1
|
Essigke D, Kalo MZ, Janessa A, Bohnert BN, Li X, Birkenfeld AL, Artunc F. Impact of aldosterone deficiency on the development of diuretic resistance in mice. Pflugers Arch 2025; 477:827-840. [PMID: 40220064 DOI: 10.1007/s00424-025-03082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/14/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
The effect of diuretics can be limited by stimulation of counter-regulatory mechanisms, eventually leading to diuretic resistance. It is thought that the mineralocorticoid aldosterone might contribute to the development of diuretic resistance. To test this, we challenged genetically modified mice with or without a deletion of the gene coding for the aldosterone synthase (AS) with furosemide, hydrochlorothiazide (HCT) and triamterene. Urinary excretion was studied in metabolic cages; kidneys were studied for expression of sodium transporters. In both genotypes, a 4-day treatment with HCT via drinking water (400 mg/l) induced a similar natriuresis and modest loss of body weight < 10%. In contrast, furosemide (125 mg/l) and triamterene (200 mg/l) via drinking water stimulated a significantly higher natriuresis and body weight loss in AS-/- mice and in addition, triamterene caused massive hyperkalemia > 9 mM and acidosis (pH < 7.0). In AS+/+ mice, plasma aldosterone concentration tended to increase under furosemide and HCT administration, while triamterene induced a robust ~ sixfold increase. In the kidney, apical targeting and proteolytic activation of the epithelial sodium channel ENaC were stimulated in AS+/+ mice under triamterene treatment, an effect that was diminished in AS-/- mice. In conclusion, aldosterone is essentially involved in the development of diuretic resistance to ENaC blockade by triamterene and to a lesser extent to furosemide. In contrast, resistance to HCT was independent of aldosterone.
Collapse
Affiliation(s)
- Daniel Essigke
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), University Tübingen, Tübingen, Germany
| | - M Zaher Kalo
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
| | - Bernhard N Bohnert
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), University Tübingen, Tübingen, Germany
| | - Xiaqing Li
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), University Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Otfried-Mueller-Str.10, 72076, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), University Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Yang T, Gao ZX, Mao ZH, Wu P. Soluble (pro)renin receptor as a novel regulator of renal medullary Na + reabsorption. Am J Physiol Renal Physiol 2025; 328:F239-F247. [PMID: 39508841 DOI: 10.1152/ajprenal.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
Epithelial sodium channel (ENaC) represents a major route of Na+ reabsorption in the aldosterone-sensitive distal nephron where the bulk of ENaC activity is considered to occur in the cortical collecting duct (CCD). Relatively, ENaC activity in the medulla, especially the inner medulla, is often neglected. (Pro)renin receptor (PRR), also termed ATP6ap2, a newly characterized member of the renin-angiotensin system, has emerged as an important regulator of ENaC in the distal nephron. The ENaC regulatory action of PRR is largely mediated by the 28 kDa soluble PRR (sPRR). Although all three subunits of ENaC are under the control of aldosterone, sPRR only mediates the upregulation of α-ENaC but not the other two subunits. Furthermore, sPRR-dependent regulation of α-ENaC only occurs in the renal inner medulla but not in the cortex. sPRR also rapidly upregulates ENaC activity via Nox4-derived H2O2. Overall, sPRR has emerged as an important regulator of renal medullary Na+ reabsorption in the context of overactivation of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Zhong-Xiuzi Gao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zi-Hui Mao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
Mutchler AL, Haynes AP, Saleem M, Jamison S, Khan MM, Ertuglu L, Kirabo A. Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension. Circ Res 2025; 136:232-254. [PMID: 39819017 PMCID: PMC11750173 DOI: 10.1161/circresaha.124.325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohd Mabood Khan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
5
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
da Cunha Agostini L, de Paula W, Melo AS, Silva NNT, Faria Lopes AC, de Almeida Belo V, Coura-Vital W, de Medeiros Teixeira LF, Lima AA, da Silva GN. Single nucleotide polymorphism (SNP) rs4291 of the angiotensin-converting enzyme (ACE) gene is associated with the response to losartan treatment in hypertensive patients. Mol Biol Rep 2024; 51:458. [PMID: 38551694 DOI: 10.1007/s11033-024-09437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Arterial hypertension is characterized by systolic pressure ≥ 140 mmHg and/or diastolic pressure ≥ 90 mmHg and its treatment consists of the use of antihypertensive drugs, as losartan and hydrochlorothiazide. Blood pressure is regulated by angiotensin-converting enzyme (ACE) and polymorphisms in the ACE gene are associated to a greater predisposition to hypertension and response to treatment. The aim of this study was to evaluate the association of genetic polymorphisms of ACE rs4363, rs4291 and rs4335 and the response to antihypertensive drugs in hypertensive patients from Ouro Preto/MG, Brazil. A case-control study was carried out with 87 hypertensive patients being treated with losartan and 75 with hydrochlorothiazide, who answered a questionnaire and had blood samples collected. Biochemical analyzes were performed on serum using UV/Vis spectrophotometry and identification of ACE variants rs4363, rs4291 and rs4335 was performed by real-time PCR using the TaqMan® system. Univariate logistic regression test was performed to compare categorical data in STATA 13.0 software. The results showed that there was an influence of ACE polymorphisms on the response to losartan, demonstrating that AT or TT genotypes of rs4291 were more frequent in the group of controlled AH (54.9%), indicating that these individuals are 2.8 times more likely to of being controlled AH (95% CI 1.12-6.80, p. =0.026) compared to those with AA genotype. In contrast, no influence of ACE polymorphisms on the response to hydrochlorothiazide was observed. In conclusion, the presence of the T allele of the rs4291 variant was associated to controled blood pressure when losartan was used as an antihypertensive agent. These results show the importance of pharmacogenetic studies to detect genetic characteristics, enabling therapeutic individuality and reducing costs for the healthcare system.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Waléria de Paula
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - André Sacramento Melo
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Ana Cláudia Faria Lopes
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Vanessa de Almeida Belo
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Farmácia (DEFAR), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Wendel Coura-Vital
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Angélica Alves Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/n, Ouro Preto, MG, CEP 35402-163, Brazil.
| |
Collapse
|
7
|
Ray A, Stelloh C, Liu Y, Meyer A, Geurts AM, Cowley A, Greene AS, Liang M, Rao S. Histone Modifications and Their Contributions to Hypertension. Hypertension 2024; 81:229-239. [PMID: 38031837 PMCID: PMC11229175 DOI: 10.1161/hypertensionaha.123.21755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Essential hypertension, a multifaceted disorder, is a worldwide health problem. A complex network of genetic, epigenetic, physiological, and environmental components regulates blood pressure (BP), and any dysregulation of this network may result in hypertension. Growing evidence suggests a role for epigenetic factors in BP regulation. Any alterations in the expression or functions of these epigenetic regulators may dysregulate various determinants of BP, thereby promoting the development of hypertension. Histone posttranslational modifications are critical epigenetic regulators that have been implicated in hypertension. Several studies have demonstrated a clear association between the increased expression of some histone-modifying enzymes, especially HDACs (histone deacetylases), and hypertension. In addition, treatment with HDAC inhibitors lowers BP in hypertensive animal models, providing an excellent opportunity to design new drugs to treat hypertension. In this review, we discuss the potential contribution of different histone modifications to the regulation of BP.
