1
|
Herrera VLM, Gromisch CM, Decano JL, Pasion KA, Tan GLA, Hua N, Takahashi CE, Greer DM, Ruiz-Opazo N. Anti-DEspR antibody treatment improves survival and reduces neurologic deficits in a hypertensive, spontaneous intracerebral hemorrhage (hsICH) rat model. Sci Rep 2023; 13:2703. [PMID: 36792616 PMCID: PMC9932093 DOI: 10.1038/s41598-023-28149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Progressive secondary brain injury-induced by dysregulated neuroinflammation in spontaneous intracerebral hemorrhage (sICH)-underlies high sICH-mortality and remains without FDA-approved pharmacotherapy. Clinical insight that hematoma-directed interventions do not improve mortality prioritizes resolving acute secondary brain injury in sICH. As neutrophils are implicated in sICH secondary brain injury, we tested whether inhibition of a rogue neutrophil-subset expressing the dual endothelin-1/signal peptide receptor (DEspR) and associated with secondary tissue injury, DEspR+ CD11b+ immunotype, will attenuate mortality in a hypertensive-sICH (hsICH) rat model. We confirmed sICH-related deaths in hsICH-rats by T2*-weighted 9.4 T MRI and DEspR+ neutrophils in hsICH-rat brain perihematomal areas by immunostaining. At acute sICH, anti-DEspR muIgG1-antibody, mu10a3, treatment increased median survival in hsICH rats vs controls (p < 0.0001). In pre-stroke sICH, weekly 10a3-treatment did not predispose to infection and delayed sICH-onset vs controls (p < 0.0001). As potential sICH-therapeutic, we tested humanized anti-DEspR IgG4S228P-mAb, hu6g8. In vitro, hu6g8 reversed delayed-apoptosis in DEspR+ CD11b+ neutrophils. In vivo, hu6g8 increased median survival and reduced neurologic symptoms in male/female hsICH-rats vs controls (p < 0.0001). Altogether, preclinical efficacy of inhibition of DEspR+ CD11b+ neutrophils in acute sICH-without infection complications, supports the potential of anti-DEspR therapy in sICH. Data provide basis for clinical study of DEspR+ CD11b+ neutrophil-subset in sICH patients.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA.
| | | | - Julius L Decano
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Khristine Amber Pasion
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Glaiza L A Tan
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA
| | - Ning Hua
- Department of Radiology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, USA
| | - Courtney E Takahashi
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, USA
| | - David M Greer
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, USA
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, USA.
| |
Collapse
|
2
|
Divergence of insulin superfamily ligands, receptors and Igf binding proteins in marine versus freshwater stickleback: Evidence of selection in known and novel genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:53-61. [PMID: 29149730 DOI: 10.1016/j.cbd.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022]
Abstract
Three-spine stickleback (Gasterosteus aculeatus) is a teleost model for understanding genetic, physiological and morphological changes accompanying freshwater (FW) adaptation. There is growing evidence that the insulin superfamily plays important roles in traits involved in marine and FW adaptation. We performed a candidate gene analysis to look for evidence of selection on 33 insulin superfamily ligand-receptor genes and insulin-like growth factor binding proteins (Igfbp's) in stickleback. Using genotype data from 11 marine and 10 FW populations, we calculated the number of SNPs per site in regulatory and intronic regions, the number of synonymous and nonsynonymous mutations in coding regions, Wright's fixation index (Fst), and performed t-tests to identify SNPs with divergent genotype frequencies between marine/FW versus Atlantic/Pacific populations. Next, we analysed genome-wide transcriptome data from eight tissues to assess differential gene expression. Two Igfbp's (Igfbp2a and Igfbp5a) show evidence of divergent adaptation between life-history types, and a cluster of nonsynonymous mutations in Igfbp5a exhibit high Fst in exons apparently alternatively spliced in gill. We find evidence of selection on the relaxin family ligand-receptor gene pair, Insl3-Rxfp2, known to be involved in male spermatogenesis and bone metabolism, and in the 5' regulatory region of Igf2. We also confirmed the gene and coding sequence of two unannotated relaxin family ligands. These analyses underscore the utility of candidate gene studies and indicate directions for further exploration of the function of insulin superfamily genes in FW adaptation.
Collapse
|
3
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
4
|
Plasma level of the endogenous sodium pump ligand marinobufagenin is related to the salt-sensitivity in men. J Hypertens 2016; 33:534-41; discussion 541. [PMID: 25479026 DOI: 10.1097/hjh.0000000000000437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Salt-induced elevation of the endogenous digitalis like sodium pump ligand marinobufagenin (MBG) in the Dahl salt-sensitive rats resulted in elevated blood pressure (BP). Here, we tested, in humans, whether MBG levels are related to ambulatory 24-h BP (ABP), controlled long-term increase of salt-intake induces changes in MBG and any salt-induced change in MBG is related to salt sensitivity. METHODS Thirty-nine healthy individuals (53 ± 11 years old; 20 men and 19 women) had a total daily NaCl intake of 50 mmol (low-salt) and 150 mmol (high-salt) for 4 weeks each, in a random order. ABP and MBG in plasma and urine were measured at baseline (unstandardized salt intake) and after high and low-salt intake. RESULTS At baseline, plasma MBG (P-MBG) was related to 24-h SBP (r = 0.43, P = 0.007) and DBP (r = 0.32, P = 0.047), whereas 24-h urinary excretion of MBG (UE-MBG) was related to 24-h DBP only (r = 0.42, P = 0.008). Sex-specific analyses revealed that these relationships were significant in men only. Compared with low-salt, high-salt diet increased P-MBG (P = 0.029), mainly driven by results in men. Male P-MBG responders vs. nonresponders (above vs. below median of high-salt induced P-MBG increase) had markedly enhanced SBP (10.4 ± 6.4 vs. 1.0 ± 6.0 mmHg; P = 0.003) and DBP (6.7 ± 5.0 vs. -0.6 ± 3.6 mmHg; P = 0.001) salt sensitivity. CONCLUSION In men, MBG increases with 24-h ABP, and similar to Dahl salt-sensitive rats, 4 weeks of high-salt induced MBG response is accompanied by marked salt sensitivity. However, these patterns seem to be sex-specific and are not observed in women.
Collapse
|
5
|
Åkerström T, Willenberg HS, Cupisti K, Ip J, Backman S, Moser A, Maharjan R, Robinson B, Iwen KA, Dralle H, D Volpe C, Bäckdahl M, Botling J, Stålberg P, Westin G, Walz MK, Lehnert H, Sidhu S, Zedenius J, Björklund P, Hellman P. Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas. Endocr Relat Cancer 2015; 22:735-44. [PMID: 26285814 DOI: 10.1530/erc-15-0321] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aldosterone-producing adenomas (APAs) are found in 1.5-3.0% of hypertensive patients in primary care and can be cured by surgery. Elucidation of genetic events may improve our understanding of these tumors and ultimately improve patient care. Approximately 40% of APAs harbor a missense mutation in the KCNJ5 gene. More recently, somatic mutations in CACNA1D, ATP1A1 and ATP2B3, also important for membrane potential/intracellular Ca(2) (+) regulation, were observed in APAs. In this study, we analyzed 165 APAs for mutations in selected regions of these genes. We then correlated mutational findings with clinical and molecular phenotype using transcriptome analysis, immunohistochemistry and semiquantitative PCR. Somatic mutations in CACNA1D in 3.0% (one novel mutation), ATP1A1 in 6.1% (six novel mutations) and ATP2B3 in 3.0% (two novel mutations) were detected. All observed mutations were located in previously described hotspot regions. Patients with tumors harboring mutations in CACNA1D, ATP1A1 and ATP2B3 were operated at an older age, were more often male and had tumors that were smaller than those in patients with KCNJ5 mutated tumors. Microarray transcriptome analysis segregated KCNJ5 mutated tumors from ATP1A1/ATP2B3 mutated tumors and those without mutation. We observed significant transcription upregulation of CYP11B2, as well as the previously described glomerulosa-specific gene NPNT, in ATP1A1/ATP2B3 mutated tumors compared to KCNJ5 mutated tumors. In summary, we describe novel somatic mutations in proteins regulating the membrane potential/intracellular Ca(2) (+) levels, and also a distinct mRNA and clinical signature, dependent on genetic alteration.
Collapse
Affiliation(s)
- Tobias Åkerström
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Holger Sven Willenberg
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Kenko Cupisti
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Julian Ip
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Samuel Backman
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Ana Moser
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Rajani Maharjan
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Bruce Robinson
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - K Alexander Iwen
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Henning Dralle
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Cristina D Volpe
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Martin Bäckdahl
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Johan Botling
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Peter Stålberg
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Gunnar Westin
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Martin K Walz
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Hendrik Lehnert
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Stan Sidhu
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Jan Zedenius
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Peyman Björklund
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Per Hellman
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| |
Collapse
|
6
|
Herrera VL, Pasion KA, Moran AM, Zaninello R, Ortu MF, Fresu G, Piras DA, Argiolas G, Troffa C, Glorioso V, Masala W, Glorioso N, Ruiz-Opazo N. A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population. PLoS One 2015; 10:e0116724. [PMID: 25615575 PMCID: PMC4304799 DOI: 10.1371/journal.pone.0116724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5’-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28–0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/− male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/− mice showed significantly lower blood pressure (P < 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the kidney thereby decreasing sodium-associated risk for hypertension and sodium-induced endothelial stiffness and dysfunction. Altogether, data support ATP1A1 as a hypertension susceptibility gene in a male Sardinian population, and mandate further investigation of its involvement in hypertension in the general population.
