1
|
Wang C, Lai Z, Tan H, Zhang H, Tan L, Luo Q, Li S, Xiong Z, Yang G, Xiong Z. Impaired cardiomyocytes accelerate cardiac hypertrophy and fibrosis by delivering exosomes containing Shh/N-Shh/Gli1 in angiotensin II infused mice. Heliyon 2024; 10:e39332. [PMID: 39640644 PMCID: PMC11620221 DOI: 10.1016/j.heliyon.2024.e39332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Backgrounds Heart failure (HF) is characterized by progressive cardiac hypertrophy and fibrosis, yet the underlying pathological mechanisms remain unclear. Exosomes are pivotal in cellular communication and are key signaling carriers in HFs. This study investigated the roles of exosomes in HF. Methods Eight-week-old male mice were divided into three groups: a control group, an Ang II group receiving angiotensin II (Ang II) infusion for 4 weeks, and an Ang II + DMA group receiving Ang II and dimethyl amiloride (DMA) infusion. This study examined the associations between cardiac injury, exosomes, and their substrate Shh. Furthermore, we conducted cellular experiments to assess the effects of Ang II-induced injury in primary cardiomyocytes on other cardiomyocytes and fibroblasts, and to test the therapeutic effects of the exosome inhibitor DMA and the Shh signaling inhibitor cyclopamine (CPN). Results Ang II-induced cardiac hypertrophy and fibrosis, which were accompanied by exosome secretion and Shh upregulation in vivo. DMA relieved these cardiac lesions. Furthermore, cellular experiments revealed that Ang II-induced cardiomyocytes hypertrophy and activated cardiac fibroblasts by promoting the release of exosomes containing Shh/N-Shh/Gli1. Both DMA and CPN nullified fibroblast activation and proliferation. Conclusions Ang II-induced cardiomyocyte injury leads to cardiac hypertrophy and fibrosis through the release of exosomes carrying Shh signaling. The suppression of exosome secretion or the Shh pathway could offer new strategies for treating HF.
Collapse
Affiliation(s)
- Cong Wang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zhiwei Lai
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Huishi Tan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hua Zhang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Lishan Tan
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Qingyun Luo
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Sanmu Li
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zibo Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, Guangdong, China
| | - Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, Guangdong, China
- Institute of Nephrology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zuying Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, Guangdong, China
- Institute of Nephrology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Yang C, Pan Q, Ji K, Tian Z, Zhou H, Li S, Luo C, Li J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front Pharmacol 2023; 14:1187910. [PMID: 37251311 PMCID: PMC10213926 DOI: 10.3389/fphar.2023.1187910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cardiovascular disease is a global health problem. Astragaloside IV (AS-IV) is a saponin compound extracted from the roots of the Chinese herb Astragalus. Over the past few decades, AS-IV has been shown to possess various pharmacological properties. It can protect the myocardium through antioxidative stress, anti-inflammatory effects, regulation of calcium homeostasis, improvement of myocardial energy metabolism, anti-apoptosis, anti-cardiomyocyte hypertrophy, anti-myocardial fibrosis, regulation of myocardial autophagy, and improvement of myocardial microcirculation. AS-IV exerts protective effects on blood vessels. For example, it can protect vascular endothelial cells through antioxidative stress and anti-inflammatory pathways, relax blood vessels, stabilize atherosclerotic plaques, and inhibit the proliferation and migration of vascular smooth muscle cells. Thus, the bioavailability of AS-IV is low. Toxicology indicates that AS-IV is safe, but should be used cautiously in pregnant women. In this paper, we review the mechanisms of AS-IV prevention and treatment of cardiovascular diseases in recent years to provide a reference for future research and drug development.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhuang Tian
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022; 17:4699-4719. [PMID: 36217495 PMCID: PMC9547598 DOI: 10.2147/ijn.s377479] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes are a pluripotent group of extracellular nanovesicles secreted by all cells that mediate intercellular communications. The effective information within exosomes is primarily reflected in exosomal cargos, including proteins, lipids, DNAs, and non-coding RNAs (ncRNAs), the most intensively studied molecules. Cardiac resident cells (cardiomyocytes, fibroblasts, and endothelial cells) and foreign cells (infiltrated immune cells, cardiac progenitor cells, cardiosphere-derived cells, and mesenchymal stem cells) are involved in the progress of ventricular remodeling (VR) following myocardial infarction (MI) via transferring exosomes into target cells. Here, we summarize the pathological mechanisms of VR following MI, including cardiac myocyte hypertrophy, cardiac fibrosis, inflammation, pyroptosis, apoptosis, autophagy, angiogenesis, and metabolic disorders, and the roles of exosomal cargos in these processes, with a focus on proteins and ncRNAs. Continued research in this field reveals a novel diagnostic and therapeutic strategy for VR.
Collapse
Affiliation(s)
- Jiacheng Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yiyue Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China,Correspondence: Jun Jiang, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People’s Republic of China, Tel/Fax +86 135 8870 6891, Email
| |
Collapse
|
4
|
Koeniger A, Brichkina A, Nee I, Dempwolff L, Hupfer A, Galperin I, Finkernagel F, Nist A, Stiewe T, Adhikary T, Diederich W, Lauth M. Activation of Cilia-Independent Hedgehog/GLI1 Signaling as a Novel Concept for Neuroblastoma Therapy. Cancers (Basel) 2021; 13:cancers13081908. [PMID: 33921042 PMCID: PMC8071409 DOI: 10.3390/cancers13081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Elevated GLI1 expression levels are associated with improved survival in NB patients and GLI1 overexpression exerts tumor-suppressive traits in cultured NB cells. However, NB cells are protected from increased GLI1 levels as they have lost the ability to form primary cilia and transduce Hedgehog signals. This study identifies an isoxazole (ISX) molecule with primary cilia-independent GLI1-activating properties, which blocks NB cell growth. Mechanistically, ISX combines the removal of GLI3 repressor and the inhibition of class I HDACs, providing proof-of-principle evidence that small molecule-mediated activation of GLI1 could be harnessed therapeutically in the future. Abstract Although being rare in absolute numbers, neuroblastoma (NB) represents the most frequent solid tumor in infants and young children. Therapy options and prognosis are comparably good for NB patients except for the high risk stage 4 class. Particularly in adolescent patients with certain genetic alterations, 5-year survival rates can drop below 30%, necessitating the development of novel therapy approaches. The developmentally important Hedgehog (Hh) pathway is involved in neural crest differentiation, the cell type being causal in the etiology of NB. However, and in contrast to its function in some other cancer types, Hedgehog signaling and its transcription factor GLI1 exert tumor-suppressive functions in NB, rendering GLI1 an interesting new candidate for anti-NB therapy. Unfortunately, the therapeutic concept of pharmacological Hh/GLI1 pathway activation is difficult to implement as NB cells have lost primary cilia, essential organelles for Hh perception and activation. In order to bypass this bottleneck, we have identified a GLI1-activating small molecule which stimulates endogenous GLI1 production without the need for upstream Hh pathway elements such as Smoothened or primary cilia. This isoxazole compound potently abrogates NB cell proliferation and might serve as a starting point for the development of a novel class of NB-suppressive molecules.
Collapse
Affiliation(s)
- Anke Koeniger
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Anna Brichkina
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Iris Nee
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
| | - Lukas Dempwolff
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
| | - Anna Hupfer
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Ilya Galperin
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
| | - Florian Finkernagel
- Center for Tumor- and Immune Biology, Bioinformatics Core Facility, Philipps University Marburg, 35043 Marburg, Germany;
| | - Andrea Nist
- Member of the German Center for Lung Research (DZL), Center for Tumor- and Immune Biology, Genomics Core Facility, Institute of Molecular Oncology, Philipps University Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Thorsten Stiewe
- Member of the German Center for Lung Research (DZL), Center for Tumor- and Immune Biology, Genomics Core Facility, Institute of Molecular Oncology, Philipps University Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Till Adhikary
- Institute for Biomedical Informatics and Biostatistics, Philipps University Marburg, 35043 Marburg, Germany;
| | - Wibke Diederich
- Department of Medicinal Chemistry and Center for Tumor- and Immune Biology, Philipps University Marburg, 35043 Marburg, Germany; (I.N.); (L.D.); (W.D.)
- Core Facility Medicinal Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor- and Immune Biology, Department of Gastroenterology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (A.B.); (A.H.); (I.G.)
- Correspondence:
| |
Collapse
|
5
|
Budhram-Mahadeo VS, Solomons MR, Mahadeo-Heads EAO. Linking metabolic dysfunction with cardiovascular diseases: Brn-3b/POU4F2 transcription factor in cardiometabolic tissues in health and disease. Cell Death Dis 2021; 12:267. [PMID: 33712567 PMCID: PMC7955040 DOI: 10.1038/s41419-021-03551-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3β, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases.
