1
|
Hu Q, Tong Z, Yalikong A, Ge LP, Shi Q, Du X, Wang P, Liu XY, Zhan W, Gao X, Sun D, Fu T, Ye D, Fan C, Liu J, Zhong YS, Jiang YZ, Gu H. DNAzyme-based faithful probing and pulldown to identify candidate biomarkers of low abundance. Nat Chem 2024; 16:122-131. [PMID: 37710046 DOI: 10.1038/s41557-023-01328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Biomarker discovery is essential for the understanding, diagnosis, targeted therapy and prognosis assessment of malignant diseases. However, it remains a huge challenge due to the lack of sensitive methods to identify disease-specific rare molecules. Here we present MORAC, molecular recognition based on affinity and catalysis, which enables the effective identification of candidate biomarkers with low abundance. MORAC relies on a class of DNAzymes, each cleaving a sole RNA linkage embedded in their DNA chain upon specifically sensing a complex system with no prior knowledge of the system's molecular content. We show that signal amplification from catalysis ensures the DNAzymes high sensitivity (for target probing); meanwhile, a simple RNA-to-DNA mutation can shut down their RNA cleavage ability and turn them into a pure affinity tool (for target pulldown). Using MORAC, we identify previously unknown, low-abundance candidate biomarkers with clear clinical value, including apolipoprotein L6 in breast cancer and seryl-tRNA synthetase 1 in polyps preceding colon cancer.
Collapse
Affiliation(s)
- Qinqin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China
| | - Zongxuan Tong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ayimukedisi Yalikong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Ping Ge
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Shi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Du
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wuqiang Zhan
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Gao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Sun
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Ye
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunhai Fan
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Laboratory, Shanghai, China
| | - Jie Liu
- Department of Digestive Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun-Shi Zhong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongzhou Gu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Ye J, Pang Y, Yang X, Zhang C, Shi L, Chen Z, Huang G, Wang X, Lu F. PPIH gene regulation system and its prognostic significance in hepatocellular carcinoma: a comprehensive analysis. Aging (Albany NY) 2023; 15:11448-11470. [PMID: 37874737 PMCID: PMC10637785 DOI: 10.18632/aging.205134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Peptidyl-prolyl isomerase H (PPIH) is a member of the cyclophilin protein family, which functions as a molecular chaperone and is involved in the splicing of pre-mRNA. According to reports, the malignant progression of HCC related to hepatitis B virus (HBV) is tightly associated with RNA-binding proteins. Nevertheless, there is no research on PPIH expression or its function in the occurrence and progression of HCC. RESULTS We are the first to reveal that the mRNA and protein levels of Ppih are substantially overexpressed in HCC, as the outcomes show. A significant correlation existed between enriched expression of Ppih within HCC and more advanced, poorly differentiated, and TP53-mutated tumors. CONCLUSION These findings, which suggest that Ppih may serve as a predictive biomarker for people with HCC, serve as a starting point for further investigation into the function of Ppih in the progression of carcinogenesis. METHODS Accordingly, we utilized clinical samples and bioinformatics analysis to assess Ppih's mRNA, protein expression, and gene regulatory system in HCC. Additionally, Wilcoxon signed-rank testing and logistic regression were utilized to inspect the association between clinicopathological factors and Ppih. Clinical pathological traits linked to overall survival (OS) among HCC patients were examined via TCGA data via Cox regression and the Kaplan-Meier approach. Additionally, via TCGA data collection, gene set enrichment assessment was also conducted.
Collapse
Affiliation(s)
- Jun Ye
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yilin Pang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xunjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuan Zhang
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Lei Shi
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Zhitao Chen
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Guijia Huang
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Xianhe Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Fangyang Lu
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| |
Collapse
|
3
|
Goh KW, Stephen A, Wu YS, Sim MS, Batumalaie K, Gopinath SC, Guad RM, Kumar A, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Velaga A, Sarker MMR. Molecular Targets of Aptamers in Gastrointestinal Cancers: Cancer Detection, Therapeutic Applications, and Associated Mechanisms. J Cancer 2023; 14:2491-2516. [PMID: 37670975 PMCID: PMC10475355 DOI: 10.7150/jca.85260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/03/2023] [Indexed: 09/07/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common cancers that impact the global population, with high mortality and low survival rates after breast and lung cancers. Identifying useful molecular targets in GI cancers are crucial for improving diagnosis, prognosis, and treatment outcomes, however, limited by poor targeting and drug delivery system. Aptamers are often utilized in the field of biomarkers identification, targeting, and as a drug/inhibitor delivery cargo. Their natural and chemically modifiable binding capability, high affinity, and specificity are favored over antibodies and potential early diagnostic imaging and drug delivery applications. Studies have demonstrated the use of different aptamers as drug delivery agents and early molecular diagnostic and detection probes for treating cancers. This review aims to first describe aptamers' generation, characteristics, and classifications, also providing insights into their recent applications in the diagnosis and medical imaging, prognosis, and anticancer drug delivery system of GI cancers. Besides, it mainly discussed the relevant molecular targets and associated molecular mechanisms involved, as well as their applications for potential treatments for GI cancers. In addition, the current applications of aptamers in a clinical setting to treat GI cancers are deciphered. In conclusion, aptamers are multifunctional molecules that could be effectively used as an anticancer agent or drug delivery system for treating GI cancers and deserve further investigations for clinical applications.
Collapse
Affiliation(s)
- Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Annatasha Stephen
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering & Technology, Arau 02600, Institute of Nano Electronic Engineering, Kangar 01000, Micro System Technology, Centre of Excellence, Arau 02600, Pauh Campus, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ashok Kumar
- Department of Internal Medicine, University of Kansas Medical Centre, Kansas City, Kansas 66103, United States
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor 42610, Malaysia
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia
| | - Appalaraju Velaga
- Department of Medicinal Chemistry, Faculty of Pharmacy, MAHSA University, Selangor 42610, Malaysia
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| |
Collapse
|
4
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
5
|
Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem 2022; 478:1573-1598. [DOI: 10.1007/s11010-022-04614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
|
6
|
Clark V, Waters K, Orsburn B, Bumpus NN, Kundu N, Sczepanski JT, Ray P, Arroyo‐Currás N. Human Cyclophilin B Nuclease Activity Revealed via Nucleic Acid-Based Electrochemical Sensors. Angew Chem Int Ed Engl 2022; 61:e202211292. [PMID: 35999181 PMCID: PMC9633453 DOI: 10.1002/anie.202211292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/12/2023]
Abstract
Human cyclophilin B (CypB) is oversecreted by pancreatic cancer cells, making it a potential biomarker for early-stage disease diagnosis. Our group is motivated to develop aptamer-based assays to measure CypB levels in biofluids. However, human cyclophilins have been postulated to have collateral nuclease activity, which could impede the use of aptamers for CypB detection. To establish if CypB can hydrolyze electrode-bound nucleic acids, we used ultrasensitive electrochemical sensors to measure CypB's hydrolytic activity. Our sensors use ssDNA and dsDNA in the biologically predominant d-DNA form, and in the nuclease resistant l-DNA form. Challenging such sensors with CypB and control proteins, we unequivocally demonstrate that CypB can cleave nucleic acids. To our knowledge, this is the first study to use electrochemical biosensors to reveal the hydrolytic activity of a protein that is not known to be a nuclease. Future development of CypB bioassays will require the use of nuclease-resistant aptamer sequences.
