1
|
Hua R, Edey LF, O'Dea KP, Howe L, Herbert BR, Cheng W, Zheng X, MacIntyre DA, Bennett PR, Takata M, Johnson MR. CCR2 mediates the adverse effects of LPS in the pregnant mouse. Biol Reprod 2021; 102:445-455. [PMID: 31599921 DOI: 10.1093/biolre/ioz188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
In our earlier work, we found that intrauterine (i.u.) and intraperitoneal (i.p.) injection of LPS (10-μg serotype 0111:B4) induced preterm labor (PTL) with high pup mortality, marked systemic inflammatory response and hypotension. Here, we used both i.u. and i.p. LPS models in pregnant wild-type (wt) and CCR2 knockout (CCR2-/-) mice on E16 to investigate the role played by the CCL2/CCR2 system in the response to LPS. Basally, lower numbers of monocytes and macrophages and higher numbers of neutrophils were found in the myometrium, placenta, and blood of CCR2-/- vs. wt mice. After i.u. LPS, parturition occurred at 14 h in both groups of mice. At 7 h post-injection, 70% of wt pups were dead vs. 10% of CCR2-/- pups, but at delivery 100% of wt and 90% of CCR2-/- pups were dead. Myometrial and placental monocytes and macrophages were generally lower in CCR2-/- mice, but this was less consistent in the circulation, lung, and liver. At 7 h post-LPS, myometrial ERK activation was greater and JNK and p65 lower and the mRNA levels of chemokines were higher and of inflammatory cytokines lower in CCR2-/- vs. wt mice. Pup brain and placental inflammation were similar. Using the IP LPS model, we found that all measures of arterial pressure increased in CCR2-/- but declined in wt mice. These data suggest that the CCL2/CCR2 system plays a critical role in the cardiovascular response to LPS and contributes to pup death but does not influence the onset of inflammation-induced PTL.
Collapse
Affiliation(s)
- Renyi Hua
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK.,The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Lydia F Edey
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Laura Howe
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Weiwei Cheng
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xia Zheng
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK
| | - Philip R Bennett
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK
| | - Masao Takata
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Mark R Johnson
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
2
|
Dietze R, Hammoud MK, Gómez-Serrano M, Unger A, Bieringer T, Finkernagel F, Sokol AM, Nist A, Stiewe T, Reinartz S, Ponath V, Preußer C, von Strandmann EP, Müller-Brüsselbach S, Graumann J, Müller R. Phosphoproteomics identify arachidonic-acid-regulated signal transduction pathways modulating macrophage functions with implications for ovarian cancer. Am J Cancer Res 2021; 11:1377-1395. [PMID: 33391540 PMCID: PMC7738879 DOI: 10.7150/thno.52442] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Arachidonic acid (AA) is a polyunsaturated fatty acid present at high concentrations in the ovarian cancer (OC) microenvironment and associated with a poor clinical outcome. In the present study, we have unraveled a potential link between AA and macrophage functions. Methods: AA-triggered signal transduction was studied in primary monocyte-derived macrophages (MDMs) by phosphoproteomics, transcriptional profiling, measurement of intracellular Ca2+ accumulation and reactive oxygen species production in conjunction with bioinformatic analyses. Functional effects were investigated by actin filament staining, quantification of macropinocytosis and analysis of extracellular vesicle release. Results: We identified the ASK1 - p38δ/α (MAPK13/14) axis as a central constituent of signal transduction pathways triggered by non-metabolized AA. This pathway was induced by the Ca2+-triggered activation of calmodulin kinase II, and to a minor extent by ROS generation in a subset of donors. Activated p38 in turn was linked to a transcriptional stress response associated with a poor relapse-free survival. Consistent with the phosphorylation of the p38 substrate HSP27 and the (de)phosphorylation of multiple regulators of Rho family GTPases, AA impaired actin filament organization and inhibited actin-driven macropinocytosis. AA also affected the phosphorylation of proteins regulating vesicle biogenesis, and consistently, AA enhanced the release of tetraspanin-containing exosome-like vesicles. Finally, we identified phospholipase A2 group 2A (PLA2G2A) as the clinically most relevant enzyme producing extracellular AA, providing further potentially theranostic options. Conclusion: Our results suggest that AA contributes to an unfavorable clinical outcome of OC by impacting the phenotype of tumor-associated macrophages. Besides critical AA-regulated signal transduction proteins identified in the present study, PLA2G2A might represent a potential prognostic tool and therapeutic target to interfere with OC progression.
Collapse
|
3
|
Emerging Roles of 5-Lipoxygenase Phosphorylation in Inflammation and Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2749173. [PMID: 31871543 PMCID: PMC6906800 DOI: 10.1155/2019/2749173] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
5-Lipoxygenase (ALOX5) is an iron-containing and nonheme dioxygenase that catalyzes the peroxidation of polyunsaturated fatty acids such as arachidonic acid. ALOX5 is the rate-limiting enzyme for the biosynthesis of leukotrienes, a family of proinflammatory lipid mediators derived from arachidonic acid. ALOX5 also make great contributions to mediating lipid peroxidation. In recent years, it has been discovered that ALOX5 plays a central role in cell death including apoptosis, pyroptosis, and ferroptosis, a newly discovered type of cell death. According to the previous studies, ALOX5 can regulate cell death in two ways: one is inflammation and the other is lipid peroxidation. Meanwhile, it has been shown that ALOX5 activity is regulated by several factors including protein phosphorylation, ALOX5-interactng protein, redox state, and metal ions such as iron and calcium. In this review, we aim to summarize the knowledge on the emerging roles of ALOX5 protein phosphorylation in the regulation of cell death and inflammation in order to explore a potential target for human diseases.
Collapse
|
4
|
López-Vicario C, Titos E, Walker ME, Alcaraz-Quiles J, Casulleras M, Durán-Güell M, Flores-Costa R, Pérez-Romero N, Forné M, Dalli J, Clària J. Leukocytes from obese individuals exhibit an impaired SPM signature. FASEB J 2019; 33:7072-7083. [DOI: 10.1096/fj.201802587r] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina López-Vicario
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Esther Titos
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
- Department of Biomedical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Mary E. Walker
- Lipid Mediator UnitBiochemical PharmacologyWilliam Harvey Research InstituteBarts and the London School of MedicineQueen Mary University of LondonLondonUnited Kingdom
- Centre for Inflammation and Therapeutic InnovationQueen Mary University of LondonLondonUnited Kingdom
| | - José Alcaraz-Quiles
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Marta Durán-Güell
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | | | - Montserrat Forné
- Gastroenterology DepartmentHospital Universitari Mútua TerrassaTerrassaSpain
| | - Jesmond Dalli
- Lipid Mediator UnitBiochemical PharmacologyWilliam Harvey Research InstituteBarts and the London School of MedicineQueen Mary University of LondonLondonUnited Kingdom
- Centre for Inflammation and Therapeutic InnovationQueen Mary University of LondonLondonUnited Kingdom
| | - Joan Clària
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
- Department of Biomedical SciencesUniversity of BarcelonaBarcelonaSpain
- European Foundation for the Study of Chronic Liver Failure (EF Clif)BarcelonaSpain
| |
Collapse
|
5
|
Kienle K, Lämmermann T. Neutrophil swarming: an essential process of the neutrophil tissue response. Immunol Rev 2017; 273:76-93. [PMID: 27558329 DOI: 10.1111/imr.12458] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophil infiltration into inflamed and infected tissues is a fundamental process of the innate immune response. While neutrophil interactions with the blood vessel wall have been intensely studied over the last decades, neutrophil dynamics beyond the vasculature have for a long time remained poorly investigated. Recent intravital microscopy studies of neutrophil populations directly at the site of tissue damage or microbial invasion have changed our perspective on neutrophil responses within tissues. Swarm-like migration patterns of neutrophils, referred to as 'neutrophil swarming', have been detected in diverse tissues under conditions of sterile inflammation and infection with various pathogens, including bacteria, fungi, and parasites. Current work has begun to unravel the molecular pathways choreographing the sequential phases of highly coordinated chemotaxis followed by neutrophil accumulation and the formation of substantial neutrophil clusters. It is now clear that intercellular communication among neutrophils amplifies their recruitment in a feed-forward manner, which provides them with a level of self-organization during neutrophil swarming. This review will summarize recent developments and current concepts on neutrophil swarming, an important process of the neutrophil tissue response with a critical role in maintaining the balance between host protection and inflammation-driven tissue destruction.
Collapse
Affiliation(s)
- Korbinian Kienle
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics, Freiburg, Germany
| |
Collapse
|
6
|
Zhang ER, Liu S, Wu LF, Altschuler SJ, Cobb MH. Chemoattractant concentration-dependent tuning of ERK signaling dynamics in migrating neutrophils. Sci Signal 2016; 9:ra122. [PMID: 27965424 DOI: 10.1126/scisignal.aag0486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The directed migration (chemotaxis) of neutrophils toward the bacterial peptide N-formyl-Met-Leu-Phe (fMLP) is a crucial process in immune defense against invading bacteria. While navigating through a gradient of increasing concentrations of fMLP, neutrophils and neutrophil-like HL-60 cells switch from exhibiting directional migration at low fMLP concentrations to exhibiting circuitous migration at high fMLP concentrations. The extracellular signal-regulated kinase (ERK) pathway is implicated in balancing this fMLP concentration-dependent switch in migration modes. We investigated the role and regulation of ERK signaling through single-cell analysis of neutrophil migration in response to different fMLP concentrations over time. We found that ERK exhibited gradated, rather than all-or-none, responses to fMLP concentration. Maximal ERK activation occurred in response to about 100 nM fMLP, and ERK inactivation was promoted by p38. Furthermore, we found that directional migration of neutrophils reached a maximal extent at about 100 nM fMLP and that ERK, but not p38, was required for neutrophil migration. Thus, our data suggest that, in chemotactic neutrophils responding to fMLP, ERK displays gradated activation and p38-dependent inhibition and that these ERK dynamics promote neutrophil migration.