Collapse
Affiliation(s)
- Victoria L. Herrera
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Khristine A. Pasion
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann Marie Moran
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Roberta Zaninello
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Maria Francesca Ortu
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giovanni Fresu
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Daniela Antonella Piras
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giuseppe Argiolas
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Chiara Troffa
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Valeria Glorioso
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Wanda Masala
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nicola Glorioso
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Katori M, Majima M. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:59-109. [PMID: 25130040 DOI: 10.1007/978-3-319-06683-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension.
Collapse
|
8
|
Leikauf GD, Concel VJ, Bein K, Liu P, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA, Upadhyay S, Cario C, Di YPP, Vuga LJ, Kostem E, Eskin E, You M, Kaminski N, Prows DR, Knoell DL, Fabisiak JP. Functional genomic assessment of phosgene-induced acute lung injury in mice. Am J Respir Cell Mol Biol 2013; 49:368-83. [PMID: 23590305 DOI: 10.1165/rcmb.2012-0337oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to phosgene and genome-wide association mapping performed using a high-density single nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was also used to improve the genetic resolution in the identification of genetic determinants of phosgene-induced acute lung injury (ALI). We prioritized the identified genes based on whether the encoded protein was previously associated with lung injury or contained a nonsynonymous SNP within a functional domain. Candidates were selected that contained a promoter SNP that could alter a putative transcription factor binding site and had variable expression by transcriptomic analyses. The latter two criteria also required that ≥10% of mice carried the minor allele and that this allele could account for ≥10% of the phenotypic difference noted between the strains at the phenotypic extremes. This integrative, functional approach revealed 14 candidate genes that included Atp1a1, Alox5, Galnt11, Hrh1, Mbd4, Phactr2, Plxnd1, Ptprt, Reln, and Zfand4, which had significant SNP associations, and Itga9, Man1a2, Mapk14, and Vwf, which had suggestive SNP associations. Of the genes with significant SNP associations, Atp1a1, Alox5, Plxnd1, Ptprt, and Zfand4 could be associated with ALI in several ways. Using a competitive electrophoretic mobility shift analysis, Atp1a1 promoter (rs215053185) oligonucleotide containing the minor G allele formed a major distinct faster-migrating complex. In addition, a gene with a suggestive SNP association, Itga9, is linked to transforming growth factor β1 signaling, which previously has been associated with the susceptibility to ALI in mice.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Glorioso N, Herrera VL, Didishvili T, Ortu MF, Zaninello R, Fresu G, Argiolas G, Troffa C, Ruiz-Opazo N. Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population. PLoS One 2013; 8:e77562. [PMID: 24147025 PMCID: PMC3795764 DOI: 10.1371/journal.pone.0077562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/03/2013] [Indexed: 01/11/2023] Open
Abstract
Coronary artery disease, heart failure, fatal arrhythmias, stroke, and renal disease are the most common causes of mortality for humans, and essential hypertension remains a major risk factor. Elucidation of susceptibility loci for essential hypertension has been difficult because of its complex, multifactorial nature involving genetic, environmental, and sex- and age-dependent nature. We investigated whether the 11p15.5 region syntenic to rat chromosome 1 region containing multiple blood pressure quantitative trait loci (QTL) detected in Dahl rat intercrosses harbors polymorphisms that contribute to susceptibility/resistance to essential hypertension in a Sardinian population. Initial testing performed using microsatellite markers spanning 18 Mb of 11p15.5 detected a strong association between D11S1318 (at 2.1 Mb, P = 0.004) and D11S1346 (at 10.6 Mb, P = 0.00000004), suggesting that loci in close proximity to these markers may contribute to susceptibility in our Sardinian cohort. NLR family, pyrin domain containing 6/angiotensin-vasopressin receptor (NLRP6/AVR), and adrenomedullin (ADM) are in close proximity to D11S1318 and D11S1346, respectively; thus we tested single nucleotide polymorphisms (SNPs) within NLRP6/AVR and ADM for their association with hypertension in our Sardinian cohort. Upon sex stratification, we detected one NLRP6/AVR SNP associated with decreased susceptibility to hypertension in males (rs7948797G, P = 0.029; OR = 0.73 [0.57–0.94]). For ADM, sex-specific analysis showed a significant association between rs4444073C, with increased susceptibility to essential hypertension only in the male population (P = 0.006; OR = 1.44 [1.13–1.84]). Our results revealed an association between NLRP6/AVR and ADM loci with male essential hypertension, suggesting the existence of sex-specific NLRP6/AVR and ADM variants affecting male susceptibility to essential hypertension.
Collapse
Affiliation(s)
- Nicola Glorioso
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Victoria L. Herrera
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tamara Didishvili
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maria F. Ortu
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Roberta Zaninello
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giovanni Fresu
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Guiseppe Argiolas
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Chiara Troffa
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nelson Ruiz-Opazo
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Durán P, Cintra L, Galler JR, Tonkiss J. Prenatal protein malnutrition induces a phase shift advance of the spontaneous locomotor rhythm and alters the rest/activity ratio in adult rats. Nutr Neurosci 2013; 8:167-72. [PMID: 16117184 DOI: 10.1080/10284150400026117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Evidence is accumulating for significant structural and functional changes within the central nervous system (CNS) following prenatal protein malnutrition. Included among the structures that are likely to be affected are the suprachiasmatic nuclei (SCN) involved in the regulation of locomotor activity, sleep-wake cycle, and drinking behavior. To determine the effects of prenatal protein malnutrition on the spontaneous activity rhythm, 24 h radiotelemetric measurements were recorded over an 8-day period. Male offspring of rats provided with protein-deficient (6% casein) or adequate (25% casein) diets for 5 weeks prior to mating and throughout pregnancy were studied. Well nourished rats displayed a rise in activity level during the first hour of the 12h light phase, whereas prenatally malnourished rats displayed this increase during the 12h dark phase, approximately 50 min before lights on, reflecting a significant phase advance in this group. In addition, cosinor analysis revealed that the alpha/rho relationship was affected in the previously malnourished group, the activity phase being shorter than in the well-nourished animals. These findings suggest changes in the regulatory systems controlling the locomotor activity rhythm as a consequence of prenatal protein malnutrition. Alterations in entrainment to the light-dark cycle, and/or in the coupling force of the circadian oscillators are all candidate mechanisms.
Collapse
Affiliation(s)
- P Durán
- Center for Behavioral Development and Mental Retardation, M923, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
11
|
Defaveri J, Shikano T, Shimada Y, Merilä J. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus). Mol Ecol 2013; 22:4811-28. [PMID: 23947683 DOI: 10.1111/mec.12430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022]
Abstract
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.
Collapse
Affiliation(s)
- Jacquelin Defaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The aldosterone/mineralocorticoid receptor system plays an important role in the long-term blood pressure control through Na homeostasis. Its overactivation has been implicated in salt-sensitive hypertension. Excessive salt intake augments the function of mineralocorticoid receptor, despite lowering circulating aldosterone levels, but the mechanism had long been elusive. Recently, Rac1, a member of Rho family small GTP-binding proteins, has emerged as a novel ligand-independent modulator of mineralocorticoid receptor activity. In this review, the roles of Rac1 in the pathogenesis of salt-sensitive hypertension and kidney injury have been summarized. RECENT FINDINGS Genetic engineering studies have highlighted the new aspects of Rac1 and its regulators in salt-sensitive hypertension and cardiac and renal disease. New evidence shows the essential roles of Rac1 in salt-evoked paradoxical mineralocorticoid receptor activation observed in salt-sensitive models and in renal tubular Na reabsorption through reduced nicotinamide-adenine dinucleotide phosphate oxidase-mediated oxidative stress or direct regulation of Na transporters. SUMMARY The emerging concept of 'ligand-independent aberrant mineralocorticoid receptor activation by Rac1' in the pathogenesis of salt-sensitive hypertension and kidney injury has been reviewed. Rac inhibition, in addition to mineralocorticoid receptor blockade and salt restriction, would be a new promising strategy for the treatment of salt-sensitive hypertension.
Collapse
|
13
|
Herrera VL, Pasion KA, Tan GA, Moran AM, Ruiz-Opazo N. Sex-specific effects on spatial learning and memory, and sex-independent effects on blood pressure of a <3.3 Mbp rat chromosome 2 QTL region in Dahl salt-sensitive rats. PLoS One 2013; 8:e67673. [PMID: 23861781 PMCID: PMC3701625 DOI: 10.1371/journal.pone.0067673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/21/2013] [Indexed: 11/18/2022] Open
Abstract
Epidemiological studies have consistently found that hypertension is associated with poor cognitive performance. We hypothesize that a putative causal mechanism underlying this association is due to genetic loci affecting both blood pressure and cognition. Consistent with this notion, we reported several blood pressure (BP) quantitative trait loci (QTLs) that co-localized with navigational performance (Nav)-QTLs influencing spatial learning and memory in Dahl rats. The present study investigates a chromosome 2 region harboring BP-f4 and Nav-8 QTLs. We developed two congenic strains, S.R2A and S.R2B introgressing Dahl R-chromosome 2 segments into Dahl S chromosome 2 region spanning BP-f4 and Nav-8 QTLs. Radiotelemetric blood pressure analysis identified only S.R2A congenic rats with lower systolic blood pressure (females: -26.0 mmHg, P = 0.003; males: -30.9 mmHg, P<1×10(-5)), diastolic blood pressure (females: -21.2 mmHg, P = 0.01; males: -25.7 mmHg, P<1×10(-5)), and mean arterial pressure (females: -23.9 mmHg, P = 0.004; males: -28.0 mmHg, P<1×10(-5)) compared with corresponding Dahl S controls, confirming the presence of BP-f4 QTL on rat chromosome 2. The S.R2B congenic segment did not affect blood pressure. Testing of S.R2A, S.R2B, and Dahl S male rats in the Morris water maze (MWM) task revealed significantly decreased spatial navigation performance in S.R2A male congenic rats when compared with Dahl S male controls (P<0.05). The S.R2B congenic segment did not affect performance of the MWM task in males. The S.R2A female rats did not differ in spatial navigation when compared with Dahl S female controls, indicating that the Nav-8 effect on spatial navigation is male-specific. Our results suggest the existence of a single QTL on chromosome 2 176.6-179.9 Mbp region which affects blood pressure in both males and females and cognition solely in males.
