1
|
Alvisi G, Manaresi E, Pavan S, Jans DA, Wagstaff KM, Gallinella G. Avermectins Inhibit Replication of Parvovirus B19 by Disrupting the Interaction Between Importin α and Non-Structural Protein 1. Viruses 2025; 17:220. [PMID: 40006975 PMCID: PMC11860776 DOI: 10.3390/v17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Human parvovirus B19 (B19V) is a major human pathogen in which the ssDNA genome is replicated within the nucleus of infected human erythroid progenitor cells (EPCs) through a process involving both cellular and viral proteins, including the non-structural protein (NS)1. We previously characterized the interaction between NS1 classical nuclear localization signal (cNLS: GACHAKKPRIT-182) and host cell importin (IMP)α and proposed it as a potential target for antiviral drug development. Here, we further extend on such findings. First, we demonstrate that NS1 nuclear localization is required for viral production since introducing the K177T substitution in a cloned, infectious viral genome resulted in a non-viable virus. Secondly, we demonstrate that the antiparasitic drug ivermectin (IVM), known to inhibit the IMPα/β dependent nuclear import pathway, could impair the NS1-NLS:IMPα interaction and suppress viral replication in UT7/EpoS1 cells in a dose-dependent manner. We also show that a panel of structurally related avermectins (AVMs) can dissociate the NS1-NLS:IMPα complex with half-maximal inhibitory concentrations in the nanomolar range. Among them, Eprinomectin emerged as the most selective inhibitor of B19V replication, with a selectivity index of c. 5.0. However, when tested in EPCs generated from peripheral blood mononuclear cells, which constitute a cellular population close to the natural target cells in bone marrow, the inhibitory effect of IVM and Eprinomectin was demonstrated to a lesser extent, and both compounds exhibited high toxicity, thus highlighting the need for more specific inhibitors of the NS1-NLS:IMPα interaction.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, VIC 3800, Australia; (D.A.J.); (K.M.W.)
| | - Kylie M. Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, VIC 3800, Australia; (D.A.J.); (K.M.W.)
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
2
|
Yan HW, Feng YD, Tang N, Cao FC, Lei YF, Cao W, Li XQ. Viral myocarditis: From molecular mechanisms to therapeutic prospects. Eur J Pharmacol 2024; 982:176935. [PMID: 39182550 DOI: 10.1016/j.ejphar.2024.176935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Myocarditis is characterized as local or diffuse inflammatory lesions in the myocardium, primarily caused by viruses and other infections. It is a common cause of sudden cardiac death and dilated cardiomyopathy. In recent years, the global prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the widespread vaccination have coincided with a notable increase in the number of reported cases of myocarditis. In light of the potential threat that myocarditis poses to global public health, numerous studies have sought to elucidate the pathogenesis of this condition. However, despite these efforts, effective treatment strategies remain elusive. To collate the current research advances in myocarditis, and thereby provide possible directions for further research, this review summarizes the mechanisms involved in viral invasion of the organism and primarily focuses on how viruses trigger excessive inflammatory responses and in result in different types of cell death. Furthermore, this article outlines existing therapeutic approaches and potential therapeutic targets for the acute phase of myocarditis. In particular, immunomodulatory treatments are emphasized and suggested as the most extensively studied and clinically promising therapeutic options.
Collapse
Affiliation(s)
- Han-Wei Yan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Feng-Chuan Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Feng Lei
- Department of Microbiology, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
3
|
Arvia R, Stincarelli MA, Manaresi E, Gallinella G, Zakrzewska K. Parvovirus B19 in Rheumatic Diseases. Microorganisms 2024; 12:1708. [PMID: 39203550 PMCID: PMC11357344 DOI: 10.3390/microorganisms12081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Parvovirus B19 (B19V) is a human pathogen belonging to the Parvoviridae family. It is widely diffused in the population and responsible for a wide range of diseases, diverse in pathogenetic mechanisms, clinical course, and severity. B19V infects and replicates in erythroid progenitor cells (EPCs) in the bone marrow leading to their apoptosis. Moreover, it can also infect, in an abortive manner, a wide set of different cell types, normally non-permissive, and modify their normal physiology. Differences in the characteristics of virus-cell interaction may translate into different pathogenetic mechanisms and clinical outcomes. Joint involvement is a typical manifestation of B19V infection in adults. Moreover, several reports suggest, that B19V could be involved in the pathogenesis of some autoimmune rheumatologic diseases such as rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), systemic sclerosis (SSc), systemic lupus erythematosus (SLE), or vasculitis. This review provides basic information on the B19 virus, highlights characteristics of viral infection in permissive and non-permissive systems, and focuses on recent findings concerning the pathogenic role of B19V in rheumatologic diseases.
Collapse
Affiliation(s)
- Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| | - Maria A. Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (E.M.); (G.G.)
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (E.M.); (G.G.)
- S. Orsola-Malpighi Hospital—Microbiology, 40138 Bologna, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| |
Collapse
|
4
|
Chen S, Liu F, Yang A, Shang K. For better or worse: crosstalk of parvovirus and host DNA damage response. Front Immunol 2024; 15:1324531. [PMID: 38464523 PMCID: PMC10920228 DOI: 10.3389/fimmu.2024.1324531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Parvoviruses are a group of non-enveloped DNA viruses that have a broad spectrum of natural infections, making them important in public health. NS1 is the largest and most complex non-structural protein in the parvovirus genome, which is indispensable in the life cycle of parvovirus and is closely related to viral replication, induction of host cell apoptosis, cycle arrest, DNA damage response (DDR), and other processes. Parvovirus activates and utilizes the DDR pathway to promote viral replication through NS1, thereby increasing pathogenicity to the host cells. Here, we review the latest progress of parvovirus in regulating host cell DDR during the parvovirus lifecycle and discuss the potential of cellular consequences of regulating the DDR pathway, targeting to provide the theoretical basis for further elucidation of the pathogenesis of parvovirus and development of new antiviral drugs.
Collapse
Affiliation(s)
- Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Feifei Liu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Aofei Yang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Alvisi G, Manaresi E, Cross EM, Hoad M, Akbari N, Pavan S, Ariawan D, Bua G, Petersen GF, Forwood J, Gallinella G. Importin α/β-dependent nuclear transport of human parvovirus B19 nonstructural protein 1 is essential for viral replication. Antiviral Res 2023; 213:105588. [PMID: 36990397 DOI: 10.1016/j.antiviral.2023.105588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Human parvovirus B19 (B19V) is a major human pathogen causing a variety of diseases, characterized by a selective tropism to human progenitor cells in bone marrow. In similar fashion to all Parvoviridae members, the B19V ssDNA genome is replicated within the nucleus of infected cells through a process which involves both cellular and viral proteins. Among the latter, a crucial role is played by non-structural protein (NS)1, a multifunctional protein involved in genome replication and transcription, as well as modulation of host gene expression and function. Despite the localization of NS1 within the host cell nucleus during infection, little is known regarding the mechanism of its nuclear transport pathway. In this study we undertake structural, biophysical, and cellular approaches to characterize this process. Quantitative confocal laser scanning microscopy (CLSM), gel mobility shift, fluorescence polarization and crystallographic analysis identified a short sequence of amino acids (GACHAKKPRIT-182) as the classical nuclear localization signal (cNLS) responsible for nuclear import, mediated in an energy and importin (IMP) α/β-dependent fashion. Structure-guided mutagenesis of key residue K177 strongly impaired IMPα binding, nuclear import, and viral gene expression in a minigenome system. Further, treatment with ivermectin, an antiparasitic drug interfering with the IMPα/β dependent nuclear import pathway, inhibited NS1 nuclear accumulation and viral replication in infected UT7/Epo-S1 cells. Thus, NS1 nuclear transport is a potential target of therapeutic intervention against B19V induced disease.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| | - Emily M Cross
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Mikayla Hoad
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Nasim Akbari
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Daryl Ariawan
- Dementia Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Gloria Bua
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| | - Gayle F Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Jade Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
6
|
Panda M, Kalita E, Rao A, Prajapati VK. Mechanism of cell cycle regulation and cell proliferation during human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:497-525. [PMID: 37061340 DOI: 10.1016/bs.apcsb.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Over the history of the coevolution of Host viral interaction, viruses have customized the host cellular machinery into their use for viral genome replication, causing effective infection and ultimately aiming for survival. They do so by inducing subversions to the host cellular pathways like cell cycle via dysregulation of important cell cycle checkpoints by viral encoded proteins, arresting the cell cycle machinery, blocking cytokinesis as well as targeting subnuclear bodies, thus ultimately disorienting the cell proliferation. Both DNA and RNA viruses have been active participants in such manipulation resulting in serious outcomes of cancer. They achieve this by employing different mechanisms-Protein-protein interaction, protein-phosphorylation, degradation, redistribution, viral homolog, and viral regulation of APC at different stages of cell cycle events. Several DNA viruses cause the quiescent staged cells to undergo cell cycle which increases nucleotide pools logistically significantly persuading viral replication whereas few other viruses arrest a particular stage of cell cycle. This allows the latter group to sustain the infection which allows them to escape host immune response and support viral multiplication. Mechanical study of signaling such viral mediated pathways could give insight into understanding the etiology of tumorigenesis and progression. Overall this chapter highlights the possible strategies employed by DNA/RNA viral families which impact the normal cell cycle but facilitate viral infected cell replication. Such information could contribute to comprehending viral infection-associated disorders to further depth.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India; Department of Biochemistry, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
