE improved the metabolic arm of the insulin signaling pathway by up-regulating the insulin-stimulated phospho-eNOS Ser1177/total eNOS and phospho-Akt Thr308/total Akt ratios and decreased ET-1 levels. CONCLUSIONS CSE ameliorated the PA-induced endothelial dysfunction not only by its anti-ROS property but also by selectively enhancing the protective arm and diminishing the injurious arm of insulin signaling pathways.
Collapse
Affiliation(s)
- Raziyeh Abdolahipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Nowrouzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alipasha Meysamie
- Department of Community & Preventive Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samin Ardalani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Ren G, Bhatnagar S, Hahn DJ, Kim JA. Long-chain acyl-CoA synthetase-1 mediates the palmitic acid-induced inflammatory response in human aortic endothelial cells. Am J Physiol Endocrinol Metab 2020; 319:E893-E903. [PMID: 32954825 PMCID: PMC7790120 DOI: 10.1152/ajpendo.00117.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Saturated fatty acid (SFA) induces proinflammatory response through a Toll-like receptor (TLR)-mediated mechanism, which is associated with cardiometabolic diseases such as obesity, insulin resistance, and endothelial dysfunction. Consistent with this notion, TLR2 or TLR4 knockout mice are protected from obesity-induced proinflammatory response and endothelial dysfunction. Although SFA causes endothelial dysfunction through TLR-mediated signaling pathways, the mechanisms underlying SFA-stimulated inflammatory response are not completely understood. To understand the proinflammatory response in vascular endothelial cells in high-lipid conditions, we compared the proinflammatory responses stimulated by palmitic acid (PA) and other canonical TLR agonists [lipopolysaccharide (LPS), Pam3-Cys-Ser-Lys4 (Pam3CSK4), or macrophage-activating lipopeptide-2)] in human aortic endothelial cells. The expression profiles of E-selectin and the signal transduction pathways stimulated by PA were distinct from those stimulated by canonical TLR agonists. Inhibition of long-chain acyl-CoA synthetases (ACSL) by a pharmacological inhibitor or knockdown of ACSL1 blunted the PA-stimulated, but not the LPS- or Pam3CSK4-stimulated proinflammatory responses. Furthermore, triacsin C restored the insulin-stimulated vasodilation, which was impaired by PA. From the results, we concluded that PA stimulates the proinflammatory response in the vascular endothelium through an ACSL1-mediated mechanism, which is distinct from LPS- or Pam3CSK4-stimulated responses. The results suggest that endothelial dysfunction caused by PA may require to undergo intracellular metabolism. This expands the understanding of the mechanisms by which TLRs mediate inflammatory responses in endothelial dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
- UAB Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama
| | | | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Alabama
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
- UAB Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama
| |
Collapse
|
46
|
Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T. Macrovascular Complications of Type 2 Diabetes Mellitus. Curr Vasc Pharmacol 2020; 18:110-116. [PMID: 30961498 DOI: 10.2174/1570161117666190405165151] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/02/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has emerged as a pandemic. It has different complications, both microvascular and macrovascular. OBJECTIVE The purpose of this review is to summarize the different types of macrovascular complications associated with T2DM. METHODS A comprehensive review of the literature was performed to identify clinical studies, which determine the macrovascular complications associated with T2DM. RESULTS Macrovascular complications of T2DM include coronary heart disease, cardiomyopathy, arrhythmias and sudden death, cerebrovascular disease and peripheral artery disease. Cardiovascular disease is the primary cause of death in diabetic patients. Many clinical studies have shown a connection between T2DM and vascular disease, but almost always other risk factors are present in diabetic patients, such as hypertension, obesity and dyslipidaemia. CONCLUSION T2DM causes a variety of macrovascular complications through different pathogenetic pathways that include hyperglycaemia and insulin resistance. The association between T2DM and cardiovascular disease is clear, but we need more clinical studies in order to identify the pure effect of T2DM.
Collapse
Affiliation(s)
- Margus Viigimaa
- Centre of Cardiology, North Estonia Medical Centre, Tallinn, Estonia; Institute of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Alexandros Sachinidis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | - Maria Toumpourleka
- 2nd Propedeutic Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | | | - Signe Alliksoo
- Centre of Cardiology, North Estonia Medical Centre, Tallinn, Estonia; Institute of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Tiina Titma
- Centre of Cardiology, North Estonia Medical Centre, Tallinn, Estonia; Institute of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
47
|
Kim HS, Ren G, Kim T, Bhatnagar S, Yang Q, Bahk YY, Kim JA. Metformin reduces saturated fatty acid-induced lipid accumulation and inflammatory response by restoration of autophagic flux in endothelial cells. Sci Rep 2020; 10:13523. [PMID: 32782332 PMCID: PMC7419289 DOI: 10.1038/s41598-020-70347-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy, an integral part of the waste recycling process, plays an important role in cellular physiology and pathophysiology. Impaired autophagic flux causes ectopic lipid deposition, which is defined as the accumulation of lipids in non-adipose tissue. Ectopic lipid accumulation is observed in patients with cardiometabolic syndrome, including obesity, diabetes, insulin resistance, and cardiovascular complications. Metformin is the first line of treatment for type 2 diabetes, and one of the underlying mechanisms for the anti-diabetic effect of metformin is mediated by the stimulation of AMP-activated protein kinase (AMPK). Because the activation of AMPK is crucial for the initiation of autophagy, we hypothesize that metformin reduces the accumulation of lipid droplets by increasing autophagic flux in vascular endothelial cells. Incubation of vascular endothelial cells with saturated fatty acid (SFA) increased the accumulation of lipid droplets and impaired autophagic flux. We observed that the accumulation of lipid droplets was reduced, and the autophagic flux was enhanced by treatment with metformin. The knock-down of AMPKα by using siRNA blunted the effect of metformin. Furthermore, treatment with SFA or inhibition of autophagy increased leukocyte adhesion, whereas treatment with metformin decreased the SFA-induced leukocyte adhesion. The results suggest a novel mechanism by which metformin protects vascular endothelium from SFA-induced ectopic lipid accumulation and pro-inflammatory responses. In conclusion, improving autophagic flux may be a therapeutic strategy to protect endothelial function from dyslipidemia and diabetic complications.