Collapse
Affiliation(s)
- Vincent Clark
- Chemistry-Biology Interface ProgramZanvyl Krieger School of Arts & SciencesJohns Hopkins UniversityBaltimoreMD 21218USA
| | - Kelly Waters
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Ben Orsburn
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Namandjé N. Bumpus
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Nandini Kundu
- Department of ChemistryTexas A&M University College StationTexasTX 77842USA
| | | | - Partha Ray
- Department of SurgeryDivision of Surgical OncologyMoores Cancer CenterDepartment of MedicineDivision of Infectious Diseases and Global Public HealthUniversity of California San Diego HealthSan DiegoCA 92093USA
| | - Netzahualcóyotl Arroyo‐Currás
- Chemistry-Biology Interface ProgramZanvyl Krieger School of Arts & SciencesJohns Hopkins UniversityBaltimoreMD 21218USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| |
Collapse
|
7
|
Li Y, Lin M, Wang S, Cao B, Li C, Li G. Novel Angiogenic Regulators and Anti-Angiogenesis Drugs Targeting Angiogenesis Signaling Pathways: Perspectives for Targeting Angiogenesis in Lung Cancer. Front Oncol 2022; 12:842960. [PMID: 35372042 PMCID: PMC8965887 DOI: 10.3389/fonc.2022.842960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer growth is dependent on angiogenesis. In recent years, angiogenesis inhibitors have attracted more and more attention as potential lung cancer treatments. Current anti-angiogenic drugs targeting VEGF or receptor tyrosine kinases mainly inhibit tumor growth by reducing angiogenesis and blocking the energy supply of lung cancer cells. However, these drugs have limited efficiency, raising concerns about limited scope of action and mechanisms of patient resistance to existing drugs. Therefore, current basic research on angiogenic regulators has focused more on screening carcinogenic/anticancer genes, miRNAs, lncRNAs, proteins and other biomolecules capable of regulating the expression of specific targets in angiogenesis signaling pathways. In addition, new uses for existing drugs and new drug delivery systems have received increasing attention. In our article, we analyze the application status and research hotspots of angiogenesis inhibitors in lung cancer treatment as a reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Yingying Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Lin
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyuan Wang
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Cao
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Gupta A, Anand A, Jain N, Goswami S, Anantharaj A, Patil S, Singh R, Kumar A, Shrivastava T, Bhatnagar S, Medigeshi GR, Sharma TK. A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:321-332. [PMID: 34188971 PMCID: PMC8223116 DOI: 10.1016/j.omtn.2021.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
The recent SARS-CoV-2 outbreak has been declared a global health emergency. It will take years to vaccinate the whole population to protect them from this deadly virus, hence the management of SARS-CoV-2 largely depends on the widespread availability of an accurate diagnostic test. Toward addressing the unmet need of a reliable diagnostic test in the current work by utilizing the power of Systematic Evolution of Ligands by EXponential enrichment, a 44-mer G-quadruplex-forming DNA aptamer against spike trimer antigen of SARS-CoV-2 was identified. The lead aptamer candidate (S14) was characterized thoroughly for its binding, selectivity, affinity, structure, and batch-to-batch variability by utilizing various biochemical, biophysical, and in silico techniques. S14 has demonstrated a low nanomolar KD, confirming its tight binding to a spike antigen of SARS-CoV-2. S14 can detect as low as 2 nM of antigen. The clinical evaluation of S14 aptamer on nasopharyngeal swab specimens (n = 232) has displayed a highly discriminatory response between SARS-CoV-2 infected individuals from the non-infected one with a sensitivity and specificity of ∼91% and 98%, respectively. Importantly, S14 aptamer-based test has evinced a comparable performance with that of RT-PCR-based assay. Altogether, this study established the utility of aptamer technology for the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Ankit Gupta
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Anjali Anand
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | - Sandeep Goswami
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Anbalagan Anantharaj
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Sharanabasava Patil
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Rahul Singh
- Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | - Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | | | - Tarun Kumar Sharma
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - DBT India Consortium for COVID-19 Research
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
- Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| |
Collapse
|
9
|
Complex target SELEX-based identification of DNA aptamers against Bungarus caeruleus venom for the detection of envenomation using a paper-based device. Biosens Bioelectron 2021; 193:113523. [PMID: 34333364 DOI: 10.1016/j.bios.2021.113523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Complex target SELEX always have been an intriguing approach to the scientific community, as it offers the potential discovery of novel biomarkers. We herein successfully performed SELEX on Bungarus caeruleus venom to develop a panel of highly affine aptamers that specifically recognizes the B. caeruleus (common krait) venom and was able to discriminate the B. caeruleus venom from Cobra, Russell's, and Saw-scaled viper's venom. The aptamers generated against the crude venom also lead to the identification of the specific component of the venom, which is β-Bungarotoxin, a toxin uniquely present in the B. caeruleus venom. The best performing aptamer candidates were used as a molecular recognition element in a paper-based device and were able to detect as low as 2 ng krait venom in human serum background. The developed aptamer-based paper device can be used for potential point-of-care venom detection applications due to its simplicity and affordability.
Collapse
|
10
|
Liu J, Zuo Y, Qu GM, Song X, Liu ZH, Zhang TG, Zheng ZH, Wang HK. CypB promotes cell proliferation and metastasis in endometrial carcinoma. BMC Cancer 2021; 21:747. [PMID: 34187415 PMCID: PMC8240271 DOI: 10.1186/s12885-021-08374-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background The molecular pathogenesis of endometrial cancer is not completely understood. CypB upregulated in many cancers, however, its role in endometrial carcinoma has not been studied. Here, we determine the effect of CypB on the growth of endometrial cancer. Methods In this study, we examined the expression of CypB in endometrial cancer tissues using immunohistochemistry. CypB silenced in HEC-1-B cell line by shRNA. CCK-8, colony formation assays, wound healing assays, and transwell analysis were performed to assess its effect on tumor cell proliferation and metastasis. Furthermore, microarray analysis was carried out to compare the global mRNA expression profile between the HEC-1-B and CypB-silenced HEC-1-B cells. Gene ontology and KEGG pathway enrichment analysis were performed to determine the potential function of differentially expressed genes related to CypB. Results We found that CypB was upregulated in endometrial cancer, inhibit CypB expression could significantly suppress cell proliferation, metastasis, and migration. We identified 1536 differentially expressed genes related to CypB (onefold change, p < 0.05), among which 652 genes were upregulated and 884 genes were downregulated. The genes with significant difference in top were mainly enriched in the cell cycle, glycosphingolipid biosynthesis, adherens junctions, and metabolism pathways. Conclusion The results of our study suggest that CypB may serve as a novel regulator of endometrial cell proliferation and metastasis, thus representing a novel target for gene-targeted endometrial therapy. Trial registration YLYLLS [2018] 008. Registered 27 November 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08374-7.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Ying Zuo
- Department of Gynecology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Gui-Mei Qu
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Xiao Song
- Department of Pathology, People's Hospital of Rong cheng, Weihai, China
| | - Zhong-Hui Liu
- Department of Pathology, Yantai Muping District Traditional Chinese Medicine Hospital, Yantai, China
| | - Ting-Guo Zhang
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhu-Hua Zheng
- Department of Pediatrics, Traditional Chinese Medicine Hospital of Rushan, Weihai, China
| | - Hong-Kun Wang
- Department of Gynaecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, Chen H. The Role of Cyclophilins in Inflammatory Bowel Disease and Colorectal Cancer. Int J Biol Sci 2021; 17:2548-2560. [PMID: 34326693 PMCID: PMC8315013 DOI: 10.7150/ijbs.58671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such as promoting intracellular protein folding and participating in the pathological processes of inflammation and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are closely associated, IBD has always been considered as one of the main risks of CRC. However, the role of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, were briefly summarized, so as to provide modest reference for clinical researches and treatments in future.
Collapse
Affiliation(s)
- Lifang Liang
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Rongxiao Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Ying Xie
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Huaqing Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wen Rui
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| |
Collapse
|
12
|
Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188554. [PMID: 33945847 DOI: 10.1016/j.bbcan.2021.188554] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy that is characterized by early metastasis, low resectability, high recurrence, and therapy resistance. The experimental mouse models have played a central role in understanding the pathobiology of PDAC and in the preclinical evaluation of various therapeutic modalities. Different mouse models with targetable pathological hallmarks have been developed and employed to address the unique challenges associated with PDAC progression, metastasis, and stromal heterogeneity. Over the years, mouse models have evolved from simple cell line-based heterotopic and orthotopic xenografts in immunocompromised mice to more complex and realistic genetically engineered mouse models (GEMMs) involving multi-gene manipulations. The GEMMs, mostly driven by KRAS mutation(s), have been widely accepted for therapeutic optimization due to their high penetrance and ability to recapitulate the histological, molecular, and pathological hallmarks of human PDAC, including comparable precursor lesions, extensive metastasis, desmoplasia, perineural invasion, and immunosuppressive tumor microenvironment. Advanced GEMMs modified to express fluorescent proteins have allowed cell lineage tracing to provide novel insights and a new understanding about the origin and contribution of various cell types in PDAC pathobiology. The syngeneic mouse models, GEMMs, and target-specific transgenic mice have been extensively used to evaluate immunotherapies and study therapy-induced immune modulation in PDAC yielding meaningful results to guide various clinical trials. The emerging mouse models for parabiosis, hepatic metastasis, cachexia, and image-guided implantation, are increasingly appreciated for their high translational significance. In this article, we describe the contribution of various experimental mouse models to the current understanding of PDAC pathobiology and their utility in evaluating and optimizing therapeutic modalities for this lethal malignancy.
