1
|
Schumann U, Liu L, Aggio-Bruce R, Cioanca AV, Shariev A, Madigan MC, Valter K, Wen J, Natoli R. Spatial transcriptomics reveals regionally altered gene expression that drives retinal degeneration. Commun Biol 2025; 8:629. [PMID: 40251274 PMCID: PMC12008306 DOI: 10.1038/s42003-025-07887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/05/2025] [Indexed: 04/20/2025] Open
Abstract
Photoreceptor cell death is a hallmark of age-related macular degeneration. Environmental, lifestyle and genetic risk factors are known contributors to disease progression, whilst at the molecular level, oxidative stress and inflammation are central pathogenetic drivers. However, the spatial and cellular origins of these molecular mechanisms remain unclear. We used spatial transcriptomics to investigate the spatio-temporal gene expression changes in the adult mouse retina in response to photo-oxidative stress. We identify regionally distinct transcriptomes, with higher expression of immunity related genes in the superior retina. Exposure to stress induced expression of genes involved in inflammatory processes, innate immune responses, and cytokine production in a highly localised manner. A distinct region ~800 µm superior from the optic nerve head seems a key driver of these molecular changes. Further, we show highly localised early molecular changes in the superior mouse retina during retinal stress and identify novel genes drivers. We provide evidence of angiogenic changes in response to photo-oxidative stress and suggest additional angiogenic signalling pathways within the retina including VEGF, pleiotrophin and midkine. These new insights into retinal angiogenesis pave the way to identify novel drivers of retinal neovascularisation with an opportunity for therapeutic development.
Collapse
Affiliation(s)
- Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Save Sight Institute, The University of Sydney, Sydney, Australia.
| | - Lixinyu Liu
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), The Australian National University, Canberra, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Artur Shariev
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Michele C Madigan
- The Save Sight Institute, The University of Sydney, Sydney, Australia
- The School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Jiayu Wen
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), The Australian National University, Canberra, Australia.
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Marola OJ, MacLean M, Cossette TL, Diemler CA, Hewes AA, Reagan AM, Kanyinda JN, Skelly DA, Howell GR. Genetic context modulates aging and degeneration in the murine retina. Mol Neurodegener 2025; 20:8. [PMID: 39833899 PMCID: PMC11744848 DOI: 10.1186/s13024-025-00800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease. However, studies investigating retinal aging have not sufficiently accounted for genetic diversity. Therefore, examining molecular aging in the retina across different genetic backgrounds will enhance our understanding of human-relevant aging and degeneration in both the retina and brain-potentially improving therapeutic approaches to these debilitating conditions. METHODS Transcriptomics and proteomics were employed to elucidate retinal aging signatures in nine genetically diverse mouse strains (C57BL/6J, 129S1/SvlmJ, NZO/HlLtJ, WSB/EiJ, CAST/EiJ, PWK/PhK, NOD/ShiLtJ, A/J, and BALB/cJ) across lifespan. These data predicted human disease-relevant changes in WSB and NZO strains. Accordingly, B6, WSB, and NZO mice were subjected to human-relevant in vivo examinations at 4, 8, 12, and/or 18M, including: slit lamp, fundus imaging, optical coherence tomography, fluorescein angiography, and pattern/full-field electroretinography. Retinal morphology, vascular structure, and cell counts were assessed ex vivo. RESULTS We identified common molecular aging signatures across the nine mouse strains, which included genes associated with photoreceptor function and immune activation. Genetic background strongly modulated these aging signatures. Analysis of cell type-specific marker genes predicted age-related loss of photoreceptors and retinal ganglion cells (RGCs) in WSB and NZO, respectively. Fundus exams revealed retinitis pigmentosa-relevant pigmentary abnormalities in WSB retinas and diabetic retinopathy (DR)-relevant cotton wool spots and exudates in NZO retinas. Profound photoreceptor dysfunction and loss were confirmed in WSB. Molecular analyses indicated changes in photoreceptor-specific proteins prior to loss, suggesting photoreceptor-intrinsic dysfunction in WSB. In addition, age-associated RGC dysfunction, loss, and concomitant microvascular dysfunction were observed in NZO mice. Proteomic analyses revealed an early reduction in protective antioxidant processes, which may underlie increased susceptibility to DR-relevant pathology in NZO. CONCLUSIONS Genetic context is a strong determinant of retinal aging, and our multi-omics resource can aid in understanding age-related diseases of the eye and brain. Our investigations identified and validated WSB and NZO mice as improved preclinical models relevant to common retinal neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Cory A Diemler