Collapse
Affiliation(s)
- Atrayee Ray
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cary Stelloh
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Yong Liu
- Department of Physiology, University of Arizona, Tucson, AZ 85721
| | - Alison Meyer
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Allen Cowley
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Mingyu Liang
- Department of Physiology, University of Arizona, Tucson, AZ 85721
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Section of Hematology/Oncology/Transplantation, Medical College of Wisconsin, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, WI, 53226, USA
| |
Collapse
|
8
|
Wang XP, Mutchler SM, Carrisoza-Gáytan R, Al-Bataineh M, Baty CJ, Vandevender A, Srinivasan P, Tan RJ, Jurczak MJ, Satlin LM, Kashlan OB. Mineralocorticoid receptor-independent activation of ENaC in bile duct ligated mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558474. [PMID: 37790468 PMCID: PMC10542149 DOI: 10.1101/2023.09.19.558474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sodium and fluid retention in liver disease is classically thought to result from reduced effective circulating volume and stimulation of the renin-angiotensin-aldosterone system (RAAS). Aldosterone dives Na+ retention by activating the mineralocorticoid receptor and promoting the maturation and apical surface expression of the epithelial Na+ channel (ENaC), found in the aldosterone-sensitive distal nephron. However, evidence of fluid retention without RAAS activation suggests the involvement of additional mechanisms. Liver disease can greatly increase plasma and urinary bile acid concentrations and have been shown to activate ENaC in vitro. We hypothesize that elevated bile acids in liver disease activate ENaC and drive fluid retention independent of RAAS. We therefore increased circulating bile acids in mice through bile duct ligation (BDL) and measured effects on urine and body composition, while using spironolactone to antagonize the mineralocorticoid receptor. We found BDL lowered blood [K+] and hematocrit, and increased benzamil-sensitive natriuresis compared to sham, consistent with ENaC activation. BDL mice also gained significantly more body water. Blocking ENaC reversed fluid gains in BDL mice but had no effect in shams. In isolated collecting ducts from rabbits, taurocholic acid stimulated net Na+ absorption but had no effect on K+ secretion or flow-dependent ion fluxes. Our results provide experimental evidence for a novel aldosterone-independent mechanism for sodium and fluid retention in liver disease which may provide additional therapeutic options for liver disease patients.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephanie M Mutchler
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Mohammad Al-Bataineh
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Catherine J Baty
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amber Vandevender
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Priyanka Srinivasan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ossama B Kashlan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
10
|
Yokota K, Shibata H, Kurihara I, Itoh H, Sone M. CASZ1: a promising factor modulating aldosterone biosynthesis and mineralocorticoid receptor activity. Hypertens Res 2023; 46:417-420. [PMID: 36522424 DOI: 10.1038/s41440-022-01131-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Hypertension is the definitive risk factor for cardiovascular disease. Primary aldosteronism (PA), a typical form of secondary hypertension, is responsible for treatment-resistant hypertension and carries an even higher risk of causing cardiovascular complications than essential hypertension. Several genes involved in the pathogenesis of hypertension have been identified recently using genome-wide association studies (GWASs). Among these, castor zinc finger 1(CASZ1) is considered to be involved in the pathophysiology of hypertension via modulation of aldosterone action. In 2021, using a biochemical approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we identified CASZ1b, an isoform of CASZ1, as a novel mineralocorticoid receptor (MR) coregulator. Our further analysis revealed that CASZ1b is coexpressed with MR in MR targets such as kidney tubule cells, and that a decrease in CASZ1 protein levels promotes aldosterone-dependent transcriptional activity of MR. Further, a recent study of GWAS on PA identified CASZ1 to be a PA-related gene and demonstrated that overexpression of CASZ1 suppresses aldosterone biosynthesis in adrenal cells. These results suggest CASZ1 plays a pivotal role in the pathophysiology of hypertension and PA via dual mechanisms: aldosterone biosynthesis and transcriptional activity of MR.
Collapse
Affiliation(s)
- Kenichi Yokota
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| | - Isao Kurihara
- Department of Medical Education, National Defense Medical College, Tokorozawa, Japan.,Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masakatsu Sone
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
11
|
Zhong S, Zhang B, Qin L, Wang Q, Luo X. Aldosterone inhibits Dot1l expression in guinea pig cochlea. Eur J Med Res 2023; 28:26. [PMID: 36639782 PMCID: PMC9838020 DOI: 10.1186/s40001-023-00994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aldosterone relieves transcriptional repression of epithelial sodium channel (ENaC) by inhibiting Dot1a and Af9 expression and their interaction with ENaC promoter in various tissues. Expressions of ENaC and Af9 in inner ear have been identified. However, it is not known how Dot1l is regulated by aldosterone in inner ear. METHODS Twenty-eight adult guinea pigs were randomly divided into the control group and treatment group. Aldosterone 1 mg/kg/d was injected intraperitoneally in the treatment group and saline in the control group for 7 days. Animals were killed 1 month later following auditory brainstem response examination. Histomorphology of cochlea was detected with hematoxylin-eosin staining, and Dot1l expression was examined with immunohistochemistry and Western blot. RESULTS There was no significant difference in ABR thresholds before and after injection of aldosterone or saline in either group. Endolymphatic hydrops was found in 75% of animals in the treatment group. Dot1l was found in both groups in the stria vascularis, Reissner's membrane, spiral limbus, organ of Corti and spiral ligament. Dot1l expression in the treatment group was decreased by aldosterone. CONCLUSIONS Dot1l in guinea pig cochlea is inhibited by aldosterone with induction of endolymphatic hydrops. Dot1l may be closely related to endolymph regulation by aldosterone and to pathogenesis of Meniere's disease.