Collapse
Affiliation(s)
- Victoria L. Herrera
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Khristine A. Pasion
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Glaiza A. Tan
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann Marie Moran
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nelson Ruiz-Opazo
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 2013; 61:S35-S87. [PMID: 22827876 DOI: 10.33549/physiolres.932363] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Collapse
Affiliation(s)
- J Zicha
- Centre for Cardiovascular Research, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Herrera VLM, Pasion KA, Moran AM, Ruiz-Opazo N. Worse renal disease in postmenopausal F2[Dahl S x R]-intercross rats: detection of novel QTLs affecting hypertensive kidney disease. PLoS One 2013; 8:e56096. [PMID: 23393608 PMCID: PMC3564915 DOI: 10.1371/journal.pone.0056096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hypertension increases after menopause with 75% of postmenopausal women developing hypertension in the United States, along with hypertensive end organ diseases. While human and animal model studies have indicated a protective role for estrogen against cardiovascular disease and glomerulosclerosis, clinical studies of hormone replacement therapy in postmenopausal women have shown polar results with some improvement in hypertension but worsening of hypertensive kidney disease, or no effect at all. These observations suggest that the pathogenesis of postmenopausal hypertension and its target organ complications is more complex than projected, and that loss of endogenous estrogens induces epigenetic changes that alter genetic susceptibility to end-organ complications per se resulting in pathogenetic mechanisms beyond correction by hormone replacement. We studied postmenopausal-induced changes in renal disease and performed a total genome scan for quantitative trait loci (QTLs) affecting kidney disease in postmenopausal 16m-old F2[Dahl S x R]-intercross female rats. We used glomerular injury score (GIS) as quantitative trait. We compared QTLs amongst premenopausal, ovariectomized and postmenopausal F2[Dahl S x R]-intercross rats using identical phenotype characterization. Postmenopausal F2[Dahl S x R]-intercross rats exhibited increased hypertensive glomerulosclerosis (P<0.01) and equivalent levels of kidney disease when compared to premenopausal and ovariectomized F2[Dahl S x R]-intercross rats respectively. We detected three significant to highly significant GIS-QTLs (GIS-pm1 on chromosome 4, LOD 3.54; GIS-pm2 on chromosome 3, LOD 2.72; GIS-pm3 on chromosome 5, LOD 2.37) and two suggestive GIS-QTLs (GIS-pm4 on chromosome 2, LOD 1.70; GIS-pm5 on chromosome 7, LOD 1.28), all of which were unique to this postmenopausal population. Detection of increased renal disease phenotype in postmenopausal and ovariectomized subjects suggests a protective role of ovarian hormones. Furthermore, the detection of distinct GIS-QTLs in postmenopausal intercross female rats suggests that distinct genetic mechanisms underlie hypertensive glomerulosclerosis in premenopausal and postmenopausal states.
Collapse
Affiliation(s)
- Victoria L. M. Herrera
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Khristine A. Pasion
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann Marie Moran
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nelson Ruiz-Opazo
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Differential genetic basis for pre-menopausal and post-menopausal salt-sensitive hypertension. PLoS One 2012; 7:e43160. [PMID: 22912817 PMCID: PMC3422252 DOI: 10.1371/journal.pone.0043160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/17/2012] [Indexed: 11/18/2022] Open
Abstract
Essential hypertension affects 75% of post-menopausal women in the United States causing greater cardiovascular complications compared with age-matched men and pre-menopausal women. Hormone replacement and current anti-hypertensive therapies do not correct this post-menopausal increased risk suggesting a distinct pathogenic framework. We investigated the hypothesis that distinct genetic determinants might underlie susceptibility to salt sensitive hypertension in pre-menopausal and post-menopausal states. To determine whether distinct genetic loci contribute to post-menopausal salt-sensitive hypertension, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting blood pressure (BP) in 16-month old post-menopausal F2 (Dahl S×R)-intercross female rats characterized for blood pressure by radiotelemetry. Given identical environments and high salt challenge, post-menopausal BP levels were significantly higher than observed in pre-menopausal (post-menopausal versus pre-menopausal SBP, P<0.0001) and ovariectomized (post-menopausal versus ovariectomized SBP, P<0.001) F2-intercross female rats. We detected four significant to highly significant BP-QTLs (BP-pm1 on chromosome 13, LOD 3.78; BP-pm2 on chromosome 11, LOD 2.76; BP-pm3 on chromosome 2, LOD 2.61; BP-pm4 on chromosome 4, LOD 2.50) and two suggestive BP-QTLs (BP-pm5 on chromosome 15, LOD 2.37; BP-f1 on chromosome 5, LOD 1.65), four of which (BP-pm2, BP-pm3, BP-pm4, BP-pm5) were unique to this post-menopausal cohort. These data demonstrate distinct polygenic susceptibility underlying post-menopausal salt-sensitive hypertension providing a pathway towards the identification of mechanism-based therapy for post-menopausal hypertension and ensuing target-organ complications.
Collapse
|
17
|
Distinct QTLs cosegregate with worse hypertension and renal disease in ovariectomized F2[Dahl S × R]-intercross rats. J Hypertens 2012; 30:1572-80. [PMID: 22688265 DOI: 10.1097/hjh.0b013e3283550eb8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Dahl (S x R) congenic strain analysis confirms and defines a chromosome 5 female-specific blood pressure quantitative trait locus to <7 Mbp. PLoS One 2012; 7:e42214. [PMID: 22860086 PMCID: PMC3408448 DOI: 10.1371/journal.pone.0042214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/02/2012] [Indexed: 12/25/2022] Open
Abstract
The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (−26.5 mmHg, P = 0.002), DBP (−23.7 mmHg, P = 0.004) and MAP (−25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9–141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.
Collapse
|
19
|
Jones FC, Chan YF, Schmutz J, Grimwood J, Brady SD, Southwick AM, Absher DM, Myers RM, Reimchen TE, Deagle BE, Schluter D, Kingsley DM. A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr Biol 2011; 22:83-90. [PMID: 22197244 DOI: 10.1016/j.cub.2011.11.045] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 12/28/2022]
Abstract
Genes underlying repeated adaptive evolution in natural populations are still largely unknown. Stickleback fish (Gasterosteus aculeatus) have undergone a recent dramatic evolutionary radiation, generating numerous examples of marine-freshwater species pairs and a small number of benthic-limnetic species pairs found within single lakes [1]. We have developed a new genome-wide SNP genotyping array to study patterns of genetic variation in sticklebacks over a wide geographic range, and to scan the genome for regions that contribute to repeated evolution of marine-freshwater or benthic-limnetic species pairs. Surveying 34 global populations with 1,159 informative markers revealed substantial genetic variation, with predominant patterns reflecting demographic history and geographic structure. After correcting for geographic structure and filtering for neutral markers, we detected large repeated shifts in allele frequency at some loci, identifying both known and novel loci likely contributing to marine-freshwater and benthic-limnetic divergence. Several novel loci fall close to genes implicated in epithelial barrier or immune functions, which have likely changed as sticklebacks adapt to contrasting environments. Specific alleles differentiating sympatric benthic-limnetic species pairs are shared in nearby solitary populations, suggesting an allopatric origin for adaptive variants and selection pressures unrelated to sympatry in the initial formation of these classic vertebrate species pairs.
Collapse
Affiliation(s)
- Felicity C Jones
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Glorioso N, Herrera VLM, Didishvili T, Argiolas G, Troffa C, Bulla P, Bulla E, Ruiz-Opazo N. DEspR T/CATAAAA-box promoter variant decreases DEspR transcription and is associated with increased BP in Sardinian males. Physiol Genomics 2011; 43:1219-25. [PMID: 21862670 PMCID: PMC3217322 DOI: 10.1152/physiolgenomics.00012.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 08/17/2011] [Indexed: 01/11/2023] Open
Abstract
Essential hypertension is highly prevalent in the elderly population, exceeding 70% in people older than 60 yr of age, and remains a leading risk factor for heart disease, stroke, and chronic renal disease. Elucidation of genetic determinants is critical but remains a challenge due to its complex, multifactorial pathogenesis. We investigated the role DEspR promoter variants, previously associated with male essential hypertension susceptibility, in blood pressure (BP) regulation. We detected a single nucleotide polymorphism within the DEspR 5'-regulatory region associated with increased BP in a male Sardinian cohort accounting for 11.0 mmHg of systolic BP (P<10(-15)) and 9.3 mmHg of diastolic BP (P<10(-15)). Sequence analysis of three normotensive subjects homozygous for the rs6535847 "normotension-associated T-allele" identified a canonical TATAAAA-box in contrast to a CATAAAA-motif in three hypertensive subjects homozygous for the rs6535847 "hypertension-associated C-allele." In vitro analysis detected decreased transcription activity with the CATAAAA-motif promoter-construct compared with the canonical TATAAAA-box promoter-construct. Although BP did not differ between DEspR+/- knockout male mice and wild-type littermates at 6 mo of age, radiotelemetric BP measurements in 18 mo old inbred DEspR+/- knockout male mice known to have decreased DEspR RNA and protein detected higher systolic, mean, and diastolic BPs in DEspR+/- mice compared with littermate wild-type controls (P<0.05). Our results demonstrate that promoter variants in DEspR associated with hypertension susceptibility and increased BP in Sardinian males affect transcription levels, which then affect BP in an age-dependent and male-specific manner. This finding is concordant with the late-onset and sex-specific characteristics of essential hypertension, thus reiterating the mandate for sex-specific analyses and treatment approaches for essential hypertension.