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA
| | | | | | | | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
3
|
Marola OJ, MacLean M, Cossette TL, Diemler CA, Hewes AA, Reagan AM, Skelly DA, Howell GR. Genetic context modulates aging and degeneration in the murine retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589625. [PMID: 38659747 PMCID: PMC11042269 DOI: 10.1101/2024.04.16.589625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease. However, studies investigating retinal aging have not sufficiently accounted for genetic diversity. Therefore, examining molecular aging in the retina across different genetic backgrounds will enhance our understanding of human-relevant aging and degeneration in both the retina and brain-potentially improving therapeutic approaches to these debilitating conditions. Methods Transcriptomics and proteomics were employed to elucidate retinal aging signatures in nine genetically diverse mouse strains (C57BL/6J, 129S1/SvlmJ, NZO/HlLtJ, WSB/EiJ, CAST/EiJ, PWK/PhK, NOD/ShiLtJ, A/J, and BALB/cJ) across lifespan. These data predicted human disease-relevant changes in WSB and NZO strains. Accordingly, B6, WSB and NZO mice were subjected to human-relevant in vivo examinations at 4, 8, 12, and/or 18M, including: slit lamp, fundus imaging, optical coherence tomography, fluorescein angiography, and pattern/full-field electroretinography. Retinal morphology, vascular structure, and cell counts were assessed ex vivo. Results We identified common molecular aging signatures across the nine mouse strains, which included genes associated with photoreceptor function and immune activation. Genetic background strongly modulated these aging signatures. Analysis of cell type-specific marker genes predicted age-related loss of photoreceptors and retinal ganglion cells (RGCs) in WSB and NZO, respectively. Fundus exams revealed retinitis pigmentosa-relevant pigmentary abnormalities in WSB retinas and diabetic retinopathy (DR)-relevant cotton wool spots and exudates in NZO retinas. Profound photoreceptor dysfunction and loss were confirmed in WSB. Molecular analyses indicated changes in photoreceptor-specific proteins prior to loss, suggesting photoreceptor-intrinsic dysfunction in WSB. In addition, age-associated RGC dysfunction, loss, and concomitant microvascular dysfunction was observed in NZO mice. Proteomic analyses revealed an early reduction in protective antioxidant processes, which may underlie increased susceptibility to DR-relevant pathology in NZO. Conclusions Genetic context is a strong determinant of retinal aging, and our multi-omics resource can aid in understanding age-related diseases of the eye and brain. Our investigations identified and validated WSB and NZO mice as improved preclinical models relevant to common retinal neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Cory A. Diemler
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | | | | | | | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
4
|
Sirés A, Pazo-González M, López-Soriano J, Méndez A, de la Rosa EJ, de la Villa P, Comella JX, Hernández-Sánchez C, Solé M. The Absence of FAIM Leads to a Delay in Dark Adaptation and Hampers Arrestin-1 Translocation upon Light Reception in the Retina. Cells 2023; 12:cells12030487. [PMID: 36766830 PMCID: PMC9914070 DOI: 10.3390/cells12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The short and long isoforms of FAIM (FAIM-S and FAIM-L) hold important functions in the central nervous system, and their expression levels are specifically enriched in the retina. We previously described that Faim knockout (KO) mice present structural and molecular alterations in the retina compatible with a neurodegenerative phenotype. Here, we aimed to study Faim KO retinal functions and molecular mechanisms leading to its alterations. Electroretinographic recordings showed that aged Faim KO mice present functional loss of rod photoreceptor and ganglion cells. Additionally, we found a significant delay in dark adaptation from early adult ages. This functional deficit is exacerbated by luminic stress, which also caused histopathological alterations. Interestingly, Faim KO mice present abnormal Arrestin-1 redistribution upon light reception, and we show that Arrestin-1 is ubiquitinated, a process that is abrogated by either FAIM-S or FAIM-L in vitro. Our results suggest that FAIM assists Arrestin-1 light-dependent translocation by a process that likely involves ubiquitination. In the absence of FAIM, this impairment could be the cause of dark adaptation delay and increased light sensitivity. Multiple retinal diseases are linked to deficits in photoresponse termination, and hence, investigating the role of FAIM could shed light onto the underlying mechanisms of their pathophysiology.