Collapse
Affiliation(s)
- Shixun Zhong
- grid.452206.70000 0004 1758 417XDepartment of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Biyun Zhang
- grid.452206.70000 0004 1758 417XDepartment of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Li Qin
- grid.490255.f0000 0004 7594 4364 Department of Otolaryngology, Mianyang Central Hospital, Mianyang, China
| | - Qianying Wang
- grid.452206.70000 0004 1758 417XDepartment of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Xiaoli Luo
- Department of Otolaryngology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
12
|
Jang H, Park Y, Jang J. Serum and glucocorticoid-regulated kinase 1: Structure, biological functions, and its inhibitors. Front Pharmacol 2022; 13:1036844. [PMID: 36457711 PMCID: PMC9706101 DOI: 10.3389/fphar.2022.1036844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2023] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase belonging to the protein kinase A, G, and C (AGC) family. Upon initiation of the phosphoinositide 3-kinase (PI3K) signaling pathway, mammalian target of rapamycin complex 2 (mTORC2) and phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylate the hydrophobic motif and kinase domain of SGK1, respectively, inducing SGK1 activation. SGK1 modulates essential cellular processes such as proliferation, survival, and apoptosis. Hence, dysregulated SGK1 expression can result in multiple diseases, including hypertension, cancer, autoimmunity, and neurodegenerative disorders. This review provides a current understanding of SGK1, particularly in sodium transport, cancer progression, and autoimmunity. In addition, we summarize the developmental status of SGK1 inhibitors, their structures, and respective potencies evaluated in pre-clinical experimental settings. Collectively, this review highlights the significance of SGK1 and proposes SGK1 inhibitors as potential drugs for treatment of clinically relevant diseases.
Collapse
Affiliation(s)
- Hyunsoo Jang
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Youngjun Park
- Laboratory of Immune and Inflammatory Disease, College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, Sejong, South Korea
| |
Collapse
|
13
|
Germano G, Porazzi P, Felix C. Leukemia‐associated transcription factor
mllt3
is important for primitive erythroid development in zebrafish embryogenesis. Dev Dyn 2022; 251:1728-1740. [DOI: 10.1002/dvdy.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Giuseppe Germano
- Division of Hematology/Oncology Institute of Pediatric Research Città Della Speranza Padova Italy
| | - Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Carolyn Felix
- Division of Oncology, Department of Pediatrics The Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| |
Collapse
|
14
|
Polidoro JZ, Luchi WM, Seguro AC, Malnic G, Girardi ACC. Paracrine and endocrine regulation of renal potassium secretion. Am J Physiol Renal Physiol 2022; 322:F360-F377. [DOI: 10.1152/ajprenal.00251.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The seminal studies conducted by Giebisch and colleagues in the 1960s paved the way for understanding the renal mechanisms involved in K+ homeostasis. It was demonstrated that differential handling of K+ in the distal segments of the nephron is crucial for proper K+ balance. Although aldosterone had been classically ascribed as the major ion transport regulator in the distal nephron, thereby contributing to K+ homeostasis, it became clear that aldosterone per se could not explain the kidney's ability to modulate kaliuresis in both acute and chronic settings. The existence of alternative kaliuretic and antikaliuretic mechanisms was suggested by physiological studies in the 1980s but only gained form and shape with the advent of molecular biology. It is now established that the kidneys recruit several endocrine and paracrine mechanisms for adequate kaliuretic response. These mechanisms include the direct effects of peritubular K+, a gut-kidney regulatory axis sensing dietary K+ levels, the kidney secretion of kallikrein during postprandial periods, the upregulation of angiotensin II receptors in the distal nephron during chronic changes in the K+ diet, and the local increase of prostaglandins by low K+ diet. This review discusses recent advances in the understanding of endocrine and paracrine mechanisms underlying the modulation of K+ secretion and how these mechanisms impact kaliuresis and K+ balance. We also highlight important unknowns about the regulation of renal K+ excretion under physiological circumstances.
Collapse
Affiliation(s)
- Juliano Z. Polidoro
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Weverton Machado Luchi
- Department of Internal Medicine, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Antonio Carlos Seguro
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
15
|
Pearce D, Manis AD, Nesterov V, Korbmacher C. Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology. Pflugers Arch 2022; 474:869-884. [PMID: 35895103 PMCID: PMC9338908 DOI: 10.1007/s00424-022-02732-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.
Collapse
Affiliation(s)
- David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Anna D. Manis
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| |
Collapse
|
16
|
Tsilosani A, Gao C, Zhang W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front Physiol 2022; 13:770375. [PMID: 35197862 PMCID: PMC8859437 DOI: 10.3389/fphys.2022.770375] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aldosterone is a major mineralocorticoid steroid hormone secreted by glomerulosa cells in the adrenal cortex. It regulates a variety of physiological responses including those to oxidative stress, inflammation, fluid disruption, and abnormal blood pressure through its actions on various tissues including the kidney, heart, and the central nervous system. Aldosterone synthesis is primarily regulated by angiotensin II, K+ concentration, and adrenocorticotrophic hormone. Elevated serum aldosterone levels increase blood pressure largely by increasing Na+ re-absorption in the kidney through regulating transcription and activity of the epithelial sodium channel (ENaC). This review focuses on the signaling pathways involved in aldosterone synthesis and its effects on Na+ reabsorption through ENaC.
Collapse
Affiliation(s)
- Akaki Tsilosani
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
17
|
Zhang J, Yuan HK, Chen S, Zhang ZR. Detrimental or beneficial: Role of endothelial ENaC in vascular function. J Cell Physiol 2021; 237:29-48. [PMID: 34279047 DOI: 10.1002/jcp.30505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
In the past, it was believed that the expression of the epithelial sodium channel (ENaC) was restricted to epithelial tissues, such as the distal nephron, airway, sweat glands, and colon, where it is critical for sodium homeostasis. Over the past two decades, this paradigm has shifted due to the finding that ENaC is also expressed in various nonepithelial tissues, notably in vascular endothelial cells. In this review, the recent findings of the expression, regulation, and function of the endothelial ENaC (EnNaC) are discussed. The expression of EnNaC subunits is reported in a variety of endothelial cell lines and vasculatures, but this is controversial across different species and vessels and is not a universal finding in all vascular beds. The expression density of EnNaC is very faint compared to ENaC in the epithelium. To date, little is known about the regulatory mechanism of EnNaC. Through it can be regulated by aldosterone, the detailed downstream signaling remains elusive. EnNaC responds to increased extracellular sodium with the feedforward activation mechanism, which is quite different from the Na+ self-inhibition mechanism of ENaC. Functionally, EnNaC was shown to be a determinant of cellular mechanics and vascular tone as it can sense shear stress, and its activation or insertion into plasma membrane causes endothelial stiffness and reduced nitric oxide production. However, in some blood vessels, EnNaC is essential for maintaining the integrity of endothelial barrier function. In this context, we discuss the possible reasons for the distinct role of EnNaC in vasculatures.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Kai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
18
|
Cui X, Chen W, Zhou H, Gong Y, Zhu B, Lv X, Guo H, Duan J, Zhou J, Marcon E, Ma H. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front Pharmacol 2021; 12:664349. [PMID: 34163357 PMCID: PMC8215379 DOI: 10.3389/fphar.2021.664349] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 mortality is primarily driven by abnormal alveolar fluid metabolism of the lung, leading to fluid accumulation in the alveolar airspace. This condition is generally referred to as pulmonary edema and is a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are multiple potential mechanisms leading to pulmonary edema in severe Coronavirus Disease (COVID-19) patients and understanding of those mechanisms may enable proper management of this condition. Here, we provide a perspective on abnormal lung humoral metabolism of pulmonary edema in COVID-19 patients, review the mechanisms by which pulmonary edema may be induced in COVID-19 patients, and propose putative drug targets that may be of use in treating COVID-19. Among the currently pursued therapeutic strategies against COVID-19, little attention has been paid to abnormal lung humoral metabolism. Perplexingly, successful balance of lung humoral metabolism may lead to the reduction of the number of COVID-19 death limiting the possibility of healthcare services with insufficient capacity to provide ventilator-assisted respiration.