Collapse
Affiliation(s)
- Elizabeth R Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanshan Liu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lani F Wu
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven J Altschuler
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Zhao Y, Schwartz EA, Palmer GM, Zennadi R. MEK1/2 inhibitors reverse acute vascular occlusion in mouse models of sickle cell disease. FASEB J 2015; 30:1171-86. [PMID: 26631480 DOI: 10.1096/fj.15-278481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022]
Abstract
In sickle cell disease (SCD), treatment of recurrent vasoocclusive episodes, leading to pain crises and organ damage, is still a therapeutic challenge. Vasoocclusion is caused primarily by adherence of homozygous for hemoglobin S (SS) red blood cells (SSRBCs) and leukocytes to the endothelium. We tested the therapeutic benefits of MEK1/2 inhibitors in reversing vasoocclusion in nude and humanized SCD mouse models of acute vasoocclusive episodes using intravital microscopy. Administration of 0.2, 0.3, 1, or 2 mg/kg MEK1/2 inhibitor to TNF-α-pretreated nude mice before human SSRBC infusion inhibited SSRBC adhesion in inflamed vessels, prevented the progression of vasoocclusion, and reduced SSRBC organ sequestration. By use of a more clinically relevant protocol, 0.3 or 1 mg/kg MEK1/2 inhibitor given to TNF-α-pretreated nude mice after human SSRBC infusion and onset of vasoocclusion reversed SSRBC adhesion and vasoocclusion and restored blood flow. In SCD mice, 0.025, 0.05, or 0.1 mg/kg MEK1/2 inhibitor also reversed leukocyte and erythrocyte adhesion after the inflammatory trigger of vasoocclusion and improved microcirculatory blood flow. Cell adhesion was reversed by shedding of endothelial E-selectin, P-selectin, and αvβ3 integrin, and leukocyte CD44 and β2 integrin. Thus, MEK1/2 inhibitors, by targeting the adhesive function of SSRBCs and leukocytes, could represent a valuable therapeutic intervention for acute sickle cell vasoocclusive crises.
Collapse
Affiliation(s)
- Yulin Zhao
- *Division of Hematology and Departments of Medicine and Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Evan A Schwartz
- *Division of Hematology and Departments of Medicine and Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Gregory M Palmer
- *Division of Hematology and Departments of Medicine and Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Rahima Zennadi
- *Division of Hematology and Departments of Medicine and Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Lämmermann T. In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues. J Leukoc Biol 2015; 100:55-63. [PMID: 26416718 DOI: 10.1189/jlb.1mr0915-403] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are sentinel cells that express in higher vertebrates >30 chemokine and chemoattractant receptors to sense and quickly react to tissue damage signals. Intravital microscopy studies in mouse models of wounding, inflammation, and infection have revealed that neutrophils form cell swarms at local sites of tissue injury and cell death. This swarming response is choreographed by chemokines, lipids, and other chemoattractants, controlling sequential phases of highly coordinated chemotaxis, intercellular signal relay, and cluster formation among neutrophils. This review will give a brief overview about the basic principles and key molecules that have led to the refined multistep model of how neutrophils come together to isolate sites of tissue injury and microbial invasion from healthy tissue. Whereas auto- and paracrine signaling among neutrophils during later phases of swarming can provide a level of self-organization for robust navigation in diverse inflammatory settings, guidance factors from primary tissue lesions, resident bystander cells, and dying cells regulate the initial phases of the swarming response. This review will discuss how the specific environmental context and mixture of attractants at the locally inflamed site can lead to variants of the multistep attraction model and influence the extent of neutrophil swarming, ranging from accumulations of only few individual cells to the aggregation of several hundreds of neutrophils, as found in abscesses. Given the critical roles of neutrophils in both host protection and tissue destruction, novel insights on neutrophil swarming might provide useful for the therapeutic modulation of neutrophil-dependent inflammatory processes.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
9
|
Bayat B, Tjahjono Y, Berghöfer H, Werth S, Deckmyn H, De Meyer SF, Sachs UJ, Santoso S. Choline Transporter-Like Protein-2: New von Willebrand Factor-Binding Partner Involved in Antibody-Mediated Neutrophil Activation and Transfusion-Related Acute Lung Injury. Arterioscler Thromb Vasc Biol 2015; 35:1616-22. [PMID: 25931511 DOI: 10.1161/atvbaha.115.305259] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/30/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE In contrast to other antibodies involved in transfusion-related acute lung injury, anti-HNA-3a antibodies are incapable of inducing direct neutrophil activation and seem to interact with endothelial cells (ECs) primarily. In animal studies, anti-HNA-3a-mediated transfusion-related acute lung injury could be precipitated in the absence of neutrophils, but was stronger when neutrophils were present. In a different context the target protein of these antibodies, choline transporter-like protein-2 (CTL-2), was reported to interact with a protein of the inner ear carrying 2 von Willebrand factor (VWF) A-domains. These observations prompted us to investigate whether VWF might be involved in anti-HNA-3a-mediated neutrophil activation, and whether signaling via CD11b/CD18 is involved, as in various other experimental settings. APPROACH AND RESULTS Cell adhesion demonstrated specific binding of CTL-2 to VWF. Immunoprecipitation analysis of CTL-2/CD11b/CD18 coexpressing cells indicated that anti-HNA-3a colocalizes CTL-2 and CD11b/CD18 when VWF is present. Functional studies revealed that anti-HNA-3a-mediated neutrophil agglutination is an active, protein kinase C-dependent and partially Fc-dependent process. Agglutination and the production of reactive oxygen species seem to require the formation of a trimolecular complex between the target antigen (CTL-2), CD11b/CD18 and VWF. In line with these observations, anti-HNA-3a induced less severe transfusion-related acute lung injury and less neutrophil recruitment to the alveolar space in VWF knockout mice. CONCLUSIONS We introduce CTL-2 as a new binding partner for VWF. Interaction of neutrophils with VWF via CTL-2 allows anti-HNA-3a to induce signal transduction via CD11b/CD18, which leads to neutrophil activation and agglutination. In transfusion-related acute lung injury, this mechanism may further aggravate endothelial leakage.
Collapse
Affiliation(s)
- Behnaz Bayat
- From the Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany (B.B., Y.T., H.B., S.W., U.J.S., S.S.); and Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium (H.D., S.F.D.M.)
| | - Yudy Tjahjono
- From the Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany (B.B., Y.T., H.B., S.W., U.J.S., S.S.); and Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium (H.D., S.F.D.M.)
| | - Heike Berghöfer
- From the Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany (B.B., Y.T., H.B., S.W., U.J.S., S.S.); and Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium (H.D., S.F.D.M.)
| | - Silke Werth
- From the Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany (B.B., Y.T., H.B., S.W., U.J.S., S.S.); and Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium (H.D., S.F.D.M.)
| | - Hans Deckmyn
- From the Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany (B.B., Y.T., H.B., S.W., U.J.S., S.S.); and Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium (H.D., S.F.D.M.)
| | - Simon F De Meyer
- From the Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany (B.B., Y.T., H.B., S.W., U.J.S., S.S.); and Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium (H.D., S.F.D.M.)
| | - Ulrich J Sachs
- From the Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany (B.B., Y.T., H.B., S.W., U.J.S., S.S.); and Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium (H.D., S.F.D.M.)
| | - Sentot Santoso
- From the Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany (B.B., Y.T., H.B., S.W., U.J.S., S.S.); and Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium (H.D., S.F.D.M.).
| |
Collapse
|
10
|
Mizuno R, Kamioka Y, Kabashima K, Imajo M, Sumiyama K, Nakasho E, Ito T, Hamazaki Y, Okuchi Y, Sakai Y, Kiyokawa E, Matsuda M. In vivo imaging reveals PKA regulation of ERK activity during neutrophil recruitment to inflamed intestines. ACTA ACUST UNITED AC 2014; 211:1123-36. [PMID: 24842369 PMCID: PMC4042632 DOI: 10.1084/jem.20132112] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vivo FRET demonstrates that ERK positively regulates the neutrophil recruitment cascade in the intestine by promoting adhesion and migration. Many chemical mediators regulate neutrophil recruitment to inflammatory sites. Although the actions of each chemical mediator have been demonstrated with neutrophils in vitro, how such chemical mediators act cooperatively or counteractively in vivo remains largely unknown. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we time-lapse–imaged the activities of extracellular signal–regulated kinase (ERK) and protein kinase A (PKA) in neutrophils in inflamed intestinal tissue. ERK activity in neutrophils rapidly increased during spreading on the endothelial cells and showed positive correlation with the migration velocity on endothelial cells or in interstitial tissue. Meanwhile, in the neutrophils migrating in the interstitial tissue, high PKA activity correlated negatively with migration velocity. In contradiction to previous in vitro studies that showed ERK activation by prostaglandin E2 (PGE2) engagement with prostaglandin receptor EP4, intravenous administration of EP4 agonist activated PKA, inhibited ERK, and suppressed migration of neutrophils. The opposite results were obtained using nonsteroidal antiinflammatory drugs (NSAIDs). Therefore, NSAID-induced enteritis may be caused at least partially by the inhibition of EP4 receptor signaling of neutrophils. Our results demonstrate that ERK positively regulates the neutrophil recruitment cascade by promoting adhesion and migration steps.
Collapse
Affiliation(s)
- Rei Mizuno
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, JapanDepartment of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| | - Yuji Kamioka
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, JapanDepartment of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| | - Kenji Kabashima
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| | - Masamichi Imajo
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| | - Kenta Sumiyama
- Division of Population Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Eiji Nakasho
- Life & Industrial Products Development Department 1, R&D Division, Olympus Corporation, Hachioji-shi, Tokyo 192-8507, Japan
| | - Takeshi Ito
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| | - Yoko Hamazaki
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| | - Yoshihisa Okuchi
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, JapanDepartment of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiharu Sakai
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| | - Etsuko Kiyokawa
- Department of Oncologic Pathology, Kanazawa Medical University, Kanazawa, Ishikawa 920-0293, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, JapanDepartment of Pathology and Biology of Diseases, Department of Gastrointestinal Surgery, Department of Dermatology, and Department of Immunology and Cell Biology, Graduate School of Medicine; Innovative Techno-Hub for Integrated Medical Bio-Imaging; and Laboratory of Bioimaging and Cell Signaling, Department of Molecular and System Biology, Graduate School of Biostudies; Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
BNC Protects H9c2 Cardiomyoblasts from H 2 O 2 -Induced Oxidative Injury through ERK1/2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:802784. [PMID: 24223618 PMCID: PMC3810482 DOI: 10.1155/2013/802784] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/24/2013] [Accepted: 09/09/2013] [Indexed: 01/09/2023]
Abstract
Buchang naoxintong capsule (BNC) is a traditional Chinese medicine approved for the treatment of cerebrovascular and cardiovascular diseases. However, little is known about the specific protective function or mechanism by which BNC protects against myocardial injury. This research was designed to investigate the cardioprotective effects of BNC in vitro model of hydrogen peroxide (H2O2)-induced H9c2 rat cardiomyoblasts. BNC intestinal absorption liquid was used in this study instead of drug-containing serum or extracting solution. Our study revealed that BNC preconditioning enhanced antioxidant function by increasing the activities of total-antioxygen capacity, total-superoxide dismutase, and catalase and by decreasing the production of reactive oxygen species and malondialdehyde. BNC preconditioning also activated extracellular signal-regulated kinases (ERK1/2) and inhibited apoptosis-related proteins such as poly ADP-ribose polymerase (PARP) and caspase-3. Additionally, preincubation with BNC reduced intracellular Ca2+ concentration, improved mitochondrial membrane potential, and decreased the apoptosis rate of H9c2 cells in a dose-dependent manner. These data demonstrated that BNC protects H9c2 cardiomyoblasts from H2O2-induced oxidative injury by increasing antioxidant abilities, activating ERK1/2, and blocking Ca2+-dependent and mitochondria-mediated apoptosis. Based on our results, the potency of BNC for protecting H9c2 cells from oxidative damage is comparable to that of trimetazidine.