Collapse
Affiliation(s)
- Anna Sirés
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Mateo Pazo-González
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Ana Méndez
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
- Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Enrique J. de la Rosa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Pedro de la Villa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Joan X. Comella
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Catalina Hernández-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Montse Solé
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
5
|
Hsieh CL, Yao Y, Gurevich VV, Chen J. Arrestin Facilitates Rhodopsin Dephosphorylation in Vivo. J Neurosci 2022; 42:3537-3545. [PMID: 35332081 PMCID: PMC9053844 DOI: 10.1523/jneurosci.0141-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023] Open
Abstract
Deactivation of G-protein-coupled receptors (GPCRs) involves multiple phosphorylations followed by arrestin binding, which uncouples the GPCR from G-protein activation. Some GPCRs, such as rhodopsin, are reused many times. Arrestin dissociation and GPCR dephosphorylation are key steps in the recycling process. In vitro evidence suggests that visual arrestin (ARR1) binding to light-activated, phosphorylated rhodopsin hinders dephosphorylation. Whether ARR1 binding also affects rhodopsin dephosphorylation in vivo is not known. We investigated this using both male and female mice lacking ARR1. Mice were exposed to bright light and placed in darkness for different periods of time, and differently phosphorylated species of rhodopsin were assayed by isoelectric focusing. For WT mice, rhodopsin dephosphorylation was nearly complete by 1 h in darkness. Surprisingly, we observed that, in the Arr1 KO rods, rhodopsin remained phosphorylated even after 3 h. Delayed dephosphorylation in Arr1 KO rods cannot be explained by cell stress induced by persistent signaling, since it is not prevented by the removal of transducin, the visual G-protein, nor can it be explained by downregulation of protein phosphatase 2A, the putative rhodopsin phosphatase. We further show that cone arrestin (ARR4), which binds light-activated, phosphorylated rhodopsin poorly, had little effect in enhancing rhodopsin dephosphorylation, whereas mice expressing binding-competent mutant ARR1-3A showed a similar time course of rhodopsin dephosphorylation as WT. Together, these results reveal a novel role of ARR1 in facilitating rhodopsin dephosphorylation in vivoSIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are transmembrane proteins used by cells to receive and respond to a broad range of extracellular signals that include neurotransmitters, hormones, odorants, and light (photons). GPCR signaling is terminated by two sequential steps: phosphorylation and arrestin binding. Both steps must be reversed when GPCRs are recycled and reused. Dephosphorylation, which is required for recycling, is an understudied process. Using rhodopsin as a prototypical GPCR, we discovered that arrestin facilitated rhodopsin dephosphorylation in living mice.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Yun Yao
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Jeannie Chen
- Ziliha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
6
|
mTORC1 Activation in Chx10-Specific Tsc1 Knockout Mice Accelerates Retina Aging and Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6715758. [PMID: 34777691 PMCID: PMC8589503 DOI: 10.1155/2021/6715758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Age-associated decline in retina function is largely responsible for the irreversible vision deterioration in the elderly population. It is also an important risk factor for the development of degenerative and angiogenic diseases. However, the molecular mechanisms involved in the process of aging in the retina remain largely elusive. This study investigated the role of mTORC1 signaling in aging of the retina. We showed that mTORC1 was activated in old-aged retina, particularly in the ganglion cells. The role of mTORC1 activation was further investigated in Chx10-Cre;Tsc1fx/fx mouse (Tsc1-cKO). Activation of mTORC1 was found in bipolar and some of the ganglion and amacrine cells in the adult Tsc1-cKO retina. Bipolar cell hypertrophy and Müller gliosis were observed in Tsc1-cKO since 6 weeks of age. The abnormal endings of bipolar cell dendritic tips at the outer nuclear layer resembled that of the old-aged mice. Microglial cell activation became evident in 6-week-old Tsc1-cKO. At 5 months, the Tsc1-cKO mice exhibited advanced features of old-aged retina, including the expression of p16Ink4a and p21, expression of SA-β-gal in ganglion cells, decreased photoreceptor cell numbers, decreased electroretinogram responses, increased oxidative stress, microglial cell activation, and increased expression of immune and inflammatory genes. Inhibition of microglial cells by minocycline partially prevented photoreceptor cell loss and restored the electroretinogram responses. Collectively, our study showed that the activation of mTORC1 signaling accelerated aging of the retina by both cell autonomous and nonautonomous mechanisms. Our study also highlighted the role of microglia cells in driving the decline in retina function.