7
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
8
|
Dong Z, Zhang X, Xiao M, Li K, Wang J, Chen P, Hu Z, Lu C, Pan M. Baculovirus LEF-11 interacts with BmIMPI to induce cell cycle arrest in the G2/M phase for viral replication. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105231. [PMID: 36464350 DOI: 10.1016/j.pestbp.2022.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Viruses arrest the host cell cycle and using multiple functions of host cells is an important approach for their replication. Baculovirus arrests infected insect cells at both the late S and G2/M phase, but the strategy employed by baculovirus is not clearly understood. Our research suggests that the Bombyx mori nucleopolyhedrovirus (BmNPV) could arrest the cell cycle in the G2/M phase to promote virus replication, and also that the viral protein LEF-11 could inhibit host cell proliferation and arrest the cell cycle by inhibiting the cell cycle checkpoint proteins BmCyclinB and BmCDK1. Furthermore, we found that LEF-11 interacts with BmIMPI to regulate cell proliferation, but not by direct interaction with BmCyclinB or BmCDK1. In addition, our findings showed that BmIMPI was important and necessary for LEF-11 induced cell cycle arrest in the G2/M phase. Moreover, BmIMPI was found to interact with BmCyclinB and BmCDK1, and down-regulate the expression of BmCyclinB and BmCDK1 to compromise the cell cycle and cell proliferation. Taken together, the data presented demonstrated that baculovirus LEF-11 regulates BmIMPI to inhibit host cell proliferation and provide a new insight into the molecular mechanisms employed by viruses to induce cell cycle arrest.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xinling Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - KeJie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
9
|
Liu Y, Li Y, Wang M, Cheng A, Ou X, Mao S, Sun D, Wu Y, Yang Q, Jia R, Tian B, Zhang S, Zhu D, Chen S, Liu M, Zhao X, Huang J, Gao Q, Yu Y, Zhang L. Duck hepatitis A virus type 1 mediates cell cycle arrest in the S phase. Virol J 2022; 19:111. [PMID: 35761382 PMCID: PMC9235186 DOI: 10.1186/s12985-022-01839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Duck hepatitis A virus type 1 (DHAV-1) is one of the most serious pathogens endangering the duck industry. However, there are few studies on the regulation of the cell cycle by DHAV-1. Methods In this study, flow cytometry was applied to analyze the effect of DHAV-1 infection on the cell cycle of duck embryo fibroblasts (DEFs). Subsequently, we analyzed the effects of cell cycle phases on DHAV-1 replication by real-time reverse transcriptase quantitative PCR (real-time RT-qPCR). Results Flow cytometry data analysis found that DEFs in the S phase increased by 25.85% and 54.21% at 24 h and 48 h after DHAV-1 infection, respectively. The levels of viral RNA detected by real-time RT-qPCR were higher in the DEFs with synchronization in the S phase or G0/G1 phase than in the control group. However, there was no difference in viral copy number between the G2/M phase arrest and control groups. In addition, non-structural protein 3D of DHAV-1 significantly increased cells in the S phase, indicating that 3D protein is one of the reasons for the cell cycle arrest in the S phase. Conclusions In summary, DHAV-1 infection induces the cell cycle arrest of DEFs in the S phase. Both S phase and G0/G1 phase synchronization facilitate the replication of DHAV-1, and 3D protein is one of the reasons for the S phase arrest.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yanglin Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| |
Collapse
|
10
|
Sanchez JL, Ghadirian N, Horton NC. High-Resolution Structure of the Nuclease Domain of the Human Parvovirus B19 Main Replication Protein NS1. J Virol 2022; 96:e0216421. [PMID: 35435730 PMCID: PMC9093113 DOI: 10.1128/jvi.02164-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Two new structures of the N-terminal domain of the main replication protein, NS1, of human parvovirus B19 (B19V) are presented here. This domain (NS1-nuc) plays an important role in the "rolling hairpin" replication of the single-stranded B19V DNA genome, recognizing origin of replication sequences in double-stranded DNA, and cleaving (i.e., nicking) single-stranded DNA at a nearby site known as the terminal resolution site (trs). The three-dimensional structure of NS1-nuc is well conserved between the two forms, as well as with a previously solved structure of a sequence variant of the same domain; however, it is shown here at a significantly higher resolution (2.4 Å). Using structures of NS1-nuc homologues bound to single- and double-stranded DNA, models for DNA recognition and nicking by B19V NS1-nuc are presented that predict residues important for DNA cleavage and for sequence-specific recognition at the viral origin of replication. IMPORTANCE The high-resolution structure of the DNA binding and cleavage domain of the main replicative protein, NS1, from the human-pathogenic virus human parvovirus B19 is presented here. Included also are predictions of how the protein recognizes important sequences in the viral DNA which are required for viral replication. These predictions can be used to further investigate the function of this protein, as well as to predict the effects on viral viability due to mutations in the viral protein and viral DNA sequences. Finally, the high-resolution structure facilitates structure-guided drug design efforts to develop antiviral compounds against this important human pathogen.
Collapse
Affiliation(s)
- Jonathan L. Sanchez
- BMCB Graduate Program, University of Arizona, Tucson, Arizona, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Niloofar Ghadirian
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Schultheiss HP, Bock T, Pietsch H, Aleshcheva G, Baumeier C, Fruhwald F, Escher F. Nucleoside Analogue Reverse Transcriptase Inhibitors Improve Clinical Outcome in Transcriptional Active Human Parvovirus B19-Positive Patients. J Clin Med 2021; 10:1928. [PMID: 33946917 PMCID: PMC8125167 DOI: 10.3390/jcm10091928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 01/01/2023] Open
Abstract
Human parvovirus B19 (B19V) is the predominant cardiotropic virus associated with dilated inflammatory cardiomyopathy (DCMi). Transcriptionally active cardiotropic B19V infection is clinically relevant and triggers adverse long-term mortality. During the study; we evaluated whether antiviral treatment with the nucleoside analogue telbivudine (LTD) is effective in suppressing transcriptional active B19V in endomyocardial biopsies (EMBs) of B19V positive patients and improving clinical outcomes. Seventeen B19V-positive patients (13 male; mean age 45.7 ± 13.9 years; mean left ventricular ejection fraction (LVEF) 37.7 ± 13.5%) with positive B19V DNA and transcriptional activity (B19V mRNA) in EMBs were treated with 600 mg/d LTD over a period of six months. Patients underwent EMBs before and after termination of the LTD treatment. B19V RNA copy numbers remained unchanged in 3/17 patients (non-responder) and declined or disappeared completely in the remaining 14/17 patients (responder) (p ≤ 0.0001). Notably; LVEF improvement was more significant in patients who reduced or lost B19V RNA (responder; p = 0.02) in contrast to non-responders (p = 0.7). In parallel; responder patients displayed statistically significant improvement in quality of life (QoL) questionnaires (p = 0.03) and dyspnea on exertion (p = 0.0006), reflecting an improvement in New York Heart Association (NYHA) Classification (p = 0.001). Our findings demonstrated for the first time that suppression of B19V transcriptional activity by LTD treatment improved hemodynamic and clinical outcome significantly. Thus; the present study substantiates the clinical relevance of detecting B19V transcriptional activity of the myocardium.
Collapse
Affiliation(s)
- Heinz-Peter Schultheiss
- Institute of Cardiac Diagnostics and Therapy, 12203 Berlin, Germany; (T.B.); (H.P.); (G.A.); (C.B.); (F.E.)
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany
| | - Thomas Bock
- Institute of Cardiac Diagnostics and Therapy, 12203 Berlin, Germany; (T.B.); (H.P.); (G.A.); (C.B.); (F.E.)
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Heiko Pietsch
- Institute of Cardiac Diagnostics and Therapy, 12203 Berlin, Germany; (T.B.); (H.P.); (G.A.); (C.B.); (F.E.)
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ganna Aleshcheva
- Institute of Cardiac Diagnostics and Therapy, 12203 Berlin, Germany; (T.B.); (H.P.); (G.A.); (C.B.); (F.E.)
| | - Christian Baumeier
- Institute of Cardiac Diagnostics and Therapy, 12203 Berlin, Germany; (T.B.); (H.P.); (G.A.); (C.B.); (F.E.)
| | | | - Felicitas Escher
- Institute of Cardiac Diagnostics and Therapy, 12203 Berlin, Germany; (T.B.); (H.P.); (G.A.); (C.B.); (F.E.)
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
12
|
di Bari I, Franzin R, Picerno A, Stasi A, Cimmarusti MT, Di Chiano M, Curci C, Pontrelli P, Chironna M, Castellano G, Gallone A, Sabbà C, Gesualdo L, Sallustio F. Severe acute respiratory syndrome coronavirus 2 may exploit human transcription factors involved in retinoic acid and interferon-mediated response: a hypothesis supported by an in silico analysis. New Microbes New Infect 2021; 41:100853. [PMID: 33680474 PMCID: PMC7912353 DOI: 10.1016/j.nmni.2021.100853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19), resulting in acute respiratory disease, is a worldwide emergency. Because recently it has been found that SARS-CoV is dependent on host transcription factors (TF) to express the viral genes, efforts are required to understand the molecular interplay between virus and host response. By bioinformatic analysis, we investigated human TF that can bind the SARS-CoV-2 sequence and can be involved in viral transcription. In particular, we analysed the key role of TF involved in interferon (IFN) response. We found that several TF could be induced by the IFN antiviral response, specifically some induced by IFN-stimulated gene factor 3 (ISGF3) and by unphosphorylated ISGF3, which were found to promote the transcription of several viral open reading frame. Moreover, we found 22 TF binding sites present only in the sequence of virus infecting humans but not bat coronavirus RaTG13. The 22 TF are involved in IFN, retinoic acid signalling and regulation of transcription by RNA polymerase II, thus facilitating its own replication cycle. This mechanism, by competition, may steal the human TF involved in these processes, explaining SARS-CoV-2's disruption of IFN-I signalling in host cells and the mechanism of the SARS retinoic acid depletion syndrome leading to the cytokine storm. We identified three TF binding sites present exclusively in the Brazilian SARS-CoV-2 P.1 variant that may explain the higher severity of the respiratory syndrome. These data shed light on SARS-CoV-2 dependence from the host transcription machinery associated with IFN response and strengthen our knowledge of the virus's transcription and replicative activity, thus paving the way for new targets for drug design and therapeutic approaches.