Collapse
|
12
|
Mor A, Aizman E, Kloog Y. Celecoxib enhances the anti-inflammatory effects of farnesylthiosalicylic acid on T cells independent of prostaglandin E(2) production. Inflammation 2013; 35:1706-14. [PMID: 22688643 DOI: 10.1007/s10753-012-9488-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Celecoxib (Celebrex(®)), a non-steroidal anti-inflammatory drug and selective cyclooxygenase-2 inhibitor, is widely used to treat arthritis and other inflammatory disorders. Awareness of its anti-proliferative properties has prompted another indication for its use, in preventing colon polyps in high-risk populations. Farnesylthiosalicylic acid (FTS; Salirasib(®)), designed to inhibit oncogenic Ras and currently under evaluation in phase I/II and II clinical trials, was recently shown by our group to exert anti-inflammatory effects on both lymphocytes and mast cells. Here we examined whether celecoxib combined with FTS would enhance this anti-inflammatory activity. While each drug separately inhibited Ras activation in these cells, their combination yielded more marked inhibition as well as further inhibition of ERK phosphorylation, lymphocyte adhesion, and interleukin-2 secretion. The inhibitory effects, moreover, were independent of prostaglandin E(2) secretion. These data point to the promising potential of combined treatment with celecoxib and FTS for inflammatory disorders involving lymphocytes.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, 450 E 29th Street, New York, NY 10016, USA.
| | | | | |
Collapse
|
13
|
Kummer NT, Nowicki TS, Azzi JP, Reyes I, Iacob C, Xie S, Swati I, Darzynkiewicz Z, Gotlinger KH, Suslina N, Schantz S, Tiwari RK, Geliebter J. Arachidonate 5 lipoxygenase expression in papillary thyroid carcinoma promotes invasion via MMP-9 induction. J Cell Biochem 2012; 113:1998-2008. [PMID: 22253131 DOI: 10.1002/jcb.24069] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Arachidonate 5-lipoxygenase (ALOX5) expression and activity has been implicated in tumor pathogenesis, yet its role in papillary thyroid carcinoma (PTC) has not been characterized. ALOX5 protein and mRNA were upregulated in PTC compared to matched, normal thyroid tissue, and ALOX5 expression correlated with invasive tumor histopathology. Evidence suggests that PTC invasion is mediated through the induction of matrix metalloproteinases (MMPs) that can degrade and remodel the extracellular matrix (ECM). A correlation between MMP-9 and ALOX5 protein expression was established by immunohistochemical analysis of PTC and normal thyroid tissues using a tissue array. Transfection of ALOX5 into a PTC cell line (BCPAP) increased MMP-9 secretion and cell invasion across an ECM barrier. The ALOX5 product, 5(S)-hydroxyeicosatetraenoic acid also increased MMP-9 protein expression by BCPAP in a dose-dependent manner. Inhibitors of MMP-9 and ALOX5 reversed ALOX5-enhanced invasion. Here we describe a new role for ALOX5 as a mediator of invasion via MMP-9 induction; this ALOX5/MMP9 pathway represents a new avenue in the search for functional biomarkers and/or potential therapeutic targets for aggressive PTC.
Collapse
Affiliation(s)
- Nicolas T Kummer
- Department of Microbiology & Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kirmizis D, Chatzidimitriou D. Pleiotropic vasoprotective effects of statins: the chicken or the egg? Drug Des Devel Ther 2009; 3:191-204. [PMID: 19920934 PMCID: PMC2769241 DOI: 10.2147/dddt.s5407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Statins (3-hydroxy-3-methyl glutaryl coenzyme A [HMG-CoA] reductase inhibitors) are the most commonly used lipid-lowering drugs. Their main lipid-lowering effect is achieved by an increase in the expression of low-density lipoprotein cholesterol receptors associated with inhibition of cholesterol synthesis through inhibition of HMG-CoA reductase - the first and rate-limiting step in cholesterol synthesis. However, beyond cholesterol synthesis inhibition, inhibition of the HMG-CoA reductase affects as well the synthesis of other molecules with significant roles in different, yet often intercalating, metabolic pathways. On this basis, and supported by an increasing series of advocating epidemiological and experimental data, an extended dialogue has been established over the last few years regarding the nonlipid or "pleiotropic" actions of statins.
Collapse
Affiliation(s)
- Dimitrios Kirmizis
- Aristotle University, Karavangeli 19 Str., Kalamaria, Thessaloniki, Greece.
| | | |
Collapse
|
15
|
Arachidonic Acid metabolites in the cardiovascular system: the role of lipoxygenase isoforms in atherogenesis with particular emphasis on vascular remodeling. J Cardiovasc Pharmacol 2008; 50:609-20. [PMID: 18091576 DOI: 10.1097/fjc.0b013e318159f177] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vascular remodeling refers to lasting structural alterations in the vessel wall that are initiated in response to external and internal stimuli. These changes are distinct from acute functional responses of blood vessels when challenged by increased blood pressure, altered hemodynamics, or vasoactive mediators. In early atherogenesis, when lesion formation is starting to impact local hemodynamics, the vessel wall responds with outward vascular remodeling to maintain normal blood flow. However, inward remodeling may also occur during the time course of plaque formation, contributing to vascular stenosis. Lipoxygenases form a heterogeneous family of lipid-peroxidizing enzymes, which have been implicated in atherogenesis. Several lines of in vitro and in vivo evidence indicated their involvement in disease development, but the precise function of different lipoxygenase isoforms is still a matter of discussion. Vascular remodeling is an early response during plaque development; therefore, lipoxygenases may be involved in this process. Unfortunately, little is known about the potential role of lipoxygenase isoforms in vascular remodeling. This review will briefly summarize our knowledge of the role of lipoxygenases in vascular biology and will critically review the activities of the 3 most athero-relevant lipoxygenase isoforms in atherogenesis, with particular emphasis on vascular remodeling.
Collapse
|
16
|
Iaccio A, Collinet C, Gesualdi NM, Ammendola R. Protein kinase C-alpha and -delta are required for NADPH oxidase activation in WKYMVm-stimulated IMR90 human fibroblasts. Arch Biochem Biophys 2006; 459:288-94. [PMID: 17166481 DOI: 10.1016/j.abb.2006.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/08/2006] [Indexed: 11/22/2022]
Abstract
The regulation of the activation of non phagocytic NADPH oxidase is poorly understood. Previously we demonstrated that in fibroblasts the exposure to WKYMVm induced p47(phox) phosphorylation and translocation and that these effects were mediated by ERKs activation. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in polymorphonucleate cells stimulated via FPRL1 receptor, but its involvement in fibroblasts was not demonstrated. Therefore, we investigated in IMR90 cells exposed to WKYMVm the role of PKC isoenzymes in the activation of NADPH oxidase-like enzyme. Preincubation with general pharmacological inhibitors of PKC, before stimulation with WKYMVm, prevented the ERKs activation, p47(phox) phosphorylation and translocation. The analysis of cellular partitioning of PKC isoenzymes demonstrated that PKCalpha and PKCdelta translocated from the cytosolic to the membrane fraction upon stimulation with WKYMVm. Preincubation with Gö6976 or with rottlerin prevented the phosphorylation and translocation of NADPH oxidase regulatory subunit.
Collapse
|
17
|
Park C, So HS, Kim SJ, Youn MJ, Moon BS, Shin SH, Lee I, Moon SK, Park R. Samul extract protects against the H2O2-induced apoptosis of H9c2 cardiomyoblasts via activation of extracellular regulated kinases (Erk) 1/2. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2006; 34:695-706. [PMID: 16883639 DOI: 10.1142/s0192415x06004211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Samul extract, containing Radix Rehmanniae, Radix Angelicae Gigantis, Radix Paeoniae, and Rhizoma Cnidii, has been traditionally used for treatment of ischemic heart and brain damages in Oriental medicine. However, little is known about the mechanism by which Samul rescues cells from cytotoxic damage. This study was designed to investigate the protective mechanisms of Samul on H(2)O(2)-induced death of H9c2 cells. Treatment with H(2)O(2) markedly decreased the viability of H9c2 cells in a dose- and time-dependent manner, which was significantly prevented by pre-treatment with Samul. The nature of death of H9c2 cells by H(2)O(2) was demonstrated by apoptotic features, including ladder-pattern fragmentation of genomic DNA and chromatin condensation, which were markedly abolished by pretreatment of Samul in H(2)O(2)-treated cells. We further demonstrated that MEK inhibitor, PD98059, dose-dependently attenuated the protective effects of Samul against H(2)O(2), whereas inhibitors of Jnk and p38 did not. Consistently, Samul induced the early phosphorylation of Erk, p44, in H(2)O(2)-treated cells. In addition, treatment with Samul also resulted in an increase of expression of anti-apotogenic Bcl2 protein, which was decreased by H(2)O(2). However, it inhibited the expression of apotogenic Bax protein in H(2)O(2)-treated cells. Taken together, these results suggest that the protective effects of Samul against oxidative damage may be achieved via activation of MAP kinase, Erk as well as Bcl2 family proteins.
Collapse
Affiliation(s)
- Channy Park
- VestibuloCochlear Research Center and Department of Microbiology, Iksan, Jeonbuk 570-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tews B, Felsberg J, Hartmann C, Kunitz A, Hahn M, Toedt G, Neben K, Hummerich L, von Deimling A, Reifenberger G, Lichter P. Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling. Int J Cancer 2006; 119:792-800. [PMID: 16550607 DOI: 10.1002/ijc.21901] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Loss of heterozygosity (LOH) on chromosomal arms 1p and 19q is the most common genetic alteration in oligodendroglial tumors and associated with response to radio- and chemotherapy as well as favorable prognosis. Using microsatellite analysis, we previously identified the chromosomal regions 1p36.22-p36.31 and 19q13.3, as candidate tumor suppressor gene regions being commonly deleted in these tumors. To identify genes within these regions that are downregulated in oligodendroglial tumors with LOH 1p/19q, we performed cDNA microarray-based RNA expression profiling of 35 gliomas with known allelic status on 1p and 19q, including 7 oligodendrogliomas and 8 diffuse astrocytomas of World Health Organization (WHO) grade II, as well as 14 anaplastic oligodendrogliomas and 6 anaplastic oligoastrocytomas of WHO grade III. The microarrays used for expression profiling carried approximately 7,000 gene-specific cDNAs, with complete coverage of the genes located in 1p36.13-p36.31 and 19q13.2-q13.33. Microarray analysis identified 8 genes from these regions (MGC4399, SRM, ICMT, RPL18, FTL, ZIN, FLJ10781 and DBP), which all showed significantly lower expression in 1p/19q-deleted gliomas when compared to gliomas without 1p/19q losses. Quantitative real-time reverse transcription-PCR analyses were performed for the MGC4399, ICMT and RPL18 genes and confirmed the microarray findings. In addition, we found that the cytosolic phospholipase A2 (PLA2G4C) gene at 19q13.3 demonstrated significantly lower expression in anaplastic oligodendrogliomas (WHO grade III) when compared to well-differentiated oligodendrogliomas (WHO grade II). Taken together, our study provides a set of interesting novel candidate genes that may play important roles in the pathogenesis of oligodendroglial tumors.