Collapse
|
7
|
Schustak J, Twarog M, Wu X, Wu HY, Huang Q, Bao Y. Mechanism of Nucleic Acid Sensing in Retinal Pigment Epithelium (RPE): RIG-I Mediates Type I Interferon Response in Human RPE. J Immunol Res 2021; 2021:9975628. [PMID: 34239945 PMCID: PMC8235977 DOI: 10.1155/2021/9975628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease of the outer retina, is the leading cause of blindness among the elderly. A hallmark of geographic atrophy (GA), an advanced type of nonneovascular AMD (dry AMD), is photoreceptor and retinal pigment epithelium (RPE) cell death. Currently, there are no FDA-approved therapies for GA due to a lack of understanding of the disease-causing mechanisms. Increasing evidence suggests that chronic inflammation plays a predominant role in the pathogenesis of dry AMD. Dead or stressed cells release danger signals and inflammatory factors, which causes further damage to neighboring cells. It has been reported that type I interferon (IFN) response is activated in RPE cells in patients with AMD. However, how RPE cells sense stress to initiate IFN response and cause further damage to the retina are still unknown. Although it has been reported that RPE can respond to extracellularly added dsRNA, it is unknown whether and how RPE detects and senses internally generated or internalized nucleic acids. Here, we elucidated the molecular mechanism by which RPE cells sense intracellular nucleic acids. Our data demonstrate that RPE cells can respond to intracellular RNA and induce type I IFN responses via the RIG-I (DExD/H-box helicase 58, DDX58) RNA helicase. In contrast, we showed that RPE cells were unable to directly sense and respond to DNA through the cGAS-STING pathway. We demonstrated that this was due to the absence of the cyclic GMP-AMP synthase (cGAS) DNA sensor in these cells. The activation of IFN response via RIG-I induced expression of cell death effectors and caused barrier function loss in RPE cells. These data suggested that RPE-intrinsic pathways of nucleic acid sensing are biased toward RNA sensing.
Collapse
Affiliation(s)
- Joshua Schustak
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Michael Twarog
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Xiaoqiu Wu
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Henry Y. Wu
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Qian Huang
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Yi Bao
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| |
Collapse
|
8
|
Jiang X, Rashwan R, Voigt V, Nerbonne J, Hunt DM, Carvalho LS. Molecular, Cellular and Functional Changes in the Retinas of Young Adult Mice Lacking the Voltage-Gated K + Channel Subunits Kv8.2 and K2.1. Int J Mol Sci 2021; 22:4877. [PMID: 34063002 PMCID: PMC8124447 DOI: 10.3390/ijms22094877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cone Dystrophy with Supernormal Rod Response (CDSRR) is a rare autosomal recessive disorder leading to severe visual impairment in humans, but little is known about its unique pathophysiology. We have previously shown that CDSRR is caused by mutations in the KCNV2 (Potassium Voltage-Gated Channel Modifier Subfamily V Member 2) gene encoding the Kv8.2 subunit, a modulatory subunit of voltage-gated potassium (Kv) channels. In a recent study, we validated a novel mouse model of Kv8.2 deficiency at a late stage of the disease and showed that it replicates the human electroretinogram (ERG) phenotype. In this current study, we focused our investigation on young adult retinas to look for early markers of disease and evaluate their effect on retinal morphology, electrophysiology and immune response in both the Kv8.2 knockout (KO) mouse and in the Kv2.1 KO mouse, the obligate partner of Kv8.2 in functional retinal Kv channels. By evaluating the severity of retinal dystrophy in these KO models, we demonstrated that retinas of Kv KO mice have significantly higher apoptotic cells, a thinner outer nuclear cell layer and increased activated microglia cells in the subretinal space. Our results indicate that in the murine retina, the loss of Kv8.2 subunits contributes to early cellular and physiological changes leading to retinal dysfunction. These results could have potential implications in the early management of CDSRR despite its relatively nonprogressive nature in humans.