Collapse
Affiliation(s)
- Xinyu Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wuyue Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoyan Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Gong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bowen Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Shuai L, Li BH, Jiang HW, Yang L, Li J, Li JY. DOT1L Regulates Thermogenic Adipocyte Differentiation and Function via Modulating H3K79 Methylation. Diabetes 2021; 70:1317-1333. [PMID: 33795413 DOI: 10.2337/db20-1110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022]
Abstract
Brown and beige adipocytes are characterized as thermogenic adipocytes and have great potential for treating obesity and associated metabolic diseases. In this article, we identify a conserved mammalian lysine 79 of histone H3 (H3K79) methyltransferase, disruptor of telomeric silencing-1 like (DOT1L), as a new epigenetic regulator that controls thermogenic adipocyte differentiation and function. We show that deletion of DOT1L in thermogenic adipocytes potently protects mice from diet-induced obesity, improves glucose homeostasis, alleviates hepatic steatosis, and facilitates adaptive thermogenesis in vivo. Loss of DOT1L in primary preadipocytes significantly promotes brown and beige adipogenesis and thermogenesis in vitro. Mechanistically, DOT1L epigenetically regulates the brown adipose tissue-selective gene program by modulating H3K79 methylation, in particular H3K79me2 modification. Thus, our study demonstrates that DOT1L exerts an important role in energy homeostasis by regulating thermogenic adipocyte differentiation and function.
Collapse
Affiliation(s)
- Lin Shuai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bo-Han Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Wen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lin Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
21
|
Yokota K, Shibata H, Kurihara I, Kobayashi S, Murai-Takeda A, Itoh H. CASZ1b is a novel transcriptional corepressor of mineralocorticoid receptor. Hypertens Res 2020; 44:407-416. [DOI: 10.1038/s41440-020-00562-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
|
22
|
Abstract
PURPOSE OF REVIEW The main goal of this article is to discuss the role of the epithelial sodium channel (ENaC) in extracellular fluid and blood pressure regulation. RECENT FINDINGS Besides its role in sodium handling in the kidney, recent studies have found that ENaC expressed in other cells including immune cells can influence blood pressure via extra-renal mechanisms. Dendritic cells (DCs) are activated and contribute to salt-sensitive hypertension in an ENaC-dependent manner. We discuss recent studies on how ENaC is regulated in both the kidney and other sites including the vascular smooth muscles, endothelial cells, and immune cells. We also discuss how this extra-renal ENaC can play a role in salt-sensitive hypertension and its promise as a novel therapeutic target. The role of ENaC in blood pressure regulation in the kidney has been well studied. Recent human gene sequencing efforts have identified thousands of variants among the genes encoding ENaC, and research efforts to determine if these variants and their expression in extra-renal tissue play a role in hypertension will advance our understanding of the pathogenesis of ENaC-mediated cardiovascular disease and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ashley L Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Justin P Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Thomas R Kleyman
- Departments of Medicine, Cell Biology, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
23
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
24
|
Affiliation(s)
- Mingyu Liang
- From the Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The review describes studies investigating the role of microRNAs in the signaling pathway of the mineralocorticoid hormone, aldosterone. RECENT FINDINGS Emerging evidence indicates that aldosterone alters the expression of microRNAs in target tissues thereby modulating the expression of key regulatory proteins. SUMMARY The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. The long-term renal action of aldosterone is to increase the retrieval of sodium from filtered plasma to restore blood pressure. Emerging evidence indicates aldosterone may alter noncoding RNAs (ncRNAs) to integrate this hormonal response in target tissue. Expression of the best characterized small ncRNAs, microRNAs, is regulated by aldosterone stimulation. MicroRNAs modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling (RAAS) system. In addition to acting as a rheostat to fine-tune protein levels in aldosterone-responsive cells, there is evidence that microRNAs down-regulate components of the signaling cascade as a feedback mechanism. The role of microRNAs is, therefore, as signal integrator, and damper in aldosterone signaling, which has implications in understating the RAAS system from both a physiological and pathophysiological perspective. Recent evidence for microRNA's role in RAAS signaling will be discussed.
Collapse
|
26
|
Abstract
Since its discovery, aldosterone and ion modulation have been entwined. While scientific investigations throughout the decades have emphasized aldosterone's connection to Na+, K+, and H+ homeostasis, more recent research has demonstrated a relationship between aldosterone and Mg2+, Ca2+, and Cl- homeostasis. The mechanisms connecting aldosterone to ion regulation frequently involve ion channels; the membrane localized proteins containing at least one aqueous pore for ion conduction. In order to precisely control intracellular or intraorganelle ion concentrations, ion channels have evolved highly specific regions within the conduction pore that select ions by charge, size, and/or dehydration energy requirement, meaning aldosterone must be able to modulate multiple ion channels to regulate the many ions described above. The list of ion channels presently connected to aldosterone includes ENaC (Na+), ROMK/BK (K+), TRPV4/5/6 (Ca2+), TRPM7/6 (Mg2+), and ClC-K/CFTR (Cl-), among others. This list is only expected to grow over time, as the promiscuity of aldosterone becomes more understood.
Collapse
Affiliation(s)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
27
|
Miyoshi M, Sato M, Saito K, Otani L, Shirahige K, Miura F, Ito T, Jia H, Kato H. Maternal Protein Restriction Alters the Renal Ptger1 DNA Methylation State in SHRSP Offspring. Nutrients 2018; 10:nu10101436. [PMID: 30301128 PMCID: PMC6213780 DOI: 10.3390/nu10101436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
We previously reported that maternal protein restriction (LP) during pregnancy increases salt sensitivity in offspring using the Stroke-Prone Spontaneously Hypertensive Rat (SHRSP). In the present study, we focus on DNA methylation profiles of prostaglandin E receptor 1 gene (ptger1), which is known to be associated with hypertension. We evaluated the ptger1 DNA methylation status via bisulfite sequencing, and analyzed the expression of ptger1-related genes. The results of these analyses showed that, compared to controls, the LP-S offspring exhibited both marked ptger1 hypermethylation, and significantly increased ptger1 expression. Moreover, they also exhibited significantly decreased expression of the downstream gene epithelial Na+ channel alpha (enacα). Interestingly, LP offspring that were provided with a standard water drinking supply (W) also exhibited increased ptger1 methylation and expression. Together, these results suggest that maternal protein restriction during pregnancy modulates the renal ptger1 DNA methylation state in SHRSP offspring, and thereby likely mediates ptger1 and enacα gene expression to induce salt sensitivity.