Collapse
Affiliation(s)
- Vishwanie S Budhram-Mahadeo
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.
| | - Matthew R Solomons
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Eeshan A O Mahadeo-Heads
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.,College of Medicine and Health, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
6
|
Kopinke D, Norris AM, Mukhopadhyay S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin Cell Dev Biol 2021; 110:89-103. [PMID: 32540122 PMCID: PMC7736055 DOI: 10.1016/j.semcdb.2020.05.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Primary cilia are immotile appendages that have evolved to receive and interpret a variety of different extracellular cues. Cilia play crucial roles in intercellular communication during development and defects in cilia affect multiple tissues accounting for a heterogeneous group of human diseases called ciliopathies. The Hedgehog (Hh) signaling pathway is one of these cues and displays a unique and symbiotic relationship with cilia. Not only does Hh signaling require cilia for its function but the majority of the Hh signaling machinery is physically located within the cilium-centrosome complex. More specifically, cilia are required for both repressing and activating Hh signaling by modifying bifunctional Gli transcription factors into repressors or activators. Defects in balancing, interpreting or establishing these repressor/activator gradients in Hh signaling either require cilia or phenocopy disruption of cilia. Here, we will summarize the current knowledge on how spatiotemporal control of the molecular machinery of the cilium allows for a tight control of basal repression and activation states of the Hh pathway. We will then discuss several paradigms on how cilia influence Hh pathway activity in tissue morphogenesis during development. Last, we will touch on how cilia and Hh signaling are being reactivated and repurposed during adult tissue regeneration. More specifically, we will focus on mesenchymal stem cells within the connective tissue and discuss the similarities and differences of how cilia and ciliary Hh signaling control the formation of fibrotic scar and adipose tissue during fatty fibrosis of several tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| | - Alessandra M Norris
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, Wan Y, Hu B, Li Y. Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Front Endocrinol (Lausanne) 2021; 12:720466. [PMID: 34456875 PMCID: PMC8387814 DOI: 10.3389/fendo.2021.720466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hu
- *Correspondence: Yanan Li, ; Bo Hu,
| | - Yanan Li
- *Correspondence: Yanan Li, ; Bo Hu,
| |
Collapse
|
8
|
Ahmed S, Ahmed A, Bouzina H, Lundgren J, Rådegran G. Elevated plasma endocan and BOC in heart failure patients decrease after heart transplantation in association with improved hemodynamics. Heart Vessels 2020; 35:1614-1628. [PMID: 32651845 PMCID: PMC7502449 DOI: 10.1007/s00380-020-01656-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The prevalence of heart failure (HF) is rising with ageing population and constitutes a major health problem globally. A common complication of HF is pulmonary hypertension (PH) which negatively impacts survival. A pathophysiological association between HF and PH with tumorigenic processes has been suggested. We aimed to identify the plasma levels of, and the association between tumour-related proteins and hemodynamic improvements in patients with HF and PH due to left heart disease (LHD) before and 1-year after heart transplantation (HT). METHODS Forty-eight tumour-related proteins were measured with proximity extension assay in plasma from 20 controls and 26 HF patients before and 1-year after HT. Patients' hemodynamics were measured with right heart catheterization. RESULTS Out of 48 proteins, specifically, plasma levels of endocan and brother of CDO (BOC) were elevated in end-stage HF patients compared to controls (p < 0.001), but decreased after HT (p < 0.01), towards controls' levels. The decrease of endocan levels after HT correlated with improved mean pulmonary arterial pressure (rs = 0.80, p < 0.0001), pulmonary arterial wedge pressure (rs = 0.63, p = 0.0012), and pulmonary vascular resistance (rs = 0.70, p < 0.001). The decrease and normalization of BOC after HT correlated with decreased mean right atrial pressure (rs = 0.61 p = 0.0015) and NT-proBNP (rs = 0.57, p = 0.0022), as well as increased cardiac index (rs = - 0.51, p = 0.0086) and left-ventricular stroke work index (rs = - 0.57, p = 0.0039). CONCLUSION Our results suggest that (i) plasma endocan in HF may reflect the state of pulmonary vascular congestion and PH-LHD, whereas (ii) plasma BOC may reflect the cardiac function and the hemodynamic overload in HF. The exact role of these proteins and their clinical applicability as biomarkers in HF and PH-LHD ought to be investigated in larger cohorts.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden.
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden.
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Habib Bouzina
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Jakob Lundgren
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden
- The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
10
|
Huang H, Yu H, Lin L, Chen J, Zhu P. Protective effect of sonic hedgehog against oxidized low‑density lipoprotein‑induced endothelial apoptosis: Involvement of NF‑κB and Bcl‑2 signaling. Int J Mol Med 2020; 45:1864-1874. [PMID: 32186749 PMCID: PMC7169656 DOI: 10.3892/ijmm.2020.4542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is pivotally important in embryonic and adult blood vessel development and homeostasis. However, whether Shh is involved in atherosclerosis and plays a role in endothelial apoptosis induced by oxidized low‑density lipoprotein (ox‑LDL) has not been reported. The present study used recombinant Shh‑N protein (rShh‑N) and a plasmid encoding the human Shh gene (phShh) to investigate the role of Shh in ox‑LDL‑mediated human umbilical vein endothelial cell (HUVEC) apoptosis. The present study found that ox‑LDL was able to induce apoptosis in HUVECs and that Shh protein expression was downregulated. Furthermore, pretreatment with rShh‑N or transfection with phShh increased anti‑apoptosis protein Bcl‑2 expression and decreased cell apoptosis. These protective effects of rShh‑N could be abolished by cyclopamine, which is a hedgehog signaling inhibitor. Furthermore, a co‑immunoprecipitation assay was performed to demonstrate that Shh interacted with NF‑κB p65 in HUVECs. Additionally, ox‑LDL upregulated the phosphorylation of NF‑κB p65 and inhibitor of NF‑κB‑α (IκBα), and these effects decreased notably following rShh‑N and phShh treatment. Together, the present findings suggested that Shh serves an important protective role in alleviating ox‑LDL‑mediated endothelial apoptosis by inhibiting the NF‑κB signaling pathway phosphorylation and Bcl‑2 mediated mitochondrial signaling.
Collapse
Affiliation(s)
- Huashan Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Huizhen Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Liang Lin
- Gynecology and Obstetrics, Fujian Provincial Hospital South Branch, Fuzhou, Fujian 350028, P.R. China
| | - Junming Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Pengli Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
11
|
Ghaleh B, Thireau J, Cazorla O, Soleti R, Scheuermann V, Bizé A, Sambin L, Roubille F, Andriantsitohaina R, Martinez MC, Lacampagne A. Cardioprotective effect of sonic hedgehog ligand in pig models of ischemia reperfusion. Am J Cancer Res 2020; 10:4006-4016. [PMID: 32226535 PMCID: PMC7086352 DOI: 10.7150/thno.40461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Sonic hedgehog (SHH) signaling pathway is involved in embryonic tissue patterning and development. Our previous work identified, in small rodent model of ischemia reperfusion, SHH as a specific efficient tool to reduce infarct size and subsequent arrhythmias by preventing ventricular repolarization abnormalities. The goal of the present study was to provide a proof of concept of the cardioprotective effect of SHH ligand in a porcine model of acute ischemia. Methods: The antiarrhythmic effect of SHH, either by a recombinant peptide (N-SHH) or shed membrane microparticles harboring SHH ligand (MPsSHH+), was evaluated in a first set of pigs following a short (25 min) coronary artery occlusion (CAO) followed by 24 hours-reperfusion (CAR) (Protocol A). The infarct-limiting effect was evaluated on a second set of pigs with 40 min of coronary artery occlusion followed by 24 hours reperfusion (Protocol B). Electrocardiogram (ECG) was recorded and arrhythmia's scores were evaluated. Area at risk and myocardial infarct size were quantified. Results: In protocol A, administration of N-SHH 15 min. after the onset of coronary occlusion significantly reduced the occurrence of ventricular fibrillation compared to control group. Evaluation of arrhythmic score showed that N-SHH treatment significantly reduced the overall occurrence of arrhythmias. In protocol B, massive infarction was observed in control animals. Either N-SHH or MPsSHH+ treatment reduced significantly the infarct size with a concomitant increase of salvaged area. The reduction in infarct size was both accompanied by a significant decrease in systemic biomarkers of myocardial injury, i.e., cardiac troponin I and fatty acid-binding protein and an increase of eNOS activation. Conclusions: We show for the first time in a large mammalian model that the activation of the SHH pathway by N-SHH or MPsSHH+ offers a potent protection of the heart to ischemia-reperfusion by preventing the reperfusion arrhythmias, reducing the infarct area and the circulating levels of biomarkers for myocardial injury. These data open up potentially theranostic prospects for patients suffering from myocardial infarction to prevent the occurrence of arrhythmias and reduce myocardial tissue damage.