Collapse
Affiliation(s)
- Nicola Glorioso
- Hypertension and Related Diseases Center, Azienda Ospedaliero Universitaria-Università di Sassari, Sassari, Sardinia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cicila GT, Morgan EE, Lee SJ, Farms P, Yerga-Woolwine S, Toland EJ, Ramdath RS, Gopalakrishnan K, Bohman K, Nestor-Kalinoski AL, Khuder SA, Joe B. Epistatic genetic determinants of blood pressure and mortality in a salt-sensitive hypertension model. Hypertension 2009; 53:725-32. [PMID: 19255363 PMCID: PMC2697613 DOI: 10.1161/hypertensionaha.108.126649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
Abstract
Although genetic determinants protecting against the development of elevated blood pressure (BP) are well investigated, less is known regarding their impact on longevity. We concomitantly assessed genomic regions of rat chromosomes 3 and 7 (RNO3 and RNO7) carrying genetic determinants of BP without known epistasis, for their independent and combinatorial effects on BP and the presence of genetic determinants of survival using Dahl salt-sensitive (S) strains carrying congenic segments from Dahl salt-resistant (R) rats. Although congenic and bicongenic S.R strains carried independent BP quantitative trait loci within the RNO3 and RNO7 congenic regions, only the RNO3 allele(s) independently affected survival. The bicongenic S.R strain showed epistasis between R-rat RNO3 and RNO7 alleles for BP under salt-loading conditions, with less-than-additive effects observed on a 2% NaCl diet and greater-than-additive effects observed after prolonged feeding on a 4% NaCl diet. These RNO3 and RNO7 congenic region alleles had more-than-additive effects on survival. Increased survival of bicongenic compared with RNO3 congenic rats was attributable, in part, to maintaining lower BP despite chronic exposure to an increased dietary salt (4% NaCl) intake, with both strains showing delays in reaching highest BP. R-rat RNO3 alleles were also associated with superior systolic function, with the S.R bicongenic strain showing epistasis between R-rat RNO3 and RNO7 alleles leading to compensatory hypertrophy. Whether these alleles affect survival by additional actions within other BP-regulating tissues/organs remains unexplored. This is the first report of simultaneous detection of independent and epistatic loci dictating, in part, longevity in a hypertensive rat strain.
Collapse
Affiliation(s)
- George T. Cicila
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Eric E. Morgan
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Soon Jin Lee
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Phyllis Farms
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Shane Yerga-Woolwine
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Edward J. Toland
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Ramona S. Ramdath
- Department of Surgery, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Kathirvel Gopalakrishnan
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Keith Bohman
- Department of Pathology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Sadik A. Khuder
- Department of Medicine, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue Toledo, Ohio 43614
| |
Collapse
|
22
|
Gross ML, Ritz E. Hypertrophy and fibrosis in the cardiomyopathy of uremia--beyond coronary heart disease. Semin Dial 2008; 21:308-18. [PMID: 18627569 DOI: 10.1111/j.1525-139x.2008.00454.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiac disease is the leading cause of death in uremic patients. In contrast to previous opinion, coronary events account for a relatively small proportion of cardiac deaths, the most common causes being sudden death and heart failure. Against this background the current text will discuss noncoronary cardiac pathology, specifically the pathogenesis and the morphological findings caused by (pathological) cardiac hypertrophy, cardiac interstitial fibrosis and microvascular disease.
Collapse
Affiliation(s)
- Marie-Luise Gross
- Department of Pathology, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To integrate recent studies showing that abnormal Na transport in the central nervous system plays a pivotal role in genetic models of salt-sensitive hypertension. RECENT FINDINGS Na transport-regulating mechanisms classically considered to reflect renal control of the blood pressure, i.e. aldosterone-mineralocorticoid receptors-epithelial sodium channels-Na/K-ATPase, have now been demonstrated to be present in the central nervous system contributing to regulation of cerebrospinal fluid [Na] by the choroid plexus and to neuronal responsiveness to cerebrospinal fluid/brain [Na]. Dysfunction of either or both can activate central nervous system pathways involving 'ouabain' and angiotensin type 1 receptor stimulation. The latter causes sympathetic hyperactivity and adrenal release of marinobufagenin - a digitalis-like inhibitor of the alpha1 Na/K-ATPase isoform - both contributing to hypertension on high salt intake. Conversely, specific central nervous system blockade of mineralocorticoid receptors or epithelial sodium channels prevents the development of hypertension on high salt intake, irrespective of the presence of a 'salt-sensitive kidney'. Variants in the coding regions of some of the genes involved in Na transport have been identified, but sodium sensitivity may be mainly determined by abnormal regulation of expression, pointing to primary abnormalities in regulation of transcription. SUMMARY Looking beyond the kidney is providing new insights into mechanisms contributing to salt-sensitive hypertension, which will help to dissect the genetic factors involved and to discover novel strategies to prevent and treat salt-sensitive hypertension.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ontario, Canada
| | | | | |
Collapse
|
24
|
|
25
|
Glorioso N, Herrera VLM, Bagamasbad P, Filigheddu F, Troffa C, Argiolas G, Bulla E, Decano JL, Ruiz-Opazo N. Association of ATP1A1 and dear single-nucleotide polymorphism haplotypes with essential hypertension: sex-specific and haplotype-specific effects. Circ Res 2007; 100:1522-9. [PMID: 17446437 DOI: 10.1161/01.res.0000267716.96196.60] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Essential hypertension remains a major risk factor for cardiovascular and cerebrovascular diseases. As a complex multifactorial disease, elucidation of susceptibility loci remains elusive. ATP1A1 and Dear are candidate genes for 2 closely linked rat chromosome-2 blood pressure quantitative trait loci. Because corresponding human syntenic regions are on different chromosomes, investigation of ATP1A1 (chromosome [chr]-1p21) and Dear (chr-4q31.3) facilitates genetic analyses of each blood pressure quantitative trait locus in human hypertension. Here we report the association of human ATP1A1 (P<0.000005) and Dear (P<0.03) with hypertension in a relatively isolated, case/control hypertension cohort from northern Sardinia by single-nucleotide polymorphism haplotype analysis. Sex-specific haplotype analyses detected stronger association of both loci with hypertension in males than in females. Haplotype trend-regression analyses support ATP1A1 and Dear as independent susceptibility loci and reveal haplotype-specific association with hypertension and normotension, thus delineating haplotype-specific subsets of hypertension. Although investigation in other cohorts needs to be performed to determine genetic effects in other populations, haplotype subtyping already allows systematic stratification of susceptibility and, hence, clinical heterogeneity, a prerequisite for unraveling the polygenic etiology and polygene-environment interactions in essential hypertension. As hypertension susceptibility genes, coexpression of ATP1A1 and Dear in both renal tubular cells and vascular endothelium suggest a cellular pathogenic scaffold for polygenic mechanisms of hypertension, as well as the hypothesis that ATP1A1 and/or Dear could contribute to the known renal and vascular endothelial dysfunction associated with essential (polygenic) hypertension.
Collapse
Affiliation(s)
- Nicola Glorioso
- Hypertension and Cardiovascular Prevention Center, ASL n. 1-Universita di Sassari, Sassari, Sardinia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Elevated prevalence of arterial hypertension amongst Belgian taxi drivers during the World Hypertension Day campaign 2006. J Hypertens 2006. [DOI: 10.1097/01.hjh.0000249714.74510.e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Harris EL, Barnard R. A1079T transversion in the gene for the α1 isophorm of the Na+/K+ ATPase in the Dahl S rat. J Hypertens 2006; 24:1209-10; author reply 1210-3. [PMID: 16685223 DOI: 10.1097/01.hjh.0000226213.41678.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
|
29
|
Herrera VLM, Tsikoudakis A, Ponce LRB, Matsubara Y, Ruiz-Opazo N. Sex-specific QTLs and interacting loci underlie salt-sensitive hypertension and target organ complications in Dahl S/jrHS hypertensive rats. Physiol Genomics 2006; 26:172-9. [PMID: 16720678 DOI: 10.1152/physiolgenomics.00285.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sex-specific differences in polygenic (essential) hypertension are commonly attributed to the role of sex steroid hormone-receptor systems attenuating sex-common disease mechanisms in premenopausal women. However, emerging observations indicate sex-specific genetic susceptibility in various traits, thus requiring systematic study. Here we report a comparative analysis of independent total genome scans for salt-sensitive hypertension susceptibility quantitative trait loci (QTLs) in male and female F2 [Dahl R/jrHS x S/jrHS] intercross rats exposed to high-salt (8% NaCl) rat diets. Hypertension was phenotyped with three quantitative traits: blood pressure (BP) elevation associated with increased hypertensive renal disease [glomerular injury score (GIS)] and increased cardiac mass [relative heart weight (RHW)] obtained 8-12 wk after high-salt challenge; 24-h nonstress, telemetric BP measurements were used. Although sex-common QTLs were detected for BP [chromosome (chr) 1-144.3 Mbp; chr 1-208.8 Mbp], GIS (chr 1-208.8 Mbp), and cardiac mass (chr 5-150.3 Mbp), most QTLs across the three phenotypes studied are gender specific as follows: female QTLs for BP (chr 2-106.7 Mbp, chr 2-181.7 Mbp, chr 5-113.9 Mbp, chr 5-146.7 Mbp, chr 12-12.8 Mbp), GIS (chr 15-59.6 Mbp), and RHW (chr 2-31.5 Mbp, chr 5-154.7 Mbp, chr 5-110.9 Mbp); male QTLs for BP (chr 2-196.7 Mbp, chr 11-48.0 Mbp, chr 20-35.7 Mbp), GIS (chr 6-3.3 Mbp, chr 20-40.7 Mbp), and RHW (chr 6-3.3 Mbp, chr 20-40.7 Mbp). Furthermore, interacting loci with significant linkage were detected only in female F2 intercross rats for BP and hypertensive renal disease. Comparative analyses revealed concordance of BP QTL peaks with previously reported rat model and human hypertension susceptibility genes and with BP QTLs in previous Dahl S-derived F2 intercross studies and also suggest strain-specific genetic modifiers of sex-specific determinants. Altogether, the data provide key experimental bases for sex-specific investigation of mechanisms and intervention and prevention strategies for polygenic hypertension in humans.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine, and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
30
|
Tesson L, Cozzi J, Ménoret S, Rémy S, Usal C, Fraichard A, Anegon I. Transgenic modifications of the rat genome. Transgenic Res 2006; 14:531-46. [PMID: 16245144 DOI: 10.1007/s11248-005-5077-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/29/2005] [Indexed: 11/28/2022]
Abstract
The laboratory rat (R. norvegicus) is a very important experimental animal in several fields of biomedical research. This review describes the various techniques that have been used to generate transgenic rats: classical DNA microinjection and more recently described techniques such as lentiviral vector-mediated DNA transfer into early embryos, sperm-mediated transgenesis, embryo cloning by nuclear transfer and germline mutagenesis. It will also cover techniques associated to transgenesis such as sperm cryopreservation, embryo freezing and determination of zygosity. The availability of several technologies allowing genetic manipulation in the rat coupled to genomic data will allow biomedical research to fully benefit from the rat as an experimental animal.