Collapse
Affiliation(s)
- Moe Miyoshi
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Masayuki Sato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Kenji Saito
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Lila Otani
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 1130032, Japan.
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan.
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan.
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| |
Collapse
|
28
|
Aldosterone, SGK1, and ion channels in the kidney. Clin Sci (Lond) 2018; 132:173-183. [PMID: 29352074 PMCID: PMC5817097 DOI: 10.1042/cs20171525] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Hyperaldosteronism, a common cause of hypertension, is strongly connected to Na+, K+, and Mg2+ dysregulation. Owing to its steroidal structure, aldosterone is an active transcriptional modifier when bound to the mineralocorticoid receptor (MR) in cells expressing the enzyme 11β-hydroxysteroid dehydrogenase 2, such as those comprising the aldosterone-sensitive distal nephron (ASDN). One such up-regulated protein, the ubiquitous serum and glucocorticoid regulated kinase 1 (SGK1), has the capacity to modulate the surface expression and function of many classes of renal ion channels, including those that transport Na+ (ENaC), K+ (ROMK/BK), Ca2+ (TRPV4/5/6), Mg2+ (TRPM7/6), and Cl− (ClC-K, CFTR). Here, we discuss the mechanisms by which ASDN expressed channels are up-regulated by SGK1, while highlighting newly discovered pathways connecting aldosterone to nonselective cation channels that are permeable to Mg2+ (TRPM7) or Ca2+ (TRPV4).
Collapse
|
29
|
Yang J. SALL4 as a transcriptional and epigenetic regulator in normal and leukemic hematopoiesis. Biomark Res 2018; 6:1. [PMID: 29308206 PMCID: PMC5751604 DOI: 10.1186/s40364-017-0115-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been substantial progress in our knowledge of the molecular pathways by which stem cell factor SALL4 regulates the embryonic stem cell (ESC) properties, developmental events, and human cancers. This review summarizes recent advances in the biology of SALL4 with a focus on its regulatory functions in normal and leukemic hematopoiesis. In the normal hematopoietic system, expression of SALL4 is mainly enriched in the bone marrow hematopoietic stem/progenitor cells (HSCs/HPCs), but is rapidly silenced following lineage differentiation. In hematopoietic malignancies, however, SALL4 expression is abnormally re-activated and linked with deteriorated disease status in patients. Further, SALL4 activation participates in the pathogenesis of tumor initiation and disease progression. Thus, a better understanding of SALL4's biologic functions and mechanisms will facilitate development of advanced targeted anti-leukemia approaches in future.
Collapse
Affiliation(s)
- Jianchang Yang
- Department of Surgery and Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
30
|
Yang L, Liu L, Gao H, Pinnamaneni JP, Sanagasetti D, Singh VP, Wang K, Mathison M, Zhang Q, Chen F, Mo Q, Rosengart T, Yang J. The stem cell factor SALL4 is an essential transcriptional regulator in mixed lineage leukemia-rearranged leukemogenesis. J Hematol Oncol 2017; 10:159. [PMID: 28974232 PMCID: PMC5627455 DOI: 10.1186/s13045-017-0531-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The stem cell factor spalt-like transcription factor 4 (SALL4) plays important roles in normal hematopoiesis and also in leukemogenesis. We previously reported that SALL4 exerts its effect by recruiting important epigenetic factors such as DNA methyltransferases DNMT1 and lysine-specific demethylase 1 (LSD1/KDM1A). Both of these proteins are critically involved in mixed lineage leukemia (MLL)-rearranged (MLL-r) leukemia, which has a very poor clinical prognosis. Recently, SALL4 has been further linked to the functions of MLL and its target gene homeobox A9 (HOXA9). However, it remains unclear whether SALL4 is indeed a key player in MLL-r leukemia pathogenesis. METHODS Using a mouse bone marrow retroviral transduction/ transplantation approach combined with tamoxifen-inducible, CreERT2-mediated Sall4 gene deletion, we studied SALL4 functions in leukemic transformation that was induced by MLL-AF9-one of the most common MLL-r oncoproteins found in patients. In addition, the underlying transcriptional and epigenetic mechanisms were explored using chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq), mRNA microarray, qRT-PCR, histone modification, co-immunoprecipitation (co-IP), cell cycle, and apoptosis assays. The effects of SALL4 loss on normal hematopoiesis in mice were also investigated. RESULTS In vitro and in vivo studies revealed that SALL4 expression is critically required for MLL-AF9-induced leukemic transformation and disease progression in mice. Loss of SALL4 in MLL-AF9-transformed cells induced apoptosis and cell cycle arrest at G1. ChIP-Seq assay identified that Sall4 binds to key MLL-AF9 target genes and important MLL-r or non-MLL-r leukemia-related genes. ChIP-PCR assays indicated that SALL4 affects the levels of the histone modification markers H3K79me2/3 and H3K4me3 at MLL-AF9 target gene promoters by physically interacting with DOT1-like histone H3K79 methyltransferase (DOT1l) and LSD1/KDM1A, and thereby regulates transcript expression. Surprisingly, normal Sall4 f/f /CreERT2 mice treated with tamoxifen or vav-Cre-mediated (hematopoietic-specific) Sall4 -/- mice were healthy and displayed no significant hematopoietic defects. CONCLUSIONS Our findings indicate that SALL4 critically contributes to MLL-AF9-induced leukemia, unraveling the underlying transcriptional and epigenetic mechanisms in this disease and suggesting that selectively targeting the SALL4 pathway may be a promising approach for managing human MLL-r leukemia.