Collapse
Affiliation(s)
- Hae-Suk Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Teayoun Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Qinglin Yang
- Department of Nutrition, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
48
|
Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus - A comprehensive review. J Diabetes Complications 2020; 34:107613. [PMID: 32505477 DOI: 10.1016/j.jdiacomp.2020.107613] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/27/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
Diabetes is a chronic disease, characterized by hyperglycemia, which refers to the elevated levels of glucose in the blood, due to the inability of the body to produce or use insulin effectively. Chronic hyperglycemia levels lead to macrovascular and microvascular complications. The macrovascular complications consist of peripheral artery disease (PAD), cardiovascular diseases (CVD) and cerebrovascular diseases, while the microvascular complications comprise of diabetic microangiopathy, diabetic nephropathy, diabetic retinopathy and diabetic neuropathy. Vascular endothelial dysfunction plays a crucial role in mediating both macrovascular and microvascular complications under hyperglycemic conditions. In diabetic microvasculature, the intracellular hyperglycemia causes damage to the vascular endothelium through - (i) activation of four biochemical pathways, namely the Polyol pathway, protein kinase C (PKC) pathway, advanced glycation end products (AGE) pathway and hexosamine pathway, all of which commutes glucose and its intermediates leading to overproduction of reactive oxygen species, (ii) dysregulation of growth factors and cytokines, (iii) epigenetic changes which concern the changes in DNA as a response to intracellular changes, and (iv) abnormalities in non-coding RNAs, specifically microRNAs. This review will focus on gaining an understanding of the molecular complexities underlying the vascular complications in diabetes mellitus, to increase our understanding towards the development of new mechanistic therapeutic strategies to prevent or treat diabetes-induced vascular complications.
Collapse
Affiliation(s)
- Shalini Paul
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine (Dunedin), University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
49
|
Down-regulation of the insulin signaling pathway by SHC may correlate with congenital heart disease in Chinese populations. Clin Sci (Lond) 2020; 134:349-358. [PMID: 31971563 DOI: 10.1042/cs20190255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Congenital heart disease (CHD) is one of the most common and severe congenital defects. The incidence of fetal cardiac malformation is increased in the context of maternal gestational diabetes mellitus (GDM). Therefore, we wanted to determine whether abnormalities in the insulin signaling pathway are associated with the occurrence of nonsyndromic CHD (ns-CHD). METHODS We used digital gene expression profiling (DGE) of right atrial myocardial tissue samples from eight ns-CHD patients and four controls. The genes potentially associated with CHD were validated by real-time fluorescence quantitative PCR analysis of right atrial myocardial tissues from 37 patients and 10 controls and the H9C2 cell line. RESULTS The results showed that the insulin signaling pathway, which is mediated by the SHC gene family, was inhibited in the ns-CHD patients. The expression levels of five genes (PTPRF, SHC4, MAP2K2, MKNK2, and ELK1) in the pathway were significantly down-regulated in the patients' atrial tissues (P<0.05 for all). In vitro, the H9C2 cells cultured in high glucose (33 mmol/l) expressed less SHC4, MAP2K2, and Elk-1 than those cultured in low glucose (25 mmol/l). Furthermore, the high glucose concentration down-regulated the 25 genes associated with blood vessel development based on Gene Ontology (GO) term enrichment analyses of RNA-seq data. CONCLUSION We considered that changes in the insulin signaling pathway mediated by SHC might be involved in the heart development process. This mechanism might account for the increase in the incidence of fetal cardiac malformations in the context of GDM.
Collapse
|
50
|
Choi EY, Park SE, Lee SC, Koh HJ, Kim SS, Byeon SH, Kim M. Association Between Clinical Biomarkers and Optical Coherence Tomography Angiography Parameters in Type 2 Diabetes Mellitus. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 32150245 PMCID: PMC7401845 DOI: 10.1167/iovs.61.3.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the clinical significance of the changes in the macular microvasculature in patients with diabetes mellitus type 2 without diabetic retinopathy. Methods Fifty-five patients with diabetes mellitus type 2 without diabetic retinopathy and 48 healthy individuals were enrolled in a prospective cross-sectional study. We identified the changes of optical coherence tomography angiography parameters (foveal avascular zone [FAZ] area and circularity, vessel density, and perfusion index) of the 6 × 6-mm macular scan. Correlation and multiple regression analyses were performed between optical coherence tomography angiography parameters and previously known diabetes mellitus type 2-related demographic and systemic characteristics, and serum biochemical markers. Results FAZ parameters and perfusion index of the superficial and deep vascular plexus showed significant correlation with serum insulin level, and homeostasis model assessment indices. In multiple linear regression analysis, low insulin levels predicted increased FAZ areas in both the superficial (β = –0.007; P = 0.030) and deep layers (β = –0.010; P = 0.018) and a decreased perfusion index in the deep layer (β = 0.003; P = 0.001). Conclusions The expansion and loss of circularity of the FAZ and the decrease in the perfusion index may be affected by insulin resistance and secretory capacity in patients with diabetes mellitus type 2 with no diabetic retinopathy.
Collapse
|