Collapse
Affiliation(s)
- Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Xin W, Zhao C, Jiang L, Pei D, Zhao L, Zhang C. Identification of a Novel Epithelial-Mesenchymal Transition Gene Signature Predicting Survival in Patients With HNSCC. Pathol Oncol Res 2021; 27:585192. [PMID: 34257533 PMCID: PMC8262154 DOI: 10.3389/pore.2021.585192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the most common types of cancer worldwide. There have been many reports suggesting that biomarkers explored via database mining plays a critical role in predicting HNSCC prognosis. However, a single biomarker for prognostic analysis is not adequate. Additionally, there is growing evidence indicating that gene signature could be a better choice for HNSCC prognosis. We performed a comprehensive analysis of mRNA expression profiles using clinical information of HNSCC patients from The Cancer Genome Atlas (TCGA). Gene Set Enrichment Analysis (GSEA) was performed, and we found that a set of genes involved in epithelial mesenchymal transition (EMT) contributed to HNSCC. Cox proportional regression model was used to identify a four-gene (WIPF1, PPIB, BASP1, PLOD2) signature that were significantly associated with overall survival (OS), and all the four genes were significantly upregulated in tumor tissues. We successfully classified the patients with HNSCC into high-risk and low-risk groups, where in high-risk indicated poorer patient prognosis, indicating that this gene signature might be a novel potential biomarker for the prognosis of HNSCC. The prognostic ability of the gene signature was further validated in an independent cohort from the Gene Expression Omnibus (GEO) database. In conclusion, we identified a four-EMT-based gene signature which provides the potentiality to serve as novel independent biomarkers for predicting survival in HNSCC patients, as well as a new possibility for individualized treatment of HNSCC.
Collapse
Affiliation(s)
- Wei Xin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Chaoran Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Dongmei Pei
- Department of Family Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Chengpu Zhang
- Department of Family Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Huang J, Chen X, Fu X, Li Z, Huang Y, Liang C. Advances in Aptamer-Based Biomarker Discovery. Front Cell Dev Biol 2021; 9:659760. [PMID: 33796540 PMCID: PMC8007916 DOI: 10.3389/fcell.2021.659760] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The discovery and identification of biomarkers promote the rational and fast development of medical diagnosis and therapeutics. Clinically, the application of ideal biomarkers still is limited due to the suboptimal technology in biomarker discovery. Aptamers are single-stranded deoxyribonucleic acid or ribonucleic acid molecules and can selectively bind to varied targets with high affinity and specificity. Compared with antibody, aptamers have desirable advantages, such as flexible design, easy synthesis and convenient modification with different functional groups. Currently, different aptamer-based technologies have been developed to facilitate biomarker discovery, especially CELL-SELEX and SOMAScan technology. CELL-SELEX technology is mainly used to identify cell membrane surface biomarkers of various cells. SOMAScan technology is an unbiased biomarker detection method that can analyze numerous and even thousands of proteins in complex biological samples at the same time. It has now become a large-scale multi-protein biomarker discovery platform. In this review, we introduce the aptamer-based biomarker discovery technologies, and summarize and highlight the discovered emerging biomarkers recently in several diseases.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Shen F, Xiong Y, Zhang L, Li H, Zhao H, Liu X, Yang P. Rapid Sample Preparation Workflow for Serum Sample Analysis with Different Mass Spectrometry Acquisition Strategies. Anal Chem 2020; 93:1578-1585. [PMID: 33372771 DOI: 10.1021/acs.analchem.0c03985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fast, robust, and high-throughput mass spectrometry-based serum proteomic pipelines have great potential to yield information for biomarker discovery and daily clinical practice. Here, we developed a simple and rapid sample preparation (RSP) workflow by reducing the classical pretreatment time from overnight to less than 1.5 h in an ordinary system. In HeLa cell lysates and serum samples, the number of proteins and tryptic peptides generated using the RSP was comparable to that generated using conventional methods. For fast scanning of the serum proteome, the RSP-supported pipeline could complete a test in less than 2 h with 30 min of LC-MS/MS analysis. Nearly 390 proteins spanning 8 magnitudes of abundance range were identified with high reproducibility, containing over 90 cancer-associated proteins and over 50 FDA-approved biomarkers. For fast assay development, eight candidate biomarker peptides for cardiovascular disease (CVD) were quantified by MRM with high accuracy (CV% <10). After a simple highly abundant protein removal, a deep serum proteome of over 1400 proteins was reached. By analyzing the depleted serum in DIA acquisition mode, over 700 proteins were quantified. The differentially expressed proteins could help us unambiguously distinguish the serum samples from healthy people and patients with pancreatic cancer (PC). Potential biomarkers for PC were also found. The new RSP method, which is rapid and simple, meets the demands of both deep mining and fast analysis of serum proteins. We believe that it will be widely used in serum protein studies and accelerate the transformation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Fenglin Shen
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yueting Xiong
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Lei Zhang
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Huanhuan Zhao
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiaohui Liu
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| | - Pengyuan Yang
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| |
Collapse
|
16
|
Deutsch O, Haviv Y, Krief G, Keshet N, Westreich R, Stemmer SM, Zaks B, Navat SP, Yanko R, Lahav O, Aframian DJ, Palmon A. Possible proteomic biomarkers for the detection of pancreatic cancer in oral fluids. Sci Rep 2020; 10:21995. [PMID: 33319845 PMCID: PMC7738525 DOI: 10.1038/s41598-020-78922-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
The 80% mortality rate of pancreatic-cancer (PC) makes early diagnosis a challenge. Oral fluids (OF) may be considered the ultimate body fluid for non-invasive examinations. We have developed techniques to improve visualization of minor OF proteins thereby overcoming major barriers to using OF as a diagnostic fluid. The aim of this study was to establish a short discriminative panel of OF biomarkers for the detection of PC. Unstimulated OF were collected from PC patients and controls (n = 30). High-abundance-proteins were depleted and the remaining proteins were analyzed by two-dimensional-gel-electrophoresis and quantitative dimethylation-liquid-chromatography-tandem mass-spectrometry. Label-free quantitative-mass-spectrometry analysis (qMS) was performed on 20 individual samples (n = 20). More than 100 biomarker candidates were identified in OF samples, and 21 had a highly differential expression profile. qMS analysis yielded a ROC-plot AUC value of 0.91 with 90.0% sensitivity and specificity for a combination of five biomarker candidates. We found a combination of five biomarkers for PC. Most of these proteins are known to be related to PC or other gastric cancers, but have never been detected in OF. This study demonstrates the importance of novel OF depletion methodologies for increased protein visibility and highlights the clinical applicability of OF as a diagnostic fluid.