Collapse
Affiliation(s)
- Lina Yang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Li Liu
- Department of Pathology, Stony Brook University Medicine, Stony Brook, NY, USA
| | - Hong Gao
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Jaya Pratap Pinnamaneni
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Deepthi Sanagasetti
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Vivek P Singh
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Kai Wang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Megumi Mathison
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Qianzi Zhang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Fengju Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Qianxing Mo
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Todd Rosengart
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Jianchang Yang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Chen L, Higgins PJ, Zhang W. Development and Diseases of the Collecting Duct System. Results Probl Cell Differ 2017; 60:165-203. [PMID: 28409346 DOI: 10.1007/978-3-319-51436-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The collecting duct of the mammalian kidney is important for the regulation of extracellular volume, osmolarity, and pH. There are two major structurally and functionally distinct cell types: principal cells and intercalated cells. The former regulates Na+ and water homeostasis, while the latter participates in acid-base homeostasis. In vivo lineage tracing using Cre recombinase or its derivatives such as CreGFP and CreERT2 is a powerful new technique to identify stem/progenitor cells in their native environment and to decipher the origins of the tissue that they give rise to. Recent studies using this technique in mice have revealed multiple renal progenitor cell populations that differentiate into various nephron segments and collecting duct. In particular, emerging evidence suggests that like principal cells, most of intercalated cells originate from the progenitor cells expressing water channel Aquaporin 2. Mutations or malfunctions of the channels, pumps, and transporters expressed in the collecting duct system cause various human diseases. For example, gain-of-function mutations in ENaC cause Liddle's syndrome, while loss-of-function mutations in ENaC lead to Pseudohypoaldosteronism type 1. Mutations in either AE1 or V-ATPase B1 result in distal renal tubular acidosis. Patients with disrupted AQP2 or AVPR2 develop nephrogenic diabetes insipidus. A better understanding of the function and development of the collecting duct system may facilitate the discovery of new therapeutic strategies for treating kidney disease.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, NHLBI, Bethesda, MD, 20892-1603, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
32
|
Shibata S. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor and NaCl transport mechanisms in the renal distal nephron. J Endocrinol 2017; 234:T35-T47. [PMID: 28341694 DOI: 10.1530/joe-16-0669] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023]
Abstract
A key role of aldosterone and mineralocorticoid receptor is to regulate fluid volume and K+ homeostasis in the body by acting on the renal distal nephron. Global responses of the kidney to elevated aldosterone levels are determined by the coordinate action of different constituent tubule cells, including principal cells, intercalated cells and distal convoluted tubule cells. Recent studies on genetic mutations causing aldosterone overproduction have identified the molecules involved in aldosterone biosynthesis in the adrenal gland, and there is also increasing evidence for mechanisms and signaling pathways regulating the balance between renal NaCl reabsorption and K+ secretion, the two major effects of aldosterone. In particular, recent studies have demonstrated that mineralocorticoid receptor in intercalated cells is selectively regulated by phosphorylation, which prevents ligand binding and activation. Moreover, the ubiquitin ligase complex composed of Kelch-like 3 and Cullin 3 acts downstream of angiotensin II and plasma K+ alterations, regulating Na-Cl cotransporter independently of aldosterone in distal convoluted tubule cells. These and other effects are integrated to produce appropriate kidney responses in a high-aldosterone state, and are implicated in fluid and electrolyte disorders in humans. This review summarizes the current knowledge on mechanisms modulating mineralocorticoid receptor and its downstream effectors in the distal nephron.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of NephrologyDepartment of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
- Division of Clinical EpigeneticsResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Ruhs S, Nolze A, Hübschmann R, Grossmann C. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. J Endocrinol 2017; 234:T107-T124. [PMID: 28348113 DOI: 10.1530/joe-16-0659] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid hormone receptor family and classically functions as a ligand-dependent transcription factor. It is involved in water-electrolyte homeostasis and blood pressure regulation but independent from these effects also furthers inflammation, fibrosis, hypertrophy and remodeling in cardiovascular tissues. Next to genomic effects, aldosterone elicits very rapid actions within minutes that do not require transcription or translation and that occur not only in classical MR epithelial target organs like kidney and colon but also in nonepithelial tissues like heart, vasculature and adipose tissue. Most of these effects can be mediated by classical MR and its crosstalk with different signaling cascades. Near the plasma membrane, the MR seems to be associated with caveolin and striatin as well as with receptor tyrosine kinases like EGFR, PDGFR and IGF1R and G protein-coupled receptors like AT1 and GPER1, which then mediate nongenomic aldosterone effects. GPER1 has also been named a putative novel MR. There is a close interaction and functional synergism between the genomic and the nongenomic signaling so that nongenomic signaling can lead to long-term effects and support genomic actions. Therefore, understanding nongenomic aldosterone/MR effects is of potential relevance for modulating genomic aldosterone effects and may provide additional targets for intervention.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Nolze
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Ralf Hübschmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
34
|
Raikwar NS, Thomas CP. Aldosterone regulates a 5' variant sgk1 transcript via a shared hormone response element in the sgk1 5' regulatory region. Physiol Rep 2017; 5:5/7/e13221. [PMID: 28408636 PMCID: PMC5392512 DOI: 10.14814/phy2.13221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/24/2022] Open
Abstract
We previously identified a 5ʹ variant alternate transcript of Sgk1 (Sgk1_v3) encoding an NH2‐terminal variant Sgk1 isoform, Sgk1_i3 that, like Sgk1, is expressed in the distal convoluted tubule, connecting tubule and collecting duct and can stimulate epithelial Na+ transport (Am J Physiol Renal Physiol 303: F1527–F1533, 2012). We now demonstrate that, similar to Sgk1, aldosterone and glucocorticoids stimulate Sgk1_v3 expression in cell lines from the collecting duct and airway epithelia. In mice, short term aldosterone infusion and maneuvers that increase endogenous aldosterone secretion including dietary Na+ deprivation and K+ loading increases distal nephron Sgk1_v3 expression in vivo. Although Sgk1_v3 has a different 5ʹ proximal regulatory region from Sgk1, the transcription start sites are less than 1000 bp apart. We cloned the 5ʹ regulatory region for Sgk1 and Sgk_v3 upstream of a luciferase gene and by deletion and reporter gene analysis we localized the corticosteroid regulatory region for Sgk1_v3 to a glucocorticoid response element (GRE) that had previously been identified for Sgk1 (Am J Physiol Endo Metab 283: E971–E979, 2002). We tested this element with MR in an MR‐null cell line and demonstrate that aldosterone stimulates Sgk1 and Sgk1_v3 via this GRE. We conclude that corticosteroids stimulate Sgk1 and Sgk1_v3 expression in epithelial cells via activation of a common conserved GRE in the 5ʹ flanking region of Sgk1.
Collapse
Affiliation(s)
- Nandita S Raikwar
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa
| | - Christie P Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa .,The Graduate Program in Molecular Biology, University of Iowa College of Medicine, Iowa City, Iowa.,The Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
35
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|
36
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
37
|
Mineralocorticoid receptor as a therapeutic target in chronic kidney disease and hypertension. Hypertens Res 2016; 40:221-225. [DOI: 10.1038/hr.2016.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/29/2023]
|
38
|
Valinsky WC, Jolly A, Miquel P, Touyz RM, Shrier A. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7). J Biol Chem 2016; 291:20163-72. [PMID: 27466368 PMCID: PMC5025699 DOI: 10.1074/jbc.m116.735175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg(2+)-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg(2+) levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed.