Collapse
Affiliation(s)
- Bjoern Tews
- Division of Molecular Genetics (B060), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sheppard FR, Kelher MR, Moore EE, McLaughlin NJD, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 2005; 78:1025-42. [PMID: 16204621 DOI: 10.1189/jlb.0804442] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is part of the microbicidal arsenal used by human polymorphonuclear neutrophils (PMNs) to eradicate invading pathogens. The production of a superoxide anion (O2-) into the phagolysosome is the precursor for the generation of more potent products, such as hydrogen peroxide and hypochlorite. However, this production of O2- is dependent on translocation of the oxidase subunits, including gp91phox, p22phox, p47phox, p67phox, p40phox, and Rac2 from the cytosol or specific granules to the plasma membrane. In response to an external stimuli, PMNs change from a resting, nonadhesive state to a primed, adherent phenotype, which allows for margination from the vasculature into the tissue and chemotaxis to the site of infection upon activation. Depending on the stimuli, primed PMNs display altered structural organization of the NADPH oxidase, in that there is phosphorylation of the oxidase subunits and/or translocation from the cytosol to the plasma or granular membrane, but there is not the complete assembly required for O2- generation. Activation of PMNs is the complete assembly of the membrane-linked and cytosolic NADPH oxidase components on a PMN membrane, the plasma or granular membrane. This review will discuss the individual components associated with the NADPH oxidase complex and the function of each of these units in each physiologic stage of the PMN: rested, primed, and activated.
Collapse
|
20
|
Ménard C, Valastro B, Martel MA, Chartier E, Marineau A, Baudry M, Massicotte G. AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A(2) and 5-lipoxygenase activities. Hippocampus 2005; 15:370-80. [PMID: 15630695 DOI: 10.1002/hipo.20061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present investigation provides the first indication that constitutive, calcium-independent phospholipase A2 activity (iPLA2) modulates phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of glutamate receptors. Preincubation of frozen-thawed brain sections with two iPLA2 inhibitors, bromoenol lactone (BEL) or palmitoyl trifluoromethyl ketone (PACO), produced a dose-dependent enhancement in phosphorylation at both Ser831 and Ser845 sites on the GluR1 subunit of AMPA receptors. This effect was not associated with changes in phosphorylation at the Ser sites of either the GluR2/3 subunits of AMPA receptors or the NR1 subunits of N-methyl-D-aspartate (NMDA) receptors, nor was it reproduced by inhibition of the calcium-dependent form of PLA2 activity. These results suggest that the effects of these inhibitors are selective to GluR1 subunits and that they are dependent on iPLA2 activity. The ability of iPLA2 inhibitors to increase GluR1 phosphorylation was mimicked by the 5-lipoxygenase (5-LO) inhibitor MK-886, but not by blockers of 12-lipoxygenase (12-LO) or cyclooxygenase. Additional experiments indicated that calcium-mediated truncation of GluR1 subunits was reduced by iPLA2 inhibitors, an effect that was not correlated with overall changes in the distribution of AMPA receptors between intracellular and membrane compartments prepared from whole brain sections. However, quantitative autoradiographic analysis indicated enhanced 3H-AMPA binding to the CA1 stratum radiatum of the hippocampus in BEL-treated sections. Saturation kinetics experiments demonstrated that this binding augmentation was due to an increase in the maximal number of AMPA binding sites. Altogether, our results point to the conclusion that basal iPLA2 activity, through the generation of 5-LO metabolites, regulates AMPA receptor phosphorylation of GluR1 subunits, an effect that might selectively influence the number of membrane receptors in area CA1 of the hippocampus.
Collapse
Affiliation(s)
- Caroline Ménard
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Serezani CHC, Aronoff DM, Jancar S, Peters-Golden M. Leukotriene B4mediates p47phox phosphorylation and membrane translocation in polyunsaturated fatty acid-stimulated neutrophils. J Leukoc Biol 2005; 78:976-84. [PMID: 16006535 DOI: 10.1189/jlb.1004587] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) and leukotriene B(4) (LTB(4)) are involved in many inflammatory and physiological conditions. The role of arachidonic acid (AA) and linoleic acid (LA) in promoting the assembly of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits is well known, but the involvement of LTB(4) and other 5-lipoxygenase (5-LO) pathway metabolites of AA in hydrogen peroxide (H(2)O(2)) production by PUFA-stimulated polymorphonuclear leukocytes (PMNs) has not been investigated. We examined this question by determining H(2)O(2) production as well as phosphorylation and membrane translocation of the p47phox subunit of NADPH oxidase. Elicited peritoneal PMNs from rats and from 5-LO-deficient or wild-type mice were pretreated with or without inhibitors of LT biosynthesis and antagonists of the receptors for LTB(4) and cysteinyl LTs for 20 min before stimulation with AA (at 5 and 20 microM) or LA (at 20 microM). PUFAs elicited H(2)O(2) production in a dose-dependent manner, and pharmacologic or genetic inhibition of LT synthesis decreased H(2)O(2) production by approximately 40% when compared with untreated controls. LTB(4) was the moiety responsible for H(2)O(2) production, as revealed by studies using receptor antagonists and its exogenous addition. LTB(4) itself also promoted p47phox phosphorylation and translocation. These results identify a heretofore unrecognized role for activation of 5-LO and subsequent production of LTB(4) in stimulation of PMN NADPH oxidase activation by PUFAs.
Collapse
Affiliation(s)
- Carlos H C Serezani
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, medical School, University of Michigan Health System, 6301 MSRB III, Box 0642, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0642, USA
| | | | | | | |
Collapse
|
22
|
Khreiss T, József L, Chan JSD, Filep JG. Activation of extracellular signal-regulated kinase couples platelet-activating factor-induced adhesion and delayed apoptosis of human neutrophils. Cell Signal 2004; 16:801-10. [PMID: 15115659 DOI: 10.1016/j.cellsig.2003.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 12/08/2003] [Accepted: 12/10/2003] [Indexed: 12/17/2022]
Abstract
Platelet-activating factor (PAF) promotes adhesion of neutrophil granulocytes to the endothelium, which is also linked to neutrophil survival. Here we report that PAF can prolong neutrophil survival by suppressing spontaneous apoptosis. PAF induced concurrent activation of the Ras/Raf-1/mitogen-activated protein kinase kinase (MAPKK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt pathways. ERK activation tightly correlated with up-regulation of CD11b/CD18 expression and beta(2)-integrin-dependent homotypic adhesion. These actions of PAF were markedly attenuated by the MAPKK/ERK inhibitor PD98059, but not by the phosphatidylinositol 3-kinase inhibitor wortmannin. By contrast, concurrent activation of ERK and Akt was required to inhibit caspase-3 activation and consequently to delay apoptosis. Consistently, pharmacological inhibition of either ERK or Akt partially reversed the anti-apoptotic action of PAF; however, they did not produce additive inhibition. These results indicate that PAF-induced activation of ERK contributes to both the expression of the pro-adhesive phenotype and repression of neutrophil apoptosis, thereby amplifying the inflammatory response.
Collapse
Affiliation(s)
- Tarek Khreiss
- Research Center, Maisonneuve-Rosemont Hospital, and Department of Medicine, University of Montréal, 5415 boulevard de l'Assomption, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
23
|
Abstract
Vitamin E is essential for normal neurological function. It is the major lipid-soluble, chain-breaking antioxidant in the body, protecting the integrity of membranes by inhibiting lipid peroxidation. Mostly on the basis of symptoms of primary vitamin E deficiency, it has been demonstrated that vitamin E has a central role in maintaining neurological structure and function. Orally supplemented vitamin E reaches the cerebrospinal fluid and brain. Vitamin E is a generic term for all tocopherols and their derivatives having the biological activity of RRR-alpha-tocopherol, the naturally occurring stereoisomer compounds with vitamin E activity. In nature, eight substances have been found to have vitamin E activity: alpha-, beta-, gamma- and delta-tocopherol; and alpha-, beta-, gamma- and delta-tocotrienol. Often, the term vitamin E is synonymously used with alpha-tocopherol. Tocotrienols, formerly known as zeta, , or eta-tocopherols, are similar to tocopherols except that they have an isoprenoid tail with three unsaturation points instead of a saturated phytyl tail. Although tocopherols are predominantly found in corn, soybean, and olive oils, tocotrienols are particularly rich in palm, rice bran, and barley oils. Tocotrienols possess powerful antioxidant, anticancer, and cholesterol-lowering properties. Recently, we have observed that alpha-tocotrienol is multi-fold more potent than alpha-tocopherol in protecting HT4 and primary neuronal cells against toxicity induced by glutamate as well as by a number of other toxins. At nanomolar concentration, tocotrienol, but not tocopherol, completely protected neurons by an antioxidant-independent mechanism. Our current work identifies two major targets of tocotrienol in the neuron: c-Src kinase and 12-lipoxygenase. Dietary supplementation studies have established that tocotrienol, fed orally, does reach the brain. The current findings point towards tocotrienol as a potent neuroprotective form of natural vitamin E.
Collapse
Affiliation(s)
- Chandan K Sen
- Davis Heart & Lung Research Institute, 473 West 12th Avenue, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
24
|
József L, Khreiss T, Filep JG. CpG motifs in bacterial DNA delay apoptosis of neutrophil granulocytes. FASEB J 2004; 18:1776-8. [PMID: 15345690 DOI: 10.1096/fj.04-2048fje] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human neutrophil granulocytes die rapidly, and their survival is contingent upon rescue from programmed cell death by signals from the environment. We now show that a novel signal for delaying neutrophil apoptosis is unmethylated CpG motifs prevalent in bacterial DNA (CpG- DNA). Human neutrophils express toll-like receptor 9 that recognizes these motifs. CpG-DNA, but not mammalian DNA or methylated bacterial DNA, markedly enhanced neutrophil viability by delaying spontaneous apoptosis. Endosomal maturation of CpG-DNA is prerequisite for these actions and was coupled to concurrent activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt signaling pathways, leading to phosphorylation of BAD at Ser112 and Ser136, respectively, and to prevention of decreases in mitochondrial transmembrane potential, cytochrome c release and caspase-3 activation. Consistently, pharmacological inhibition of either ERK or phosphatidylinositol 3-kinase partially reversed these actions of CpG-DNA; however, they did not produce additive inhibition. Furthermore, intravenous injection of CpG-DNA (200 microg/kg) into rats evoked slight decreases in blood pressure and induced a modest leukocytosis, whereas it effectively suppressed neutrophil apoptosis as assayed ex vivo. Our results indicate that unmethylated CpG motifs in bacterial DNA promote neutrophil survival by suppressing the apoptotic machinery and may therefore contribute to prolongation and amplification of inflammation.