Collapse
Affiliation(s)
- I di Bari
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - R Franzin
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - A Picerno
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - A Stasi
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - M T Cimmarusti
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - M Di Chiano
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - C Curci
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - P Pontrelli
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - M Chironna
- Department of Biomedical Sciences and Human Oncology- Hygiene Section, University of Bari, Bari, Italy
| | - G Castellano
- Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - A Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - C Sabbà
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - L Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - F Sallustio
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
13
|
Xia X, Ding M, Xuan JF, Xing JX, Yao J, Wu X, Wang BJ. Functional polymorphisms and transcriptional analysis in the 5' region of the human serotonin receptor 1B gene (HTR1B) and their associations with psychiatric disorders. BMC Psychiatry 2020; 20:499. [PMID: 33036580 PMCID: PMC7545834 DOI: 10.1186/s12888-020-02906-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The 5-hydroxytryptamine 1B receptor (5-HT1B) plays an essential role in the serotonin (5-HT) system and is widely involved in a variety of brain activities. HTR1B is the gene encoding 5-HT1B. Genome-wide association studies have shown that HTR1B polymorphisms are closely related to multiple mental and behavioral disorders; however, the functional mechanisms underlying these associations are unknown. This study investigated the effect of several HTR1B haplotypes on regulation of gene expression in vitro and the functional sequences in the 5' regulatory region of HTR1B to determine their potential association with mental and behavioral disorders. METHODS Six haplotypes consisting of rs4140535, rs1778258, rs17273700, rs1228814, rs11568817, and rs130058 and several truncated fragments of the 5' regulatory region of HTR1B were transfected into SK-N-SH and HEK-293 cells. The relative fluorescence intensities of the different haplotypes and truncated fragments were detected using a dual-luciferase reporter assay system. RESULTS Compared to the major haplotype T-G-T-C-T-A, the relative fluorescence intensities of haplotypes C-A-T-C-T-A, C-G-T-C-T-A, C-G-C-A-G-T, and C-G-T-A-T-A were significantly lower, and that of haplotype C-G-C-A-G-A was significantly higher. Furthermore, the effects of the rs4140535T allele, the rs17273700C-rs11568817G linkage combination, and the rs1228814A allele made their relative fluorescence intensities significantly higher than their counterparts at each locus. Conversely, the rs1778258A and rs130058T alleles decreased the relative fluorescence intensities. In addition, we found that regions from - 1587 to - 1371 bp (TSS, + 1), - 1149 to - 894 bp, - 39 to + 130 bp, + 130 to + 341 bp, and + 341 to + 505 bp upregulated gene expression. In contrast, regions - 603 to - 316 bp and + 130 to + 341 bp downregulated gene expression. Region + 341 to + 505 bp played a decisive role in gene transcription. CONCLUSIONS HTR1B 5' regulatory region polymorphisms have regulatory effects on gene expression and potential correlate with several pathology and physiology conditions. This study suggests that a crucial sequence for transcription is located in region + 341 ~ + 505 bp. Regions - 1587 to - 1371 bp, - 1149 to - 894 bp, - 603 to - 316 bp, - 39 to + 130 bp, and + 130 to + 341 bp contain functional sequences that can promote or suppress the HTR1B gene expression.
Collapse
Affiliation(s)
- Xi Xia
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Mei Ding
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Jin-feng Xuan
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Jia-xin Xing
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Jun Yao
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Xue Wu
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Bao-jie Wang
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| |
Collapse
|
14
|
Feng S, Zeng D, Zheng J, Zhao D. New Insights of Human Parvovirus B19 in Modulating Erythroid Progenitor Cell Differentiation. Viral Immunol 2020; 33:539-549. [PMID: 32412895 DOI: 10.1089/vim.2020.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human parvovirus B19 (B19), a human pathogen of the erythroparvovirus genus, is responsible for a variety of diseases. B19 cause less symptoms in healthy individuals, also cause acute and chronic anemia in immunodeficiency patients. Transient aplastic crisis and pure red cell aplasia are two kinds of anemic hemogram, respectively, in acute and chronic B19 infection phase, especially occurring in patients with a shortened red cell survival or with immunodeficiency. In addition, B19-infected pregnant women may cause hydrops fetalis or fetal loss. B19 possesses high affinity to bone marrow and fetal liver due to its extremely restricted cytotoxicity to erythroid progenitor cells (EPCs) mediated by viral proteins. The nonstructural protein NS1 is considered to be the major pathogenic factor, which has been shown to inhibit the differentiation and maturation of EPCs through inducing viral DNA damage responses and cell cycle arrest. The time phase property of NS1 activity during DNA replication and conformity to transient change of hemogram are suggestive of its role in regulating differentiation of hematopoietic cells, which is not completely understood. In this review, we summarized the bridge between B19 NS1 and Notch signaling pathway or transcriptional factors GATA, which play an important role in erythroid cell proliferation and differentiation, to provide a new insight of the potential mechanism of B19-induced differential inhibition of EPCs.
Collapse
Affiliation(s)
- Shuwen Feng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongxin Zeng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwen Zheng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongchi Zhao
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Tang X, Chen Z, Deng M, Wang L, Nie Q, Xiang JW, Xiao Y, Yang L, Liu Y, Li DWC. The Sumoylation Modulated Tumor Suppressor p53 Regulates Cell Cycle Checking Genes to Mediate Lens Differentiation. Curr Mol Med 2019; 18:556-565. [PMID: 30636605 DOI: 10.2174/1566524019666190111154450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Furthermore, we have recently demonstrated that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. In addition, we have also shown that p53 controls both transcription factors, C-Maf and Prox-1 as well as lens crystallin genes, αA, β- and γ-crystallins. Here, we have examined whether p53 also regulates other known target genes during its modulation of lens differentiation. The human and mouse lens epithelial cells, FHL124 and αTN4-1 were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. METHODS Mice used in this study were handled in compliance with the "Protocol for the Care and Use of Laboratory Animals" (Sun Yat-sen University). Adult mice were used for the collection of lens cells. These samples were used for extraction of total proteins. A total of 32 embryonic mice {8 at 14.5 ED, 8 at 17.5 ED and 8 newborns for wild type} were used for immunohistochemistry, which were used for co-localization study. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS Immunohistochemistry revealed that both the cell cycle checking genes, p21 and Gadd45α and the apoptotic genes, Bcl-2 and PUMA, display developmental changes associated with p53 during mouse lens development. Knockdown of p53 in the mouse lens epithelial cells caused inhibition of lens differentiation. Associated with this inhibition, the cell cycle genes displayed significant downreglation, the apoptotic genes was also attenuated but to a much less degree. In addition, we found that bFGF can induce dose-dependent upregulation of the upstream kinases, CHK1/2 and ERK1/2, both known to phosphorylate p53 and activate the later. Furthermore, We showed that in both developing lens and human lens epithelial cells, p53 can be co-localized with the catalytic subunit of the protein phoshphatase-1 (PP-1), suggesting that PP-1 regulates p53 phosphorylation status both in vivo and in vitro. CONCLUSION Taken together, our results suggest that during mouse lens development, p53 activity is regulated by ERK and CHK kinases-mediated activation, and by PP-1-mediated inactivation. p53 can regulate multiple groups of genes to mediate lens differentiation.
Collapse
Affiliation(s)
- Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Mi Deng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
16
|
Establishment of a Parvovirus B19 NS1-Expressing Recombinant Adenoviral Vector for Killing Megakaryocytic Leukemia Cells. Viruses 2019; 11:v11090820. [PMID: 31487941 PMCID: PMC6783920 DOI: 10.3390/v11090820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 01/21/2023] Open
Abstract
Adenoviral viral vectors have been widely used for gene-based therapeutics, but commonly used serotype 5 shows poor transduction efficiency into hematopoietic cells. In this study, we aimed to generate a recombinant adenovirus serotype 5 (rAd5) vector that has a high efficiency in gene transfer to megakaryocytic leukemic cells with anticancer potential. We first modified the rAd5 backbone vector with a chimeric fiber gene of Ad5 and Ad11p (rAd5F11p) to increase the gene delivery efficiency. Then, the nonstructural protein NS1 of human parvovirus B19 (B19V), which induces cell cycle arrest at the G2/M phase and apoptosis, was cloned into the adenoviral shuttle vector. As the expression of parvoviral NS1 protein inhibited Ad replication and production, we engineered the cytomegalovirus (CMV) promoter, which governs NS1 expression, with two tetracycline operator elements (TetO2). Transfection of the rAd5F11p proviral vectors in Tet repressor-expressing T-REx-293 cells produced rAd in a large quantity. We further evaluated this chimeric rAd5F11p vector in gene delivery in human leukemic cells, UT7/Epo-S1. Strikingly, the novel rAd5F11p-B19NS1-GFP vector, exhibited a transduction efficiency much higher than the original vector, rAd5-B19NS1-GFP, in UT7/Epo-S1 cells, in particular, when they were transduced at a relatively low multiplicity of infection (100 viral genome copies/cell). After the transduction of rAd5F11p-B19NS1-GFP, over 90% of the UT7/Epo-S1 cells were arrested at the G2/M phase, and approximately 40%–50% of the cells were undergoing apoptosis, suggesting the novel rAd5F11P-B19NS1-GFP vector holds a promise in therapeutic potentials of megakaryocytic leukemia.
Collapse
|
17
|
Pabisiak K, Stępniewska J, Ciechanowski K. Pure Red Cell Aplasia After Kidney Transplantation: Parvovirus B19 Culprit or Coincidence? Ann Transplant 2019; 24:123-131. [PMID: 30833537 PMCID: PMC6419532 DOI: 10.12659/aot.913663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Anemia is present even in long-term observation after kidney transplantation. Observational study results indicate the presence of chronic post-transplantation anemia in 1 in 3 recipients. An extreme form of erythroid line dysfunction is pure red cell aplasia (PRCA). It may be caused by immunosuppressive treatment per se or a side effect, opportunistic pathogen activation. Parvovirus B19 (PV B19) infection is quite likely the cause of refractory normocytic anemia in immunocompromised patients. Case Report In this case report we discuss biological and clinical features of this phenomenon and the treatment strategies, based on 2 PRCA cases in kidney transplant recipients. Additionally, a systematic review of published reports of PV B19 related PRCA in kidney recipients is presented. Conclusions PV replication should be ruled out in cases of persistent and/or refractory anemia after kidney transplantation. The established first-line treatment of PRCA is passive immunization. Taking into account cost effectiveness, a decrease in immunosuppression load is reasonable under careful control of allograft function.
Collapse
Affiliation(s)
- Krzysztof Pabisiak
- Department of Nephrology Transplantation and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Stępniewska
- Department of Nephrology Transplantation and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Kazimierz Ciechanowski
- Department of Nephrology Transplantation and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
18
|
Das P, Chatterjee K, Chattopadhyay NR, Choudhuri T. Evolutionary aspects of Parvovirus B-19V associated diseases and their pathogenesis patterns with an emphasis on vaccine development. Virusdisease 2019; 30:32-42. [PMID: 31143830 PMCID: PMC6517593 DOI: 10.1007/s13337-019-00525-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Parvovirus B-19, a single human pathogenic member of the Parvoviridae family with it's small ssDNA and non-enveloped structure, is known to cause diseases in erythroid progenitor cells. But a wide range of clinical association of this virus with cells of non-erythroid origins has recently been discovered and many of those are being investigated for such association. Higher substitution rates in due course of evolution has been suggested for this cellular tropism and persistence. In this report, we have summarized the different disease manifestations of B-19 virus and have tried to find out a pattern of pathogenesis. Finally, we have focused on the vaccination strategies available against B-19 virus to correlate these with the mechanisms involved in various diseases caused by this virus.