Collapse
Affiliation(s)
- Xiaotian Jiang
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
| | - Rabab Rashwan
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Valentina Voigt
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| | - Jeanne Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David M. Hunt
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| | - Livia S. Carvalho
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| |
Collapse
|
9
|
Boazak EM, King R, Wang J, Chu CM, Toporek AM, Sherwood JM, Overby DR, Geisert EE, Ethier CR. Smarce1 and Tensin 4 Are Putative Modulators of Corneoscleral Stiffness. Front Bioeng Biotechnol 2021; 9:596154. [PMID: 33634081 PMCID: PMC7902041 DOI: 10.3389/fbioe.2021.596154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
The biomechanical properties of the cornea and sclera are important in the onset and progression of multiple ocular pathologies and vary substantially between individuals, yet the source of this variation remains unknown. Here we identify genes putatively regulating corneoscleral biomechanical tissue properties by conducting high-fidelity ocular compliance measurements across the BXD recombinant inbred mouse set and performing quantitative trait analysis. We find seven cis-eQTLs and non-synonymous SNPs associating with ocular compliance, and show by RT-qPCR and immunolabeling that only two of the candidate genes, Smarce1 and Tns4, showed significant expression in corneal and scleral tissues. Both have mechanistic potential to influence the development and/or regulation of tissue material properties. This work motivates further study of Smarce1 and Tns4 for their role(s) in ocular pathology involving the corneoscleral envelope as well as the development of novel mouse models of ocular pathophysiology, such as myopia and glaucoma.
Collapse
Affiliation(s)
- Elizabeth M Boazak
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Rebecca King
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Cassandra M Chu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Aaron M Toporek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
10
|
Faber C, Juel HB, Jensen BAH, Christensen JP, Prause JU, Thomsen AR, Nissen MH. Chemokine Expression in Murine RPE/Choroid in Response to Systemic Viral Infection and Elevated Levels of Circulating Interferon-γ. Invest Ophthalmol Vis Sci 2019; 60:192-201. [PMID: 30654385 DOI: 10.1167/iovs.18-25721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To examine how circulating immune mediators in vivo may affect gene and protein expression at the RPE/choroid interface. Methods Young mice were systemically infected with lymphocytic choriomeningitis virus (LCMV) or continuously infused with IFN-γ. RPE/choroid was isolated and analyzed with whole-transcriptome gene expression microarrays. Selected gene expression findings were validated at the protein level. Results Both the systemic immune activation from virus infection and the sterile systemically increased level of IFN-γ resulted in increased expression of chemokine ligands, chemokine receptors, and early complement components in isolates of RPE/choroid. These findings were largely absent from LCMV-infected mice deficient in either the interferon α/β receptor or IFN-γ. Conclusions Together, these findings demonstrate that acute systemic immune activation results in a local response at the RPE/choroid interface that may include chemokine-dependent recruitment of inflammatory cells and engagement of the complement system. This may represent a link between the systemic low-grade inflammation and the retinal pathology observed in several multifactorial entities such as aging, AMD, and diabetes.
Collapse
Affiliation(s)
- Carsten Faber
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Helene Bæk Juel
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | | | - Jan Pravsgaard Christensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | - Jan Ulrik Prause
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, Eye Pathology Section, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | - Mogens Holst Nissen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| |
Collapse
|
11
|
Silverman SM, Ma W, Wang X, Zhao L, Wong WT. C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa. J Exp Med 2019; 216:1925-1943. [PMID: 31209071 PMCID: PMC6683998 DOI: 10.1084/jem.20190009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Silverman et al. demonstrate that complement activation features prominently in retinitis pigmentosa in close association with activated microglia. This response mediates adaptive neuroprotection for photoreceptors by facilitating a C3-CR3–dependent clearance of apoptotic photoreceptors by microglial phagocytosis. Complement activation has been implicated as contributing to neurodegeneration in retinal and brain pathologies, but its role in retinitis pigmentosa (RP), an inherited and largely incurable photoreceptor degenerative disease, is unclear. We found that multiple complement components were markedly up-regulated in retinas with human RP and the rd10 mouse model, coinciding spatiotemporally with photoreceptor degeneration, with increased C3 expression and activation localizing to activated retinal microglia. Genetic ablation of C3 accelerated structural and functional photoreceptor degeneration and altered retinal inflammatory gene expression. These phenotypes were recapitulated by genetic deletion of CR3, a microglia-expressed receptor for the C3 activation product iC3b, implicating C3-CR3 signaling as a regulator of microglia–photoreceptor interactions. Deficiency of C3 or CR3 decreased microglial phagocytosis of apoptotic photoreceptors and increased microglial neurotoxicity to photoreceptors, demonstrating a novel adaptive role for complement-mediated microglial clearance of apoptotic photoreceptors in RP. These homeostatic neuroinflammatory mechanisms are relevant to the design and interpretation of immunomodulatory therapeutic approaches to retinal degenerative disease.