Collapse
Affiliation(s)
- Levente József
- Research Center, Maisonneuve-Rosemont Hospital and Department of Medicine, University of Montréal, Montréal, QC, Canada
| | | | | |
Collapse
|
25
|
Pillinger MH, Rosenthal PB, Tolani SN, Apsel B, Dinsell V, Greenberg J, Chan ESL, Gomez PF, Abramson SB. Cyclooxygenase-2-derived E prostaglandins down-regulate matrix metalloproteinase-1 expression in fibroblast-like synoviocytes via inhibition of extracellular signal-regulated kinase activation. THE JOURNAL OF IMMUNOLOGY 2004; 171:6080-9. [PMID: 14634122 DOI: 10.4049/jimmunol.171.11.6080] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We examined the regulation of matrix metalloproteinase (MMP) production by mitogen-activated protein kinases and cyclooxygenases (COXs) in fibroblast-like synoviocytes (FLSCs). IL-1beta and TNF-alpha stimulated FLSC extracellular signal-regulated kinase (ERK) activation as well as MMP-1 and -13 release. Pharmacologic inhibitors of ERK inhibited MMP-1, but not MMP-13 expression. Whereas millimolar salicylates inhibited both ERK and MMP-1, nonsalicylate COX and selective COX-2 inhibitors enhanced stimulated MMP-1 release. Addition of exogenous PGE(1) or PGE(2) inhibited MMP-1, reversed the effects of COX inhibitors, and inhibited ERK activation, suggesting that COX-2 activity tonically inhibits MMP-1 production via ERK inhibition by E PGs. Exposure of FLSCs to nonselective COX and selective COX-2 inhibitors in the absence of stimulation resulted in up-regulation of MMP-1 expression in an ERK-dependent manner. Moreover, COX inhibition sufficient to reduce PGE levels increased ERK activity. Our data indicate that: 1) ERK activation mediates MMP-1 but not MMP-13 release from FLSCs, 2) COX-2-derived E PGs inhibit MMP-1 release from FLSCs via inhibition of ERK, and 3) COX inhibitors, by attenuating PGE inhibition of ERK, enhance the release of MMP-1 by FLSC.
Collapse
Affiliation(s)
- Michael H Pillinger
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nathoo N, Barnett GH, Golubic M. The eicosanoid cascade: possible role in gliomas and meningiomas. J Clin Pathol 2004; 57:6-13. [PMID: 14693827 PMCID: PMC1770171 DOI: 10.1136/jcp.57.1.6] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Eicosanoids constitute a large family of biologically active lipid mediators that are produced by two enzyme classes, cyclooxygenases (COX-1 and COX-2) and lipoxygenases (5-LO, 12-LO, and 15-LO). Increasing evidence suggests that in addition to a variety of epithelial malignancies, the two most common types of human brain tumour, gliomas and meningiomas, aberrantly overexpress eicosanoid producing enzymes and release a spectrum of eicosanoids that may promote tumorigenesis and the development of peritumorous brain oedema. Glioma and meningioma cells are killed in vitro and in animal models when exposed to COX-2 and 5-LO inhibitors, and their effectiveness is under investigation in clinical trials for treatment of patients with malignant brain tumours. However, despite research into the role of the eicosanoid cascade in the tumorigenesis of human brain tumours, many important questions remain unanswered. Current and newer agents that specifically target key players of the eicosanoid cascade could change the approach to treating brain tumours, because their benefits may lie in their synergism with conventional cytotoxic treatments and/or with other novel agents targeted against other procarcinogenic pathways.
Collapse
Affiliation(s)
- N Nathoo
- Brain Tumour Institute and Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, 44195 Ohio, USA.
| | | | | |
Collapse
|
27
|
Chiu VK, Silletti J, Dinsell V, Wiener H, Loukeris K, Ou G, Philips MR, Pillinger MH. Carboxyl methylation of Ras regulates membrane targeting and effector engagement. J Biol Chem 2003; 279:7346-52. [PMID: 14660603 DOI: 10.1074/jbc.m311602200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of Ras proteins includes prenylcysteine-directed carboxyl methylation. Because Ras participates in Erk activation by epidermal growth factor (EGF), we tested whether Ras methylation regulates Erk activation. EGF stimulation of Erk was inhibited by AFC (N-acetyl-S-farnesyl-L-cysteine), an inhibitor of methylation, but not AGC (N-acetyl-S-geranyl-L-cysteine), an inactive analog of AFC. AFC inhibited Ras methylation as well as the activation of pathway enzymes between Ras and Erk but did not inhibit EGF receptor phosphorylation, confirming action at the level of Ras. Transient transfection of human prenylcysteine-directed carboxyl methyltransferase increased EGF-stimulated Erk activation. AFC but not AGC inhibited movement of transiently transfected green fluorescent protein-Ras from the cytosol to the plasma membrane of COS-1 cells and depleted green fluorescent protein-Ras from the plasma membrane in stably transfected Madin-Darby canine kidney cells, suggesting that methylation regulates Erk by ensuring proper membrane localization of Ras. However, when COS-1 cells were transfected with Ras complexed to CD8, plasma membrane localization of Ras was unaffected by AFC, yet EGF-stimulated Erk activation was inhibited by AFC. Thus, Ras methylation appears to regulate Erk activation both through the localization of Ras as well as the propagation of Ras-dependent signals.
Collapse
Affiliation(s)
- Vi K Chiu
- Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors, more commonly known as statins, are a class of drug widely used for the treatment of hypercholesterolaemia in patients with established cardiovascular disease as well as those at high risk of developing atherosclerosis. Their predominant action is to reduce circulating levels of low-density lipoprotein (LDL) cholesterol; to a smaller degree, they also increase high-density lipoprotein (HDL) cholesterol and reduce triglyceride concentrations. In recent years, however, there has been an increasing body of evidence that their effects on lipid profile cannot fully account for their cardiovascular protective actions: their beneficial effects are too rapid to be easily explained by their relatively slow effects on atherogenesis and too large to be accounted for by their relatively small effects on plaque regression. Experimental models have revealed that statins exert a variety of other cardiovascular effects, which would be predicted to be of clinical benefit: they possess anti-inflammatory properties, as evidenced by their ability to reduce the accumulation of inflammatory cells in atherosclerotic plaques; they inhibit vascular smooth muscle cell proliferation, a key event in atherogenesis; they inhibit platelet function, thereby limiting both atherosclerosis and superadded thrombosis; and they improve vascular endothelial function, largely through augmentation of nitric oxide (NO) generation. The relative importance of the lipid- and non-lipid-related effects of the statins in the clinical situation remains the subject of much continuing research.
Collapse
Affiliation(s)
- Anthony S Wierzbicki
- Department of Chemical Pathology, GKT School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
29
|
Roberts LA, Glenn HL, Whitfield RA, Jacobson BS. Regulation of cell-substrate adhesion by the lipoxygenase and cyclooxygenase branches of arachidonic acid metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 507:525-9. [PMID: 12664635 DOI: 10.1007/978-1-4615-0193-0_80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Louis A Roberts
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
30
|
Park YS, Lee JH, Harwalkar JA, Bondar J, Safayhi H, Golubic M. Acetyl-11-keto-beta-boswellic acid (AKBA) is cytotoxic for meningioma cells and inhibits phosphorylation of the extracellular-signal regulated kinase 1 and 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 507:387-93. [PMID: 12664615 DOI: 10.1007/978-1-4615-0193-0_60] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acetyl-11-keto-beta-boswellic acid (AKBA) is a naturally occurring pentacyclic triterpene isolated from the gum resin exudate from the stem of the tree Boswellia serrata (frankincense). AKBA has been recently identified as a novel, orally active, non-redox and non-competitive 5-lipoxygenase inhibitor that also inhibits topisomerase I and II in vitro. Because natural pentacyclic triterpenes have an antiproliferative effect against different tumor types, we investigated the effects of AKBA on the proliferation of 11 primary cell cultures established from human surgical specimens of meningiomas, common central nervous system tumors. Treatment of meningioma cells by AKBA revealed a potent cytotoxic activity with half-maximal inhibitory concentrations in the range of 2-8 microM. At similar, physiologically achievable concentrations, AKBA rapidly (within minutes) and potently inhibited the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk-1 and Erk-2) in meningioma cells stimulated with platelet-derived growth factor BB. High expression level of 5-LO was detected in primary meningioma cells and surgical specimens by immunoblotting analysis, suggesting the possible role of 5-LO in meningioma tumorigenesis. Considering the critical importance of the Erk-1/2 signal transduction pathway not only in meningiomas but in other human neoplasms, the interruption of signaling through this evolutionarily conserved pathway might be one of the mechanisms by which AKBA induces suppression of proliferation and apoptosis of different tumor types.
Collapse
Affiliation(s)
- Yong Seok Park
- Department of Neurosurgery, Cleveland Clinic Foundation, 9500 Euclid Avenue/NB2-120A, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
31
|
Grenier S, Flamand N, Pelletier J, Naccache PH, Borgeat P, Bourgoin SG. Arachidonic acid activates phospholipase D in human neutrophils; essential role of endogenous leukotriene B4 and inhibition by adenosine A2A receptor engagement. J Leukoc Biol 2003; 73:530-9. [PMID: 12660228 DOI: 10.1189/jlb.0702371] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report in human neutrophils (PMN) that phospholipase D (PLD) was stimulated by micromolar concentrations of arachidonic acid (AA) and nanomolar concentrations of leukotriene B(4) (LTB(4)), and eicosapentaenoic acid was inactive. The stimulatory effect of AA occurred only when adenosine was eliminated from PMN suspensions or when PMN were incubated with adenosine A(2A) receptor antagonists. The mechanism of AA-induced PLD activation was investigated. The results show that AA- and LTB(4)-induced PLD activation were inhibited by the LTB(4) receptor 1 (BLTR1) antagonist CP 105,696, whereas the LTA(4) hydrolase inhibitor SC57461A and the LT biosynthesis inhibitor MK-0591 inhibited AA- but not LTB(4)-mediated PLD activation. The AA-induced ARF1 and RhoA translocation to PMN membranes was inhibited by CP 105,696 and SC57461A. These results provide evidence of a requirement for an autocrine-stimulatory loop involving LTB(4) and BLTR1 in the translocation of small GTPases to membranes and the activation of PMN PLD by AA.