Collapse
Affiliation(s)
- Piyanki Das
- Department of Biotechnology, Visva Bharati Santiniketan, Siksha Bhavana, Bolpur, West Bengal 731235 India
| | - Koustav Chatterjee
- Department of Biotechnology, Visva Bharati Santiniketan, Siksha Bhavana, Bolpur, West Bengal 731235 India
| | - Nabanita Roy Chattopadhyay
- Department of Biotechnology, Visva Bharati Santiniketan, Siksha Bhavana, Bolpur, West Bengal 731235 India
| | - Tathagata Choudhuri
- Department of Biotechnology, Visva Bharati Santiniketan, Siksha Bhavana, Bolpur, West Bengal 731235 India
| |
Collapse
|
19
|
Xu P, Ganaie SS, Wang X, Wang Z, Kleiboeker S, Horton NC, Heier RF, Meyers MJ, Tavis JE, Qiu J. Endonuclease Activity Inhibition of the NS1 Protein of Parvovirus B19 as a Novel Target for Antiviral Drug Development. Antimicrob Agents Chemother 2019; 63:e01879-18. [PMID: 30530599 PMCID: PMC6395930 DOI: 10.1128/aac.01879-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022] Open
Abstract
Human parvovirus B19 (B19V), a member of the genus Erythroparvovirus of the family Parvoviridae, is a small nonenveloped virus that has a single-stranded DNA (ssDNA) genome of 5.6 kb with two inverted terminal repeats (ITRs). B19V infection often results in severe hematological disorders and fetal death in humans. B19V replication follows a model of rolling hairpin-dependent DNA replication, in which the large nonstructural protein NS1 introduces a site-specific single-strand nick in the viral DNA replication origins, which locate at the ITRs. NS1 executes endonuclease activity through the N-terminal origin-binding domain. Nicking of the viral replication origin is a pivotal step in rolling hairpin-dependent viral DNA replication. Here, we developed a fluorophore-based in vitro nicking assay of the replication origin using the origin-binding domain of NS1 and compared it with the radioactive in vitro nicking assay. We used both assays to screen a set of small-molecule compounds (n = 96) that have potential antinuclease activity. We found that the fluorophore-based in vitro nicking assay demonstrates sensitivity and specificity values as high as those of the radioactive assay. Among the 96 compounds, we identified 8 which have an inhibition of >80% at 10 µM in both the fluorophore-based and radioactive in vitro nicking assays. We further tested 3 compounds that have a flavonoid-like structure and an in vitro 50% inhibitory concentration that fell in the range of 1 to 3 µM. Importantly, they also exhibited inhibition of B19V DNA replication in UT7/Epo-S1 cells and ex vivo-expanded human erythroid progenitor cells.
Collapse
Affiliation(s)
- Peng Xu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Safder S Ganaie
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaomei Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zekun Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
20
|
Xu P, Chen AY, Ganaie SS, Cheng F, Shen W, Wang X, Kleiboeker S, Li Y, Qiu J. The 11-Kilodalton Nonstructural Protein of Human Parvovirus B19 Facilitates Viral DNA Replication by Interacting with Grb2 through Its Proline-Rich Motifs. J Virol 2019; 93:e01464-18. [PMID: 30282717 PMCID: PMC6288338 DOI: 10.1128/jvi.01464-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022] Open
Abstract
Lytic infection of human parvovirus B19 (B19V) takes place exclusively in human erythroid progenitor cells of bone marrow and fetal liver, which disrupts erythropoiesis. During infection, B19V expresses three nonstructural proteins (NS1, 11-kDa, and 7.5-kDa) and two structural proteins (VP1 and VP2). While NS1 is essential for B19V DNA replication, 11-kDa enhances viral DNA replication significantly. In this study, we confirmed the enhancement role of 11-kDa in viral DNA replication and elucidated the underlying mechanism. We found that 11-kDa specially interacts with cellular growth factor receptor-bound protein 2 (Grb2) during virus infection and in vitro We determined a high affinity interaction between 11-kDa and Grb2 that has an equilibrium dissociation constant (KD ) value of 18.13 nM. In vitro, one proline-rich motif was sufficient for 11-kDa to sustain a strong interaction with Grb2. In consistence, in vivo during infection, one proline-rich motif was enough for 11-kDa to significantly reduce phosphorylation of extracellular signal-regulated kinase (ERK). Mutations of all three proline-rich motifs of 11-kDa abolished its capability to reduce ERK activity and, accordingly, decreased viral DNA replication. Transduction of a lentiviral vector encoding a short hairpin RNA (shRNA) targeting Grb2 decreased the expression of Grb2 as well as the level of ERK phosphorylation, which resulted in an increase of B19V replication. These results, in concert, indicate that the B19V 11-kDa protein interacts with cellular Grb2 to downregulate ERK activity, which upregulates viral DNA replication.IMPORTANCE Human parvovirus B19 (B19V) infection causes hematological disorders and is the leading cause of nonimmunological fetal hydrops during pregnancy. During infection, B19V expresses two structural proteins, VP1 and VP2, and three nonstructural proteins, NS1, 11-kDa, and 7.5-kDa. While NS1 is essential, 11-kDa plays an enhancing role in viral DNA replication. Here, we elucidated a mechanism underlying 11-kDa protein-regulated B19V DNA replication. 11-kDa is tightly associated with cellular growth factor receptor-bound protein 2 (Grb2) during infection. In vitro, 11-kDa interacts with Grb2 with high affinity through three proline-rich motifs, of which at least one is indispensable for the regulation of viral DNA replication. 11-kDa and Grb2 interaction disrupts extracellular signal-regulated kinase (ERK) signaling, which mediates upregulation of B19V replication. Thus, our study reveals a novel mechanism of how a parvoviral small nonstructural protein regulates viral DNA replication by interacting with a host protein that is predominately expressed in the cytoplasm.
Collapse
Affiliation(s)
- Peng Xu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Safder S Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Weiran Shen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaomei Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biological Science and Technology, Wuhan University of Bioengineering, Wuhan, China
| | - Steve Kleiboeker
- Department of Research and Development, Viracor Eurofins Laboratories, Lee's Summit, Missouri, USA
| | - Yi Li
- Department of Biological Science and Technology, Wuhan University of Bioengineering, Wuhan, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
21
|
Faddy HM, Gorman EC, Hoad VC, Frentiu FD, Tozer S, Flower RLP. Seroprevalence of antibodies to primate erythroparvovirus 1 (B19V) in Australia. BMC Infect Dis 2018; 18:631. [PMID: 30526514 PMCID: PMC6286569 DOI: 10.1186/s12879-018-3525-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Backgroud Primate erythroparvovirus 1 (B19V) is a globally ubiquitous DNA virus. Infection results in a variety of clinical presentations including erythema infectiosum in children and arthralgia in adults. There is limited understanding of the seroprevalence of B19V antibodies in the Australian population and therefore of population-wide immunity. This study aimed to investigate the seroprevalence of B19V antibodies in an Australian blood donor cohort, along with a cohort from a paediatric population. Methods Age/sex/geographical location stratified plasma samples (n = 2221) were collected from Australian blood donors. Samples were also sourced from paediatric patients (n = 223) in Queensland. All samples were screened for B19V IgG using an indirect- enzyme-linked immunosorbent assay. Results Overall, 57.90% (95% CI: 55.94%–59.85%) of samples tested positive for B19V IgG, with the national age-standardized seroprevalence of B19V exposure in Australians aged 0 to 79 years estimated to be 54.41%. Increasing age (p < 0.001) and state of residence (p < 0.001) were independently associated with B19V exposure in blood donors, with the highest rates in donors from Tasmania (71.88%, 95% CI: 66.95%–76.80%) and donors aged 65–80 years (78.41%, 95% CI: 74.11%–82.71%). A seroprevalence of 52.04% (95% CI: 47.92%–56.15%) was reported in women of child-bearing age (16 to 44 years). Sex was not associated with exposure in blood donors (p = 0.547) or in children (p = 0.261) screened in this study. Conclusions This study highlights a clear association between B19V exposure and increasing age, with over half of the Australian population likely to be immune to this virus. Differences in seroprevalence were also observed in donors residing in different states, with a higher prevalence reported in those from the southern states. The finding is consistent with previous studies, with higher rates observed in countries with a higher latitude. This study provides much needed insight into the prevalence of B19V exposure in the Australian population, which has implications for public health as well as transfusion and transplantation safety in Australia.
Collapse
Affiliation(s)
- Helen M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia. .,School of Biomedical Sciences, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Elise C Gorman
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia.,School of Biomedical Sciences, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Veronica C Hoad
- Clinical Services and Research, Australian Red Cross Blood Service, Perth, Western Australia, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sarah Tozer
- Queensland Paediatric Infectious Diseases Laboratory, Centre for Children's Health Research, Brisbane, Queensland, Australia
| | - R L P Flower
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia.,School of Biomedical Sciences, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Fan Y, Sanyal S, Bruzzone R. Breaking Bad: How Viruses Subvert the Cell Cycle. Front Cell Infect Microbiol 2018; 8:396. [PMID: 30510918 PMCID: PMC6252338 DOI: 10.3389/fcimb.2018.00396] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023] Open
Abstract
Interactions between the host and viruses during the course of their co-evolution have not only shaped cellular function and the immune system, but also the counter measures employed by viruses. Relatively small genomes and high replication rates allow viruses to accumulate mutations and continuously present the host with new challenges. It is therefore, no surprise that they either escape detection or modulate host physiology, often by redirecting normal cellular pathways to their own advantage. Viruses utilize a diverse array of strategies and molecular targets to subvert host cellular processes, while evading detection. These include cell-cycle regulation, major histocompatibility complex-restricted antigen presentation, intracellular protein transport, apoptosis, cytokine-mediated signaling, and humoral immune responses. Moreover, viruses routinely manipulate the host cell cycle to create a favorable environment for replication, largely by deregulating cell cycle checkpoints. This review focuses on our current understanding of the molecular aspects of cell cycle regulation that are often targeted by viruses. Further study of their interactions should provide fundamental insights into cell cycle regulation and improve our ability to exploit these viruses.