Collapse
|
12
|
Sonic Hedgehog upregulation does not enhance the survival and engraftment of stem cell-derived cardiomyocytes in infarcted hearts. PLoS One 2020; 15:e0227780. [PMID: 31945113 PMCID: PMC6964843 DOI: 10.1371/journal.pone.0227780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/28/2019] [Indexed: 01/02/2023] Open
Abstract
The engraftment of human stem cell-derived cardiomyocytes (hSC-CMs) is a promising treatment for remuscularizing the heart wall post-infarction, but it is plagued by low survival of transplanted cells. We hypothesize that this low survival rate is due to continued ischemia within the infarct, and that increasing the vascularization of the scar will ameliorate the ischemia and improve hSC-CM survival and engraftment. An adenovirus expressing the vascular growth factor Sonic Hedgehog (Shh) was injected into the infarcted myocardium of rats immediately after ischemia/reperfusion, four days prior to hSC-CM injection. By two weeks post-cell injection, Shh treatment had successfully increased capillary density outside the scar, but not within the scar. In addition, there was no change in vessel size or percent vascular volume when compared to cell injection alone. Micro-computed tomography revealed that Shh failed to increase the number and size of larger vessels. It also had no effect on graft size or heart function when compared to cell engraftment alone. Our data suggests that, when combined with the engraftment of hSC-CMs, expression of Shh within the infarct scar and surrounding myocardium is unable to increase vascularization of the infarct scar, and it does not improve survival or function of hSC-CM grafts.
Collapse
|
13
|
Giarretta I, Gaetani E, Bigossi M, Tondi P, Asahara T, Pola R. The Hedgehog Signaling Pathway in Ischemic Tissues. Int J Mol Sci 2019; 20:ijms20215270. [PMID: 31652910 PMCID: PMC6862352 DOI: 10.3390/ijms20215270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) proteins are prototypical morphogens known to regulate epithelial/mesenchymal interactions during embryonic development. In addition to its pivotal role in embryogenesis, the Hh signaling pathway may be recapitulated in post-natal life in a number of physiological and pathological conditions, including ischemia. This review highlights the involvement of Hh signaling in ischemic tissue regeneration and angiogenesis, with particular attention to the heart, the brain, and the skeletal muscle. Updated information on the potential role of the Hh pathway as a therapeutic target in the ischemic condition is also presented.
Collapse
Affiliation(s)
- Igor Giarretta
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Eleonora Gaetani
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Margherita Bigossi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Paolo Tondi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
14
|
Role of Hedgehog Signaling in Vasculature Development, Differentiation, and Maintenance. Int J Mol Sci 2019; 20:ijms20123076. [PMID: 31238510 PMCID: PMC6627637 DOI: 10.3390/ijms20123076] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
The role of Hedgehog (Hh) signaling in vascular biology has first been highlighted in embryos by Pepicelli et al. in 1998 and Rowitch et al. in 1999. Since then, the proangiogenic role of the Hh ligands has been confirmed in adults, especially under pathologic conditions. More recently, the Hh signaling has been proposed to improve vascular integrity especially at the blood–brain barrier (BBB). However, molecular and cellular mechanisms underlying the role of the Hh signaling in vascular biology remain poorly understood and conflicting results have been reported. As a matter of fact, in several settings, it is currently not clear whether Hh ligands promote vessel integrity and quiescence or destabilize vessels to promote angiogenesis. The present review relates the current knowledge regarding the role of the Hh signaling in vasculature development, maturation and maintenance, discusses the underlying proposed mechanisms and highlights controversial data which may serve as a guideline for future research. Most importantly, fully understanding such mechanisms is critical for the development of safe and efficient therapies to target the Hh signaling in both cancer and cardiovascular/cerebrovascular diseases.
Collapse
|
15
|
Aravani D, Morris GE, Jones PD, Tattersall HK, Karamanavi E, Kaiser MA, Kostogrys RB, Ghaderi Najafabadi M, Andrews SL, Nath M, Ye S, Stringer EJ, Samani NJ, Webb TR. HHIPL1, a Gene at the 14q32 Coronary Artery Disease Locus, Positively Regulates Hedgehog Signaling and Promotes Atherosclerosis. Circulation 2019; 140:500-513. [PMID: 31163988 PMCID: PMC6686954 DOI: 10.1161/circulationaha.119.041059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Genome-wide association studies have identified chromosome 14q32 as a locus for coronary artery disease. The disease-associated variants fall in a hitherto uncharacterized gene called HHIPL1 (hedgehog interacting protein-like 1), which encodes a sequence homolog of an antagonist of hedgehog signaling. The function of HHIPL1 and its role in atherosclerosis are unknown. Methods: HHIPL1 cellular localization, interaction with sonic hedgehog (SHH), and influence on hedgehog signaling were tested. HHIPL1 expression was measured in coronary artery disease–relevant human cells, and protein localization was assessed in wild-type and Apoe−/− (apolipoprotein E deficient) mice. Human aortic smooth muscle cell phenotypes and hedgehog signaling were investigated after gene knockdown. Hhipl1−/− mice were generated and aortic smooth muscle cells collected for phenotypic analysis and assessment of hedgehog signaling activity. Hhipl1−/− mice were bred onto both the Apoe−/− and Ldlr−/− (low-density lipoprotein receptor deficient) knockout strains, and the extent of atherosclerosis was quantified after 12 weeks of high-fat diet. Cellular composition and collagen content of aortic plaques were assessed by immunohistochemistry. Results: In vitro analyses revealed that HHIPL1 is a secreted protein that interacts with SHH and increases hedgehog signaling activity. HHIPL1 expression was detected in human smooth muscle cells and in smooth muscle within atherosclerotic plaques of Apoe−/− mice. The expression of Hhipl1 increased with disease progression in aortic roots of Apoe−/− mice. Proliferation and migration were reduced in Hhipl1 knockout mouse and HHIPL1 knockdown aortic smooth muscle cells, and hedgehog signaling was decreased in HHIPL1-deficient cells. Hhipl1 knockout caused a reduction of >50% in atherosclerosis burden on both Apoe−/− and Ldlr−/− knockout backgrounds, and lesions were characterized by reduced smooth muscle cell content. Conclusions: HHIPL1 is a secreted proatherogenic protein that enhances hedgehog signaling and regulates smooth muscle cell proliferation and migration. Inhibition of HHIPL1 protein function might offer a novel therapeutic strategy for coronary artery disease.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Gavin E Morris
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Peter D Jones
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Helena K Tattersall
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Elisavet Karamanavi
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Michael A Kaiser
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Renata B Kostogrys
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Kraków, Poland (R.B.K)
| | - Maryam Ghaderi Najafabadi
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Sarah L Andrews
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Mintu Nath
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Emma J Stringer
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| | - Tom R Webb
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, United Kingdom (D.A., G.E.M., P.D.J., H.K.T., E.K., M.A.K., M.G.N., S.L.A., M.N., S.Y., E.J.S., N.J.S., T.R.W.)
| |
Collapse
|
16
|
A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Nat Commun 2018; 9:4237. [PMID: 30315164 PMCID: PMC6185975 DOI: 10.1038/s41467-018-06617-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/15/2018] [Indexed: 01/07/2023] Open
Abstract
The mammalian heart has a limited regenerative capacity and typically progresses to heart failure following injury. Here, we defined a hedgehog (HH)-Gli1-Mycn network for cardiomyocyte proliferation and heart regeneration from amphibians to mammals. Using a genome-wide screen, we verified that HH signaling was essential for heart regeneration in the injured newt. Next, pharmacological and genetic loss- and gain-of-function of HH signaling demonstrated the essential requirement for HH signaling in the neonatal, adolescent, and adult mouse heart regeneration, and in the proliferation of hiPSC-derived cardiomyocytes. Fate-mapping and molecular biological studies revealed that HH signaling, via a HH-Gli1-Mycn network, contributed to heart regeneration by inducing proliferation of pre-existing cardiomyocytes and not by de novo cardiomyogenesis. Further, Mycn mRNA transfection experiments recapitulated the effects of HH signaling and promoted adult cardiomyocyte proliferation. These studies defined an evolutionarily conserved function of HH signaling that may serve as a platform for human regenerative therapies. Due to the limited proliferation capacity of adult mammalian cardiomyocytes, the human heart has negligible regenerative capacity after injury. Here the authors show that a Hedgehog-Gli1-Mycn signaling cascade regulates cardiomyocyte proliferation and cardiac regeneration from amphibians to mammals.