Collapse
Affiliation(s)
- O Deutsch
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Y Haviv
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Sedation and Maxillofacial Radiology, Sjogren's Syndrome Center, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Krief
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - N Keshet
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Sedation and Maxillofacial Radiology, Sjogren's Syndrome Center, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - R Westreich
- Department of Internal Medicine B, Soroka Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - S M Stemmer
- Rabin Medical Center, Davidoff Center, Petach Tiqwa, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - B Zaks
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S P Navat
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - R Yanko
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Sedation and Maxillofacial Radiology, Sjogren's Syndrome Center, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - O Lahav
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - D J Aframian
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Sedation and Maxillofacial Radiology, Sjogren's Syndrome Center, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Palmon
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. .,Department of Oral Medicine, Sedation and Maxillofacial Imaging, Faculty of Dental Medicine, Hebrew University - Hadassah, Jerusalem, Israel.
| |
Collapse
|
17
|
Nimjee SM, Sullenger BA. Therapeutic Aptamers: Evolving to Find their Clinical Niche. Curr Med Chem 2020; 27:4181-4193. [PMID: 31573879 DOI: 10.2174/0929867326666191001125101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The discovery that short oligonucleotides, termed aptamers, can fold into three-dimensional structures that allow them to selectively bind and inhibit the activity of pathogenic proteins is now over 25 years old. The invention of the SELEX methodology heralded in an era in which such nucleic acid-based ligands could be generated against a wide variety of therapeutic targets. RESULTS A large number of aptamers have now been identified by combinatorial chemistry methods in the laboratory and moreover, an increasing number have been discovered in nature. The affinities and activities of such aptamers have often been compared to that of antibodies, yet only a few of these agents have made it into clinical studies compared to a large and increasing number of therapeutic antibodies. One therapeutic aptamer targeting VEGF has made it to market, while 3 others have advanced as far as phase III clinical trials. CONCLUSION In this manuscript, we hope the reader appreciates that the success of aptamers becoming a class of drugs is less about nucleic acid biochemistry and more about target validation and overall drug chemistry.
Collapse
Affiliation(s)
- Shahid M Nimjee
- Department of Neurological Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
18
|
Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma. Radiat Oncol 2020; 15:189. [PMID: 32758252 PMCID: PMC7409417 DOI: 10.1186/s13014-020-01624-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely challenging disease with a high mortality rate and a short overall survival time. The poor prognosis can be explained by aggressive tumor growth, late diagnosis, and therapy resistance. Consistent efforts have been made focusing on early tumor detection and novel drug development. Various strategies aim at increasing target specificity or local enrichment of chemotherapeutics as well as imaging agents in tumor tissue. Aptamers have the potential to provide early detection and permit anti-cancer therapy with significantly reduced side effects. These molecules are in-vitro selected single-stranded oligonucleotides that form stable three-dimensional structures. They are capable of binding to a variety of molecular targets with high affinity and specificity. Several properties such as high binding affinity, the in vitro chemical process of selection, a variety of chemical modifications of molecular platforms for diverse function, non-immunoreactivity, modification of bioavailability, and manipulation of pharmacokinetics make aptamers attractive targets compared to conventional cell-specific ligands. To explore the potential of aptamers for early diagnosis and targeted therapy of PDAC - as single agents and in combination with radiotherapy - we summarize the generation process of aptamers and their application as biosensors, biomarker detection tools, targeted imaging tracers, and drug-delivery carriers. We are furthermore discussing the current implementation aptamers in clinical trials, their limitations and possible future utilization.
Collapse
|
19
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
20
|
de Oliveira G, Paccielli Freire P, Santiloni Cury S, de Moraes D, Santos Oliveira J, Dal-Pai-Silva M, do Reis PP, Francisco Carvalho R. An Integrated Meta-Analysis of Secretome and Proteome Identify Potential Biomarkers of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E716. [PMID: 32197468 PMCID: PMC7140071 DOI: 10.3390/cancers12030716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely aggressive, has an unfavorable prognosis, and there are no biomarkers for early detection of the disease or identification of individuals at high risk for morbidity or mortality. The cellular and molecular complexity of PDAC leads to inconsistences in clinical validations of many proteins that have been evaluated as prognostic biomarkers of the disease. The tumor secretome, a potential source of biomarkers in PDAC, plays a crucial role in cell proliferation and metastasis, as well as in resistance to treatments, which together contribute to a worse clinical outcome. The massive amount of proteomic data from pancreatic cancer that has been generated from previous studies can be integrated and explored to uncover secreted proteins relevant to the diagnosis and prognosis of the disease. The present study aimed to perform an integrated meta-analysis of PDAC proteome and secretome public data to identify potential biomarkers of the disease. Our meta-analysis combined mass spectrometry data obtained from two systematic reviews of the pancreatic cancer literature, which independently selected 20 studies of the secretome and 35 of the proteome. Next, we predicted the secreted proteins using seven in silico tools or databases, which identified 39 secreted proteins shared between the secretome and proteome data. Notably, the expression of 31 genes of these secretome-related proteins was upregulated in PDAC samples from The Cancer Genome Atlas (TCGA) when compared to control samples from TCGA and The Genotype-Tissue Expression (GTEx). The prognostic value of these 39 secreted proteins in predicting survival outcome was confirmed using gene expression data from four PDAC datasets (validation set). The gene expression of these secreted proteins was able to distinguish high- and low-survival patients in nine additional tumor types from TCGA, demonstrating that deregulation of these secreted proteins may also contribute to the prognosis in multiple cancers types. Finally, we compared the prognostic value of the identified secreted proteins in PDAC biomarkers studies from the literature. This analysis revealed that our gene signature performed equally well or better than the signatures from these previous studies. In conclusion, our integrated meta-analysis of PDAC proteome and secretome identified 39 secreted proteins as potential biomarkers, and the tumor gene expression profile of these proteins in patients with PDAC is associated with worse overall survival.
Collapse
Affiliation(s)
- Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Patrícia Pintor do Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, São Paulo, Brazil;
- Experimental Research Unity, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-970, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| |
Collapse
|
21
|
A new small cell lung cancer biomarker identified by Cell-SELEX generated aptamers. Exp Cell Res 2019; 382:111478. [DOI: 10.1016/j.yexcr.2019.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
|
22
|
Koltes JE, Arora I, Gupta R, Nguyen DC, Schaid M, Kim JA, Kimple ME, Bhatnagar S. A gene expression network analysis of the pancreatic islets from lean and obese mice identifies complement 1q like-3 secreted protein as a regulator of β-cell function. Sci Rep 2019; 9:10119. [PMID: 31300714 PMCID: PMC6626003 DOI: 10.1038/s41598-019-46219-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Secreted proteins are important metabolic regulators. Identifying and characterizing the role of secreted proteins from small tissue depots such as islets of Langerhans, which are required for the proper control of whole-body energy metabolism, remains challenging. Our objective was to identify islet-derived secreted proteins that affect islet function in obesity. Lean and obese mouse islet expression data were analyzed by weighted gene co-expression network analysis (WGCNA) to identify trait-associated modules. Subsequently, genes within these modules were filtered for transcripts that encode for secreted proteins based on intramodular connectivity, module membership, and differential expression. Complement 1q like-3 (C1ql3) secreted protein was identified as a hub gene affecting islet function in obesity. Co-expression network, hierarchal clustering, and gene-ontology based approaches identified a putative role for C1ql3 in regulating β-cell insulin secretion. Biological validation shows that C1ql3 is expressed in β-cells, it inhibits insulin secretion and key genes that are involved in β-cell function. Moreover, the increased expression of C1ql3 is correlated with the reduced insulin secretion in islets of obese mice. Herein, we demonstrate a streamlined approach to effectively screen and determine the function of secreted proteins in islets, and identified C1ql3 as a putative contributor to reduced insulin secretion in obesity, linking C1ql3 to an increased susceptibility to type 2 diabetes.
Collapse
Affiliation(s)
- James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Itika Arora
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Rajesh Gupta
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Dan C Nguyen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Michael Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison College of Agriculture and Life Sciences, Madison, WI, 53706, USA.,Research Service, William S Middleton Memorial VA Hospital, Madison, WI, 53705, USA
| | - Jeong-A Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Michelle E Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison College of Agriculture and Life Sciences, Madison, WI, 53706, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Academic Affairs, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, USA.,Research Service, William S Middleton Memorial VA Hospital, Madison, WI, 53705, USA
| | - Sushant Bhatnagar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA.
| |
Collapse
|
23
|
Takakura K, Kawamura A, Torisu Y, Koido S, Yahagi N, Saruta M. The Clinical Potential of Oligonucleotide Therapeutics against Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20133331. [PMID: 31284594 PMCID: PMC6651255 DOI: 10.3390/ijms20133331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Although many diagnostic and therapeutic modalities for pancreatic cancer have been proposed, an urgent need for improved therapeutic strategies remains. Oligonucleotide therapeutics, such as those based on antisense RNAs, small interfering RNA (siRNA), microRNA (miRNA), aptamers, and decoys, are promising agents against pancreatic cancer, because they can identify a specific mRNA fragment of a given sequence or protein, and interfere with gene expression as molecular-targeted agents. Within the past 25 years, the diversity and feasibility of these drugs as diagnostic or therapeutic tools have dramatically increased. Several clinical and preclinical studies of oligonucleotides have been conducted for patients with pancreatic cancer. To support the discovery of effective diagnostic or therapeutic options using oligonucleotide-based strategies, in the absence of satisfactory therapies for long-term survival and the increasing trend of diseases, we summarize the current clinical trials of oligonucleotide therapeutics for pancreatic cancer patients, with underlying preclinical and scientific data, and focus on the possibility of oligonucleotides for targeting pancreatic cancer in clinical implications.