Collapse
Affiliation(s)
- Ying Fan
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| |
Collapse
|
23
|
Ganaie SS, Qiu J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front Cell Infect Microbiol 2018; 8:166. [PMID: 29922597 PMCID: PMC5996831 DOI: 10.3389/fcimb.2018.00166] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022] Open
Abstract
Parvovirus B19 (B19V) is pathogenic to humans and causes bone marrow failure diseases and various other inflammatory disorders. B19V infection exhibits high tropism for human erythroid progenitor cells (EPCs) in the bone marrow and fetal liver. The exclusive restriction of B19V replication to erythroid lineage cells is partly due to the expression of receptor and co-receptor(s) on the cell surface of human EPCs and partly depends on the intracellular factors essential for virus replication. We first summarize the latest developments in the viral entry process and the host cellular factors or pathways critical for B19V replication. We discuss the role of hypoxia, erythropoietin signaling and STAT5 activation in the virus replication. The B19V infection-induced DNA damage response (DDR) and cell cycle arrest at late S-phase are two key events that promote B19V replication. Lately, the virus infection causes G2 arrest, followed by the extensive cell death of EPCs that leads to anemia. We provide the current understanding of how B19V exploits the cellular resources and manipulate pathways for efficient virus replication. B19V encodes a single precursor mRNA (pre-mRNA), which undergoes alternate splicing and alternative polyadenylation to generate at least 12 different species of mRNA transcripts. The post-transcriptional processing of B19V pre-mRNA is tightly regulated through cis-acting elements and trans-acting factors flanking the splice donor or acceptor sites. Overall, in this review, we focus on the recent advances in the molecular virology and pathogenesis of B19V infection.
Collapse
Affiliation(s)
- Safder S Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
24
|
Yang X, Wang HL, Liang HW, Liang L, Wen DY, Zhang R, Chen G, Wei DM. Clinical significance of microRNA-449a in hepatocellular carcinoma with microarray data mining together with initial bioinformatics analysis. Exp Ther Med 2018; 15:3247-3258. [PMID: 29545842 PMCID: PMC5841030 DOI: 10.3892/etm.2018.5836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has demonstrated that microRNA (miR)-449a expression is reduced in various types of tumors and that it serves as a tumor suppressor. However, the molecular mechanism of miR-449a in hepatocellular carcinoma (HCC) has not been thoroughly elucidated and is disputed. Therefore, the aim of the present work was to systematically review the current literature and to utilize the public Gene Expression Omnibus database to determine the role of miR-449a and its significance in HCC. A total of eight original papers and seven microarrays were included in the present study. Based on the evidence, miR-449a was reduced in HCC. miR-449a is likely involved in various signaling pathways and is targeted to multiple mRNA as part of its function in HCC. In addition, a preliminary bioinformatic analysis was conducted for miR-449a to investigate the novel potential pathways that miR-449a may participate in regarding HCC.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Han-Lin Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Dong-Yue Wen
- Department of Ultrasonography, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
25
|
Janovitz T, Wong S, Young NS, Oliveira T, Falck-Pedersen E. Parvovirus B19 integration into human CD36+ erythroid progenitor cells. Virology 2017; 511:40-48. [PMID: 28806616 DOI: 10.1016/j.virol.2017.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022]
Abstract
The pathogenic autonomous human parvovirus B19 (B19V) productively infects erythroid progenitor cells (EPCs). Functional similarities between B19V nonstructural protein (NS1), a DNA binding endonuclease, and the Rep proteins of Adeno-Associated Virus (AAV) led us to hypothesize that NS1 may facilitate targeted nicking of the human genome and B19 vDNA integration. We adapted an integration capture sequencing protocol (IC-Seq) to screen B19V infected human CD36+ EPCs for viral integrants, and discovered 40,000 unique B19V integration events distributed throughout the human genome. Computational analysis of integration patterns revealed strong correlations with gene intronic regions, H3K9me3 sites, and the identification of 41 base pair consensus sequence with an octanucleotide core motif. The octanucleotide core has homology to a single region of B19V, adjacent to the P6 promoter TATA box. We present the first direct evidence that B19V infection of erythroid progenitor cells disrupts the human genome and facilitates viral DNA integration.
Collapse
Affiliation(s)
- Tyler Janovitz
- Tri-Institutional MD-PhD Program, USA; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Erik Falck-Pedersen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
26
|
Ganaie SS, Zou W, Xu P, Deng X, Kleiboeker S, Qiu J. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex. PLoS Pathog 2017; 13:e1006370. [PMID: 28459842 PMCID: PMC5426800 DOI: 10.1371/journal.ppat.1006370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. Human parvovirus B19 (B19V) infection can cause severe hematological disorders, a direct consequence of the death of infected human erythroid progenitor cells (EPCs) of the bone marrow and fetal liver. B19V replicates autonomously in human EPCs, and the erythropoietin (EPO) and EPO-receptor (EPO-R) signaling is required for productive B19V replication. The Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) signaling plays a key role in B19V replication. Here, we identify that phosphorylated STAT5 directly interacts with B19V replication origins and with minichromosome maintenance (MCM) complex in human EPCs, and that it functions as a scaffold protein to bring MCM to the viral replication origins and thus plays a key role in B19V DNA replication. Importantly, pimozide, a STAT5 phosphorylation-specific inhibitor and an FDA-approved drug, abolishes B19V replication in ex vivo expanded human EPCs; therefore, pimozide has the potential to be used as an antiviral drug for treatment of B19V-caused hematological disorders.
Collapse
Affiliation(s)
- Safder S. Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Wei Zou
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Peng Xu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Xuefeng Deng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Steve Kleiboeker
- Department of Research and Development, Viracor Eurofins Laboratories, Lee’s Summit, Missouri, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhang Y, Zhu X, Zhu X, Wu Y, Liu Y, Yao B, Huang Z. MiR-613 suppresses retinoblastoma cell proliferation, invasion, and tumor formation by targeting E2F5. Tumour Biol 2017; 39:1010428317691674. [PMID: 28351331 DOI: 10.1177/1010428317691674] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is a common intraocular malignancy that occurs during childhood. MicroRNAs play critical roles in the regulation of retinoblastoma initiation and progression, and aberrant expression of miR-613 had been reported in various types of cancer. However, the role and mechanism of its function in retinoblastoma are still unclear. In this study, we found that miR-613 was downregulated in retinoblastoma tissues and cell lines. Overexpression of miR-613 suppressed retinoblastoma cell proliferation, migration, and invasion and induced cell cycle arrest in vitro. Additionally, overexpressed miR-613 also inhibited tumor formation of retinoblastoma cells in vivo. We further identified E2F5 as a direct target of miR-613. Reintroduction of E2F5 without 3'-untranslated region reversed the inhibitory effects of miR-613 on cell proliferation and invasion. Our data collectively indicate that miR-613 functions as a tumor suppressor in retinoblastoma through downregulating E2F5, supporting the targeting of the novel miR-613/E2F5 axis as a potentially effective therapeutic approach for retinoblastoma.
Collapse
Affiliation(s)
- Yiting Zhang
- 1 Department of Ophthalmology, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| | - Xinyue Zhu
- 1 Department of Ophthalmology, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| | - Xiaomin Zhu
- 2 Department of Ophthalmology, Jinling Hospital, Nanjing, China
| | - Yan Wu
- 2 Department of Ophthalmology, Jinling Hospital, Nanjing, China
| | - Yajun Liu
- 1 Department of Ophthalmology, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| | - Borui Yao
- 1 Department of Ophthalmology, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| | - Zhenping Huang
- 1 Department of Ophthalmology, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| |
Collapse
|
28
|
Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog 2017; 13:e1006266. [PMID: 28264028 PMCID: PMC5354443 DOI: 10.1371/journal.ppat.1006266] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/16/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Human parvovirus B19 (B19V) infection of primary human erythroid progenitor cells (EPCs) arrests infected cells at both late S-phase and G2-phase, which contain 4N DNA. B19V infection induces a DNA damage response (DDR) that facilitates viral DNA replication but is dispensable for cell cycle arrest at G2-phase; however, a putative C-terminal transactivation domain (TAD2) within NS1 is responsible for G2-phase arrest. To fully understand the mechanism underlying B19V NS1-induced G2-phase arrest, we established two doxycycline-inducible B19V-permissive UT7/Epo-S1 cell lines that express NS1 or NS1mTAD2, and examined the function of the TAD2 domain during G2-phase arrest. The results confirm that the NS1 TAD2 domain plays a pivotal role in NS1-induced G2-phase arrest. Mechanistically, NS1 transactivated cellular gene expression through the TAD2 domain, which was itself responsible for ATR (ataxia-telangiectasia mutated and Rad3-related) activation. Activated ATR phosphorylated CDC25C at serine 216, which in turn inactivated the cyclin B/CDK1 complex without affecting nuclear import of the complex. Importantly, we found that the ATR-CHK1-CDC25C-CDK1 pathway was activated during B19V infection of EPCs, and that ATR activation played an important role in B19V infection-induced G2-phase arrest.