Collapse
Affiliation(s)
- Sonya Grenier
- Canadian Institutes for Health Research Group on the Molecular Mechanisms of Inflammation, Centre de Recherche en Rhumatologie et Immunologie, Québec, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Bürkert E, Szellas D, Rådmark O, Steinhilber D, Werz O. Cell type-dependent activation of 5-lipoxygenase by arachidonic acid. J Leukoc Biol 2003; 73:191-200. [PMID: 12525578 DOI: 10.1189/jlb.0702354] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
5-Lipoxygenase (5-LO) is the key enzyme in the biosynthesis of proinflammatory leukotrienes. We show that stimulation of polymorphonuclear leukocytes (PMNL), rat basophilic leukemia (RBL)-1, or transfected HeLa cells with arachidonic acid (AA) caused prominent 5-LO product formation that coincided with the activity of extracellular signal-regulated kinases (ERKs) and p38 mitogen-activated protein kinase. 5-LO product formation in AA-stimulated PMNL and RBL-1 cells was independent of Ca2+. However, in HeLa cells expressing a 5-LO mutant lacking potential 5-LO phosphorylation sites, removal of Ca2+ caused a prominent loss of 5-LO activity. For Mono Mac 6 (MM6) cells, AA failed to activate ERKs, and AA-induced 5-LO product formation was only minute. Also, activation of ERKs by phorbol esters did not lead to prominent 5-LO product synthesis. Instead, 5-LO activation in MM6 cells required Ca2+ or alternative signaling pathways induced by hyperosmotic stress. In summary, mechanisms for activation of 5-LO differ considerably between cell types.
Collapse
Affiliation(s)
- Eva Bürkert
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
33
|
Chen CH, Liu JJ, Lu FJ, Yang ML, Lee Y, Huang TS. The effect of humic acid on the adhesibility of neutrophils. Thromb Res 2002; 108:67-76. [PMID: 12586135 DOI: 10.1016/s0049-3848(02)00384-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
UNLABELLED Humic acid (HA), a fluorescent allomelanin, has been implicated as an etiological agent of Blackfoot disease (BFD), a peripheral vascular disease prevailing in the southwest of Taiwan. Clinical and pathological studies reveal that it is similar to atherosclerosis. In this report, the effect of HA on human neutrophils is studied because prolonged and enhanced activation of neutrophils adhered on endothelium may damage the endothelium and initiate the process of thrombosis and vasculitis. METHODS Neutrophils, treated with various concentrations of HA, were added to culture plates, cultured human umbilical vein endothelial cells (HUVECs), or human umbilical vein endothelium tissue culture for 15 or 30 min. The adhesion of neutrophils was measured qualitatively and quantitatively. The mechanism of neutrophil activation was studied with free radical production and various kinase measurements and their activities' assays. RESULTS HA was shown to enhance, in a dose-dependent manner, the adhesion of neutrophils on the culture plates, cultured human umbilical vein endothelial cells, and human umbilical vein endothelium tissue culture. The adhesion-enhancing ability of HA is elicited through activation of ERK, P38 mitogen-activated kinase (P38MAPK), and phosphoinositide 3 kinase (PI3K) in neutrophils. HA also induces the NF-kappaB activation in neutrophils. CONCLUSION HA treatment markedly enhanced adhesion and superoxide radical production of neutrophils, the characteristics of activated neutrophils; and all these stimulation effects were blocked by several kinase inhibitors, reflecting the involvement of the ERK, P38MAPK, and PI3K on the activation of neutrophils. The induction of NF-kappaB implied that the consequence of neutrophil activation by HA were similar to other stimulants. The prolonged neutrophil activation will further damage endothelium cell and cause thrombosis, vaculitis, as well as arteriosclerosis. This may partially explain why HA consumption will cause BFD.
Collapse
Affiliation(s)
- Chong-Hua Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
34
|
Werz O, Bürkert E, Fischer L, Szellas D, Dishart D, Samuelsson B, Rådmark O, Steinhilber D. Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J 2002; 16:1441-3. [PMID: 12205041 DOI: 10.1096/fj.01-0909fje] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
5-lipoxygenase (5-LO) is the key enzyme in the biosynthesis of proinflammatory leukotrienes. Here, we demonstrate that extracellular signal-regulated kinases (ERKs) can phosphorylate 5-LO in vitro. Efficient phosphorylation required the presence of unsaturated fatty acids and was abolished when Ser-663 was mutated to alanine. In intact HeLa cells stimulated with arachidonic acid (AA), impaired 5-LO product formation was evident in cells expressing the S663A-5-LO mutant compared with cells expressing wild-type 5-LO. For Mono Mac 6 cells, priming with phorbol myristate acetate (PMA) before stimulation with ionophore was required for ERK1/2 activation and efficient 5-LO phosphorylation, in parallel with substantial AA release and 5-LO product formation. Inhibition of PKC by GF109203x or MEK1/2 by U0126 (or PD98059) abolished the 5-LO up-regulation effects of PMA. In contrast, these inhibitors failed to suppress 5-LO product formation induced by stimuli such as AA plus ionophore, which apparently do not involve the ERK1/2 pathway. Based on inhibitor studies, ERKs are also involved in AA-stimulated 5-LO product formation in PMNL, whereas a role for ERKs is not apparent in 5-LO activation induced by ionophore or cell stress. Finally, the data suggest that ERKs and p38 MAPK-regulated MAPKAPKs can act in conjunction to stimulate 5-LO by phosphorylation.
Collapse
Affiliation(s)
- Oliver Werz
- Institute of Pharmaceutical Chemistry, University of Frankfurt, D-60439 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cussac D, Schaak S, Denis C, Paris H. alpha 2B-adrenergic receptor activates MAPK via a pathway involving arachidonic acid metabolism, matrix metalloproteinases, and epidermal growth factor receptor transactivation. J Biol Chem 2002; 277:19882-8. [PMID: 11891218 DOI: 10.1074/jbc.m110142200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the mechanisms whereby alpha(2B)-adrenergic receptor (alpha(2B)-AR) promotes MAPK activation in a clone of the renal tubular cell line, LLC-PK1, transfected with the rat nonglycosylated alpha(2)-AR gene. Treatment of LLC-PK1-alpha(2B) with UK14304 or dexmedetomidine caused arachidonic acid (AA) release and ERK2 phosphorylation. AA release was abolished by prior treatment of the cells with pertussis toxin, quinacrine, or methyl arachidonyl fluorophosphonate but not by the addition of the MEK inhibitor U0126. The effects of alpha(2)-agonists on MAPK phosphorylation were mimicked by cell exposure to exogenous AA. On the other hand, quinacrine abolished the effects of UK14304, but not of AA, suggesting that AA released through PLA2 is responsible for MAPK activation by alpha(2B)-AR. The effects of alpha(2)-agonists or AA were PKC-independent and were attenuated by indomethacin and nordihydroguaiaretic acid. Treatment with batimastat, CRM 197, or tyrphostin AG1478 suppressed MAPK phosphorylation promoted by alpha(2)-agonist or AA. Furthermore, conditioned culture medium from UK14304-treated LLC-PK1-alpha(2B) induced MAPK phosphorylation in wild-type LLC-PK1. Based on these data, we propose a model whereby activation of MAPK by alpha(2B)-AR is mediated through stimulation of PLA2, AA release, generation of AA derivatives, activation of matrix metalloproteinases, release of heparin-binding EGF-like growth factor, transactivation of epidermal growth factor receptor, and recruitment of Shc. Whether this pathway is particular to alpha(2B)-AR and LLC-PK1 or whether it can be extended to other cell types and/or other G-protein-coupled receptors remains to be established.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Arachidonic Acid/metabolism
- Bacterial Proteins/pharmacology
- Brimonidine Tartrate
- Butadienes/pharmacology
- Cell Line
- Cell Nucleus/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- ErbB Receptors/metabolism
- MAP Kinase Signaling System
- Matrix Metalloproteinases/metabolism
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Nitriles/pharmacology
- Pertussis Toxin
- Phosphorylation
- Protein Binding
- Proteins/metabolism
- Quinacrine/pharmacology
- Quinazolines
- Quinoxalines/pharmacology
- Rats
- Receptors, Adrenergic, alpha-2/metabolism
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Swine
- Transcriptional Activation
- Tyrphostins/pharmacology
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- Daniel Cussac
- INSERM, Unité 388, Institut L. Bugnard, CHU Rangueil, 31403 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
36
|
Takami M, Terry V, Petruzzelli L. Signaling pathways involved in IL-8-dependent activation of adhesion through Mac-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4559-66. [PMID: 11971003 DOI: 10.4049/jimmunol.168.9.4559] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In human neutrophils, IL-8 induces chemotaxis, the respiratory burst, and granule release, and enhances cellular adhesion, a beta(2) integrin-dependent event. IL-8 stimulates neutrophil adhesion to purified fibrinogen in a Mac-1-dependent manner. Mitogen-activated protein kinase (MAPK) activation was detected in human neutrophil lysates after treatment with IL-8 and PMA, but not the activating mAb CBR LFA 1/2. IL-8-stimulated neutrophil adhesion to fibrinogen was blocked 50% by the MAPK/extracellular signal-related kinase-activating enzyme inhibitor PD098059. Adhesion was blocked approximately 75% by inhibition of the phosphatidylinositol-3 kinase (PI3K) pathway with LY294002, supporting that activation of both MAPK and PI3K may play a role in IL-8-dependent inside-out signals that activate Mac-1. Activation of MAPK was inhibited in IL-8-stimulated cells in the presence of PI3K inhibitors LY294002 or wortmannin, supporting a model in which PI3K is upstream of MAPK. IL-8-stimulated neutrophil adhesion was inhibited 50% by bisindolylmaleimide-I, implicating protein kinase C (PKC) in the intracellular signaling from the IL-8R to Mac-1. A 74-kDa molecular mass species was detected by an activation-specific Ab to PKC when cells were stimulated with PMA or IL-8, but not a beta(2)-activating Ab. Inhibition of either MAPK or PKC resulted in partial inhibition of IL-8-stimulated polymorphonuclear neutrophil adhesion, and treatment with both inhibitors simultaneously completely abolished IL-8-stimulated adhesion to ligand. Inhibition of PI3K blocked MAPK activation, but not PKC activation, suggesting a branch point that precedes PI3K activation. These data suggest that both MAPK and PKC are activated in response to IL-8 stimulation, and that these may represent independent pathways for beta(2) integrin activation in neutrophils.
Collapse
Affiliation(s)
- Mimi Takami
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical Center and Department of Veterans Affairs Medical Center, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
37
|
Werz O, Szellas D, Steinhilber D, Rådmark O. Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2). J Biol Chem 2002; 277:14793-800. [PMID: 11844797 DOI: 10.1074/jbc.m111945200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrated previously that 5-lipoxygenase (5-LO), a key enzyme in leukotriene biosynthesis, can be phosphorylated by p38 MAPK-regulated MAPKAP kinases (MKs). Here we show that mutation of Ser-271 to Ala in 5-LO abolished MK2 catalyzed phosphorylation and clearly reduced phosphorylation by kinases prepared from stimulated polymorphonuclear leukocytes and Mono Mac 6 cells. Compared with heat shock protein 27 (Hsp-27), 5-LO was a weak substrate for MK2. However, the addition of unsaturated fatty acids (i.e. arachidonate 1-50 microm) up-regulated phosphorylation of 5-LO, but not of Hsp-27, by active MK2 in vitro, resulting in a similar phosphorylation as for Hsp-27. 5-LO was phosphorylated also by other serine/threonine kinases recognizing the motif Arg-Xaa-Xaa-Ser (protein kinase A, Ca(2+)/calmodulin-dependent kinase II), but these activities were not increased by fatty acids. HeLa cells expressing wild type 5-LO or S271A-5-LO, showed prominent 5-LO activity when incubated with Ca(2+)-ionophore plus arachidonate. However, when stimulated with only exogenous arachidonic acid, activity for the S271A mutant was significantly lower as compared with wild type 5-LO. It appears that phosphorylation at Ser-271 is more important for 5-LO activity induced by a stimulus that does not prominently increase intracellular Ca(2+) and that arachidonic acid stimulates leukotriene biosynthesis also by promoting this MK2-catalyzed phosphorylation.