Collapse
Affiliation(s)
- Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Atsushi Kawamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
24
|
Teng MR, Huang JA, Zhu ZT, Li H, Shen JF, Chen Q. Cyclophilin B promotes cell proliferation, migration, invasion and angiogenesis via regulating the STAT3 pathway in non-small cell lung cancer. Pathol Res Pract 2019; 215:152417. [DOI: 10.1016/j.prp.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
|
25
|
Xiong H, Yan J, Cai S, He Q, Peng D, Liu Z, Liu Y. Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol 2019; 132:190-202. [PMID: 30926499 DOI: 10.1016/j.ijbiomac.2019.03.165] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 01/11/2023]
Abstract
Identification of biomarkers is essential for diagnosis, targeted therapy and prognosis evaluation of diseases, especially cancers. Currently, the number of ideal clinical biomarkers is still limited partially because of lacking efficient methods in biomarker discovery. Nucleic acid aptamers are artificial single-stranded DNA or RNA sequences that can selectively bind to various targets with high specificity and affinity. Moreover, aptamers possess desirable advantages, including easy synthesis, convenient modification, relative chemical stability and low immunogenicity. Recently, different aptamer-based strategies have been developed to facilitate the discovery of biomarkers. Based on cell-SELEX technology, the selected aptamers can be used to identify cell-surface protein biomarkers of different cancer cells. SOMAscan can analyze thousands of proteins of different biological samples, which becomes a multiplexed protein biomarker discovery platform. Additionally, secreted protein biomarkers can be discovered by aptamers screened through secretome SELEX. In order to facilitate the identification of target proteins, several covalent cross-linking strategies have been developed, such as aptamer-based affinity labeling (ABAL), DNA-templated aptamer and protein-aptamer template (PAT). In this review, we mainly highlight the emerging nucleic acid aptamer-based biomarker discovery strategies and demonstrate their unique technological advantages in discovering cancer biomarkers. The challenges and perspectives of aptamer-based methods are also discussed.
Collapse
Affiliation(s)
- Hongjie Xiong
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jianhua Yan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| |
Collapse
|
26
|
Su T, Xiao Y, Xiao Y, Guo Q, Li C, Huang Y, Deng Q, Wen J, Zhou F, Luo XH. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MiR-29b-3p Regulates Aging-Associated Insulin Resistance. ACS NANO 2019; 13:2450-2462. [PMID: 30715852 DOI: 10.1021/acsnano.8b09375] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insulin resistance is the major pathological characteristic of type 2 diabetes, and the elderly often develop insulin resistance. However, the deep-seated mechanisms for aging-related insulin resistance remain unclear. Here, we showed that nanosized exosomes released by bone marrow mesenchymal stem cells (BM-MSCs) of aged mice could be taken up by adipocytes, myocytes, and hepatocytes, resulting in insulin resistance both in vivo and in vitro. Using microRNA (miRNA) array assays, we found that the amount of miR-29b-3p was dramatically increased in exosomes released by BM-MSCs of aged mice. Mechanistically, SIRT1 (sirtuin 1) was identified to function as the downstream target of exosomal miR-29b-3p in regulating insulin resistance. Notably, utilizing an aptamer-mediated nanocomplex delivery system that down-regulated the level of miR-29b-3p in BM-MSCs-derived exosomes significantly ameliorated the insulin resistance of aged mice. Meanwhile, BM-MSCs-specific overexpression of miR-29b-3p induced insulin resistance in young mice. Taken together, these findings suggested that BM-MSCs-derived exosomal miR-29b-3p could modulate aging-related insulin resistance, which may serve as a potential therapeutic target for aging-associated insulin resistance.
Collapse
Affiliation(s)
- Tian Su
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| | - Yuzhong Xiao
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| | - Qiufang Deng
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| | - Jingxiang Wen
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| | - Fangliang Zhou
- Department of Biochemistry and Molecular Biology , Hunan University of Chinese Medicine , Changsha , Hunan 410208 , China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center , Xiangya Hospital of Central South University , Changsha , Hunan 410008 , China
| |
Collapse
|
27
|
Gao G, Liu C, Jain S, Li D, Wang H, Zhao Y, Liu J. Potential use of aptamers for diagnosis and treatment of pancreatic cancer. J Drug Target 2019; 27:853-865. [PMID: 30596288 DOI: 10.1080/1061186x.2018.1564924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer (PC) is highly malignant with a low 5-year survival rate. PC currently does not have good early diagnostic markers and responses poorly to chemotherapeutic drugs. The search for better biomarkers and developing more effective chemotherapy are important ways to improve the healthcare of PC patients. Aptamers are single-stranded nucleic acids with high binding affinity and specificity to target molecules. Many aptamers against different forms of cancer including PC have been selected for both diagnostic and therapeutic use. Aptamers can work as ligands to distinguish tumour cells from normal cells. Using cells as selection targets, the obtained aptamers have been used to discover new cancer biomarkers after identification of the binding target. Aptamers have been shown to have antagonists effect on cancer cell proliferation, apoptosis, and metastasis. In addition, aptamers have been used as carriers to deliver therapeutic agents to selectively kill PC cells. This review summarises the potential use of aptamers in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Ge Gao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Can Liu
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Sona Jain
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| | - Dai Li
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada.,d Department of Pharmacology , Xiangya Hospital, Central South University , Changsha , China
| | - Hai Wang
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Yongxin Zhao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Juewen Liu
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| |
Collapse
|
28
|
Choi TG, Nguyen MN, Kim J, Jo YH, Jang M, Nguyen NNY, Yun HR, Choe W, Kang I, Ha J, Tang DG, Kim SS. Cyclophilin B induces chemoresistance by degrading wild-type p53 via interaction with MDM2 in colorectal cancer. J Pathol 2018; 246:115-126. [PMID: 29876924 DOI: 10.1002/path.5107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild-type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT-dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated, using bioinformatics analyses, that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Minh Nam Nguyen
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jieun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Miran Jang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Osawa M. A repetitive mutation and selection system for bacterial evolution to increase the specific affinity to pancreatic cancer cells. PLoS One 2018; 13:e0198157. [PMID: 29851969 PMCID: PMC5979011 DOI: 10.1371/journal.pone.0198157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
It is difficult to target and kill cancer cells. One possible approach is to mutate bacteria to enhance their binding to cancer cells. In the present study, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis were randomly mutated, and then were positively and negatively selected for binding cancer vs normal cells. With repetitive mutation and selection both bacteria successfully evolved to increase affinity to the pancreatic cancer cell line (Mia PaCa-2) but not normal cells (HPDE: immortalized human pancreatic ductal epithelial cells). The mutant E. coli and B. subtilis strains bound to Mia PaCa-2 cells about 10 and 25 times more than to HPDE cells. The selected E. coli strain had mutations in biofilm-related genes and the regulatory region for a type I pilus gene. Consistent with type I pili involvement, mannose could inhibit the binding to cells. The results suggest that weak but specific binding is involved in the initial step of adhesion. To test their ability to kill Mia PaCa-2 cells, hemolysin was expressed in the mutant strain. The hemolysin released from the mutant strain was active and could kill Mia PaCa-2 cells. In the case of B. subtilis, the initial binding to the cells was a weak interaction of the leading pole of the motile bacteria. The frequency of this interaction to Mia PaCa-2 cells dramatically increased in the evolved mutant strain. This mutant strain could also specifically invade beneath Mia PaCa-2 cells and settle there. This type of mutation/selection strategy may be applicable to other combinations of cancer cells and bacterial species.