Collapse
|
29
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Yu Y, Liao L, Shao B, Su X, Shuai Y, Wang H, Shang F, Zhou Z, Yang D, Jin Y. Knockdown of MicroRNA Let-7a Improves the Functionality of Bone Marrow-Derived Mesenchymal Stem Cells in Immunotherapy. Mol Ther 2016; 25:480-493. [PMID: 28153095 DOI: 10.1016/j.ymthe.2016.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/03/2016] [Accepted: 11/27/2016] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have been recently used in clinical treatment of inflammatory diseases. Practical strategies improving the immunosuppressive property of MSCs are urgently needed for MSC immunotherapy. In this study, we aimed to develop a microRNA-based strategy to improve MSC immunotherapy. Bioinformatic analysis revealed that let-7a targeted the 3' UTR of mRNA of Fas and FasL, both of which are essential for MSCs to induce T cell apoptosis. Knockdown of let-7a by specific inhibitor doubled Fas and Fas ligand (FasL) protein levels in MSCs. Because Fas attracts T cell migration and FasL induces T cell apoptosis, knockdown of let-7a significantly promoted MSC-induced T cell migration and apoptosis in vitro and in vivo. Importantly, MSCs knocked down of let-7a were more efficient to reduce the mortality, prevent the weight loss, suppress the inflammation reaction, and alleviate the tissue lesion of experimental colitis and graft-versus-host disease (GVHD) mouse models. In conclusion, knockdown of let-7a significantly improved the therapeutic effect of MSC cytotherapy on inflammatory bowel diseases and GVHD. With high safety and convenience, knockdown of let-7a is a potential strategy to improve MSC therapy for inflammatory diseases in clinic.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Li Liao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bingyi Shao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xiaoxia Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yi Shuai
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Han Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Stomatology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Fengqing Shang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhifei Zhou
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Stomatology, General Hospital of Tibetan Military Region, Lasa, Tibet 850000, China
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
31
|
Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC. DNA Binding and Cleavage by the Human Parvovirus B19 NS1 Nuclease Domain. Biochemistry 2016; 55:6577-6593. [PMID: 27809499 DOI: 10.1021/acs.biochem.6b00534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Infection with human parvovirus B19 (B19V) has been associated with a myriad of illnesses, including erythema infectiosum (Fifth disease), hydrops fetalis, arthropathy, hepatitis, and cardiomyopathy, and also possibly the triggering of any number of different autoimmune diseases. B19V NS1 is a multidomain protein that plays a critical role in viral replication, with predicted nuclease, helicase, and gene transactivation activities. Herein, we investigate the biochemical activities of the nuclease domain (residues 2-176) of B19V NS1 (NS1-nuc) in sequence-specific DNA binding of the viral origin of replication sequences, as well as those of promoter sequences, including the viral p6 and the human p21, TNFα, and IL-6 promoters previously identified in NS1-dependent transcriptional transactivation. NS1-nuc was found to bind with high cooperativity and with multiple (five to seven) copies to the NS1 binding elements (NSBE) found in the viral origin of replication and the overlapping viral p6 promoter DNA sequence. NS1-nuc was also found to bind cooperatively with at least three copies to the GC-rich Sp1 binding sites of the human p21 gene promoter. Only weak or nonspecific binding of NS1-nuc to the segments of the TNFα and IL-6 promoters was found. Cleavage of DNA by NS1-nuc occurred at the expected viral sequence (the terminal resolution site), but only in single-stranded DNA, and NS1-nuc was found to covalently attach to the 5' end of the DNA at the cleavage site. Off-target cleavage by NS1-nuc was also identified.
Collapse
Affiliation(s)
- Jonathan L Sanchez
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Zachary Romero
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States
| | - Angelica Quinones
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States.,BUILDing SCHOLARS Program, University of Texas at El Paso , El Paso, Texas 79968, United States
| | - Kristiane R Torgeson
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
32
|
Johar A, Sarmiento-Monroy JC, Rojas-Villarraga A, Silva-Lara MF, Patel HR, Mantilla RD, Velez JI, Schulte KM, Mastronardi C, Arcos-Burgos M, Anaya JM. Definition of mutations in polyautoimmunity. J Autoimmun 2016; 72:65-72. [PMID: 27209085 DOI: 10.1016/j.jaut.2016.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Familial autoimmunity and polyautoimmunity represent extreme phenotypes ideal for identifying major genomic variants contributing to autoimmunity. Whole exome sequencing (WES) and linkage analysis are well suited for this purpose due to its strong resolution upon familial segregation patterns of functional protein coding and splice variants. The primary objective of this study was to identify potentially autoimmune causative variants using WES data from extreme pedigrees segregating polyautoimmunity phenotypes. METHODS DNA of 47 individuals across 10 extreme pedigrees, ascertained from probands affected with polyautoimmunity and familial autoimmunity, were selected for WES. Variant calls were obtained through Genome Analysis Toolkit. Filtration and prioritization framework to identify mutation(s) were applied, and later implemented for genetic linkage analysis. Sanger sequencing corroborated variants with significant linkage. RESULTS Novel and mostly rare variants harbored in SRA1, MLL4, ABCB8, DHX34 and PLAUR showed significant linkage (LOD scores are >3.0). The strongest signal was in SRA1, with a LOD score of 5.48. Network analyses indicated that SRA1, PLAUR and ABCB8 contribute to regulation of apoptotic processes. CONCLUSIONS Novel and rare variants in genetic linkage with polyautoimmunity were identified throughout WES. Genes harboring these variants might be major players of autoimmunity.
Collapse
Affiliation(s)
- Angad Johar
- Genomics and Predictive Medicine, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, ACT, Australia
| | - Juan C Sarmiento-Monroy
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Adriana Rojas-Villarraga
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Maria F Silva-Lara
- Genomics and Predictive Medicine, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, ACT, Australia
| | - Hardip R Patel
- Genome Discovery Unit, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, ACT, Australia
| | - Ruben D Mantilla
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Jorge I Velez
- Genomics and Predictive Medicine, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, ACT, Australia
| | - Klaus-Martin Schulte
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Claudio Mastronardi
- Genomics and Predictive Medicine, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, ACT, Australia
| | - Mauricio Arcos-Burgos
- Genomics and Predictive Medicine, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, ACT, Australia; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| |
Collapse
|
33
|
Jain A, Jain P, Prakash S, Kumar A, Khan DN, Seth A, Gupta S, Kant R. Genotype 3b of human parvovirus B19 detected from hospitalized children with solid malignancies in a North Indian tertiary care hospital. J Med Virol 2016; 88:1922-9. [PMID: 27116539 DOI: 10.1002/jmv.24560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 11/07/2022]
Abstract
Human parvovirus B19 (B19V) infection is known to cause serious consequences in immuno-compromized individuals. The present cross sectional study was designed to estimate the prevalence and genotype distribution of B19V in children receiving chemotherapy for solid malignancies at a tertiary care hospital in North India during October 2013 to May 2015. Serum samples from all the patients were tested for anti-B19V IgM and IgG antibodies and for B19V-DNA as soon as received. Samples testing positive for B19V-DNA were subjected to viral load estimation and to genotype determination by sequencing. Total 96 children were enrolled of which 9 (9.3%), 32 (33.3%), and 25 (26%) tested positive for anti-B19V IgM, anti-B19V IgG, and B19V-DNA, respectively. The viral load of B19V-DNA positive children ranged from 5.5 × 10(2) to 3.5 × 10(12) copies/ml. Accordingly children were divided into three groups: group I, with acute infection (n = 25); group II, previously exposed (n = 27), and group III, negative for B19V infection or with inappropriate antibody response (n = 44). B19V positivity was significantly associated (P-value < 0.0001) with a history of blood transfusion in the past 6 months, severe anemia (hemoglobin levels <6 gm%) and thrombocytopenia (platelets <150,000/cu.mm.). Sequence analysis of 21 of 25 DNA positive samples showed that all of them were Genotype 3b that clustered into three groups. All the sequences within each cluster were identical. The nucleotide identity of the sequences suggests a nosocomial outbreak of B19V during the study period. Children on chemotherapy for solid tumors should be routinely screened for B19V infection by both serology and PCR. J. Med. Virol. 88:1922-1929, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amita Jain
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Parul Jain
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Shantanu Prakash
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Archana Kumar
- Department of Pediatrics, King George's Medical University, Lucknow, India
| | - Danish N Khan
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Akansha Seth
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Shikha Gupta
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Ravi Kant
- Vice Chancellor, King George's Medical University, Lucknow, India
| |
Collapse
|
34
|
Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells. PLoS One 2016; 11:e0148547. [PMID: 26845771 PMCID: PMC4742074 DOI: 10.1371/journal.pone.0148547] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/20/2016] [Indexed: 01/30/2023] Open
Abstract
The pathogenic Parvovirus B19 (B19V) is characterized by a strict adaptation to erythroid progenitor cells (EPCs), a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity. EPCs at later stages were permissive, with highest levels of viral replicative activity at day 9 (+3.0 Log from 2 to 48 hpi) and lower levels at day 18 (+1.5 Log from 2 to 48 hpi). B19V DNA increment was in accordance with the percentage of cells positive to flow-FISH assay (41.4% at day 9, 1.1% at day 18). Quantitation of total RNA indicated a close association of genome replication and transcription with viral RNA accumulation within infected cells related to viral DNA increase during the course of infection. Analysis of the different classes of mRNAs revealed two distinct pattern of genome expression profile with a fine regulation in the frequency utilization of RNA processing signals: an early phase, when cleavage at the proximal site leading to a higher relative production of mRNA for NS protein, and a late phase, when cleavage at the distal site was more frequent leading to higher relative abundance of mRNA for VP and 11 kDA proteins. Infectious virus was released from cells at day 6–15, but not at day 18. Our results, providing a detailed description of B19V replication and expression profile in differentiating EPCs, highlight the very tight adaptation of B19V to a specific cellular target defined both by its erythroid lineage and its differentiation stage.
Collapse
|
35
|
Duedu KO, Sagoe KWC, Ayeh-Kumi PF, Affrim RB, Adiku T. The effects of co-infection with human parvovirus B19 and Plasmodium falciparum on type and degree of anaemia in Ghanaian children. Asian Pac J Trop Biomed 2015; 3:129-39. [PMID: 23593592 DOI: 10.1016/s2221-1691(13)60037-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/12/2012] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To determin the extent to which parvovirus B19 (B19V) and co-infection of B19V and malaria contribute to risk of anaemia in children. METHODS B19V DNA and malaria parasites were screened for 234 children at the PML Children's Hospital in Accra. The role of B19V and co-infection with B19V and malaria in anaemia was evaluated by analysing full blood cell counts, malaria and B19V DNA results from these children. RESULTS The prevalence of B19V, malaria and co-infection with B19V and malaria was 4.7%, 41.9% and 2.6%, respectively. Malaria posed a greater risk in the development of mild anaemia compared to severe anaemia (OR=5.28 vrs 3.15) whereas B19V posed a higher risk in the development of severe anaemia compared to mild anaemia (OR=4.07 vrs 1.00) from a non-anaemic child. Persons with co-infection with B19V and malaria had 2.23 times the risk (95% CI=0.40-12.54) of developing severe anaemia should they already have a mild anaemia. The degree of anaemia was about three times affected by co-infection (Pillai's trace=0.551, P=0.001) as was affected by malaria alone (Pillai's trace=0.185, P=0.001). B19V alone did not significantly affect the development of anaemia in a non-anaemic child. Microcytic anaemia was associated with B19V and co-infection with B19V and malaria more than normocytic normochromic anaemia. CONCLUSIONS B19V was associated with malaria in cases of severe anaemia. The association posed a significant risk for exacerbation of anaemia in mild anaemic children. B19V and co-infection with B19V and malaria may be associated with microcytic anaemia rather than normocytic normochromic anaemia as seen in cases of B19V infection among persons with red cell abnormalities.