Collapse
Affiliation(s)
- William C Valinsky
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Anna Jolly
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Perrine Miquel
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Rhian M Touyz
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Alvin Shrier
- From the Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| |
Collapse
|
39
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
40
|
The Epithelial Sodium Channel and the Processes of Wound Healing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5675047. [PMID: 27493961 PMCID: PMC4963570 DOI: 10.1155/2016/5675047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
The epithelial sodium channel (ENaC) mediates passive sodium transport across the apical membranes of sodium absorbing epithelia, like the distal nephron, the intestine, and the lung airways. Additionally, the channel has been involved in the transduction of mechanical stimuli, such as hydrostatic pressure, membrane stretch, and shear stress from fluid flow. Thus, in vascular endothelium, it participates in the control of the vascular tone via its activity both as a sodium channel and as a shear stress transducer. Rather recently, ENaC has been shown to participate in the processes of wound healing, a role that may also involve its activities as sodium transporter and as mechanotransducer. Its presence as the sole channel mediating sodium transport in many tissues and the diversity of its functions probably underlie the complexity of its regulation. This brief review describes some aspects of ENaC regulation, comments on evidence about ENaC participation in wound healing, and suggests possible regulatory mechanisms involved in this participation.
Collapse
|
41
|
Shibata S. Context-dependent mechanisms modulating aldosterone signaling in the kidney. Clin Exp Nephrol 2016; 20:663-670. [PMID: 26846783 DOI: 10.1007/s10157-016-1232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The aldosterone-mineralocorticoid receptor (MR) system serves as the major regulator of fluid homeostasis, and is an important drug target for the treatment of hypertension, heart failure, and chronic kidney disease. While the ligand aldosterone plays a central role in facilitating MR activity, recent studies have revealed that MR signaling is modulated through distinct mechanisms at the levels of the receptor and the downstream targets. Notably, phosphorylation of the ligand-binding domain in MR regulates the ability of the receptor to bind to ligand in renal intercalated cells, providing an additional layer of regulation that allows the cell-selective control of MR signaling. These mechanisms are involved in the context-dependent effects of aldosterone in the distal nephron. In this article, the recent progress in the understanding of mechanisms regulating the action of aldosterone is discussed, focusing on the connecting tubules and collecting duct in the kidney.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
42
|
Ahmadzadeh-Amiri A, Ahmadzadeh-Amiri A. Epigenetic Diabetic Vascular Complications. JOURNAL OF PEDIATRICS REVIEW 2016. [DOI: 10.17795/jpr-3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Adult nephron-specific MR-deficient mice develop a severe renal PHA-1 phenotype. Pflugers Arch 2016; 468:895-908. [PMID: 26762397 DOI: 10.1007/s00424-015-1785-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/21/2015] [Accepted: 12/27/2015] [Indexed: 11/27/2022]
Abstract
Aldosterone is the main mineralocorticoid hormone controlling sodium balance, fluid homeostasis, and blood pressure by regulating sodium reabsorption in the aldosterone-sensitive distal nephron (ASDN). Germline loss-of-function mutations of the mineralocorticoid receptor (MR) in humans and in mice lead to the "renal" form of type 1 pseudohypoaldosteronism (PHA-1), a case of aldosterone resistance characterized by salt wasting, dehydration, failure to thrive, hyperkalemia, and metabolic acidosis. To investigate the importance of MR in adult epithelial cells, we generated nephron-specific MR knockout mice (MR(Pax8/LC1)) using a doxycycline-inducible system. Under standard diet, MR(Pax8/LC1) mice exhibit inability to gain weight and significant weight loss compared to control mice. Interestingly, despite failure to thrive, MR(Pax8/LC1) mice survive but develop a severe PHA-1 phenotype with higher urinary Na(+) levels, decreased plasma Na(+), hyperkalemia, and higher levels of plasma aldosterone. This phenotype further worsens and becomes lethal under a sodium-deficient diet. Na(+)/Cl(-) co-transporter (NCC) protein expression and its phosphorylated form are downregulated in the MR(Pax8/LC1) knockouts, as well as the αENaC protein expression level, whereas the expression of glucocorticoid receptor (GR) is increased. A diet rich in Na(+) and low in K(+) does not restore plasma aldosterone to control levels but is sufficient to restore body weight, plasma, and urinary electrolytes. In conclusion, MR deletion along the nephron fully recapitulates the features of severe human PHA-1. ENaC protein expression is dependent on MR activity. Suppression of NCC under hyperkalemia predominates in a hypovolemic state.
Collapse
|
44
|
Vlaming H, van Leeuwen F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma 2016; 125:593-605. [PMID: 26728620 DOI: 10.1007/s00412-015-0570-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022]
Abstract
Histone modifications regulate key processes of eukaryotic genomes. Misregulation of the enzymes that place these modifications can lead to disease. An example of this is DOT1L, the enzyme that can mono-, di-, and trimethylate the nucleosome core on lysine 79 of histone H3 (H3K79). DOT1L plays a role in development and its misregulation has been implicated in several cancers, most notably leukemias caused by a rearrangement of the MLL gene. A DOT1L inhibitor is in clinical trials for these leukemias and shows promising results, yet we are only beginning to understand DOT1L's function and regulation in the cell. Here, we review what happens upstream and downstream of H3K79 methylation. H3K79 methylation levels are highest in transcribed genes, where H2B ubiquitination can promote DOT1L activity. In addition, DOT1L can be targeted to transcribed regions of the genome by several of its interaction partners. Although methylation levels strongly correlate with transcription, the mechanistic link between the two is unclear and probably context-dependent. Methylation of H3K79 may act through recruiting or repelling effector proteins, but we do not yet know which effectors mediate DOT1L's functions. Understanding DOT1L biology better will help us to understand the effects of DOT1L inhibitors and may allow the development of alternative strategies to target the DOT1L pathway.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
45
|
Haque M, Wilson R, Sharma K, Mills NJ, Teruyama R. Localisation of 11β-Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Expressing Magnocellular Neurosecretory Neurones of the Rat Supraoptic and Paraventricular Nuclei. J Neuroendocrinol 2015; 27:835-49. [PMID: 26403275 PMCID: PMC5019266 DOI: 10.1111/jne.12325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/29/2023]
Abstract
An accumulating body of evidence suggests that the activity of the mineralocorticoid, aldosterone, in the brain via the mineralocorticoid receptor (MR) plays an important role in the regulation of blood pressure. MR was recently found in vasopressin and oxytocin synthesising magnocellular neurosecretory cells (MNCs) in both the paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus. Considering the physiological effects of these hormones, MR in these neurones may be an important site mediating the action of aldosterone in blood pressure regulation within the brain. However, aldosterone activation of MR in the hypothalamus remains controversial as a result of the high binding affinity of glucocorticoids to MR at substantially higher concentrations compared to aldosterone. In aldosterone-sensitive epithelia, the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) prevents glucocorticoids from binding to MR by converting glucocorticoids into inactive metabolites. The present study aimed to determine whether 11β-HSD2, which increases aldosterone selectivity, is expressed in MNCs. Specific 11β-HSD2 immunoreactivity was found in the cytoplasm of the MNCs in both the SON and PVN. In addition, double-fluorescence confocal microscopy demonstrated that MR-immunoreactivity and 11β-HSD2-in situ hybridised products are colocalised in MNCs. Lastly, single-cell reverse transcriptase-polymerase chain reaction detected MR and 11β-HSD2 mRNAs from cDNA libraries derived from single identified MNCs. These findings strongly suggest that MNCs in the SON and PVN are aldosterone-sensitive neurones.