Collapse
|
17
|
Lygirou V, Latosinska A, Makridakis M, Mullen W, Delles C, Schanstra JP, Zoidakis J, Pieske B, Mischak H, Vlahou A. Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease. J Transl Med 2018; 16:104. [PMID: 29665821 PMCID: PMC5905170 DOI: 10.1186/s12967-018-1476-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for further use in CVD multi-omics integrative analysis. METHODS LC-MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Following label-free quantification, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Differential expression was defined based on identification confidence (≥ 2 peptides per protein), statistical significance (Mann-Whitney p value ≤ 0.05) and a minimum of twofold change. RESULTS Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identified proteins (838 proteins based on ≥ 2 peptides). Pathway annotation confirmed the functional relevance of the findings (representation of complement cascade, fibrin clot formation, platelet degranulation, etc.). Correlation of the relative abundance of the proteins identified in the discovery set with their reported concentrations in the PPD was significant, confirming the validity of the quantification method. The discovery set analysis revealed 100 differentially expressed proteins between cases and controls, 39 of which were verified (≥ twofold change) in the test set. These included proteins already studied in the context of CVD (such as apolipoprotein B, alpha-2-macroglobulin), as well as novel findings (such as low density lipoprotein receptor related protein 2 [LRP2], protein SZT2) for which a mechanism of action is suggested. CONCLUSIONS This proteomic study provides a comprehensive dataset to be used for integrative and functional studies in the field. The observed protein changes reflect known CVD-related processes (e.g. lipid uptake, inflammation) but also novel hypotheses for further investigation including a potential pleiotropic role of LPR2 but also links of SZT2 to CVD.
Collapse
Affiliation(s)
- Vasiliki Lygirou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | | | - Manousos Makridakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Burkert Pieske
- Deutsches Herzzentrum Berlin, Augustenburger Pl. 1, 13353, Berlin, Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Rotenburger Straße 20, 30659, Hannover, Germany
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece.
| |
Collapse
|
18
|
Hedgehog mediated degradation of Ihog adhesion proteins modulates cell segregation in Drosophila wing imaginal discs. Nat Commun 2017; 8:1275. [PMID: 29097673 PMCID: PMC5668237 DOI: 10.1038/s41467-017-01364-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2017] [Indexed: 11/08/2022] Open
Abstract
The Drosophila Hedgehog receptor functions to regulate the essential downstream pathway component, Smoothened, and to limit the range of signaling by sequestering Hedgehog protein signal within imaginal disc epithelium. Hedgehog receptor function requires both Patched and Ihog activity, the latter interchangeably encoded by interference hedgehog (ihog) or brother of ihog (boi). Here we show that Patched and Ihog activity are mutually required for receptor endocytosis and degradation, triggered by Hedgehog protein binding, and causing reduced levels of Ihog/Boi proteins in a stripe of cells at the anterior/posterior compartment boundary of the wing imaginal disc. This Ihog spatial discontinuity may contribute to classically defined cell segregation and lineage restriction at the anterior/posterior wing disc compartment boundary, as suggested by our observations that Ihog activity mediates aggregation of otherwise non-adherent cultured cells and that loss of Ihog activity disrupts wing disc cell segregation, even with downstream genetic rescue of Hedgehog signal response.
Collapse
|
19
|
Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium. Cell Res 2017; 27:1157-1177. [PMID: 28809397 DOI: 10.1038/cr.2017.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/18/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Endocardial fibroelastosis (EFE) refers to the thickening of the ventricular endocardium as a result of de novo deposition of subendocardial fibrous tissue layers during neonatal heart development. The origin of EFE fibroblasts is proposed to be postnatal endocardial cells that undergo an aberrant endothelial-to-mesenchymal transition (EndMT). Genetic lineage tracing of endocardial cells with the inducible endocardial Cre line Npr3-CreER and the endothelial cell tracing line Cdh5-CreER on an EFE-like model did not reveal any contribution of neonatal endocardial cells to fibroblasts in the EFE-like tissues. Instead, lineage tracing of embryonic epicardium by Wt1-CreER suggested that epicardium-derived mesenchymal cells (MCs) served as the major source of EFE fibroblasts. By labeling MCs using Sox9-CreER, we confirmed that MCs of the embryonic heart expand and contribute to the majority of neonatal EFE fibroblasts. During this pathological process, TGFβ signaling, the key mediator of fibroblasts activation, was highly upregulated in the EFE-like tissues. Targeting TGFβ signaling by administration of its antagonist bone morphogenetic protein 7 effectively reduced fibroblast accumulation and tissue fibrosis in the EFE-like model. Our study provides genetic evidence that excessive fibroblasts in the EFE-like tissues mainly originate from the epicardium-derived MCs through epicardial to mesenchymal transition (EpiMT). These EpiMT-derived fibroblasts within the EFE-like tissues could serve as a potential therapeutic target.
Collapse
|
20
|
Hh signaling in regeneration of the ischemic heart. Cell Mol Life Sci 2017; 74:3481-3490. [PMID: 28523343 PMCID: PMC5589787 DOI: 10.1007/s00018-017-2534-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is caused by the occlusion of a coronary artery due to underlying atherosclerosis complicated by localized thrombosis. The blockage of blood flow leads to cardiomyocyte (CM) death in the infarcted area. Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury; however, some pathways active during embryogenesis and silent during adult life are recruited in response to tissue injury. One such example is hedgehog (Hh) signaling. Hh is involved in the embryonic development of the heart and coronary vascular system. Pathological conditions including ischemia activate Hh signaling in adult tissues. This review highlights the involvement of Hh signaling in ischemic tissue regeneration with a particular emphasis on heart regeneration and discusses its potential role as a therapeutic agent.
Collapse
|
21
|
Hui Z, Sha DJ, Wang SL, Li CS, Qian J, Wang JQ, Zhao Y, Zhang JH, Cheng HY, Yang H, Yu LJ, Xu Y. Panaxatriol saponins promotes angiogenesis and enhances cerebral perfusion after ischemic stroke in rats. Altern Ther Health Med 2017; 17:70. [PMID: 28114983 PMCID: PMC5259846 DOI: 10.1186/s12906-017-1579-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
Background Panaxatriol saponins (PTS), an extract from the traditional Chinese herb Panax notoginseng, which has been used to treat ischemic stroke for many years in China. However, the mechanism underlying the effects of PTS remains unclear. This study aimed to determine whether PTS can protect against ischemic brain injury by promoting angiogenesis and to explore the possible mechanism by which it promotes angiogenesis. Methods Middle cerebral artery occlusion (MCAO) was induced in rats, and neurological deficit scores and brain infarct volumes were assessed. Micro-Positron emission tomography (PET) was adopted to assess cerebral perfusion, and real-time PCR and western blotting were used to evaluate vascular growth factor and Sonic hedgehog (Shh) pathway component levels. Immunofluorescence staining was used to determine capillary densities in ischemic penumbrae. Results We showed that PTS improved neurological function and reduced infarct volumes in MCAO rats. Micro-PET indicated that PTS can significantly increase 18F-fluorodeoxyglucose (18F-PDG) uptake by ischemic brain tissue and enhance cerebral perfusion after MCAO surgery. Moreover, PTS was able to increase capillary densities and enhance angiogenesis in ischemic boundary zones and up-regulate vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1) expression by activating the Shh signaling pathway. Conclusion These findings indicate that PTS exerts protective effects against cerebral ischemic injury by enhancing angiogenesis and improving microperfusion. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1579-5) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Targeting the hedgehog signaling pathway for cardiac repair and regeneration. Herz 2016; 42:662-668. [PMID: 27878328 DOI: 10.1007/s00059-016-4500-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/27/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
The hedgehog (Hh) signaling pathway is involved in the angiogenesis and development of the coronary vasculature in the embryonic heart. Recently, the Hh signal pathway has emerged as an important regulator that can increase cardiomyocyte proliferation, inhibit cardiomyocyte death and apoptosis, recruit endothelial progenitor cell (EPCs) into sites of myocardial ischemia, and direct stem cells to differentiate into cardiac muscle lineage. Experimental studies have tried to target the Hh signaling pathway for cardiac repair and regeneration. The purpose of this review is to discuss the role of the Hh signal pathway in cardiac repair and regeneration as well as the current strategies targeting the Hh signaling pathway and its potential in heart diseases.
Collapse
|
23
|
An CI, Ichihashi Y, Peng J, Sinha NR, Hagiwara N. Transcriptome Dynamics and Potential Roles of Sox6 in the Postnatal Heart. PLoS One 2016; 11:e0166574. [PMID: 27832192 PMCID: PMC5104335 DOI: 10.1371/journal.pone.0166574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/31/2016] [Indexed: 01/20/2023] Open
Abstract
The postnatal heart undergoes highly coordinated developmental processes culminating in the complex physiologic properties of the adult heart. The molecular mechanisms of postnatal heart development remain largely unexplored despite their important clinical implications. To gain an integrated view of the dynamic changes in gene expression during postnatal heart development at the organ level, time-series transcriptome analyses of the postnatal hearts of neonatal through adult mice (P1, P7, P14, P30, and P60) were performed using a newly developed bioinformatics pipeline. We identified functional gene clusters by principal component analysis with self-organizing map clustering which revealed organized, discrete gene expression patterns corresponding to biological functions associated with the neonatal, juvenile and adult stages of postnatal heart development. Using weighted gene co-expression network analysis with bootstrap inference for each of these functional gene clusters, highly robust hub genes were identified which likely play key roles in regulating expression of co-expressed, functionally linked genes. Additionally, motivated by the role of the transcription factor Sox6 in the functional maturation of skeletal muscle, the role of Sox6 in the postnatal maturation of cardiac muscle was investigated. Differentially expressed transcriptome analyses between Sox6 knockout (KO) and control hearts uncovered significant upregulation of genes involved in cell proliferation at postnatal day 7 (P7) in the Sox6 KO heart. This result was validated by detecting mitotically active cells in the P7 Sox6 KO heart. The current report provides a framework for the complex molecular processes of postnatal heart development, thus enabling systematic dissection of the developmental regression observed in the stressed and failing adult heart.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Jie Peng
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Neelima R. Sinha
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| |
Collapse
|
24
|
Bastakoty D, Young PP. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J 2016; 30:3271-3284. [PMID: 27335371 DOI: 10.1096/fj.201600502r] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved set of signals with critical roles in embryonic and neonatal development across species. In mammals the pathway is quiescent in many organs. It is reactivated in response to injury and is reported to play complex and contrasting roles in promoting regeneration and fibrosis. We review the current understanding of the role of the Wnt/β-catenin pathway in injury of various mammalian organs and discuss the current advances and potential of Wnt inhibitory therapeutics toward promoting tissue regeneration and reducing fibrosis.-Bastakoty, D., Young, P. P. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration.