Collapse
Affiliation(s)
- Kwabena Obeng Duedu
- Department of Microbiology, University of Ghana Medical School, Korle-Bu, Accra, Ghana ; Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|
36
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
37
|
Luo Y, Qiu J. Human parvovirus B19: a mechanistic overview of infection and DNA replication. Future Virol 2015; 10:155-167. [PMID: 26097496 DOI: 10.2217/fvl.14.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human parvovirus B19 (B19V) is a human pathogen that belongs to genus Erythroparvovirus of the Parvoviridae family, which is composed of a group of small DNA viruses with a linear single-stranded DNA genome. B19V mainly infects human erythroid progenitor cells and causes mild to severe hematological disorders in patients. However, recent clinical studies indicate that B19V also infects nonerythroid lineage cells, such as myocardial endothelial cells, and may be associated with other disease outcomes. Several cell culture systems, including permissive and semipermissive erythroid lineage cells, nonpermissive human embryonic kidney 293 cells and recently reported myocardial endothelial cells, have been used to study the mechanisms underlying B19V infection and B19V DNA replication. This review aims to summarize recent advances in B19V studies with a focus on the mechanisms of B19V tropism specific to different cell types and the cellular pathways involved in B19V DNA replication including cellular signaling transduction and cell cycle arrest.
Collapse
Affiliation(s)
- Yong Luo
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
38
|
Sharada Raju R, Nalini Vinayak K, Madhusudan Bapat V, Preeti Balkisanji A, Shaila Chandrakant P. Acute human parvovirus b19 infection: cytologic diagnosis. Indian J Hematol Blood Transfus 2014; 30:133-4. [PMID: 25332559 DOI: 10.1007/s12288-013-0287-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022] Open
Abstract
Human parvovirus B19 is highly tropic to human bone marrow and replicates only in erythroid progenitor cells. It is causative agent of transient aplastic crisis in patients with chronic haemolytic anemia. In immunocompromised patients persistent parvovirus B19 infection may develop and it manifests as pure red cell aplasia and chronic anaemia. Bone marrow is characterised morphologically by giant pronormoblast stage with little or no further maturation. We encountered a case of 6 year old HIV positive male child presented with pure red cell aplasia due to parvovirus B19 infection. Bone marrow aspiration cytology revealed giant pronormoblast with prominent intranuclear inclusions led to suspicion of parvovirus B19 infection which was confirmed by DNA PCR. This case is presented to report classical morphological features of parvovirus B19 infection rarely seen on bone marrow examination should warrant the suspicion of human parvovirus B19 infection in the setting of HIV positive patient with repeated transfusions and confirmation should be done by PCR.
Collapse
Affiliation(s)
- Rane Sharada Raju
- Department of Pathology, Byramjee Jeejeebhoy Government Medical College, A-7, Devi chambers, 23/5 A, Bund Garden Road, Pune, 411001 Maharashtra India
| | - Kadgi Nalini Vinayak
- Department of Pathology, Byramjee Jeejeebhoy Government Medical College, B/403, Nancy Lake Homes, Opposite Bharati Vidyapeeth, Pune-Satara Road, Katraj, Pune, 411046 Maharashtra India
| | - Vishnuprasad Madhusudan Bapat
- Department of Pathology, Private Consultant Histopathologist, Vidish, Opposite Kamala Nehru Park, Erandwane, Pune, Maharashtra India
| | - Agrawal Preeti Balkisanji
- Department of Pathology, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra India ; 174 A, Road No P, Bhupalpura, Udaipur, 313001 Rajasthan India
| | | |
Collapse
|
39
|
Karwaciak I, Pulaski L, Ratajewski M. Regulation of the human ABCB10 gene by E2F transcription factors. Genomics 2014; 104:520-9. [PMID: 25220178 DOI: 10.1016/j.ygeno.2014.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 12/12/2022]
Abstract
Here, we report for the first time a functional study of transcriptional regulation of the human ABCB10 gene. We cloned a functional promoter sequence, and then showed that E2F2, E2F3 and E2F4 can activate transcription from the ABCB10 promoter. We identified sites responsible for this activation and confirmed direct binding of E2F4 to these sites in EMSA and ChIP assays. Finally, by silencing the expression of E2F factors we demonstrated their importance in maintenance of the basal ABCB10 expression. This study provides important atypical examples of E2F4 being a transcriptional activator rather than repressor as well as directly binding to a promoter and regulating it through an alternative and classical DNA consensus response element sequences. It also provides a mechanistic link between E2F4 and ABCB10, both of which are involved in the same physiological phenomena: erythroid lineage differentiation and maturation as well as protection against cardiomyocyte cell death.
Collapse
Affiliation(s)
- Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Poland
| | - Lukasz Pulaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Poland
| | - Marcin Ratajewski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Poland.
| |
Collapse
|
40
|
Shiozaki A, Nako Y, Ichikawa D, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Marunaka Y, Otsuji E. Role of the Na +/K +/2Cl - cotransporter NKCC1 in cell cycle progression in human esophageal squamous cell carcinoma. World J Gastroenterol 2014; 20:6844-6859. [PMID: 24944475 PMCID: PMC4051924 DOI: 10.3748/wjg.v20.i22.6844] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/17/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of Na+/K+/2Cl- cotransporter 1 (NKCC1) in the regulation of genes involved in cell cycle progression and the clinicopathological significance of its expression in esophageal squamous cell carcinoma (ESCC).
METHODS: An immunohistochemical analysis was performed on 68 primary tumor samples obtained from ESCC patients that underwent esophagectomy. NKCC1 expression in human ESCC cell lines was analyzed by Western blotting. Knockdown experiments were conducted using NKCC1 small interfering RNA, and the effects on cell cycle progression were analyzed. The gene expression profiles of cells were analyzed by microarray analysis.
RESULTS: Immunohistochemical staining showed that NKCC1 was primarily found in the cytoplasm of carcinoma cells and that its expression was related to the histological degree of differentiation of SCC. NKCC1 was highly expressed in KYSE170 cells. Depletion of NKCC1 in these cells inhibited cell proliferation via G2/M phase arrest. Microarray analysis identified 2527 genes with altered expression levels in NKCC1depleted KYSE170. Pathway analysis showed that the top-ranked canonical pathway was the G2/M DNA damage checkpoint regulation pathway, which involves MAD2L1, DTL, BLM, CDC20, BRCA1, and E2F5.
CONCLUSION: These results suggest that the expression of NKCC1 in ESCC may affect the G2/M checkpoint and may be related to the degree of histological differentiation of SCCs. We have provided a deeper understanding of the role of NKCC1 as a mediator and/or a biomarker in ESCC.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Cell Line, Tumor
- Cell Proliferation
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Esophageal Squamous Cell Carcinoma
- Female
- G2 Phase Cell Cycle Checkpoints/drug effects
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- RNA Interference
- Signal Transduction
- Sodium Potassium Chloride Symporter Inhibitors/pharmacology
- Solute Carrier Family 12, Member 2/drug effects
- Solute Carrier Family 12, Member 2/genetics
- Solute Carrier Family 12, Member 2/metabolism
- Transfection
Collapse
|
41
|
Zhang WP, Yang H, Chen H, Zhu HR, Lei Q, Song YH, Dai ZM, Sun JS, Jiang LL, Nie ZG. Gene expression analysis of potential genes and pathways involved in the pathogenic mechanisms of parvovirus B19 in human colorectal cancer. Oncol Lett 2014; 8:523-532. [PMID: 25013465 PMCID: PMC4081382 DOI: 10.3892/ol.2014.2151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 04/10/2014] [Indexed: 11/24/2022] Open
Abstract
In order to investigate the pathogenic mechanisms of parvovirus B19 in human colorectal cancer, plasmids containing the VP1 or VP2 viral capsid proteins or the NS1 non-structural proteins of parvovirus B19 were constructed and transfected into primary human colorectal epithelial cells and LoVo cells. Differential gene expression was detected using a human genome expression array. Functional gene annotation analyses were performed using Database for Annotation, Visualization and Integrated Discovery v6.7 software. Gene ontology (GO) analyses revealed that VP1-related functions included the immune response, immune system process, defense response and the response to stimulus, while NS1-associated functions were found to include organelle fission, nuclear division, mitosis, the M-phase of the mitotic cell cycle, the mitotic cell cycle, M-phase, cell cycle phase, cell cycle process and cell division. Pathway expression analysis revealed that VP1-associated pathways included cell adhesion molecules, antigen processing and presentation, cytokines and the inflammatory response. Moreover, NS1-associated pathways included the cell cycle, pathways in cancer, colorectal cancer, the wnt signaling pathway and focal adhesion. Among the differential genes detected in the present study, 12 genes were found to participate in general cancer pathways and six genes were observed to participate in colorectal cancer pathways. NS1 is a key molecule in the pathogenic mechanism of parvovirus B19 in colorectal cancer. Several GO categories, pathways and genes were selected and may be the key targets through which parvovirus B19 participates in colorectal cancer pathogenesis.
Collapse
Affiliation(s)
- Wei-Ping Zhang
- Department of Gastroenterology and Hepatology, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Hua Yang
- Department of Outpatients, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Hong Chen
- Department of Blood Transfusion, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Hai-Rong Zhu
- Department of Medical Administration, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Quan Lei
- Department of Medical Administration, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Yun-Hong Song
- Department of Outpatients, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Zhong-Ming Dai
- Department of Gastroenterology and Hepatology, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Jing-Shan Sun
- Department of Gastroenterology and Hepatology, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Li-Li Jiang
- Department of Gastroenterology and Hepatology, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Zhan-Guo Nie
- Department of Gastroenterology and Hepatology, Urumqi Military General Hospital, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
42
|
Schleimann MH, Hoberg S, Solhøj Hansen A, Bundgaard B, Witt CT, Kofod-Olsen E, Höllsberg P. The DR6 protein from human herpesvirus-6B induces p53-independent cell cycle arrest in G2/M. Virology 2014; 452-453:254-63. [PMID: 24606703 DOI: 10.1016/j.virol.2014.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/09/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022]
Abstract
HHV-6B infection inhibits cell proliferation in G2/M, but no protein has so far been recognized to exert this function. Here we identify the protein product of direct repeat 6, DR6, as an inhibitor of G2/M cell-cycle progression. Transfection of DR6 reduced the total number of cells compared with mock-transfected cells. Lentiviral transduction of DR6 inhibited host cell DNA synthesis in a p53-independent manner, and this inhibition was DR6 dose-dependent. A deletion of 66 amino acids from the N-terminal part of DR6 prevented efficient nuclear translocation and the ability to inhibit DNA synthesis. DR6-induced accumulation of cells in G2/M was accompanied by an enhanced expression of cyclin B1 that accumulated predominantly in the cytoplasm. Pull-down of cyclin B1 brought down pCdk1 with the inactivating phosphorylation at Tyr15. Together, DR6 delays cell cycle with an accumulation of cells in G2/M and thus might be involved in HHV-6B-induced cell-cycle arrest.