Collapse
Affiliation(s)
- Laurent Tesson
- Institut de Transplantation et de Recherche en Transplantation (ITERT), F-44093, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Pedemonte CH, Efendiev R, Bertorello AM. Inhibition of Na,K-ATPase by Dopamine in Proximal Tubule Epithelial Cells. Semin Nephrol 2005; 25:322-7. [PMID: 16139687 DOI: 10.1016/j.semnephrol.2005.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the current report we review the results that lay grounds for the model of intracellular sodium-mediated dopamine-induced endocytosis of Na,K-ATPase. Under conditions of a high salt diet, dopamine activates PKCzeta, which phosphorylates NKA alpha1 Ser-18. The phosphorylation produces a conformational change of alpha1 NH2-terminus, which through interaction with other domains of alpha1 exposes PI3K- and AP-2-binding domains. PI3K bound to the NKA alpha1 induces the recruitment and activation of other proteins involved in endocytosis, and PI3K-generated 3-phosphoinositides affect the local cytoskeleton and modify the biophysical conditions of the membrane for development of clathrin-coated pits. Plasma membrane phosphorylated NKA is internalized to specialized intracellular compartments where the NKA will be dephosphorylated. The NKA internalization results in a reduced Na+ transport by proximal tubule epithelial cells.
Collapse
|
32
|
Kaneko Y, Cloix JF, Herrera VL, Ruiz-Opazo N. Corroboration of Dahl S Q276L alpha1Na,K-ATPase protein sequence: impact on affinities for ligands and on E1 conformation. J Hypertens 2005; 23:745-52. [PMID: 15775778 DOI: 10.1097/01.hjh.0000163142.89835.c7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Multifactorial analyses support the hypothesis that alpha1Na,K-ATPase is a hypertension susceptibility gene in Dahl S rats. However, two studies report non-detection of the A1079T transversion underlying the Q276L substitution in Dahl S alpha1Na,K-ATPase questioning the validity of ATP1A1 as a hypertension susceptibility gene. To resolve this discordance, we investigated the issue at the protein level. DESIGN AND METHODS We employed protein blot analysis using Q276L- and Q276-specific; antipeptide-specific antibodies; tested differential chymotrypsin cleavage efficiency, measured differential Na and K affinities of alpha1Na,K-ATPases in Dahl S and Dahl R renal membranes and determined amino acid sequences of purified Dahl S alpha1Na,K-ATPase chymotryptic-digest peptides. RESULTS We detected Q276L variant protein in Dahl S rats; and Q276 wild-type variant in Dahl R, spontaneously hypertensive (SHR), Lewis and Wistar-Kyoto (WKY) rat kidney membranes. Q276L variant exhibits less chymotrypsin cleavage efficiency than the Q276 wild-type variant, consistent with the substitution of hydrophobic L for hydrophilic Q. Kinetic studies of kidney membranes detect increased Na affinity and decreased K affinity in renal Dahl S alpha1Na,K-ATPase compared with Dahl R. Protein sequencing of high pressure liquid chromatography (HPLC)-purified chymotrypsin digested 77 kDa peptide confirms Q276L substitution in the Dahl S alpha1Na,K-ATPase. CONCLUSIONS Data demonstrate the existence and functional significance of the Q276L variant in Dahl S rats.
Collapse
Affiliation(s)
- Yuji Kaneko
- Section of Molecular Medicine, Department of Medicine, Boston University School of Medicine, 700 Albany Street, W-609, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
33
|
Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 2005; 85:679-715. [PMID: 15788708 DOI: 10.1152/physrev.00056.2003] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epidemiological, migration, intervention, and genetic studies in humans and animals provide very strong evidence of a causal link between high salt intake and high blood pressure. The mechanisms by which dietary salt increases arterial pressure are not fully understood, but they seem related to the inability of the kidneys to excrete large amounts of salt. From an evolutionary viewpoint, the human species is adapted to ingest and excrete <1 g of salt per day, at least 10 times less than the average values currently observed in industrialized and urbanized countries. Independent of the rise in blood pressure, dietary salt also increases cardiac left ventricular mass, arterial thickness and stiffness, the incidence of strokes, and the severity of cardiac failure. Thus chronic exposure to a high-salt diet appears to be a major factor involved in the frequent occurrence of hypertension and cardiovascular diseases in human populations.
Collapse
Affiliation(s)
- Pierre Meneton
- Institut National de la Santé et de la Recherche Médicale U367, Département de Santé Publique et d'Informatique Médicale, Faculté de Médecine Broussais Hôtel Dieu, Paris, France.
| | | | | | | |
Collapse
|
34
|
Kaneko Y, Herrera VLM, Didishvili T, Ruiz-Opazo N. Sex-specific effects of dual ET-1/ANG II receptor (Dear) variants in Dahl salt-sensitive/resistant hypertension rat model. Physiol Genomics 2005; 20:157-64. [PMID: 15561758 DOI: 10.1152/physiolgenomics.00108.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Essential (polygenic) hypertension is a complex genetic disorder that remains a major risk factor for cardiovascular disease despite clinical advances, reiterating the need to elucidate molecular genetic mechanisms. Elucidation of susceptibility genes remains a challenge, however. Blood pressure (BP) regulatory pathways through angiotensin II (ANG II) and endothelin-1 (ET-1) receptor systems comprise a priori candidate susceptibility pathways. Here we report that the dual ET-1/ANG II receptor gene ( Dear) is structurally and functionally distinct between Dahl salt-sensitive, hypertensive (S) and salt-resistant, normotensive (R) rats. The Dahl S S44/M74 variant is identical to the previously reported Dear cDNA with equivalent affinities for both ET-1 and ANG II, in contrast to Dahl R S44P/M74T variant, which exhibits absent ANG II binding but effective ET-1 binding. The S44P substitution localizes to the ANG II-binding domain predicted by the molecular recognition theory, providing compelling support of this theory. The Dear gene maps to rat chromosome 2 and cosegregates with BP in female F2(R×S) intercross rats with highly significant linkage (LOD 3.61) accounting for 14% of BP variance, but not in male F2(R×S) intercross rats. Altogether, the data suggest the hypothesis that modification of the critical balance between ANG II and ET-1 systems through variant Dear contributes to hypertension susceptibility in female F2(R×S) intercross rats. Further investigations are necessary to corroborate genetic linkage through congenic rat studies, to investigate putative gene interactions, and to show causality by transgenesis and/or intervention. More importantly, the data reiterate the importance of sex-specific factors in hypertension susceptibility.