Collapse
Affiliation(s)
- Sean M Silverman
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Wenxin Ma
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Xu Wang
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Lian Zhao
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Wai T Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Choi EH, Suh S, Sander CL, Hernandez CJO, Bulman ER, Khadka N, Dong Z, Shi W, Palczewski K, Kiser PD. Insights into the pathogenesis of dominant retinitis pigmentosa associated with a D477G mutation in RPE65. Hum Mol Genet 2019; 27:2225-2243. [PMID: 29659842 DOI: 10.1093/hmg/ddy128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
RPE65 is the essential trans-cis isomerase of the classical retinoid (visual) cycle. Mutations in RPE65 give rise to severe retinal dystrophies, most of which are associated with loss of protein function and recessive inheritance. The only known exception is a c.1430G>A (D477G) mutation that gives rise to dominant retinitis pigmentosa with delayed onset and choroidal and macular involvement. Position 477 is distant from functionally critical regions of RPE65. Hence, the mechanism of D477G pathogenicity remains unclear, although protein misfolding and aggregation mechanisms have been suggested. We characterized a D477G knock-in mouse model which exhibited mild age-dependent changes in retinal structure and function. Immunoblot analysis of protein extracts from the eyes of these knock-in mice demonstrated the presence of ubiquitinated RPE65 and reduced RPE65 expression. We observed an accumulation of retinyl esters in the knock-in mice as well as a delay in rhodopsin regeneration kinetics and diminished electroretinography responses, indicative of RPE65 functional impairment induced by the D477G mutation in vivo. However, a cell line expressing D477G RPE65 revealed protein expression levels, cellular localization and retinoid isomerase activity comparable to cells expressing wild-type protein. Structural analysis of an RPE65 chimera suggested that the D477G mutation does not perturb protein folding or tertiary structure. Instead, the mutation generates an aggregation-prone surface that could induce cellular toxicity through abnormal complex formation as suggested by crystal packing analysis. These results indicate that a toxic gain-of-function induced by the D477G RPE65 substitution may play a role in the pathogenesis of this form of dominant retinitis pigmentosa.
Collapse
Affiliation(s)
- Elliot H Choi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Susie Suh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher L Sander
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christian J Ortiz Hernandez
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,University of Puerto Rico at Humacao, Humacao, PR, USA
| | - Elizabeth R Bulman
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Nimesh Khadka
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhiqian Dong
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Polgenix Inc., Cleveland, OH 44106, USA
| | - Wuxian Shi
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Dannhausen K, Möhle C, Langmann T. Immunomodulation with minocycline rescues retinal degeneration in juvenile neuronal ceroid lipofuscinosis mice highly susceptible to light damage. Dis Model Mech 2018; 11:dmm.033597. [PMID: 30042155 PMCID: PMC6176999 DOI: 10.1242/dmm.033597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (jNCL) is a rare but fatal inherited lysosomal storage disorder mainly affecting children. The disease is caused by mutations in the CLN3 gene that lead to the accumulation of storage material in many tissues, prominent immune responses and neuronal degeneration. One of the first symptoms is vision loss followed by motor dysfunction and mental decline. The established Cln3Δex7/8 mouse model mimics many pathological features of the human disease except the retinal phenotype, which is very mild and occurs only very late in these mice. Here, we first carefully analyzed the retinal structure and microglia responses in these animals. While prominent autofluorescent spots were present in the fundus, only a moderate reduction of retinal thickness and no prominent microgliosis was seen in young CLN3-deficient mice. We next genetically introduced a light-sensitive RPE65 variant and established a light-damage paradigm that showed a high susceptibility of young Cln3Δex7/8 mice after exposure to 10,000 lux bright light for 30 min. Under these ‘low light’ conditions, CLN3-deficient mice showed a strong retinal degeneration, microglial activation, deposition of autofluorescent material and transcriptomic changes compared to wild-type animals. Finally, we treated the light-exposed Cln3Δex7/8 animals with the immunomodulatory compound minocycline, and thereby rescued the retinal phenotype and diminished microgliosis. Our findings indicate that exposure to specific light conditions accelerates CLN3-dependent retinal degeneration, and that immunomodulation by minocycline could be a possible treatment option to delay vision loss in jNCL patients. This article has an associated First Person interview with the first author of the paper. Summary: Here, we established a light-damage paradigm to model retinal degeneration in the juvenile neuronal ceroid lipofuscinosis mouse and showed the beneficial effects of minocycline on retinal pathology.