Collapse
Affiliation(s)
| | - Søren Hoberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | | | - Per Höllsberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
43
|
Koury MJ. Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood Rev 2014; 28:49-66. [PMID: 24560123 DOI: 10.1016/j.blre.2014.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Erythropoiesis, the bone marrow production of erythrocytes by the proliferation and differentiation of hematopoietic cells, replaces the daily loss of 1% of circulating erythrocytes that are senescent. This daily output increases dramatically with hemolysis or hemorrhage. When erythrocyte production rate of erythrocytes is less than the rate of loss, chronic anemia develops. Normal erythropoiesis and specific abnormalities of erythropoiesis that cause chronic anemia are considered during three periods of differentiation: a) multilineage and pre-erythropoietin-dependent hematopoietic progenitors, b) erythropoietin-dependent progenitor cells, and c) terminally differentiating erythroblasts. These erythropoietic abnormalities are discussed in terms of their pathophysiological effects on the bone marrow cells and the resultant changes that can be detected in the peripheral blood using a clinical laboratory test, the complete blood count.
Collapse
Affiliation(s)
- Mark J Koury
- Division of Hematology/Oncology, Vanderbilt University and Veterans Affairs Tennessee Valley Healthcare System, 777 Preston Research Building, Nashville, TN 37232, USA.
| |
Collapse
|
44
|
Adeyemi RO, Pintel DJ. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells. PLoS Pathog 2014; 10:e1003891. [PMID: 24415942 PMCID: PMC3887112 DOI: 10.1371/journal.ppat.1003891] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/04/2013] [Indexed: 12/14/2022] Open
Abstract
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. DNA viruses induce cellular DNA damage responses that can present a block to infection that must be overcome, or alternatively, can be utilized to viral advantage. Parvoviruses, the only known viruses of vertebrates that contain single-stranded linear DNA genomes, induce a robust DNA damage response (DDR) that features a cell cycle arrest that facilitates their replication. We show that the autonomous parvovirus MVM-induced cell cycle arrest is caused by a novel two-step mechanism that ensures a pseudo S phase, pre-mitotic, nuclear environment for sustained viral replication. A feature of this arrest is virally-induced depletion of the critical cell cycle regulator cyclin B1. Parvoviruses are important infectious agents that infect many vertebrate species including humans, and our study makes an important contribution to how these viruses achieve productive infection in host cells.
Collapse
Affiliation(s)
- Richard O. Adeyemi
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
| | - David J. Pintel
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
45
|
The human parvovirus B19 non-structural protein 1 N-terminal domain specifically binds to the origin of replication in the viral DNA. Virology 2013; 449:297-303. [PMID: 24418564 DOI: 10.1016/j.virol.2013.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
The non-structural protein 1 (NS1) of human parvovirus B19 plays a critical role in viral DNA replication. Previous studies identified the origin of replication in the viral DNA, which contains four DNA elements, namely NSBE1 to NSBE4, that are required for optimal viral replication (Guan et al., 2009). Here we have demonstrated in vitro that the NS1 N-terminal domain (NS1N) binds to the origin of replication in a sequence-specific, length-dependent manner that requires NSBE1 and NSBE2, while NSBE3 and NSBE4 are dispensable. Mutagenesis analysis has identified nucleotides in NSBE1 and NSBE2 that are critical for NS1N binding. These results suggest that NS1 binds to the NSBE1-NSBE2 region in the origin of replication, while NSBE3 and NSBE4 may provide binding sites for potential cellular factors. Such a specialized nucleoprotein complex may enable NS1 to nick the terminal resolution site and separate DNA strands during replication.
Collapse
|
46
|
Human parvovirus B19 infection causes cell cycle arrest of human erythroid progenitors at late S phase that favors viral DNA replication. J Virol 2013; 87:12766-75. [PMID: 24049177 DOI: 10.1128/jvi.02333-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human parvovirus B19 (B19V) infection has a unique tropism to human erythroid progenitor cells (EPCs) in human bone marrow and the fetal liver. It has been reported that both B19V infection and expression of the large nonstructural protein NS1 arrested EPCs at a cell cycle status with a 4 N DNA content, which was previously claimed to be "G2/M arrest." However, a B19V mutant infectious DNA (M20(mTAD2)) replicated well in B19V-semipermissive UT7/Epo-S1 cells but did not induce G2/M arrest (S. Lou, Y. Luo, F. Cheng, Q. Huang, W. Shen, S. Kleiboeker, J. F. Tisdale, Z. Liu, and J. Qiu, J. Virol. 86:10748-10758, 2012). To further characterize cell cycle arrest during B19V infection of EPCs, we analyzed the cell cycle change using 5-bromo-2'-deoxyuridine (BrdU) pulse-labeling and DAPI (4',6-diamidino-2-phenylindole) staining, which precisely establishes the cell cycle pattern based on both cellular DNA replication and nuclear DNA content. We found that although both B19V NS1 transduction and infection immediately arrested cells at a status of 4 N DNA content, B19V-infected 4 N cells still incorporated BrdU, indicating active DNA synthesis. Notably, the BrdU incorporation was caused neither by viral DNA replication nor by cellular DNA repair that could be initiated by B19V infection-induced cellular DNA damage. Moreover, several S phase regulators were abundantly expressed and colocalized within the B19V replication centers. More importantly, replication of the B19V wild-type infectious DNA, as well as the M20(mTAD2) mutant, arrested cells at S phase. Taken together, our results confirmed that B19V infection triggers late S phase arrest, which presumably provides cellular S phase factors for viral DNA replication.
Collapse
|
47
|
Abstract
Parvovirus B19 is a widespread human pathogenic virus, member of the Erythrovirus genus in the Parvoviridae family. Infection can be associated with an ample range of pathologies and clinical manifestations, whose characteristics and outcomes depend on the interplay between the pathogenetic potential of the virus, its adaptation to different cellular environments, and the physiological and immune status of the infected individuals. The scope of this review is the advances in knowledge on the biological characteristics of the virus and of virus-host relationships; in particular, the interactions of the virus with different cellular environments in terms of tropism and ability to achieve a productive replicative cycle, or, on the contrary, to establish persistence; the consequences of infection in terms of interference with the cell physiology; the process of recognition of the virus by the innate or adaptive immune system, hence the role of the immune system in controlling the infection or in the development of clinical manifestations. Linked to these issues is the continuous effort to develop better diagnostic algorithms and methods and the need for development of prophylactic and therapeutic options for B19V infections.
Collapse
Affiliation(s)
- Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, and Microbiology, S.Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
48
|
Abstract
Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells.
Collapse
Affiliation(s)
- Yong Luo
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
49
|
Lou S, Luo Y, Cheng F, Huang Q, Shen W, Kleiboeker S, Tisdale JF, Liu Z, Qiu J. Human parvovirus B19 DNA replication induces a DNA damage response that is dispensable for cell cycle arrest at phase G2/M. J Virol 2012; 86:10748-10758. [PMID: 22837195 PMCID: PMC3457271 DOI: 10.1128/jvi.01007-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022] Open
Abstract
Human parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitor cells, in which it induces a DNA damage response (DDR). The DDR signaling is mainly mediated by the ATR (ataxia telangiectasia-mutated and Rad3-related) pathway, which promotes replication of the viral genome; however, the exact mechanisms employed by B19V to take advantage of the DDR for virus replication remain unclear. In this study, we focused on the initiators of the DDR and the role of the DDR in cell cycle arrest during B19V infection. We examined the role of individual viral proteins, which were delivered by lentiviruses, in triggering a DDR in ex vivo-expanded primary human erythroid progenitor cells and the role of DNA replication of the B19V double-stranded DNA (dsDNA) genome in a human megakaryoblastoid cell line, UT7/Epo-S1 (S1). All the cells were cultured under hypoxic conditions. The results showed that none of the viral proteins induced phosphorylation of H2AX or replication protein A32 (RPA32), both hallmarks of a DDR. However, replication of the B19V dsDNA genome was capable of inducing the DDR. Moreover, the DDR per se did not arrest the cell cycle at the G(2)/M phase in cells with replicating B19V dsDNA genomes. Instead, the B19V nonstructural 1 (NS1) protein was the key factor in disrupting the cell cycle via a putative transactivation domain operating through a p53-independent pathway. Taken together, the results suggest that the replication of the B19V genome is largely responsible for triggering a DDR, which does not perturb cell cycle progression at G(2)/M significantly, during B19V infection.
Collapse
Affiliation(s)
- Sai Lou
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yong Luo
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Qinfeng Huang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Weiran Shen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - John F. Tisdale
- Molecular and Clinical Hematology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
50
|
Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation. PLoS One 2012; 7:e38530. [PMID: 22808010 PMCID: PMC3396641 DOI: 10.1371/journal.pone.0038530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/07/2012] [Indexed: 01/30/2023] Open
Abstract
Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like progenitors. Overall, 160 EPO/EPOR target transcripts were significantly modulated 2-to 21.8-fold. A unique set of EPO-regulated survival factors included Lyl1, Gas5, Pim3, Pim1, Bim, Trib3 and Serpina 3g. EPO/EPOR-modulated cell cycle mediators included Cdc25a, Btg3, Cyclin-d2, p27-kip1, Cyclin-g2 and CyclinB1-IP-1. EPO regulation of signal transduction factors was also interestingly complex. For example, not only Socs3 plus Socs2 but also Spred2, Spred1 and Eaf1 were EPO-induced as negative-feedback components. Socs2, plus five additional targets, further proved to comprise new EPOR/Jak2/Stat5 response genes (which are important for erythropoiesis during anemia). Among receptors, an atypical TNF-receptor Tnfr-sf13c was up-modulated >5-fold by EPO. Functionally, Tnfr-sf13c ligation proved to both promote proerythroblast survival, and substantially enhance erythroblast formation. The EPOR therefore engages a sophisticated set of transcriptome response circuits, with Tnfr-sf13c deployed as one novel positive regulator of proerythroblast formation.
Collapse
|