Collapse
Affiliation(s)
- Yuji Kaneko
- Section Molecular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
35
|
Herrera VLM, Tsikoudakis A, Didishvili T, Ponce LRB, Bagamasbad P, Gantz D, Herscovitz H, Van Tol A, Ruiz-Opazo N. Analysis of gender-specific atherosclerosis susceptibility in transgenic[hCETP]25DS rat model. Atherosclerosis 2004; 177:9-18. [PMID: 15488860 DOI: 10.1016/j.atherosclerosis.2004.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 06/14/2004] [Indexed: 11/25/2022]
Abstract
Epidemiological and clinical data demonstrate differences in atherosclerotic coronary heart disease prevalence between age-matched men and premenopausal women. Mechanisms underlying relative athero-susceptibility in men and athero-resistance in premenopausal women remain to be elucidated. Lack of informative animal models hinders research. We report here a moderate-expresser line transgenic for human cholesteryl ester transfer protein (CETP) in the Dahl salt-sensitive hypertensive rat strain, Tg25, that recapitulates premenopausal female athero-resistance. Having ascertained identical genetic background, environmental factors, and equivalent CETP hepatic RNA levels, we detect worse hypercholesterolemia, hypertriglyceridemia, coronary plaques and survival outcome in Tg25 male rats compared with Tg25 females. Hepatic transcription profiles of Tg25 males and females normalized to respective gender- and age-matched non-transgenic controls exhibit significant differences. Genes implicated on hierarchical cluster analysis and quantitative real-time RT-PCR pinpoint pathways associated with coronary plaque progression such as inflammation and arachidonic acid epoxygenation, and not just cholesterol metabolism pathways. The data demonstrate gender-specific factors as key modulators of atherosclerosis phenotype and suggest a possible role for the liver in atheroma progression as a large organ source of proatherogenic systemic factors.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Whitaker Cardiovascular Institute and Department of Medicine, W609, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fedorova OV, Talan MI, Agalakova NI, Lakatta EG, Bagrov AY. Coordinated shifts in Na/K-ATPase isoforms and their endogenous ligands during cardiac hypertrophy and failure in NaCl-sensitive hypertension. J Hypertens 2004; 22:389-97. [PMID: 15076199 DOI: 10.1097/00004872-200402000-00025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES NaCl loading of Dahl salt-sensitive rats (DS) stimulates marinobufagenin (MBG), an alpha1 Na/K-ATPase (NKA) isoform ligand. Cardiac function depends on NKA, which is regulated in part by endogenous digitalis-like ligands. Our goal was to study whether changes occur in MBG and endogenous ouabain (EO) production during cardiac remodelling in hypertensive DS, and whether these are associated with changes in myocardial NKA isoforms and sensitivity to MBG and ouabain. METHODS Changes in MBG and EO levels, changes in myocardial NKA isoform composition, and sensitivity to endogenous ligands during development of cardiac hypertrophy and the transition to heart failure were studied in DS rats with an 8% NaCl intake. RESULTS The animals developed compensated left ventricular hypertrophy after 4 weeks, which progressed to heart failure at 9-12 weeks. The hypertrophic stage was associated with increased plasma MBG levels (mean +/- SEM of 1.22 +/- 0.22 versus 0.31 +/- 0.03 nmol/l; P < 0.01), increased sensitivity of NKA to MBG, and an increased abundance of alpha1 NKA. Plasma levels of EO did not change, and the sensitivity of NKA to ouabain decreased. The transition to heart failure was accompanied by a decrease in alpha1 NKA, a reduction in plasma MBG, and decreased sensitivity of NKA to MBG. In addition, an increased abundance of ouabain-sensitive alpha3 NKA, a three-fold rise in plasma EO (1.01 +/- 0.13 versus 0.27 +/- 0.06 nmol/l), and a seven-fold increase in the ouabain sensitivity of NKA compared with controls were observed. CONCLUSIONS During cardiac hypertrophy and the transition to heart failure, a shift in endogenous NKA ligands production is linked to a shift in myocardial NKA isoforms.
Collapse
Affiliation(s)
- Olga V Fedorova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
37
|
Vormfelde SV, Burckhardt G, Zirk A, Wojnowski L, Brockmöller J. Pharmacogenomics of diuretic drugs: data on rare monogenic disorders and on polymorphisms and requirements for further research. Pharmacogenomics 2003; 4:701-34. [PMID: 14596636 DOI: 10.1517/phgs.4.6.701.22817] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This review summarizes the current status of our knowledge about the role of pharmacogenetic variation in response to diuretics and suggests future research topics for the field. Genes with a role in the pharmacokinetics of most diuretics are renal drug transporters, especially OAT1, OAT3 and OCT2 (genes SLC22A6, SLC22A8 and SLC22A2) whereas variants in carbonic anhydrase (CA), cytochrome P450 enzymes and sulfotransferases are relevant only for specific substances. Genes on the pharmacodynamic side include the primary targets of thiazide, loop, K+-sparing and aldosterone antagonistic diuretics: NCC, NKCC2, ENaC and the mineralocorticoid receptor (genes SLC12A3, SLC12A1, SCNN1A, B, G and NR3C2). Rare variants of these proteins cause Gitelman’s syndrome, Bartter’s syndrome, Liddle’s syndrome or pregnancy-induced hypertension. Polymorphisms in these and in associated proteins such as GNB3, α-adducin and angiotensin-converting enzyme (ACE) seem to be clinically relevant. In conclusion, first knowledge has evolved that efficacy of diuretic drugs may be determined by genetic polymorphisms in genes determining pharmacokinetics and pharmacodynamics of this drug class. In the future, the selection of a diuretic drug or the dosing schedules may be individually chosen based on pharmacogenetic parameters, however, many questions remain to be answered before this fantasy becomes reality.
Collapse
Affiliation(s)
- Stefan Viktor Vormfelde
- Department of Clinical Pharmacology & Department of Vegetative Physiology, Georg August University Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
38
|
Herrera VLM, Traverse S, Lopez LV, Ruiz-Opazo N. X-linked locus associated with hypertensive renal disease susceptibility in Dahl rats. J Hypertens 2003; 21:67-71. [PMID: 12544437 DOI: 10.1097/00004872-200301000-00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE There is increasing evidence that genetic factors contribute to renal disease susceptibility associated with essential hypertension. To what extent these genetic factors act independently of hypertension susceptibility remains undetermined. The present study was undertaken to assess the potential chromosome X influence on target organ renal disease in the Dahl rat model of salt-sensitive hypertension. SUBJECTS AND METHODS Dahl S, Dahl R, F1(RXS), F1(SXR) and F2(RXS) rat male populations were phenotyped for hypertensive renal disease by measuring the percent of incidence of the Grade IV Raij renal pathology score. Six chromosome X markers informative for our (RXS) intercross were analyzed in our F2 rat population (n = 105) for co-segregation with hypertensive renal disease and blood pressure characterized by radiotelemetry. RESULTS Comparison of the incidence of renal disease (histologically determined) between F1 reciprocal intercross male progenies reveals a significant chromosome X effect on renal disease [percent incidence of Grade IV Raij renal pathology score in F1 (R female S male) male rats = 2.75 +/- 0.66, and in F1 (S female R male) male rats = 0.67 +/- 0.42; = 0.02]. QTL analysis on an F2(RXS) male population phenotyped for renal disease susceptibility (percent incidence of Grade IV Raij renal pathology score) detects significant linkage to DXRat98 (likelihood ratio statistic = 9.4, P = 0.00223) on chromosome X, corroborating X-linkage of renal disease susceptibility in Dahl rats. CONCLUSIONS Our results demonstrate the existence of an X-linked locus associated with hypertensive renal disease susceptibility in Dahl rats. Furthermore, the chromosome X markers tested did not co-segregate with hypertension, indicating that the gene(s) on chromosome X influence renal disease susceptibility independent of blood pressure.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
39
|
Jain M, Liao R, Podesser BK, Ngoy S, Apstein CS, Eberli FR. Influence of gender on the response to hemodynamic overload after myocardial infarction. Am J Physiol Heart Circ Physiol 2002; 283:H2544-50. [PMID: 12388328 DOI: 10.1152/ajpheart.00338.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After myocardial infarction (MI), the left ventricle (LV) undergoes ventricular remodeling characterized by progressive global dilation, infarct expansion, and compensatory hypertrophy of the noninfarcted myocardium. Little attention has been given to the response of remodeling myocardium to additional hemodynamic overload. Studies have indicated that gender may influence remodeling and the response to both MI and hemodynamic overload. We therefore determined 1) structural and function consequences of superimposing hemodynamic overload (systemic hypertension) on remodeling myocardium after a MI and 2) the potential influence of gender on this remodeling response. Male and female Dahl salt-sensitive and salt-resistant rats underwent coronary ligation, resulting in similar degrees of MI. One week post-MI, all rats were placed on a high-salt diet. Four groups were then studied 4 wk after initiation of high-salt feeding: MI female, MI female + hypertension, MI male, and MI male + hypertension. Hypertension-induced pressure overload resulted in additional comparable degrees of myocardial hypertrophy in both females and males. In females, hypertension post-MI resulted in concentric hypertrophy with no additional cavity dilation and no measurable scar thinning. In contrast, in males, hypertension post-MI resulted in eccentric hypertrophy, further LV cavity dilation, and scar thinning. Physiologically, concentric hypertrophy in post-MI hypertensive females resulted in elevated contractile function, whereas eccentrically hypertrophied males had no such increase. Female gender influences favorably the remodeling and physiological response to hemodynamic overload after large MI.
Collapse
Affiliation(s)
- Mohit Jain
- Cardiac Muscle Research Laboratory, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
40
|
Alemayehu A, Breen L, Krenova D, Printz MP. Reciprocal rat chromosome 2 congenic strains reveal contrasting blood pressure and heart rate QTL. Physiol Genomics 2002; 10:199-210. [PMID: 12209022 DOI: 10.1152/physiolgenomics.00065.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence exists implying multiple blood pressure quantitative trait loci (QTL) on rat chromosome 2. To examine this possibility, four congenic strains and nine substrains were developed with varying size chromosome segments introgressed from the spontaneously hypertensive rat (SHR/lj) and normotensive Wistar-Kyoto rat (WKY/lj) onto the reciprocal genetic background. Cardiovascular phenotyping was conducted with telemetry over extended periods during standard salt (0.7%) and high-salt (8%) diets. Our results are consistent with at least three independent pressor QTL: transfer of SHR/lj alleles to WKY/lj reveals pressor QTL within D2Rat21-D2Rat27 and D2Mgh10-D2Rat62, whereas transfer of WKY/lj D2Rat161-D2Mit8 to SHR/lj reveals a depressor locus. Our results also suggest a depressor QTL in SHR/lj located within D2Rat161-D2Mgh10. Introgressed WKY/lj segments also reveal a heart rate QTL within D2Rat40-D2Rat50 which abolished salt-induced bradycardia, dependent upon adjoining SHR/lj alleles. This study confirms the presence of multiple blood pressure QTL on chromosome 2. Taken together with our other studies, we conclude that rat chromosome 2 is rich in alleles for cardiovascular and behavioral traits and for coordinated coupling between behavior and cardiovascular responses.