Collapse
Affiliation(s)
- Katharina Dannhausen
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany
| | - Christoph Möhle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
14
|
Natoli R, Mason E, Jiao H, Chuah A, Patel H, Fernando N, Valter K, Wells CA, Provis J, Rutar M. Dynamic Interplay of Innate and Adaptive Immunity During Sterile Retinal Inflammation: Insights From the Transcriptome. Front Immunol 2018; 9:1666. [PMID: 30073000 PMCID: PMC6058037 DOI: 10.3389/fimmu.2018.01666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of many retinal degenerations, such as age-related macular degeneration (AMD), is punctuated by an ill-defined network of sterile inflammatory responses. The delineation of innate and adaptive immune milieu among the broad leukocyte infiltrate, and the gene networks, which construct these responses, are poorly described in the eye. Using photo-oxidative damage in a rodent model of subretinal inflammation, we employed a novel RNA-sequencing framework to map the global gene network signature of retinal leukocytes. This revealed a previously uncharted interplay of adaptive immunity during subretinal inflammation, including prolonged enrichment of myeloid and lymphocyte migration, antigen presentation, and the alternative arm of the complement cascade involving Factor B. We demonstrate Factor B-deficient mice are protected against macrophage infiltration and subretinal inflammation. Suppressing the drivers of retinal leukocyte proliferation, or their capacity to elicit complement responses, may help preserve retinal structure and function during sterile inflammation in diseases such as AMD.
Collapse
Affiliation(s)
- Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth Mason
- The Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Aaron Chuah
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Hardip Patel
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Christine A. Wells
- The Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Matt Rutar
- The Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Sánchez-Cruz A, Villarejo-Zori B, Marchena M, Zaldivar-Díez J, Palomo V, Gil C, Lizasoain I, de la Villa P, Martínez A, de la Rosa EJ, Hernández-Sánchez C. Modulation of GSK-3 provides cellular and functional neuroprotection in the rd10 mouse model of retinitis pigmentosa. Mol Neurodegener 2018; 13:19. [PMID: 29661219 PMCID: PMC5902946 DOI: 10.1186/s13024-018-0251-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. Methods Using the Pde6brd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. Results In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3β expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3βSer9 and its regulator AktSer473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. Conclusions These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular. Electronic supplementary material The online version of this article (10.1186/s13024-018-0251-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alonso Sánchez-Cruz
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain.,Neurovascular Research Unit, Department of Pharmacology, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Miguel Marchena
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Josefa Zaldivar-Díez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Valle Palomo
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Carmen Gil
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Ignacio Lizasoain
- Neurovascular Research Unit, Department of Pharmacology, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro de la Villa
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Ana Martínez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Enrique J de la Rosa
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Catalina Hernández-Sánchez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| |
Collapse
|
16
|
He X, Sun D, Chen S, Xu H. Activation of liver X receptor delayed the retinal degeneration of rd1 mice through modulation of the immunological function of glia. Oncotarget 2018; 8:32068-32082. [PMID: 28404878 PMCID: PMC5458269 DOI: 10.18632/oncotarget.16643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Retinal degeneration (RD), including retinitis pigmentosa (RP), is an inherited eye disease characterized by progressive degeneration of photoreceptors. Recently, immune cells, including microglia, Müller cells and astrocytes, in degenerative retina are demonstrated to play key roles in the development of RD and can be used as potential therapeutic targets. Liver X receptors (LXRs) are important immuno-inflammatory response transcription factors that have been reported to be a new potential therapeutic drug target for neurodegenerative diseases. However, the potential therapeutic utility of LXRs for RP has not been evaluated. In the present study, Pde6β (rd1) mice received intraperitoneal injections of T0901317 (T0, 50 mg/kg/d) or vehicle (2% DMSO) for 7 days with age-matched C57/BL6 mice as controls. The effect of T0 was examined by quantitating photoreceptor apoptosis, microglial density and the expression of inflammatory mediators; the underlying mechanisms were then explored with a microarray assay. T0 markedly delayed apoptosis of the photoreceptors, partially through suppressing the activation of microglia and the gliosis of Müller cells, and decreased the expression levels of IL-6, iNOS, COX-2 and ENG in rd1 mice; as a result, the visual function of T0-treated rd1 mice measured with electroretinograms (ERG) was preserved for a longer time than that of vehicle-treated rd1 mice. The microarray assay showed that the Janus kinase/Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway was significantly affected in the retina of rd1 mice with T0 treatment. Our data suggested that T0 modulated the immunologic function of glia cells in the degenerative retina through the JAK3/STAT pathway and delayed the apoptosis of photoreceptors.