Collapse
Affiliation(s)
- Masaki Osawa
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T, Tu ML, Peng H, Lu Q, Liu Q, He HB, Jiang TJ, Lei MX, Wan M, Cao X, Luo XH. MiR-497∼195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun 2017; 8:16003. [PMID: 28685750 PMCID: PMC5504303 DOI: 10.1038/ncomms16003] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
A specific bone vessel subtype, strongly positive for CD31 and endomucin (CD31hiEmcnhi), is identified as coupling angiogenesis and osteogenesis. The abundance of type CD31hiEmcnhi vessels decrease during ageing. Here we show that expression of the miR-497∼195 cluster is high in CD31hiEmcnhi endothelium but gradually decreases during ageing. Mice with depletion of miR-497∼195 in endothelial cells show fewer CD31hiEmcnhi vessels and lower bone mass. Conversely, transgenic overexpression of miR-497∼195 in murine endothelium alleviates age-related reduction of type CD31hiEmcnhi vessels and bone loss. miR-497∼195 cluster maintains the endothelial Notch activity and HIF-1α stability via targeting F-box and WD-40 domain protein (Fbxw7) and Prolyl 4-hydroxylase possessing a transmembrane domain (P4HTM) respectively. Notably, endothelialium-specific activation of miR-195 by intravenous injection of aptamer-agomiR-195 stimulates CD31hiEmcnhi vessel and bone formation in aged mice. Together, our study indicates that miR-497∼195 regulates angiogenesis coupled with osteogenesis and may represent a potential therapeutic target for age-related osteoporosis. H-type endothelium, defined by the high expression of CD31 and endomucin, is found in the bone where it promotes angiogenesis and osteogensis. Here Yang et al. show that the miR-497∼195 cluster regulates the generation and maintenance of the H-type endothelium by controlling the levels of Notch regulator Fbxw7 and the HIF regulator P4HTM.
Collapse
Affiliation(s)
- Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Xi Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Man-Li Tu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qiong Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong-Bo He
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Min-Xiang Lei
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
31
|
Sekhon SS, Um HJ, Shin WR, Lee SH, Min J, Ahn JY, Kim YH. Aptabody-aptatope interactions in aptablotting assays. NANOSCALE 2017; 9:7464-7475. [PMID: 28530298 DOI: 10.1039/c7nr01827d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate an aptablotting assay method that involves direct and indirect aptabody recognition. Nanoscale single-stranded DNA aptamers against GST and DIG-tags are utilized as aptabodies (GST-2 and DIG-1, respectively), and the GST-2 aptabody binding site, or aptatope, as predicted by a MOE-docking simulation of the protein-aptamer complex, shows the interaction of the GST-2 aptabody at the catalytically active region. The aptabody-aptatope interaction was evaluated by an in vitro enzyme inhibitory analysis. The binding capacity of the GST-2 aptabody was assessed by dot-blot, EMSA and SDS-PAGE/electroblot analyses, and the results showed that the aptabodies interact with both the native mono-/dimeric form and the denatured GST form on a membrane. The use of aptabodies can overcome the obstacles of current immunoblot assays, and these molecules are easily assessable via ELISA systems. Moreover, the hybridization of aptabodies and antibodies (hybrid-aptablotting) may have considerable impacts on the design of bioassay platforms.
Collapse
Affiliation(s)
- Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | | | | | | | | | | | | |
Collapse
|
32
|
Cell-SELEX Identifies a "Sticky" RNA Aptamer Sequence. J Nucleic Acids 2017; 2017:4943072. [PMID: 28194280 PMCID: PMC5282457 DOI: 10.1155/2017/4943072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cell-SELEX is performed to select for cell binding aptamers. We employed an additional selection pressure by using RNAse to remove surface-binding aptamers and select for cell-internalizing aptamers. A common RNA sequence was identified from independent cell-SELEX procedures against two different pancreatic cancer cell lines, indicating a strong selection pressure towards this sequence from the large pool of other available sequences present in the aptamer library. The aptamer is not specific for the pancreatic cancer cell lines, and a similar sequence motif is present in previously published internalizing aptamers. The identified sequence forms a structural motif that binds to a surface protein, which either is highly abundant or has strong affinity for the selected aptamer sequence. Deselecting (removing) this sequence during cell-SELEX may increase the probability of identifying aptamers against cell type-specific targets on the cell surface.
Collapse
|
33
|
Zhang H, Fan Q, Xie H, Lu L, Tao R, Wang F, Xi R, Hu J, Chen Q, Shen W, Zhang R, Yan X. Elevated Serum Cyclophilin B Levels Are Associated with the Prevalence and Severity of Metabolic Syndrome. Front Endocrinol (Lausanne) 2017; 8:360. [PMID: 29312150 PMCID: PMC5744388 DOI: 10.3389/fendo.2017.00360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Inflammation plays a central role in the pathogenesis of metabolic syndrome (MetS). Cyclophilin B (CypB) can be constitutively secreted in response to inflammatory stimuli and oxidative stress, participating in tissue or systemic inflammation. We investigated the relationship between CypB and MetS in both humans and mice. METHODS Serum CypB levels were determined in 211 subjects with MetS and 292 subjects without MetS (non-MetS) (133 healthy controls and 159 high-risk subjects with one to two MetS components). Additionally, CypB expression in metabolic organs was examined in mice fed with high-fat diet (HFD) and genetically obese (ob/ob) mice. RESULTS Serum CypB level was significantly higher in MetS subjects compared with both groups of non-MetS subjects (193.80 ± 83.22 vs. 168.38 ± 65.01 vs. 124.26 ± 47.83 ng/mL, P < 0.001). Particularly, serum CypB level was significantly higher in subjects with hypertension, central obesity, diabetes mellitus or hyperglycemia, elevated levels of triglycerides, or reduced levels of high-density lipoprotein than in those without. Moreover, CypB was positively associated with the number of MetS components (r = 0.404, P < 0.001), indicating that a higher serum CypB level reflected more severe MetS. Multivariate regression revealed that a one SD increase in CypB was associated with an odds ratio of 1.506 (1.080-2.101, P = 0.016) for MetS prevalence after adjusting for age, gender, conventional risk factors, and medication. Stratified analyses by age and gender demonstrated that subjects >60 years old with higher CypB levels were more likely to have MetS, and the risk for MetS was higher and more significant in women compared with men. Additionally, CypB expression levels were lower at baseline and dramatically enhanced in metabolic organs (such as the liver) and visceral and subcutaneous adipose tissue from HFD-induced obese mice and ob/ob mice. CONCLUSION Increased CypB levels were significantly and independently associated with the presence and severity of MetS, indicating that CypB could be used as a novel biomarker and clinical predictor of MetS.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Fan
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyang Xie
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Tao
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Xi
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Hu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiujing Chen
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiang Yan
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoxiang Yan,
| |
Collapse
|
34
|
Li T, Guo H, Zhao X, Jin J, Zhang L, Li H, Lu Y, Nie Y, Wu K, Shi Y, Fan D. Gastric Cancer Cell Proliferation and Survival Is Enabled by a Cyclophilin B/STAT3/miR-520d-5p Signaling Feedback Loop. Cancer Res 2016; 77:1227-1240. [PMID: 28011625 DOI: 10.1158/0008-5472.can-16-0357] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 11/16/2022]
Abstract
Molecular links between inflammation and cancer remain obscure despite their great pathogenic significance. The JAK2/STAT3 pathway activated by IL6 and other proinflammatory cytokines has garnered attention as a pivotal link in cancer pathogenesis, but the basis for its activation in cancer cells is not understood. Here we report that an IL6-triggered feedback loop involving STAT3-mediated suppression of miR-520d-5p and upregulation of its downstream target cyclophilin B (CypB) regulate the growth and survival of gastric cancer cells. In clinical specimens of gastric cancer, we documented increased expression of CypB and activation of STAT3. Mechanistic investigations identified miR-520d-5p as a regulator of CypB mRNA levels. This signaling axis regulated gastric cancer growth by modulating phosphorylation of STAT3. Furthermore, miR-520d-5p was identified as a direct STAT3 target and IL6-mediated inhibition of miR-520d-5p relied upon STAT3 activity. Our findings define a positive feedback loop that drives gastric carcinogenesis as influenced by H. pylori infections that involve proinflammatory IL6 stimulation. Cancer Res; 77(5); 1227-40. ©2016 AACR.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Gastroenterology, The 264 Hospital of PLA, Taiyuan, China
| | - Hanqing Guo
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Gastroenterology, Xi'an Central Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiang Jin
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lifeng Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Li
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
35
|
Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery. Biotechniques 2016; 61:249-259. [PMID: 27839510 DOI: 10.2144/000114473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5´dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes.