Collapse
Affiliation(s)
- Oliver Werz
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
József L, Khreiss T, Fournier A, Chan JSD, Filep JG. Extracellular signal-regulated kinase plays an essential role in endothelin-1-induced homotypic adhesion of human neutrophil granulocytes. Br J Pharmacol 2002; 135:1167-74. [PMID: 11877323 PMCID: PMC1573225 DOI: 10.1038/sj.bjp.0704561] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
1. Endothelin-1 (ET-1) stimulates integrin-dependent adhesion of neutrophil granulocytes to endothelial cells, one of the early key events in acute inflammation. However, the signalling pathway(s) of ET-1-stimulated neutrophil adhesive responses has not been elucidated. Previous studies indicated that extracellular signal-regulated kinase (ERK) activation could mediate rapid responses of neutrophil granulocytes to various stimuli. In this study, we investigated the role of ERK signalling in human neutrophil granulocytes challenged with ET-1. 2. ET-1 rapidly down-regulated the expression of L-selectin and up-regulated the expression of CD11b/CD18 on the neutrophil surface. Concomitantly, ET-1 induced homotypic adhesion (aggregation) of neutrophils, that was blocked by a monoclonal antibody to CD18. 3. ET-1, through ET(A) receptors, evoked activation of Ras and subsequent phosphorylation of Raf-1, mitogen-activated protein kinase kinase (MAPK/ERK kinase) and ERK 1/2. ERK activation by ET-1 was rapid, concordant with the kinetics of ET-1-stimulated neutrophil aggregation. 4. Neutrophil responses to ET-1 were markedly attenuated by the MAPK/ERK kinase inhibitor PD98059, whereas inhibitors of p38 MAPK, tyrosine kinases and phosphatidylinositol 3-kinase had no detectable effects. We have observed a tight correlation between neutrophil ERK activation and homotypic adhesion. 5. These data indicate an essential role for ERK in mediating ET-1-stimulated adhesive responses of human neutrophil granulocytes.
Collapse
Affiliation(s)
- Levente József
- Research Center, Maisonneuve-Rosemont Hospital and Department of Medicine, University of Montréal, Montréal, Québec, Canada H1T 2M4
| | - Tarek Khreiss
- Research Center, Maisonneuve-Rosemont Hospital and Department of Medicine, University of Montréal, Montréal, Québec, Canada H1T 2M4
| | - Alain Fournier
- INRS-Institut Armand-Frappier, Pointe-Claire, Québec, Canada H9R 1G6
| | - John S D Chan
- CHUM-Hôtel-Dieu, Centre de Recherche, Pavillon Masson, University of Montréal, Montréal, Québec, Canada H2W 1T8
| | - János G Filep
- Research Center, Maisonneuve-Rosemont Hospital and Department of Medicine, University of Montréal, Montréal, Québec, Canada H1T 2M4
- Author for correspondence:
| |
Collapse
|
39
|
Abstract
It is well established that fatty acid metabolites of cyclooxygenase, lipoxygenase (LOX), and cytochrome P450 are implicated in essential aspects of cellular signaling including the induction of programmed cell death. Here we review the roles of enzymatic and non-enzymatic products of polyunsaturated fatty acids in controlling cell growth and apoptosis. Also, the spontaneous oxidation of polyunsaturated fatty acids yields reactive aldehydes and other products of lipid peroxidation that are potentially toxic to cells and may also signal apoptosis. Significant conflicting data in terms of the role of LOX enzymes are highlighted, prompting a re-evaluation of the relationship between LOX and prostate cancer cell survival. We include new data showing that LNCaP, PC3, and Du145 cells express much lower levels of 5-LOX mRNA and protein compared with normal prostate epithelial cells (NHP2) and primary prostate carcinoma cells (TP1). Although the 5-LOX activating protein inhibitor MK886 killed these cells, another 5-LOX inhibitor AA861 hardly showed any effect. These observations suggest that 5-LOX is unlikely to be a prostate cancer cell survival factor, implying that the mechanisms by which LOX inhibitors induce apoptosis are more complex than expected. This review also suggests several mechanisms involving peroxisome proliferator activated receptor activation, BCL proteins, thiol regulation, and mitochondrial and kinase signaling by which cell death may be produced in response to changes in non-esterified and non-protein bound fatty acid levels. Overall, this review provides a context within which the effects of fatty acids and fatty acid oxidation products on signal transduction pathways, particularly those involved in apoptosis, can be considered in terms of their overall importance relative to the much better studied protein or peptide signaling factors.
Collapse
Affiliation(s)
- Dean G Tang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas, Austin 78712, USA
| | | | | | | |
Collapse
|
40
|
Altmann A, Fischer L, Schubert-Zsilavecz M, Steinhilber D, Werz O. Boswellic acids activate p42(MAPK) and p38 MAPK and stimulate Ca(2+) mobilization. Biochem Biophys Res Commun 2002; 290:185-90. [PMID: 11779151 DOI: 10.1006/bbrc.2001.6153] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we show that extracts of Boswellia serrata gum resins and its constituents, the boswellic acids (BAs), activate the mitogen-activated protein kinases (MAPK) p42(MAPK) and p38 in isolated human polymorphonuclear leukocytes (PMNL). MAPK activation was rapid and transient with maximal activation after 1-2.5 min of exposure and occurred in a dose-dependent manner. The keto-BAs (11-keto-beta-BA and 3-O-acetyl-11-beta-keto-BA) gave substantial kinase activation at 30 microM, whereas other BAs lacking the 11-keto group were less effective. Moreover, 11-keto-BAs induced rapid and prominent mobilization of free Ca(2+) in PMNL. Inhibitor studies revealed that phosphatidylinositol 3-kinase (PI 3-K) is involved in BA-induced MAPK activation, whereas a minor role was apparent for protein kinase C. MAPK activation by 3-O-acetyl-11-beta-keto-BA was partially inhibited when Ca(2+) was removed by chelation. Our results suggest that 11-keto-BAs might function as potent activators of PMNL by stimulation of MAPK and mobilization of intracellular Ca(2+).
Collapse
Affiliation(s)
- Anja Altmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
41
|
Zouki C, Haas B, Chan JS, Potempa LA, Filep JG. Loss of pentameric symmetry of C-reactive protein is associated with promotion of neutrophil-endothelial cell adhesion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5355-61. [PMID: 11673552 DOI: 10.4049/jimmunol.167.9.5355] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The classic acute-phase reactant C-reactive protein (CRP) is a cyclic pentameric protein that diminishes neutrophil accumulation in inflamed tissues. When the pentamer is dissociated, CRP subunits undergo conformational rearrangement that results in expression of a distinctive isomer with unique antigenic and physicochemical characteristics (termed modified CRP (mCRP)). Recently, mCRP was detected in the wall of normal human blood vessels. We studied the impact and mechanisms of action of mCRP on expression of adhesion molecules on human neutrophils and their adhesion to human coronary artery endothelial cells. Both CRP and mCRP (0.1-200 microg/ml) down-regulated neutrophil L-selectin expression in a concentration-dependent fashion. Furthermore, mCRP, but not CRP, up-regulated CD11b/CD18 expression and stimulated neutrophil extracellular signal-regulated kinase activity, which was accompanied by activation of p21(ras) oncoprotein, Raf-1, and mitogen-activated protein kinase kinase. These actions of mCRP were sensitive to the mitogen-activated protein kinase kinase inhibitor PD98059. mCRP markedly enhanced attachment of neutrophils to LPS-activated human coronary artery endothelial when added together with neutrophils. This effect of mCRP was attenuated by an anti-CD18 mAb. Thus, loss of pentameric symmetry in CRP is associated with appearance of novel bioactivities in mCRP that enhance neutrophil localization and activation at inflamed or injured vascular sites.
Collapse
Affiliation(s)
- C Zouki
- Research Center, Maisonneuve-Rosemont Hospital and Department of Medicine, University of Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
42
|
Aragno M, Parola S, Brignardello E, Manti R, Betteto S, Tamagno E, Danni O, Boccuzzi G. Oxidative stress and eicosanoids in the kidneys of hyperglycemic rats treated with dehydroepiandrosterone. Free Radic Biol Med 2001; 31:935-42. [PMID: 11595378 DOI: 10.1016/s0891-5849(01)00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidative stress plays a crucial role in the pathogenesis of chronic diabetic complications. Normoglycemic and streptozotocin-diabetic rats were treated with dehydroepiandrosterone (DHEA) (4 mg/d per rat) for 3 weeks. At the end of treatment, hydroxynonenal, hydroperoxyeicosatetraenoic acids and antioxidant levels, as well as Na/K-ATPase activity and membrane fatty acids composition were evaluated in kidney homogenates. Chronic hyperglycemia caused a marked increase of both hydroxynonenal and lipoxygenase pathway products and a drop in both GSH levels and membrane Na/K-ATPase activity. DHEA treatment restored the antioxidant levels to close to the control value and considerably reduced hydroxynonenal and hydroperoxyeicosatetraenoic acid levels. Moreover, DHEA counteracted the detrimental effect of hyperglycemia on membrane function: the drop of Na/K-ATPase activity in diabetic animals was significantly inhibited by DHEA treatment. These results show that DHEA reduces oxidative stress and the consequent increase of lipoxygenase pathway products induced by experimental diabetes in rat kidney; they also suggest that, by reducing the inflammatory response to oxidative stress, DHEA treatment might delay the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- M Aragno
- Department of Experimental Medicine and Oncology, General Pathology Section, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fernandez-Patron C, Zouki C, Whittal R, Chan JS, Davidge ST, Filep JG. Matrix metalloproteinases regulate neutrophil-endothelial cell adhesion through generation of endothelin-1[1-32]. FASEB J 2001; 15:2230-40. [PMID: 11641250 DOI: 10.1096/fj.01-0178com] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently reported that matrix metalloproteinase 2 (MMP-2, gelatinase A) cleaves big endothelin 1 (ET-1), yielding the vasoactive peptide ET-1[1-32]. We tested whether ET-1[1-32] could affect the adhesion of human neutrophils to coronary artery endothelial cells (HCAEC). ET-1[1-32] rapidly down-regulated the expression of L-selectin and up-regulated expression of CD11b/CD18 on the neutrophil surface, with EC50 values of 1-3 nM. These actions of ET-1[1-32] were mediated via ETA receptors and did not require conversion of ET-1[1-32] into ET-1 by neutrophil proteases, as revealed by liquid chromatography and mass spectroscopy. Moreover, ET-1[1-32] evoked release of neutrophil gelatinase B, which cleaved big ET-1 to yield ET-1[1-32], thus revealing a positive feedback loop for ET-1[1-32] generation. Up-regulation of CD11b/CD18 expression and gelatinase release was tightly associated with activation of extracellular signal-regulated kinase (Erk). Stimulation of Erk activity was due to activation of Ras, Raf-1, and MEK (MAPK kinase). ET-1[1-32] also produced slight increases in the expression of ICAM-1 and E-selectin on HCAEC, and markedly enhanced beta2 integrin-dependent adhesion of neutrophils to activated HCAEC. These results are the first indication that gelatinolytic MMPs via cleavage of big ET-1 to yield ET-1[1-32] activate neutrophils and promote leukocyte-endothelial cell adhesion and, consequently, neutrophil trafficking into inflamed tissues.