Collapse
Affiliation(s)
- Adamu Alemayehu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636, USA
| | | | | | | |
Collapse
|
41
|
Dmitrieva RI, Doris PA. Cardiotonic steroids: potential endogenous sodium pump ligands with diverse function. Exp Biol Med (Maywood) 2002; 227:561-9. [PMID: 12192097 DOI: 10.1177/153537020222700803] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The highly conserved cardiotonic steroid (CS) binding site present on the ubiquitous membrane sodium pump, sodium, potassium-ATPase, appears to have been conserved by no force other than its capacity to bind CS: a family that includes plant-derived cardiac glycosides and putative endogenous vertebrate counterparts. Binding of ligand is inhibited by increased extracellular potassium. This implies functional coordination because inhibition of the sodium pump would be counterproductive when extracellular potassium is elevated. The interesting biology of the CS binding site continues to stimulate investigations into the identity of endogenous ligands, their role as pump regulators at the cellular level, and as mediators of body fluid balance and blood pressure regulation. In addition to inhibition of sodium and potassium transport, there is considerable recent evidence suggesting that the sodium pump may act as a cell signaling receptor activated by CS binding and responding by coordination of intracellular signaling pathways that can be dependent on and also independent of the reduction in transmembrane ion flux resulting directly from pump inhibition. This signaling may influence cell survival, growth, and differentiation. Recent insight into the biology of pump regulation by CS is reviewed.
Collapse
Affiliation(s)
- Renata I Dmitrieva
- Institute of Molecular Medicine, University of Texas, Houston, Texas 77030, USA
| | | |
Collapse
|
42
|
Schoner W. Endogenous cardiac glycosides, a new class of steroid hormones. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2440-8. [PMID: 12027881 DOI: 10.1046/j.1432-1033.2002.02911.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The search for endogenous digitalis has led to the isolation of ouabain as well as several additional cardiotonic steroids of the cardenolide and bufadienolide type from blood, adrenals, and hypothalamus. The concentration of endogenous ouabain is elevated in blood upon increased Na(+) uptake, hypoxia, and physical exercise. Changes in blood levels of ouabain upon physical exercise occur rapidly. Adrenal cortical cells in tissue culture release ouabain upon addition of angiotensin II and epinephrine, and it is thought that ouabain is released from adrenal cortex in vivo. Ouabain levels in blood are elevated in 50% of Caucasians with low-renin hypertension. Infusion over several weeks of low concentrations of ouabain, but not of digoxin, induces hypertension in rats. A digoxin-like compound, which has been isolated from human urine and adrenals, as well various other endogenous cardiac glycosides may counterbalance their actions within a regulatory framework of water and salt metabolism. Marinobufagenin, for instance, whose concentration is increased after cardiac infarction, may show natriuretic properties because it inhibits the alpha1 isoform of Na(+)/K(+)-ATPase, the main sodium pump isoform of the kidney, much better than other sodium pump isoforms. In analogy to other steroid hormones, cardiotonic steroid hormones in blood are bound to a specific cardiac glycoside binding globulin. The discovery of ouabain as a new adrenal hormone affecting Na(+) metabolism and the development of the new ouabain antagonist PST 2238 allows for new possibilities for the therapy of hypertension and congestive heart failure. This will lead in turn to a better understanding of the disease on a physiological and endocrinological level and of the action of ouabain on the cellular level as a signal that is transduced to the plasma membrane as well as to the cell nucleus.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Germany
| |
Collapse
|
43
|
Fedorova OV, Talan MI, Agalakova NI, Lakatta EG, Bagrov AY. Endogenous ligand of alpha(1) sodium pump, marinobufagenin, is a novel mediator of sodium chloride--dependent hypertension. Circulation 2002; 105:1122-7. [PMID: 11877366 DOI: 10.1161/hc0902.104710] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Digitalis-like sodium pump ligands (SPLs) effect natriuresis via inhibition of renal tubular Na(+),K(+)-ATPase but may induce vasoconstriction. The present study investigated the potential roles of 2 putative endogenous SPLs, an ouabain-like compound (OLC) and an alpha(1) Na(+),K(+)-ATPase inhibitor, marinobufagenin (MBG), in regulating natriuresis and blood pressure (BP) responses to sustained and acute NaCl loading in Dahl salt-sensitive rats (DS). METHODS AND RESULTS During 4 weeks of an 8% NaCl diet, DS exhibited a progressive increase in MBG renal excretion (66 +/-13 pmol/24 hours at week 4 versus 11 +/- 1 pmol/24 hours at baseline, n=48), which paralleled an increase in systolic BP (174 +/- 10 mm Hg at week 4 versus 110 +/- 2 mm Hg at baseline). By contrast, OLC excretion peaked at week 1 and returned to baseline levels. Administration of an anti-MBG, but not anti-ouabain antibody, to DS after 3 weeks of a high NaCl diet lowered BP (139 +/- 7 versus 175 +/- 5 mm Hg, P<0.001, n=5). Acute NaCl loading (2 hours) of DS (n=5) increased MBG and OLC excretion and natriuresis. Pretreatment of acutely NaCl-loaded DS with an anti-MBG antibody (n=5) reduced the excretion of sodium and MBG but not that of OLC. An anti-ouabain antibody (n=5) reduced sodium excretion and both OLC and MBG. CONCLUSIONS An initial transient stimulation of OLC induced by NaCl loading of DS precedes an MBG response. A sustained increase in MBG production in DS contributes to the chronic BP elevation induced by a sustained high NaCl intake.
Collapse
Affiliation(s)
- Olga V Fedorova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
44
|
The Dual AngII/AVP Receptor Gene N119S/C163R Variant Exhibits Sodium-Induced Dysfunction and Cosegregates With Salt-Sensitive Hypertension in the Dahl Salt-Sensitive Hypertensive Rat Model. Mol Med 2002. [DOI: 10.1007/bf03402000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Orlov SN, Dutil J, Hamet P, Deng AY. Replacement of (alpha)1-Na-K-ATPase of Dahl rats by Milan rats lowers blood pressure but does not affect its activity. Physiol Genomics 2001; 7:171-7. [PMID: 11773603 DOI: 10.1152/physiolgenomics.00059.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both linkage and use of congenic strains have shown that a chromosome region near the gene for the Na-K-ATPase alpha(1)-subunit (Atp1a1) contained a quantitative trait locus (QTL) for blood pressure (BP). Currently, two congenic strains, designated S.M5 and S.M6, were made by replacing a segment of the Dahl salt-sensitive SS/Jr (S) rat by the homologous region of the Milan normotensive rat (MNS). In S.M5, the gene for Atp1a1 is from the MNS strain; whereas in S.M6, Atp1a1 is from the S strain. The baseline activity of the alpha(1)-Na-K-ATPase and its stoichiometry were evaluated by an assay of ouabain-sensitive inwardly and outwardly directed (86)Rb and (22)Na fluxes in erythrocytes. The two congenic strains showed a similar BP, but both had a BP lower than that of S rats (P < 0.0001). Neither the alpha(1)-Na-K-ATPase activity nor its stoichiometry was affected by the substitution of the Atp1a1 alleles of S by those of MNS. Thus the BP-lowering effects observed in S.M5 and S.M6 could not be attributed to the alpha(1)-Na-K-ATPase activity or its stoichiometry. Atp1a1 is not supported as a candidate to be a BP QTL.
Collapse
Affiliation(s)
- S N Orlov
- Research Centre, Centre Hospitalier de l'Université de Montreal, Hôtel Dieu, Montreal, Quebec, H2W 1T8, Canada
| | | | | | | |
Collapse
|
46
|
Barnard R, Kelly G, Manzetti SO, Harris EL. Neither the New Zealand genetically hypertensive strain nor Dahl salt-sensitive strain has an A1079T transversion in the alpha1 isoform of the Na(+),K(+)-ATPase gene. Hypertension 2001; 38:786-92. [PMID: 11641287 DOI: 10.1161/hy1001.091782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A putative 1079A-->T mutation in the alpha1 isoform of the Na(+), K(+)-ATPase (Atp1a1) gene of the Dahl salt-sensitive rat inbred by John Rapp (SS/Jr) strain was projected to cause a conformation change in the membrane hydrophobic region of the protein product, possibly resulting in hypertension. The existence of the mutation was challenged, but the challenge was apparently rebutted. The New Zealand genetically hypertensive (GH) rat is known to have a blood pressure quantitative trait locus on chromosome 2 containing the gene for the ATPase. Thus, we sought to determine whether the GH rat carried the 1079A-->T transversion. We chose a method, first nucleotide change analysis, that can detect point mutations in a mixed population of polymerase chain reaction (PCR) products, even in the presence of PCR bias, and confirmed our analysis by restriction enzyme digestion of PCR products. To ensure the validity of our analyses, we used site-directed mutagenesis to create positive controls containing the mutation. Surprisingly, we found that neither the GH nor the SS/Jr strain had the A1079T transversion. Indeed, the transversion was not found in any strain tested. As an incidental observation, we have sequenced the intron preceding the exon containing the putative A1079T transversion. Within this intron, a single-base C/T polymorphism was observed at base 132. Our results definitively eliminate the putative A1079T transversion in Atp1a1 as a causative factor underlying hypertension in the GH, spontaneously hypertensive, and SS/Jr rat strains and indicate that alternative candidate genes in the region defined by the chromosome 2 hypertension quantitative trait locus should be examined.