Collapse
Affiliation(s)
- Dikshya Bastakoty
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Abstract
The hedgehog signaling pathway was first discovered in the 1980s. It is a stem cell-related pathway that plays a crucial role in embryonic development, tissue regeneration, and organogenesis. Aberrant activation of hedgehog signaling leads to pathological consequences, including a variety of human tumors such as pancreatic cancer. Multiple lines of evidence indicate that blockade of this pathway with several small-molecule inhibitors can inhibit the development of pancreatic neoplasm. In addition, activated hedgehog signaling has been reported to be involved in fibrogenesis in many tissues, including the pancreas. Therefore, new therapeutic targets based on hedgehog signaling have attracted a great deal of attention to alleviate pancreatic diseases. In this review, we briefly discuss the recent advances in hedgehog signaling in pancreatic fibrogenesis and carcinogenesis and highlight new insights on their potential relationship with respect to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Yongyu Bai
- From the Wenzhou Medical University (Yongyu Bai, JD, QL, YJ, MZ); and Wenzhou Key Laboratory of Surgery (Yongheng Bai, BC), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Porcu G, Serone E, De Nardis V, Di Giandomenico D, Lucisano G, Scardapane M, Poma A, Ragnini-Wilson A. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation. PLoS One 2015; 10:e0144550. [PMID: 26658258 PMCID: PMC4689554 DOI: 10.1371/journal.pone.0144550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022] Open
Abstract
One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.
Collapse
Affiliation(s)
- Giampiero Porcu
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Eliseo Serone
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L’Aquila, Italy
| | - Velia De Nardis
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Daniele Di Giandomenico
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Giuseppe Lucisano
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
- Dipartimento di Scienze Mediche di Base, Neuroscienze ed Organi di Senso, Università di Bari Aldo Moro, Bari, Italy
| | - Marco Scardapane
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L’Aquila, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- * E-mail:
| |
Collapse
|
27
|
Abstract
Coronary artery disease causes acute myocardial infarction and heart failure. Identifying coronary vascular progenitors and their developmental program could inspire novel regenerative treatments for cardiac diseases. The developmental origins of the coronary vessels have been shrouded in mystery and debated for several decades. Recent identification of progenitors for coronary vessels within the endocardium, epicardium, and sinus venosus provides new insights into this question. In addition, significant progress has been achieved in elucidating the cellular and molecular programs that orchestrate coronary artery development. Establishing adequate vascular supply will be an essential component of cardiac regenerative strategies, and these findings raise exciting new strategies for therapeutic cardiac revascularization.
Collapse
Affiliation(s)
- Xueying Tian
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences (X.T., B.Z.) and CAS Center for Excellence in Brain Science (B.Z.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - William T Pu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences (X.T., B.Z.) and CAS Center for Excellence in Brain Science (B.Z.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - Bin Zhou
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences (X.T., B.Z.) and CAS Center for Excellence in Brain Science (B.Z.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
28
|
Abstract
The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.
Collapse
Affiliation(s)
- Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden Department of Medicine-Cardiology, Karolinska Institute, Stockholm, Sweden
| | - Federica Santoro
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden Department of Medicine-Cardiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
29
|
Activation of Sonic hedgehog signaling in ventricular cardiomyocytes exerts cardioprotection against ischemia reperfusion injuries. Sci Rep 2015; 5:7983. [PMID: 25613906 PMCID: PMC4303926 DOI: 10.1038/srep07983] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/24/2014] [Indexed: 11/09/2022] Open
Abstract
Sonic hedgehog (SHH) is a conserved protein involved in embryonic tissue patterning and development. SHH signaling has been reported as a cardio-protective pathway via muscle repair–associated angiogenesis. The goal of this study was to investigate the role of SHH signaling pathway in the adult myocardium in physiological situation and after ischemia-reperfusion. We show in a rat model of ischemia-reperfusion that stimulation of SHH pathway, either by a recombinant peptide or shed membranes microparticles harboring SHH ligand, prior to reperfusion reduces both infarct size and subsequent arrhythmias by preventing ventricular repolarization abnormalities. We further demonstrate in healthy animals a reduction of QTc interval mediated by NO/cGMP pathway leading to the shortening of ventricular cardiomyocytes action potential duration due to the activation of an inward rectifying potassium current sharing pharmacological and electrophysiological properties with ATP-dependent potassium current. Besides its effect on both angiogenesis and endothelial dysfunction we demonstrate here a novel cardio-protective effect of SHH acting directly on the cardiomyocytes. This emphasizes the pleotropic effect of SHH pathway as a potential cardiac therapeutic target.
Collapse
|
30
|
Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014; 141:3445-57. [PMID: 25183867 DOI: 10.1242/dev.083691] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
31
|
Abstract
Human heart failure (HF) is one of the leading causes of morbidity and mortality worldwide. Currently, heart transplantation and implantation of mechanical devices represent the only available treatments for advanced HF. Two alternative strategies have emerged to treat patients with HF. One approach relies on transplantation of exogenous stem cells (SCs) of non-cardiac or cardiac origin to induce cardiac regeneration and improve ventricular function. Another complementary strategy relies on stimulation of the endogenous regenerative capacity of uninjured cardiac progenitor cells to rebuild cardiac muscle and restore ventricular function. Various SC types and delivery strategies have been examined in the experimental and clinical settings; however, neither the ideal cell type nor the cell delivery method for cardiac cell therapy has yet emerged. Although the use of bone marrow (BM)-derived cells, most frequently exploited in clinical trials, appears to be safe, the results are controversial. Two recent randomized trials have failed to document any beneficial effects of intracardiac delivery of autologous BM mononuclear cells on cardiac function of patients with HF. The remarkable discovery that various populations of cardiac progenitor cells (CPCs) are present in the adult human heart and that it possesses limited regeneration capacity has opened a new era in cardiac repair. Importantly, unlike BM-derived SCs, autologous CPCs from myocardial biopsies cultured and subsequently delivered by coronary injection to patients have given positive results. Although these data are promising, a better understanding of how to control proliferation and differentiation of CPCs, to enhance their recruitment and survival, is required before CPCs become clinically applicable therapeutics.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA
| | | |
Collapse
|
32
|
Carbe CJ, Cheng L, Addya S, Gold JI, Gao E, Koch WJ, Riobo NA. Gi proteins mediate activation of the canonical hedgehog pathway in the myocardium. Am J Physiol Heart Circ Physiol 2014; 307:H66-72. [PMID: 24816261 DOI: 10.1152/ajpheart.00166.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During myocardial ischemia, upregulation of the hedgehog (Hh) pathway promotes neovascularization and increases cardiomyocyte survival. The canonical Hh pathway activates a transcriptional program through the Gli family of transcription factors by derepression of the seven-transmembrane protein smoothened (Smo). The mechanisms linking Smo to Gli are complex and, in some cell types, involve coupling of Smo to Gi proteins. In the present study, we investigated, for the first time, the transcriptional response of cardiomyocytes to sonic hedgehog (Shh) and the role of Gi protein utilization. Our results show that Shh strongly activates Gli1 expression by quantitative PCR in a Smo-dependent manner in neonatal rat ventricular cardiomyocytes. Microarray analysis of gene expression changes elicited by Shh and sensitive to a Smo inhibitor identified a small subset of 37 cardiomyocyte-specific genes regulated by Shh, including some in the PKA and purinergic signaling pathways. In addition, neonatal rat ventricular cardiomyocytes infected with an adenovirus encoding GiCT, a peptide that impairs receptor-Gi protein coupling, showed reduced activation of Hh targets. In vitro data were confirmed in transgenic mice with cardiomyocyte-inducible GiCT expression. Transgenic GiCT mice showed specific reduction of Gli1 expression in the heart under basal conditions and failed to upregulate the Hh pathway upon ischemia and reperfusion injury, unlike their littermate controls. This study characterizes, for the first time, the transcriptional response of cardiomyocytes to Shh and establishes a critical role for Smo coupling to Gi in Hh signaling in the normal and ischemic myocardium.