Collapse
|
36
|
Mi J, Ray P, Liu J, Kuan CT, Xu J, Hsu D, Sullenger BA, White RR, Clary BM. In Vivo Selection Against Human Colorectal Cancer Xenografts Identifies an Aptamer That Targets RNA Helicase Protein DHX9. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e315. [PMID: 27115840 PMCID: PMC5014527 DOI: 10.1038/mtna.2016.27] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/10/2016] [Indexed: 12/25/2022]
Abstract
The ability to selectively target disease-related tissues with molecules is critical to the design of effective therapeutic and diagnostic reagents. Recognizing the differences between the in vivo environment and in vitro conditions, we employed an in vivo selection strategy to identify RNA aptamers (targeting motifs) that could localize to tumor in situ. One of the selected molecules is an aptamer that binds to the protein DHX9, an RNA helicase that is known to be upregulated in colorectal cancer. Upon systemic administration, the aptamer preferentially localized to the nucleus of cancer cells in vivo and thus has the potential to be used for targeted delivery.
Collapse
Affiliation(s)
- Jing Mi
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Partha Ray
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jenny Liu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Chien-Tsun Kuan
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer Xu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David Hsu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Rebekah R White
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Bryan M Clary
- Department of Surgery, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
37
|
Marton S, Cleto F, Krieger MA, Cardoso J. Isolation of an Aptamer that Binds Specifically to E. coli. PLoS One 2016; 11:e0153637. [PMID: 27104834 PMCID: PMC4841571 DOI: 10.1371/journal.pone.0153637] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/01/2016] [Indexed: 01/24/2023] Open
Abstract
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Fernanda Cleto
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil.,Instituto Carlos Chagas, Laboratório de Genomica Functional, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Josiane Cardoso
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| |
Collapse
|
38
|
Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 2015; 44:1240-56. [PMID: 25561050 DOI: 10.1039/c4cs00357h] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.
Collapse
Affiliation(s)
- Haitao Ma
- The Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015; 125:1509-22. [PMID: 25751060 DOI: 10.1172/jci77716] [Citation(s) in RCA: 403] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/15/2015] [Indexed: 12/22/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.
Collapse
|
41
|
Fernando M, Peake PW, Endre ZH. Biomarkers of calcineurin inhibitor nephrotoxicity in transplantation. Biomark Med 2014; 8:1247-62. [DOI: 10.2217/bmm.14.86] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over 35 years of use has demonstrated the revolutionary therapeutic benefits of calcineurin inhibitors (CNI) in not only preventing transplant rejection, but also the renal and nonrenal toxicity of CNI. Acute reversible and insidious irreversible forms of CNI nephrotoxicity have been identified, with ischemia from an imbalance between vasoconstrictors and vasodilators playing an important role. The ongoing search to define toxicity pathways has been enriched by ‘Omics’ studies. Changes in proteins including those involved in activation of pro-inflammatory responses, oxidative stress, ER stress and the unfolded protein response have been identified, and these may serve as biomarkers of toxicity. However, the current standard of CNI toxicity, histology, lacks specificity, which creates challenges for biomarker validation. This review focuses on progress in nephrotoxic pathway identification of CNI and biomarker validation.
Collapse
Affiliation(s)
- Mangalee Fernando
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Philip W Peake
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Zoltan H Endre
- Department of Nephrology, Prince of Wales Hospital, Barker St., Randwick, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Gedi V, Kim YP. Detection and characterization of cancer cells and pathogenic bacteria using aptamer-based nano-conjugates. SENSORS (BASEL, SWITZERLAND) 2014; 14:18302-27. [PMID: 25268922 PMCID: PMC4239906 DOI: 10.3390/s141018302] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/08/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
Detection and characterization of cells using aptamers and aptamer-conjugated nanoprobes has evolved a great deal over the past few decades. This evolution has been driven by the easy selection of aptamers via in vitro cell-SELEX, permitting sensitive discrimination between target and normal cells, which includes pathogenic prokaryotic and cancerous eukaryotic cells. Additionally, when the aptamer-based strategies are used in conjunction with nanomaterials, there is the potential for cell targeting and therapeutic effects with improved specificity and sensitivity. Here we review recent advances in aptamer-based nano-conjugates and their applications for detecting cancer cells and pathogenic bacteria. The multidisciplinary research utilized in this field will play an increasingly significant role in clinical medicine and drug discovery.
Collapse
Affiliation(s)
- Vinayakumar Gedi
- Department of Life Science, Hanyang University, Seoul 133-791, Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
43
|
Shen B, Li J, Cheng W, Yan Y, Tang R, Li Y, Ju H, Ding S. Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1333-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Chen Y, Zhu Z, Yu Y. Novel methodologies in analysis of small molecule biomarkers and living cells. Tumour Biol 2014; 35:9469-77. [PMID: 25119591 DOI: 10.1007/s13277-014-2439-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022] Open
Abstract
Enzyme-linked immuno-sorbent assay (ELISA) is widely used for biomarker detection. A good biomarker can distinguish patients from healthy or benign diseases. However, the ELISA method is not suitable for small molecule or trace substance detection. Along with the development of new technologies, an increasing level of biomaterials, especially small molecules, will be identified as novel biomarkers. Quantitative immuno-PCR, chromatography-mass spectrometry, and nucleic acid aptamer are emerging methodologies for detection of small molecule biomarkers, even in living cells. In this review, we focus on these novel technologies and their potential for small molecule biomarkers and living cell analysis.
Collapse
Affiliation(s)
- Yinan Chen
- Department of Surgery, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Ruijin er Road, No. 197, 200025, Shanghai, China
| | | | | |
Collapse
|
45
|
Han L, Zhang W, Song F, Guo Y, Guo K, Zhou W. Soluble a‑proliferation‑inducing ligand (sAPRIL), a novel serum biomarker predicting the recurrence and metastasis of pancreatic adenocarcinoma after surgery. Mol Med Rep 2014; 10:1978-84. [PMID: 25110120 DOI: 10.3892/mmr.2014.2443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/19/2014] [Indexed: 11/06/2022] Open
Abstract
Pancreatic adenocarcinoma (PA) is a leading cause of adult cancer mortality, and surgery is still the best available treatment strategy. However, PA can recur at any time and has limited prognosis. It is therefore necessary to explore novel serum biomarkers of PA to allow the early diagnosis of PA. Soluble a-proliferation-inducing ligand (sAPRIL), a promising inducer of the epithelial-mesenchymal transition (EMT), is often found overexpressed in a variety of autoimmune diseases. To determine whether serum sAPRIL can constitute a PA biomarker, the protein level of sAPRIL was examined by immunohistochemistry and western blot, and the mRNA level was quantified by RT-qPCR. The PA cell line PanC-1 was transfected with vectors bearing the sAPRIL gene and sAPRIL short hairpin RNA (shRNA) oligos. Increased expression of serum sAPRIL was observed in patients with PA recurrence or metastasis after five-year surgery compared to subjects without PA recurrence or metastasis. The growth rate of PanC-1 cells transfected with the sAPRIL expression vector was increased by 23% (P<0.01, vs. control group), and was reduced by 17% (P<0.01, vs. control group) in the sAPRIL shRNA-silenced cell line. Thus, sAPRIL is highly expressed in PA, and serum levels of sAPRIL can serve as a useful indicator for the recurrence or metastasis of PA after surgery. Additional validation studies on the use of serum sAPRIL as a diagnostic marker in PA are however needed.