Collapse
Affiliation(s)
- R Barnard
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
47
|
Song Y, Herrera VL, Filigheddu F, Troffa C, Lopez LV, Glorioso N, Ruiz-Opazo N. Non-association of the thiazide-sensitive Na,Cl-cotransporter gene with polygenic hypertension in both rats and humans. J Hypertens 2001; 19:1547-51. [PMID: 11564973 DOI: 10.1097/00004872-200109000-00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Genes underlying renal regulation of sodium and water balances are a priori valid candidates for polygenic hypertension susceptibility genes. Having recently identified the association of alpha1 Na,K-ATPase (ATP1A1) and Na,K,2Cl-cotransporter (NKCC2) as interacting hypertension susceptibility loci in both a rat model and human hypertensives, we investigated whether the thiazide-sensitive Na,Cl-cotransporter (TSC) gene contributes to hypertension susceptibility in a rat F2 intercross and in a northern Sardinian human cohort for polygenic hypertension. SUBJECTS AND METHODS The rat TSC (rTSC) gene was analyzed directly for cosegregation with salt-sensitive hypertension in an F2 (Dahl S x Dahl R) rat population (n = 102) characterized for blood pressure by radiotelemetry. The human TSC (hTSC) gene was analyzed for association with hypertension in a human hypertensive cohort from northern Sardinia that consisted of 220 unrelated normotensives and 254 unrelated hypertensives. The TSC gene was subjected to single locus and digenic (in combination with ATP1A1 and NKCC2 genes) analyses in both rat and human cohorts. RESULTS In both rat model and human cohorts, the rTSC and hTSC genes did not show linkage or association with high blood pressure, respectively. Furthermore, interaction with either ATP1A1 or NKCC2 was not detected in both the rat F2 intercross and human hypertension cohorts. CONCLUSIONS These data exclude a primary role of the TSC gene in hypertension pathogenesis in the hypertension cohorts studied.
Collapse
Affiliation(s)
- Y Song
- Whitaker Cardiovascular Institute, Evans Department of Medicine, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Glorioso N, Filigheddu F, Troffa C, Soro A, Parpaglia PP, Tsikoudakis A, Myers RH, Herrera VL, Ruiz-Opazo N. Interaction of alpha(1)-Na,K-ATPase and Na,K,2Cl-cotransporter genes in human essential hypertension. Hypertension 2001; 38:204-9. [PMID: 11509477 DOI: 10.1161/01.hyp.38.2.204] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Essential hypertension is a common disease the genetic determinants of which have been difficult to unravel because of its clinical heterogeneity and complex, multifactorial, polygenic etiology. Based on our observations that alpha(1)-Na,K-ATPase (ATP1A1) and renal-specific, bumetanide-sensitive Na,K,2Cl-cotransporter (NKCC2) genes interactively increase susceptibility to hypertension in the Dahl salt-sensitive hypertensive (Dahl S) rat model, we investigated whether parallel molecular genetic mechanisms might exist in human essential hypertension in a relatively genetic homogeneous cohort in northern Sardinia. Putative ATP1A1-NKCC2 gene interaction was tested by comparing hypertensive patients (blood pressure [BP] >165/95 mm Hg) with normotensive controls age >60 years with BP <140/85 mm Hg. Genotype analysis with microsatellite markers revealed conformation to Hardy-Weinberg proportions for 6 alleles of both ATP1A1 (D1S453) and NKCC2 (NKCGT7) markers, respectively. Two-by-six chi(2) analysis of alleles identified overrepresentation of ATP1A1 No. 4 and NKCC2 No. 4 alleles, respectively, in hypertensives compared with controls. With a qualitative trait framework, single-gene analysis detected association of both the ATP1A1 No. 4 allele (P=0.004, chi(2)=8.094, df=1) and the NKCC2 No. 4 allele (P=0.0002, chi(2)=14.279, df=1) with moderate to severe hypertension. Digenic analysis revealed that ATP1A1 No. 4-NKCC2 No. 4 allele interaction increases susceptibility to hypertension (P<0.0001, chi(2)=22.3, df=1) beyond levels obtained in single-gene analysis. Analysis was also performed in a quantitative trait framework with BP as the continuous trait parameter. Digenic analysis of ATP1A1 No. 4-NKCC2 No. 4 allele interaction revealed significant association with systolic (1-way ANOVA, P=0.000076) and diastolic (P=0.00099) BP. Interaction was corroborated by 2x2 factorial ANOVA for interaction (systolic BP interaction term, P<0.05, diastolic BP interaction term, P=0.035). The data are compelling that ATP1A1 and NKCC2 genes are candidate interacting hypertension-susceptibility loci in human essential hypertension and affirm gene interaction as an important genetic mechanism underlying hypertension susceptibility. Although corroboration in other cohorts and identification of functionally significant mutations are imperative next steps, the data provide a genotype-stratification scheme, with 4-fold predictive value (odds ratio, 4.28; 95% confidence interval, 2.29 to 8.0), which could help decipher the complex genetics of essential hypertension.
Collapse
Affiliation(s)
- N Glorioso
- Clinica Medica, Universita di Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zicha J, Negrin CD, Dobesová Z, Carr F, Vokurková M, McBride MW, Kunes J, Dominiczak AF. Altered Na+-K+ pump activity and plasma lipids in salt-hypertensive Dahl rats: relationship to Atp1a1 gene. Physiol Genomics 2001; 6:99-104. [PMID: 11459925 DOI: 10.1152/physiolgenomics.2001.6.2.99] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A genetic variant of the gene for the alpha(1)-isoform of Na(+)-K(+)-ATPase (Atp1a1) was suggested to be involved in the pathogenesis of salt hypertension in Dahl rats through altered Na(+):K(+) coupling ratio. We studied Na(+)-K(+) pump activity in erythrocytes of Dahl salt-sensitive (SS/Jr) rats in relation to plasma lipids and blood pressure (BP) and the linkage of polymorphic microsatellite marker D2Arb18 (located within intron 1 and exon 2 of Atp1a1 gene) with various phenotypes in 130 SS/Jr x SR/Jr F(2) rats. Salt-hypertensive SS/Jr rats had higher erythrocyte Na(+) content, enhanced ouabain-sensitive (OS) Na(+) and Rb(+) transport, and higher Na(+):Rb(+) coupling ratio of the Na(+)-K(+) pump. BP of F(2) hybrids correlated with erythrocyte Na(+) content, OS Na(+) extrusion, and OS Na(+):Rb(+) coupling ratio, but not with OS Rb(+) uptake. In F(2) hybrids there was a significant association indicating suggestive linkage (P < 0.005, LOD score 2.5) of an intragenic marker D2Arb18 with pulse pressure but not with mean arterial pressure or any parameter of Na(+)-K(+) pump activity (including its Na(+):Rb(+) coupling ratio). In contrast, plasma cholesterol, which was elevated in salt-hypertensive Dahl rats and which correlated with BP in F(2) hybrids, was also positively associated with OS Na(+) extrusion. The abnormal Na(+):K(+) stoichiometry of the Na(+)-K(+) pump is a consequence of elevated erythrocyte Na(+) content and suppressed OS Rb(+):K(+) exchange. In conclusion, abnormal cholesterol metabolism but not the Atp1a1 gene locus might represent an important factor for both high BP and altered Na(+)-K(+) pump function in salt-hypertensive Dahl rats.
Collapse
Affiliation(s)
- J Zicha
- Institute of Physiology, Academy of Sciences of the Czech Republic, Center for Experimental Research of Cardiovascular Diseases, CZ-142 20 Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fedorova OV, Kolodkin NI, Agalakova NI, Lakatta EG, Bagrov AY. Marinobufagenin, an endogenous alpha-1 sodium pump ligand, in hypertensive Dahl salt-sensitive rats. Hypertension 2001; 37:462-6. [PMID: 11230319 DOI: 10.1161/01.hyp.37.2.462] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dahl salt-sensitive rats (DS), which have a mutation in the alpha-1 subunit of Na(+)/K(+)-ATPase, exhibit impaired pressure natriuresis and on a high-salt diet, retain Na(+) and exhibit increased blood pressure. Recently, we have shown that mammalian tissues contain a bufadienolide Na(+)/K(+)-ATPase inhibitory factor, marinobufagenin (MBG), that exhibits greater affinity for the alpha-1 than alpha-3 sodium pump isoform. The present study investigated the possible role of MBG in hypertension in DS on a high NaCl intake. Eight DS and 8 Dahl salt-resistant rats (DR) were placed on an 8% NaCl diet. Within 2 weeks, systolic blood pressure increased in DS (162+/-9 mm Hg at week 2 versus 110+/-2 mm Hg in baseline, P<0.01), and increased less in DR (124+/-3 mm Hg at week 2 versus 112+/-2 mm Hg in baseline). Renal excretion of MBG increased 4-fold (38.9+/-7.6 pmol versus 9.1+/-1.3 pmol in baseline, P<0.01) in DS, but by only 25% in DR (13.2+/-0.9 pmol versus 10.3+/-0.7 pmol in baseline). Excretion of endogenous ouabain did not change in either strain. MBG-immunoreactive material was purified from the urine of hypertensive DS by means of 2 steps of reverse-phase high performance liquid chromatography (HPLC) and compared with plant ouabain and amphibian MBG for its ability to inhibit the Na(+)/K(+)-ATPase from rat kidney (which expresses only alpha-1 Na(+)/K(+)-ATPase isoform). Unlike ouabain (IC(50)=248 micromol/L), serially diluted, HPLC-purified MBG immunoreactivity from DS and authentic MBG potently inhibited rat kidney Na(+)/K(+)-ATPase (IC(50)=70 and 78 nmol/L, respectively). Our results suggest that an alpha-1 Na(+)/K(+)-ATPase ligand, MBG, is elaborated to promote natriuresis in hypertensive DS. MBG acts as a selective inhibitor of the ouabain-resistant alpha-1 Na(+)/K(+)-ATPase subunit, ie, the major sodium pump isoform of the kidneys, as would be expected of a putative natriuretic hormone.
Collapse
Affiliation(s)
- O V Fedorova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, Md, USA
| | | | | | | | | |
Collapse
|