Collapse
Affiliation(s)
- Christian J Carbe
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lan Cheng
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jessica I Gold
- Department of Pharmacology and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Erhe Gao
- Department of Pharmacology and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Walter J Koch
- Department of Pharmacology and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Natalia A Riobo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Whitesell TR, Kennedy RM, Carter AD, Rollins EL, Georgijevic S, Santoro MM, Childs SJ. An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS One 2014; 9:e90590. [PMID: 24594685 PMCID: PMC3940907 DOI: 10.1371/journal.pone.0090590] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
Mural cells of the vascular system include vascular smooth muscle cells (SMCs) and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma), which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.
Collapse
Affiliation(s)
- Thomas R. Whitesell
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Regan M. Kennedy
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Alyson D. Carter
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Evvi-Lynn Rollins
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Sonja Georgijevic
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Massimo M. Santoro
- VIB Vesalius Research Center, University of Leuven (KU Leuven), Leuven, Belgium
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model. Mol Ther 2013; 22:430-439. [PMID: 24089140 PMCID: PMC3916037 DOI: 10.1038/mt.2013.222] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/20/2013] [Indexed: 12/18/2022] Open
Abstract
Although activation of hedgehog (Hh) signaling has been shown to induce osteogenic differentiation in vitro and bone formation in vivo, the underlying mechanisms and the potential use of Hh-activated mesenchymal progenitors in bone defect repair remain elusive. In this study, we demonstrated that implantation of periosteal-derived mesenchymal progenitor cells (PDMPCs) that overexpressed an N-terminal sonic hedgehog peptide (ShhN) via an adenoviral vector (Ad-ShhN) restored periosteal bone collar formation in a 4-mm segmental bone allograft model in immunodeficient mice. Ad-ShhN enhanced donor cell survival and microvessel formation in collagen scaffold at 2 weeks after surgery and induced donor cell-dependent bone formation at 6 weeks after surgery. Fluorescence-activated cell sorting analysis further showed that Ad-ShhN-PDMPC-seeded scaffold contained a twofold more CD45(-)Sca-1(+)CD34(+)VEGFR2(+) endothelial progenitors than Ad-LacZ-PDMPC-seeded scaffold at day 7 after surgery. Ad-ShhN-transduced PDMPCs induced a 1.8-fold more CD31(+) microvessel formation than Ad-LacZ-transduced PDMPCs in a coculture of endothelial progenitors and PDMPCs. Taken together, our data show that overexpression of ShhN in mesenchymal progenitors improves bone defect reconstruction by enhancing donor progenitor cell survival, differentiation, and scaffold revascularization at the site of compromised periosteum. Hh agonist-based therapy, therefore, merits further investigation in tissue engineering-based applications aimed at enhancing bone defect repair and reconstruction.
Collapse
|
35
|
Lavine KJ, Kovacs A, Weinheimer C, Mann DL. Repetitive myocardial ischemia promotes coronary growth in the adult mammalian heart. J Am Heart Assoc 2013; 2:e000343. [PMID: 24080909 PMCID: PMC3835243 DOI: 10.1161/jaha.113.000343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Coronary artery disease and ischemic cardiomyopathy represent the leading cause of heart failure and continue to grow at exponential rates. Despite widespread availability of coronary bypass surgery and percutaneous coronary intervention, subsequent ischemic events and progression to heart failure continue to be common occurrences. Previous studies have shown that a subgroup of patients develop collateral blood vessels that serve to connect patent and occluded arteries and restore perfusion to ischemic territories. The presence of coronary collaterals has been correlated with improved clinical outcomes; however, the molecular mechanisms governing this process remain largely unknown. METHODS AND RESULTS To date, no mouse models of coronary arterial growth have been described. Using a closed-chest model of myocardial ischemia, we have demonstrated that brief episodes of repetitive ischemia are sufficient to promote the growth of both large coronary arteries and the microvasculature. Induction of large coronary artery and microvascular growth resulted in improvements in myocardial perfusion after prolonged ischemia and protected from subsequent myocardial infarction. We further show that repetitive ischemia did not lead to increased expression of classic proangiogenic factors but instead resulted in activation of the innate immune system and recruitment of macrophages to growing blood vessels. CONCLUSIONS These studies describe a novel model of coronary angiogenesis and implicate the cardiac macrophage as a potential mediator of ischemia-driven coronary growth.
Collapse
Affiliation(s)
- Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | |
Collapse
|
36
|
Renault MA, Vandierdonck S, Chapouly C, Yu Y, Qin G, Metras A, Couffinhal T, Losordo DW, Yao Q, Reynaud A, Jaspard-Vinassa B, Belloc I, Desgranges C, Gadeau AP. Gli3 regulation of myogenesis is necessary for ischemia-induced angiogenesis. Circ Res 2013; 113:1148-58. [PMID: 24044950 DOI: 10.1161/circresaha.113.301546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. OBJECTIVE The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the cross-talk between angiogenesis and myogenesis in adults. METHODS AND RESULTS Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-Cre(ERT2); Gli3(Flox/Flox) mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle-associated transcription factor E2F1. CONCLUSIONS This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair-associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine.
Collapse
Affiliation(s)
- Marie-Ange Renault
- From the Université de Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, Pessac, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weyers JJ, Schwartz SM, Minami E, Carlson DD, Dupras SK, Weitz K, Simons M, Cox TC, Murry CE, Mahoney WM. Effects of cell grafting on coronary remodeling after myocardial infarction. J Am Heart Assoc 2013; 2:e000202. [PMID: 23723253 PMCID: PMC3698786 DOI: 10.1161/jaha.113.000202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND With recent advances in therapeutic applications of stem cells, cell engraftment has become a promising therapy for replacing injured myocardium after infarction. The survival and function of injected cells, however, will depend on the efficient vascularization of the new tissue. Here we describe the arteriogenic remodeling of the coronary vessels that supports vascularization of engrafted tissue postmyocardial infarction (post-MI). METHODS AND RESULTS Following MI, murine hearts were injected with a skeletal myoblast cell line previously shown to develop into large grafts. Microcomputed tomography at 28 days postengraftment revealed the 3-dimensional structure of the newly formed conducting vessels. The grafts elicited both an angiogenic response and arteriogenic remodeling of the coronary arteries to perfuse the graft. The coronaries upstream of the graft also remodeled, showing an increase in branching, and a decrease in vascular density. Histological analysis revealed the presence of capillaries as well as larger vascular lumens within the graft. Some graft vessels were encoated by smooth muscle α-actin positive cells, implying that vascular remodeling occurs at both the conducting arterial and microvascular levels. CONCLUSIONS Following MI and skeletal myoblast engraftment, the murine coronary vessels exhibit plasticity that enables both arteriogenic remodeling of the preexisting small branches of the coronary arteries and development of large and small smooth muscle encoated vessels within the graft. Understanding the molecular mechanisms underlying these 2 processes suggests mechanisms to enhance the therapeutic vascularization in patients with myocardial ischemia.
Collapse
Affiliation(s)
- Jill J Weyers
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mahoney WM, Gunaje J, Daum G, Dong XR, Majesky MW. Regulator of G-protein signaling - 5 (RGS5) is a novel repressor of hedgehog signaling. PLoS One 2013; 8:e61421. [PMID: 23637832 PMCID: PMC3630190 DOI: 10.1371/journal.pone.0061421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/10/2013] [Indexed: 01/11/2023] Open
Abstract
Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.
Collapse
Affiliation(s)
- William M. Mahoney
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (WMM); (MWM)
| | - Jagadambika Gunaje
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
| | - Guenter Daum
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
| | - Xiu Rong Dong
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Mark W. Majesky
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, United States of America
- * E-mail: (WMM); (MWM)
| |
Collapse
|
39
|
Formiga FR, Tamayo E, Simón-Yarza T, Pelacho B, Prósper F, Blanco-Prieto MJ. Angiogenic therapy for cardiac repair based on protein delivery systems. Heart Fail Rev 2013; 17:449-73. [PMID: 21979836 DOI: 10.1007/s10741-011-9285-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardiovascular diseases remain the first cause of morbidity and mortality in the developed countries and are a major problem not only in the western nations but also in developing countries. Current standard approaches for treating patients with ischemic heart disease include angioplasty or bypass surgery. However, a large number of patients cannot be treated using these procedures. Novel curative approaches under investigation include gene, cell, and protein therapy. This review focuses on potential growth factors for cardiac repair. The role of these growth factors in the angiogenic process and the therapeutic implications are reviewed. Issues including aspects of growth factor delivery are presented in relation to protein stability, dosage, routes, and safety matters. Finally, different approaches for controlled growth factor delivery are discussed as novel protein delivery platforms for cardiac regeneration.