Collapse
Affiliation(s)
- Lei Han
- Department of Hepatobiliary and Pancreas Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Wei Zhang
- Department of Hepatobiliary and Pancreas Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Fulin Song
- Department of Pathology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Yang Guo
- Department of Hepatobiliary and Pancreas Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Kejian Guo
- Department of General Surgery, College of Clinical Medical Sciences, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wenping Zhou
- Department of Hepatobiliary and Pancreas Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
46
|
An ultrasensitive label-free assay of 8-hydroxy-2'-deoxyguanosine based on the conformational switching of aptamer. Biosens Bioelectron 2014; 58:22-6. [PMID: 24607618 DOI: 10.1016/j.bios.2014.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/28/2014] [Accepted: 02/16/2014] [Indexed: 01/18/2023]
Abstract
We developed a highly sensitive label-free assay of 8-hydroxy-2'-deoxyguanosine (8-OHdG) using 8-OHdG-aptamer (Apt) as the recognition element. The Apt was adsorbed onto the surface of gold nanoparticles (AuNPs), which prevents them from aggregating under high-salt conditions. Upon addition of 8-OHdG, the conformation of the Apt changes to form a G-quadruplex structure, which leads to the aggregation of the AuNPs along with the increase of the resonance light scattering intensity. The mechanism of 8-OHdG that induces Apt to form G-quadruplexes structure was studied by circular dichroism. The response signals linearly correlated with the concentration of 8-OHdG ranging from 90.8pM to 14.1nM with a detection limit of 27.3pM, which is much lower than that obtained by other methods. This method does not need any label steps and sophisticated equipment. The application for detection of 8-OHdG in real samples further demonstrated its reliability. This strategy would be helpful for developing a universal analytical method by simply replacing corresponding aptamers for various target molecules.
Collapse
|
47
|
Colorimetric determination of 8-hydroxy–2′-deoxyguanosine using label-free aptamer and unmodified gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1173-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Nagarkatti R, de Araujo FF, Gupta C, Debrabant A. Aptamer based, non-PCR, non-serological detection of Chagas disease biomarkers in Trypanosoma cruzi infected mice. PLoS Negl Trop Dis 2014; 8:e2650. [PMID: 24454974 PMCID: PMC3894185 DOI: 10.1371/journal.pntd.0002650] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/03/2013] [Indexed: 12/18/2022] Open
Abstract
Chagas disease affects about 5 million people across the world. The etiological agent, the intracellular parasite Trypanosoma cruzi (T. cruzi), can be diagnosed using microscopy, serology or PCR based assays. However, each of these methods has their limitations regarding sensitivity and specificity, and thus to complement these existing diagnostic methods, alternate assays need to be developed. It is well documented that several parasite proteins called T. cruzi Excreted Secreted Antigens (TESA), are released into the blood of an infected host. These circulating parasite antigens could thus be used as highly specific biomarkers of T. cruzi infection. In this study, we have demonstrated that, using a SELEx based approach, parasite specific ligands called aptamers, can be used to detect TESA in the plasma of T. cruzi infected mice. An Enzyme Linked Aptamer (ELA) assay, similar to ELISA, was developed using biotinylated aptamers to demonstrate that these RNA ligands could interact with parasite targets. Aptamer L44 (Apt-L44) showed significant and specific binding to TESA as well as T. cruzi trypomastigote extract and not to host proteins or proteins of Leishmania donovani, a related trypanosomatid parasite. Our result also demonstrated that the target of Apt-L44 is conserved in three different strains of T. cruzi. In mice infected with T. cruzi, Apt-L44 demonstrated a significantly higher level of binding compared to non-infected mice suggesting that it could detect a biomarker of T. cruzi infection. Additionally, Apt-L44 could detect these circulating biomarkers in both the acute phase, from 7 to 28 days post infection, and in the chronic phase, from 55 to 230 days post infection. Our results show that Apt-L44 could thus be used in a qualitative ELA assay to detect biomarkers of Chagas disease. Chagas disease, caused by the parasite Trypanosoma cruzi, is a major health concern for people living in Latin America. There are no vaccines to prevent this disease and only two drugs are prescribed for treatment. Current methods to diagnose patients are not always successful and thus new methods need to be developed. One approach to develop an alternate method is to detect proteins and metabolites that are secreted by parasites into the blood of infected individuals. We have utilized a selection based method to isolate ligands that bind to these secreted proteins. These ligands, called aptamers, have been used to develop an assay that can detect the circulating parasite targets in the plasma or serum of an infected host. In an animal model of Chagas disease, our assay can detect parasite biomarkers as early as seven days after infection and as late as 230 days post infection. As the laboratory instruments and procedures are similar to performing an ELISA, the aptamer assay reported here could be easily performed at diagnostic facilities. Further improvement in this assay can lead to a new quantitative diagnostic test for Chagas disease. A similar selection based approach could also be used to develop ligands for the detection of biomarkers in other diseases.
Collapse
Affiliation(s)
- Rana Nagarkatti
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Fernanda Fortes de Araujo
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Charu Gupta
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Alain Debrabant
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Luo P, Liu Y, Xia Y, Xu H, Xie G. Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron 2013; 54:217-21. [PMID: 24287407 DOI: 10.1016/j.bios.2013.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/20/2013] [Accepted: 11/04/2013] [Indexed: 01/05/2023]
Abstract
A sensitive electrochemical biosensor was developed to detect toxin A (TOA) of Clostridium difficile based on an aptamer selected by the systematic evolution of ligands using exponential enrichment and gold nanoparticles (GNPS) synthesized by Bacillus stearothermophilus. The thiolated single-stranded DNA used as the capture probe (CP) was first self-assembled on a Nafion-thionine-GNPS-modified screen-printed electrode (SPE) through an Au-thiol interaction. The horseradish peroxidase (HRP)-labeled aptamer probe (AP) was then hybridized to the complementary oligonucleotide of CP to form an aptamer-DNA duplex. In the absence of TOA, the aptamer-DNA duplex modified the electrode surface with HRP, so that an amperometric response was induced based on the electrocatalytic properties of thionine. This was mediated by the electrons that were generated in the enzymatic reaction of hydrogen peroxide under HRP catalysis. After the specific recognition of TOA, an aptamer-TOA complex was produced rather than the aptamer-DNA duplex, forcing the HRP-labeled AP to dissociate from the electrode surface, which reduced the catalytic capacity of HRP and reduced the response current. The reduction in the response current correlated linearly with the concentration of TOA in the range of 0-200 ng/mL. The detection limit was shown to be 1 nM for TOA. This biosensor was applied to the analysis of TOA and showed good selectivity, reproducibility, stability, and accuracy.
Collapse
Affiliation(s)
- Peng Luo
- Clinical Laboratory, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yi Liu
- Department of Medical Technique, Chongqing Medical and Pharmaceutical College, Chongqing 400030, PR China
| | - Yun Xia
- Clinical Laboratory, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Huajian Xu
- Clinical Laboratory, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Guoming Xie
- Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
50
|
Ray P, Sullenger BA, White RR. Further characterization of the target of a potential aptamer biomarker for pancreatic cancer: cyclophilin B and its posttranslational modifications. Nucleic Acid Ther 2013; 23:435-42. [PMID: 24152208 DOI: 10.1089/nat.2013.0439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Posttranslational modifications on proteins can serve as useful biomarkers for disease. However, their discovery and detection in biological fluids is challenging. Aptamers are oligonucleotide ligands that demonstrate high affinity toward their target proteins and can discriminate closely related proteins with superb specificity. Previously, we generated a cyclophilin B aptamer (M9-5) that could discriminate sera from pancreatic cancer patients and healthy volunteers with high specificity and sensitivity. In our present work we further characterize the aptamer and the target protein, cyclophilin B, and demonstrate that the aptamer could discriminate between cyclophilin B expressed in human cells versus bacteria. Using mass-spectrometric analysis, we discovered post-translational modifications on cyclophilin B that might be responsible for the M9-5 selectivity. The ability to distinguish between forms of the same protein with differing post-translational modifications is an important advantage of aptamers as tools for identification and detection of biomarkers.
Collapse
Affiliation(s)
- Partha Ray
- Department of Surgery, Duke University School of Medicine , Durham, North Carolina
| | | | | |
Collapse
|