Collapse
Affiliation(s)
- C Fernandez-Patron
- Research Center, Maisonneuve-Rosemont Hospital and Department of Medicine, University of Montréal, Montréal, Québec H1T 2M4 Canada
| | | | | | | | | | | |
Collapse
|
44
|
O'Flaherty JT, Chadwell BA, Kearns MW, Sergeant S, Daniel LW. Protein kinases C translocation responses to low concentrations of arachidonic acid. J Biol Chem 2001; 276:24743-50. [PMID: 11328812 DOI: 10.1074/jbc.m101093200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arachidonic acid (AA) directly activates protein kinases C (PKC) and may thereby serve as a regulatory signal during cell stimulation. The effect, however, requires a > or =20 microm concentration of the fatty acid. We find that human polymorphonuclear neutrophils (PMN) equilibrated with a ligand for the diacylglycerol receptor on PKC, [(3)H]phorbol dibutyrate (PDB), increased binding of [(3)H]PDB within 15 s of exposure to > or =10-30 nm AA. Other unsaturated fatty acids, but not a saturated fatty acid, likewise stimulated PDB binding. These responses, similar to those caused by chemotactic factors, resulted from a rise in the number of diacylglycerol receptors that were plasma membrane-associated and therefore accessible to PDB. Unlike chemotactic factors, however, AA was fully active on cells overloaded with Ca(2+) chelators. The major metabolites of AA made by PMN, leukotriene B(4) and 5-hydroxyicosatetraenoate, did not mimic AA, and an AA antimetabolite did not block responses to AA. AA also induced PMN to translocate cytosolic PKCalpha, beta(II), and delta to membranes. This response paralleled PDB binding with respect to dose requirements, time, Ca(2+)-independence, resistance to an AA antimetabolite, and induction by another unsaturated fatty acid but not by a saturated fatty acid. Finally, HEK 293 cells transfected with vectors encoding PKCbeta(I) or PKCdelta fused to the reporter enhanced green fluorescent protein (EGFP) were studied. AA caused EGFP-PKCbeta translocation from cytosol to plasma membrane at > or =0.5 microm, and EGFP-PKCdelta translocation from cytosol to nuclear and, to a lesser extent, plasma membrane at as little as 30 nm. We conclude that AA induces PKC translocations to specific membrane targets at concentrations 2-4 orders of magnitude below those activating the enzymes. These responses, at least as they occur in PMN, do not require changes in cell Ca(2+) or oxygenation of the fatty acid. AA seems more suited for signaling the movement than activation of PKC.
Collapse
Affiliation(s)
- J T O'Flaherty
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27156, USA.
| | | | | | | | | |
Collapse
|
45
|
Syrovets T, Jendrach M, Rohwedder A, Schüle A, Simmet T. Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation. Blood 2001; 97:3941-50. [PMID: 11389038 DOI: 10.1182/blood.v97.12.3941] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously shown that plasmin activates human peripheral monocytes in terms of lipid mediator release and chemotactic migration. Here it is demonstrated that plasmin induces proinflammatory cytokine release and tissue factor (TF) expression by monocytes. Plasmin 0.043 to 1.43 CTA U/mL, but not active site-blocked plasmin, triggered concentration-dependent expression of mRNA for interleukin-1alpha (IL-1alpha), IL-1beta, tumor necrosis factor-alpha (TNF-alpha), and TF with maximum responses after 4 hours. Plasmin-mediated mRNA expression was inhibited in a concentration-dependent manner by the lysine analogue trans-4-(aminomethyl)cyclohexane-1-carboxylic acid (t-AMCA). Increases in mRNA levels were followed by concentration- and time-dependent release of IL-1alpha, IL-1beta and TNF-alpha and by TF expression on monocyte surfaces. Neither cytokines nor TF could be detected when monocytes were preincubated with actinomycin D or cycloheximide. Electrophoretic mobility shift assays indicated plasmin-induced activation of NF-kappaB; DNA-binding complexes were composed of p50, p65, and c-Rel, as shown by supershift experiments. Nuclear translocation of NF-kappaB/Rel proteins coincided with IkappaBalpha degradation. At variance with endotoxic lipopolysaccharide, plasmin elicited the rapid degradation of another cytoplasmic NF-kappaB inhibitor, p105. Proteolysis of NF-kappaB inhibitors was apparently due to transient activation of IkappaB kinase (IKK) beta that reached maximum activity at 1 hour after plasmin stimulation. In addition, AP-1 binding was increased in plasmin-treated monocytes, with most complexes composed of JunD, c-Fos, and FosB. These findings further substantiate the role of plasmin as a proinflammatory activator of human monocytes and reveal an important new link between the plasminogen-plasmin system and inflammation. (Blood. 2001;97:3941-3950)
Collapse
Affiliation(s)
- T Syrovets
- Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Helmholtzstrasse 20, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
46
|
Chang L, Wang J. Signal transduction pathways for activation of extracellular signal‐regulated kinase by arachidonic acid in rat neutrophils. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.4.659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ling‐Chu Chang
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan 407, and
| | - Jih‐Pyang Wang
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan 407, and
- Graduate Institute of Pharmaceutical Chemistry, China Medical College, Taichung, Taiwan 404, Republic of China
| |
Collapse
|
47
|
Abstract
The neutrophil is a critical effector cell in humoral and innate immunity and plays vital roles in phagocytosis and bacterial killing. Discussed here are the neutrophil components necessary for these processes and the diseases in which these components are either lacking or dysfunctional, illustrating that normal neutrophil function is vital for health.
Collapse
Affiliation(s)
- N D Burg
- Department of Medicine, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
48
|
Zouki C, Zhang SL, Chan JS, Filep JG. Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activation of the Raf-1/MEK/Erk pathway. FASEB J 2001; 15:25-27. [PMID: 11099490 DOI: 10.1096/fj.00-0521fje] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulating evidence suggests that enhanced peroxynitrite (ONOO-) formation occurs during inflammation. We have studied the impact and the mechanisms of ONOO- action on expression of adhesion molecules on human neutrophils and coronary artery endothelial cells (HCAEC) and binding of neutrophils to HCAEC. Addition of ONOO- (0.1 to 200 5M) to isolated neutrophils resulted in a concentration-dependent down-regulation of L-selectin expression, and up-regulation of CD11b/CD18 expression. ONOO- stimulation of Erk activity was accompanied by activation of Ras, Raf-1 and MEK (mitogen-activated protein kinase kinase), and was sensitive to the MEK inhibitor PD 98059. We have observed a tight association between Erk activation and changes in CD11b/CD18 expression. ONOO- also evoked activation of neutrophil p38 MAPK. Neither ONOO--induced up-regulation of CD11b/CD18 expression nor Erk activation was affected by SB 203580, a selective inhibitor of p38 MAPK. ONOO- by itself had little effect on expression of ICAM-1 and E-selectin on HCAEC, whereas it markedly enhanced attachment of neutrophils to lipopolysaccharide-activated HCAEC only when it was added together with neutrophils. Increases in neutrophil adhesion evoked by ONOO- were blocked by an anti-CD18 monoclonal antibody. These data suggest that ONOO- activates Erk in neutrophils via the Ras/Raf-1/MEK signal transduction pathway, leading to up-regulation of surface expression of CD11b/CD18 and consequently to increased neutrophil adhesion to endothelial cells.
Collapse
Affiliation(s)
- C Zouki
- Research Center, Maisonneuve-Rosemont Hospital and Department of Medicine, University of Montréal, Montréal, Québec, Canada H1T 2M4
| | | | | | | |
Collapse
|
49
|
Szekeres CK, Tang K, Trikha M, Honn KV. Eicosanoid activation of extracellular signal-regulated kinase1/2 in human epidermoid carcinoma cells. J Biol Chem 2000; 275:38831-41. [PMID: 10952974 DOI: 10.1074/jbc.m002673200] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
12(S)-Hydroxyeicosatetraenoic acid (12(S)-HETE), a 12-lipoxygenase metabolite of arachidonic acid, has multiple effects on tumor and endothelial cells, including stimulation of invasion and angiogenesis. However, the signaling mechanisms controlling these physiological processes are poorly understood. In a human epidermoid carcinoma cell line (i.e. A431), 12(S)-HETE activates extracellular signal-regulated kinases 1/2 (ERK1/2), which is mediated by upstream kinases MEK and Raf. 12(S)-HETE stimulates phosphorylation of phospholipase Cgamma1 and activity of protein kinase Calpha (PKCalpha). In addition, independent of PKC 12(S)-HETE increases tyrosine phosphorylation of Shc, and Grb2, stimulates association between Shc and Src, and increases the activity of Ras, via Src family kinases. Furthermore, at low (10-100 nm) concentrations 12(S)-HETE counteracts epidermal growth factor-stimulated activation of ERK1/2 via stimulating protein tyrosine phosphatases. We also present evidence that 12(S)-HETE stimulates ERK1/2 via G proteins and that A431 cells have multiple binding sites for 12(S)-HETE. Finally, inhibition of 12-lipoxygenase induced apoptosis of A431 cells, which was reversed by addition of exogenous 12(S)-HETE. Collectively we demonstrate that the activation of ERK1/2 by 12(S)-HETE may be regulated by multiple receptors triggering PKC-dependent and PKC-independent pathways in A431 cells.
Collapse
Affiliation(s)
- C K Szekeres
- Department of Radiation Oncology and the Departments of Pathology and Chemistry, Wayne State University, Detroit Michigan 48202, USA
| | | | | | | |
Collapse
|
50
|
Evans JJ, Lee JH, Park YS, Jeun SS, Harwalkar JA, Safayhi H, Golubic M. Future Treatment Modalities for Meningiomas. Neurosurg Clin N Am 2000. [DOI: 10.1016/s1042-3680(18)30096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|