Collapse
Affiliation(s)
- F R Formiga
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Queiroz KCS, Bijlsma MF, Tio RA, Zeebregts CJ, Dunaeva M, Ferreira CV, Fuhler GM, Kuipers EJ, Alves MM, Rezaee F, Spek CA, Peppelenbosch MP. Dichotomy in Hedgehog signaling between human healthy vessel and atherosclerotic plaques. Mol Med 2012; 18:1122-7. [PMID: 22371306 DOI: 10.2119/molmed.2011.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/21/2012] [Indexed: 11/06/2022] Open
Abstract
The major cause for plaque instability in atherosclerotic disease is neoangiogenic revascularization, but the factors controlling this process remain only partly understood. Hedgehog (HH) is a morphogen with important functions in revascularization, but its function in human healthy vessel biology as well as in atherosclerotic plaques has not been well investigated. Hence, we determined the status of HH pathway activity both in healthy vessels and atherosclerotic plaques. A series of 10 healthy organ donor-derived human vessels, 17 coronary atherosclerotic plaques and 24 atherosclerotic carotid plaques were investigated for HH pathway activity. We show that a healthy vessel is characterized by a high level of HH pathway activity but that atherosclerotic plaques are devoid of HH signaling despite the presence of HH ligand in these pathological structures. Thus, a dichotomy between healthy vessels and atherosclerotic plaques with respect to the activation status of the HH pathway exists, and it is tempting to suggest that downregulation of HH signaling contributes to long-term plaque stability.
Collapse
Affiliation(s)
- Karla C S Queiroz
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cheng Z, DiMichele LA, Hakim ZS, Rojas M, Mack CP, Taylor JM. Targeted focal adhesion kinase activation in cardiomyocytes protects the heart from ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2012; 32:924-33. [PMID: 22383703 DOI: 10.1161/atvbaha.112.245134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We previously reported that cardiac-restricted deletion of focal adhesion kinase (FAK) exacerbated myocyte death following ischemia/reperfusion (I/R). Here, we interrogated whether targeted elevation of myocardial FAK activity could protect the heart from I/R injury. METHODS AND RESULTS Transgenic mice were generated with myocyte-specific expression of a FAK variant (termed SuperFAK) that conferred elevated allosteric activation. FAK activity in unstressed transgenic hearts was modestly elevated, but this had no discernable effect on anabolic heart growth or cardiac function. Importantly, SuperFAK hearts exhibited a dramatic increase in FAK activity and a reduction in myocyte apoptosis and infarct size 24 to 72 hours following I/R. Moreover, serial echocardiography revealed that the transgenic mice were protected from cardiac decompensation for up to 8 weeks following surgery. Mechanistic studies revealed that elevated FAK activity protected cardiomyocytes from I/R-induced apoptosis by enhancing nuclear factor-κB (NF-κB)-dependent survival signaling during the early period of reperfusion (30 and 60 minutes). Moreover, adenoviral-mediated expression of SuperFAK in cultured cardiomyocytes attenuated H(2)O(2) or hypoxia/reoxygenation-induced apoptosis, whereas blockade of the NF-κB pathway using a pharmacological inhibitor or small interfering RNAs completely abolished the beneficial effect of SuperFAK. CONCLUSIONS Enhancing cardiac FAK activity attenuates I/R-induced myocyte apoptosis through activation of the prosurvival NF-κB pathway and may represent a novel therapeutic strategy for ischemic heart diseases.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | | | |
Collapse
|
42
|
Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA. Noncanonical Hedgehog signaling. VITAMINS AND HORMONES 2012; 88:55-72. [PMID: 22391299 DOI: 10.1016/b978-0-12-394622-5.00003-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The notion of noncanonical hedgehog (Hh) signaling in mammals has started to receive support from numerous observations. By noncanonical, we refer to all those cellular and tissue responses to any of the Hh isoforms that are independent of transcriptional changes mediated by the Gli family of transcription factors. In this chapter, we discuss the most recent findings that suggest that Patched1 can regulate cell proliferation and apoptosis independently of Smoothened (Smo) and Gli and the reports that Smo modulates actin cytoskeleton-dependent processes such as fibroblast migration, endothelial cell tubulogenesis, axonal extension, and neurite formation by diverse mechanisms that exclude any involvement of Gli-dependent transcription. We also acknowledge the existence of less stronger evidence of noncanonical signaling in Drosophila.
Collapse
Affiliation(s)
- Donna Brennan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
43
|
The hedgehog pathway conditions the bone microenvironment for osteolytic metastasis of breast cancer. Int J Breast Cancer 2011; 2012:298623. [PMID: 22295244 PMCID: PMC3262601 DOI: 10.1155/2012/298623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 01/29/2023] Open
Abstract
The microenvironment at the site of tumor metastasis plays a key role in determining the fate of the metastasizing tumor cells. This ultimately has a direct impact on the progression of cancer. Bone is the preferred site of metastasis of breast cancer. Painful, debilitating osteolytic lesions are formed as a result of crosstalk between breast cancer cells and cells in the bone, predominantly the osteoblasts and osteoclasts. In this paper, we have discussed the temporal and spatial role of hedgehog (Hh) signaling in influencing the fate of metastatic breast cancer cells in bone. By virtue of its secreted ligands, the Hh pathway is capable of homotypic and heterotypic signaling and consequently altering the microenvironment in the bone. We also have put into perspective the therapeutic implications of using Hh inhibitors to prevent and/or treat bone metastases of breast cancer.
Collapse
|
44
|
Polizio AH, Chinchilla P, Chen X, Manning DR, Riobo NA. Sonic Hedgehog activates the GTPases Rac1 and RhoA in a Gli-independent manner through coupling of smoothened to Gi proteins. Sci Signal 2011; 4:pt7. [PMID: 22114142 DOI: 10.1126/scisignal.2002396] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The vertebrate Hedgehog (Hh) pathway has essential functions during development and tissue homeostasis in normal physiology, and its dysregulation is a common theme in cancer. The Hh ligands (Sonic Hh, Indian Hh, and Desert Hh) bind to the receptors Patched1 and Patched2, resulting in inhibition of their repressive effect on Smoothened (Smo). Smo is a seven-transmembrane protein, which was only recently shown to function as a G protein-coupled receptor (GPCR) with specificity toward the heterotrimeric guanine nucleotide-binding protein G(i). In addition to activating G(i), Smo signals through its C-terminal tail to inhibit Suppressor of Fused, resulting in stabilization and activation of the Gli family of transcription factors, which execute a transcriptional response to so-called "canonical Hh signaling." In this Presentation, we illustrate two outcomes of Hh signaling that are independent of Gli transcriptional activity and, thus, are defined as "noncanonical." One outcome is dependent on Smo coupling to G(i) proteins and exerts changes to the actin cytoskeleton through stimulation of the small guanosine triphosphatases (GTPases) RhoA and Rac1. These cytoskeletal changes promote migration in fibroblasts and tubulogenesis in endothelial cells. Signaling through the other noncanonical Hh pathway is independent of Smo and inhibits Patched1-induced cell death.
Collapse
Affiliation(s)
- Ariel H Polizio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
45
|
Bryson JL, Coles MC, Manley NR. A method for labeling vasculature in embryonic mice. J Vis Exp 2011:3267. [PMID: 22005349 DOI: 10.3791/3267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The establishment of a functional blood vessel network is an essential part of organogenesis, and is required for optimal organ function. For example, in the thymus proper vasculature formation and patterning is essential for thymocyte entry into the organ and mature T-cell exit to the periphery. The spatial arrangement of blood vessels in the thymus is dependent upon signals from the local microenvironment, namely thymic epithelial cells (TEC). Several recent reports suggest that disruption of these signals results in thymus blood vessel defects. Previous studies have described techniques used to label the neonatal and adult thymus vasculature. We demonstrate here a technique for labeling blood vessels in the embryonic thymus. This method combines the use of FITC-dextran or Griffonia (Bandeiraea) Simplicifolia Lectin I (GSL 1-isolectin B₄) facial vein injections and CD31 antibody staining to identify thymus vascular structures and PDGFR-β to label thymic perivascular mesenchyme. The option of using cryosections or vibratome sections is also provided. This protocol can be used to identify thymus vascular defects, which is critical for defining the roles of TEC-derived molecules in thymus blood vessel formation. As the method labels the entire vasculature, it can also be used to analyze the vascular networks in multiple organs and tissues throughout the embryo including skin and heart.