Collapse
Affiliation(s)
- M Haque
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - R Wilson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - K Sharma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - N J Mills
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - R Teruyama
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
46
|
Xiao Z, Chen L, Zhou Q, Zhang W. Dot1l deficiency leads to increased intercalated cells and upregulation of V-ATPase B1 in mice. Exp Cell Res 2015; 344:167-75. [PMID: 26404731 DOI: 10.1016/j.yexcr.2015.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 01/19/2023]
Abstract
The collecting duct in the mammalian kidney consists of principal cells (PCs) and intercalated cells (ICs), which regulate electrolyte/fluid and acid/base balance, respectively. The epigenetic regulators of PC and IC differentiation remain obscure. We previously used Aqp2 and V-ATPase B1B2 to label PCs and ICs, respectively. We found that mice with histone H3 K79 methyltransferase Dot1l disrupted in Aqp2-expressing cells (Dot1l(AC)) vs. Dot1l(f/f) possessed ~20% more ICs coupled with a similar decrease in PCs. Here, we performed multiple double immunofluorescence staining using various PC and IC markers and confirmed that this finding. Both α-IC and β-IC populations were significantly expanded in Dot1l(AC) vs. Dot1l(f/f). These changes are associated with significantly upregulated V-ATPase B1 and B2, but not Aqp2, AE1, and Pendrin. Chromatin immunoprecipitation assay unveiled a significant reduction of Dot1l and H3K79 di-methylation bound at the Atp6v1b1 5' flanking region. Overexpression of Dot1a significantly downregulated a stably-transfected luciferase reporter driven by the Atp6v1b1 promoter in IMCD3 cells. This downregulation was impaired, but not completely abolished when a methyltransferase-dead mutant was overexpressed. Taken together, our data suggest that Dot1l is a new epigenetic regulator of PC and IC differentiation and Atp6v1b1 is a new transcriptional target of Dot1l.
Collapse
Affiliation(s)
- Zhou Xiao
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Lihe Chen
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiaoling Zhou
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wenzheng Zhang
- Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Zhang W. Epigenetics of epithelial Na + channel-dependent sodium uptake and blood pressure regulation. World J Nephrol 2015; 4:363-366. [PMID: 26167459 PMCID: PMC4491926 DOI: 10.5527/wjn.v4.i3.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/08/2014] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
The epithelial Na+ channel (ENaC) consists of α, β, γ subunits. Its expression and function are regulated by aldosterone at multiple levels including transcription. ENaC plays a key role in Na+ homeostasis and blood pressure. Mutations in ENaC subunit genes result in hypertension or hypotension, depending on the nature of the mutations. Transcription of αENaC is considered as the rate-limiting step in the formation of functional ENaC. As an aldosterone target gene, αENaC is activated upon aldosterone- mineralocorticoid receptor binding to the cis-elements in the αENaC promoter, which is packed into chromatin. However, how aldosterone alters chromatin structure to induce changes in transcription is poorly understood. Studies by others and us suggest that Dot1a-Af9 complex represses αENaC by directly binding and regulating targeted histone H3 K79 hypermethylation at the specific subregions of αENaC promoter. Aldosterone decreases Dot1a-Af9 formation by impairing expression of Dot1a and Af9 and by inducing Sgk1, which, in turn, phosphorylates Af9 at S435 to weaken Dot1a-Af9 interaction. MR attenuates Dot1a-Af9 effect by competing with Dot1a for binding Af9. Af17 relieves repression by interfering with Dot1a-Af9 interaction and promoting Dot1a nuclear export. Af17-/- mice exhibit defects in ENaC expression, renal Na+ retention, and blood pressure control. This review gives a brief summary of these novel findings.
Collapse
|
48
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 511] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int 2015; 88:250-61. [PMID: 25993323 PMCID: PMC4522401 DOI: 10.1038/ki.2015.148] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/22/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022]
Abstract
The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post translational modifications of histones in chromatin are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNA me and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.
Collapse
|
50
|
Nishimoto M, Fujita T. Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways. Am J Physiol Renal Physiol 2015; 308:F377-87. [DOI: 10.1152/ajprenal.00477.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although salt is a major environmental factor in the development of hypertension, the degree of salt sensitivity varies widely among individuals. The mechanisms responsible for this variation remain to be elucidated. Recent studies have revealed the involvement of two important signaling pathways in renal tubules that play key roles in electrolyte balance and the maintenance of normal blood pressure: the β2-adrenergic stimulant-glucocorticoid receptor (GR)-with-no-lysine kinase (WNK)4-Na+-Cl− cotransporter pathway, which is active in distal convoluted tubule (DCT)1, and the Ras-related C3 botulinum toxin substrate (Rac)1-mineralocorticoid receptor (MR) pathway, which is active in DCT2, connecting tubules, and collecting ducts. β2-Adrenergic stimulation due to increased renal sympathetic activity in obesity- and salt-induced hypertension suppresses histone deacetylase 8 activity via cAMP/PKA signaling, increasing the accessibility of GRs to the negative GR response element in the WNK4 promoter. This results in the suppression of WNK4 transcription followed by the activation of Na+-Cl− cotransporters in the DCT and elevated Na+ retention and blood pressure upon salt loading. Rac1 activates MRs, even in the absence of ligand binding, with this activity increased in the presence of ligand. In salt-sensitive animals, Rac1 activation due to salt loading activates MRs in DCT2, connecting tubules, and collecting ducts. Thus, GRs and MRs are independently involved in two pathways responsible for renal Na+ handling and salt-sensitive hypertension. These findings suggest novel therapeutic targets and may lead to the development of diagnostic tools to determine salt sensitivity in hypertensive patients.
Collapse
Affiliation(s)
- Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|