Collapse
|
46
|
Keber R, Motaln H, Wagner KD, Debeljak N, Rassoulzadegan M, Ačimovič J, Rozman D, Horvat S. Mouse knockout of the cholesterogenic cytochrome P450 lanosterol 14alpha-demethylase (Cyp51) resembles Antley-Bixler syndrome. J Biol Chem 2011; 286:29086-29097. [PMID: 21705796 DOI: 10.1074/jbc.m111.253245] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antley-Bixler syndrome (ABS) represents a group of heterogeneous disorders characterized by skeletal, cardiac, and urogenital abnormalities that have frequently been associated with mutations in fibroblast growth factor receptor 2 or cytochrome P450 reductase genes. In some ABS patients, reduced activity of the cholesterogenic cytochrome P450 CYP51A1, an ortholog of the mouse CYP51, and accumulation of lanosterol and 24,25-dihydrolanosterol has been reported, but the role of CYP51A1 in the ABS etiology has remained obscure. To test whether Cyp51 could be involved in generating an ABS-like phenotype, a mouse knock-out model was developed that exhibited several prenatal ABS-like features leading to lethality at embryonic day 15. Cyp51(-/-) mice had no functional Cyp51 mRNA and no immunodetectable CYP51 protein. The two CYP51 enzyme substrates (lanosterol and 24,25-dihydrolanosterol) were markedly accumulated. Cholesterol precursors downstream of the CYP51 enzymatic step were not detected, indicating that the targeting in this study blocked de novo cholesterol synthesis. This was reflected in the up-regulation of 10 cholesterol synthesis genes, with the exception of 7-dehydrocholesterol reductase. Lethality was ascribed to heart failure due to hypoplasia, ventricle septum, and epicardial and vasculogenesis defects, suggesting that Cyp51 deficiency was involved in heart development and coronary vessel formation. As the most likely downstream molecular mechanisms, alterations were identified in the sonic hedgehog and retinoic acid signaling pathways. Cyp51 knock-out mice provide evidence that Cyp51 is essential for embryogenesis and present a potential animal model for studying ABS syndrome in humans.
Collapse
Affiliation(s)
- Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena Motaln
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Kay D Wagner
- INSERM U907, Parc Valrose, Nice, France; Université de Nice, Sophia-Antipolis, Parc Valrose, Nice, France
| | - Nataša Debeljak
- Institute of Biochemistry, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Minoo Rassoulzadegan
- Université de Nice, Sophia-Antipolis, Parc Valrose, Nice, France; Centre de Biochimie, INSERM U636, Parc Valrose, Nice, France
| | - Jure Ačimovič
- Institute of Biochemistry, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Institute of Biochemistry, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; National Institute of Chemistry, 1000 Ljubljana, Slovenia and.
| |
Collapse
|
47
|
Wang G, Zhang Z, Xu Z, Yin H, Bai L, Ma Z, Decoster MA, Qian G, Wu G. Activation of the sonic hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1359-67. [PMID: 20840857 DOI: 10.1016/j.bbamcr.2010.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 12/16/2022]
Abstract
The hedgehog signal pathway plays a crucial role in the angiogenesis and vascular remodeling. However, the function of this pathway in the pulmonary vascular smooth cell proliferation in response to hypoxia remains unknown. In this study, we have demonstrated that the main components of the hedgehog pathway, including sonic hedgehog (SHH), patched1 (PTCH1), smoothened (SMO), GLI and hypoxia-inducible factor 1 (HIF1) are expressed in the human pulmonary arterial smooth muscle cells (HPASMCs). Interestingly, hypoxia significantly enhanced the expression of SHH and HIF1, facilitated the translocation of GLI1 into the nuclei, and promoted the proliferation of HPASMCs. Furthermore, direct activation of the SHH pathway through incubation with the purified recombinant human SHH or with purmorphamine and SAG, two Smo agonists, also enhanced the proliferation of HPASMCs. Importantly, the treatment with anti-SHH and anti-HIF1 antibodies or cyclopamine, a specific SMO inhibitor, markedly inhibited the nuclear translocation of GLI1 and cell proliferation in the HPASMCs induced by hypoxia and activation of the SHH pathway. Moreover, the treatment with cyclopamine increased apoptosis in the hypoxic HPASMCs. These data strongly demonstrate for the first time that the SHH signaling plays a crucial role in the regulation of HPASMC growth in response to hypoxia.
Collapse
Affiliation(s)
- Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, P.R. China; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mimeault M, Batra SK. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 2010; 62:497-524. [PMID: 20716670 PMCID: PMC2964899 DOI: 10.1124/pr.109.002329] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hedgehog (Hh)/glioma-associated oncogene (GLI) signaling network is among the most important and fascinating signal transduction systems that provide critical functions in the regulation of many developmental and physiological processes. The coordinated spatiotemporal interplay of the Hh ligands and other growth factors is necessary for the stringent control of the behavior of diverse types of tissue-resident stem/progenitor cells and their progenies. The activation of the Hh cascade might promote the tissue regeneration and repair after severe injury in numerous organs, insulin production in pancreatic beta-cells, and neovascularization. Consequently, the stimulation of the Hh pathway constitutes a potential therapeutic strategy to treat diverse human disorders, including severe tissue injuries; diabetes mellitus; and brain, skin, and cardiovascular disorders. In counterbalance, a deregulation of the Hh signaling network might lead to major tissular disorders and the development of a wide variety of aggressive and metastatic cancers. The target gene products induced through the persistent Hh activation can contribute to the self-renewal, survival, migration, and metastasis of cancer stem/progenitor cells and their progenies. Moreover, the pivotal role mediated through the Hh/GLI cascade during cancer progression also implicates the cooperation with other oncogenic products, such as mutated K-RAS and complex cross-talk with different growth factor pathways, including tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), Wnt/beta-catenin, and transforming growth factor-beta (TGF-beta)/TGF-beta receptors. Therefore, the molecular targeting of distinct deregulated gene products, including Hh and EGFR signaling components and other signaling elements that are frequently deregulated in highly tumorigenic cancer-initiating cells and their progenies, might constitute a potential therapeutic strategy to eradicate the total cancer cell mass. Of clinical interest is that these multitargeted approaches offer great promise as adjuvant treatments for improving the current antihormonal therapies, radiotherapies, and/or chemotherapies against locally advanced and metastatic cancers, thereby preventing disease relapse and the death of patients with cancer.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer, and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | |
Collapse
|
49
|
Pratap A, Panakanti R, Yang N, Eason JD, Mahato RI. Inhibition of endogenous hedgehog signaling protects against acute liver injury after ischemia reperfusion. Pharm Res 2010; 27:2492-504. [PMID: 20737284 DOI: 10.1007/s11095-010-0246-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/11/2010] [Indexed: 12/30/2022]
Abstract
PURPOSE Although Hedgehog (Hh) signaling is required for endodermal commitment and hepatogenesis, the possibility that it regulates liver injury after ischemia reperfusion (I/R) has not been considered. Therefore, we determined the expression pattern of Hh signaling and its role in liver injury following I/R using Hh antagonist cyclopamine (CYA). METHODS Sprague-Dawley rats were randomly divided into three groups. Sham group underwent a sham operation with no liver I/R. Vehicle or CYA preconditioned I/R groups underwent liver ischemia for 90 min followed by reperfusion for 1 h. Liver tissue and blood were analyzed for gene expression, histological and biochemical evaluation. RESULTS Hedgehog ligands were upregulated after reperfusion injury. Serum levels of aspartate transaminase and alanine transaminase, inflammatory cytokines, neutrophil infiltration, and tissue damage were significantly less in CYA-pretreated rats compared with vehicle-pretreated rats. CYA also decreased the phosphorylated form of JNK and ERK. CONCLUSIONS This study provides evidence that endogenous Hh signaling is an early mediator of liver injury and inflammation after I/R. CYA abrogates normothermic I/R injury in rats by inhibiting the MAPK pathway and decreasing the acute inflammatory response. This novel strategy of preconditioning livers with Hh antagonist may have effective therapeutic potential in preventing acute liver injury.
Collapse
Affiliation(s)
- Akshay Pratap
- Division of Solid Organ Transplantation, Methodist University Hospital Transplant Institute, Memphis, Tennessee 38104, USA
| | | | | | | | | |
Collapse
|
50
|
Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem? Heart Fail Rev 2010; 15:133-42. [PMID: 19107595 PMCID: PMC2820687 DOI: 10.1007/s10741-008-9133-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies in various rodent models of pathologic ventricular hypertrophy report the re-expression of deiodinase type 3 (D3) in cardiomyocytes. D3 inactivates thyroid hormone (T3) and is mainly expressed in tissues during development. The stimulation of D3 activity in ventricular hypertrophy and subsequent heart failure is associated with severe impairment of cardiac T3 signaling. Hypoxia-induced signaling appears to drive D3 expression in the hypertrophic cardiomyocyte, but other signaling cascades implicated in hypertrophy are also capable of stimulating transcription of the DIO3 gene. Many cardiac genes are transcriptionally regulated by T3 and impairment of T3 signaling will not only reduce energy turnover, but also lead to changes in gene expression that contribute to contractile dysfunction in pathologic remodeling. Whether stimulation of D3 activity and the ensuing local T3-deficiency is an adaptive response of the stressed heart or part of the pathologic signaling network leading to heart failure, remains to be established.
Collapse
|