Collapse
Affiliation(s)
- Xiao He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Dayu Sun
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| |
Collapse
|
17
|
Mustafi D, Kevany BM, Bai X, Golczak M, Adams MD, Wynshaw-Boris A, Palczewski K. Transcriptome analysis reveals rod/cone photoreceptor specific signatures across mammalian retinas. Hum Mol Genet 2018; 25:4376-4388. [PMID: 28172828 DOI: 10.1093/hmg/ddw268] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/26/2023] Open
Abstract
A defined set of genetic instructions encodes functionality in complex organisms. Delineating these unique genetic signatures is essential to understanding the formation and functionality of specialized tissues. Vision, one of the five central senses of perception, is initiated by the retina and has evolved over time to produce rod and cone photoreceptors that vary in a species-specific manner, and in some cases by geographical region resulting in higher order visual acuity in humans. RNA-sequencing and use of existing and de novo transcriptome assemblies allowed ocular transcriptome mapping from a diverse set of rodent and primate species. Global genomic refinements along with systems-based comparative and co-expression analyses of these transcriptome maps identified gene modules that correlated with specific features of rod versus cone retinal cellular composition. Organization of the ocular transcriptome demonstrated herein defines the molecular basis of photoreceptor architecture and functionality, providing a new paradigm for neurogenetic analyses of the mammalian retina in health and disease.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Departments of Pharmacology and Cleveland Center for Membrane and Structural Biology
| | - Brian M Kevany
- Departments of Pharmacology and Cleveland Center for Membrane and Structural Biology
| | | | - Marcin Golczak
- Departments of Pharmacology and Cleveland Center for Membrane and Structural Biology
| | | | | | - Krzysztof Palczewski
- Departments of Pharmacology and Cleveland Center for Membrane and Structural Biology
| |
Collapse
|
18
|
Human aging and disease: Lessons from age-related macular degeneration. Proc Natl Acad Sci U S A 2018; 115:2866-2872. [PMID: 29483257 DOI: 10.1073/pnas.1721033115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aging is the most significant risk factor associated with chronic disease in humans. The accumulation of genetic damage throughout life leads to a variety of biological aberrations, including disrupted protein homeostasis, metabolic dysfunction, and altered cellular signaling. Such changes ultimately result in cellular senescence, death, or transformation to uncontrolled proliferation, thereby compromising human health. Events contributing to age-dependent physiological decline also occur in the context of hormonal and metabolic changes, affecting interconnected cellular networks. This complexity often confounds the development of effective treatments for aging and age-related diseases. In contrast to monotherapy and polypharmacology, an innovative systems pharmacology approach can identify synergistic combinations of drugs that modulate distinct mechanistic nodes within a network, minimizing off-target side effects and enabling better therapeutic outcomes. G protein-coupled receptors (GPCRs) are particularly good targets for the application of systems pharmacology, because they activate different signal transduction pathways that can culminate in a common response. Here, we describe a systems pharmacology strategy for the treatment of age-related macular degeneration (AMD), a multifactorial chronic disease of the eye. By considering the retina as part of a large, interconnected network, systems pharmacology will enable the identification of combination therapies targeting GPCRs to help restore genomic, proteomic, and endocrine homeostasis. Such an approach can be advantageous in providing drug regimens for the treatment of AMD, while also having broader ramifications for ameliorating adverse effects of chronic, age-related disease in humans.
Collapse
|
19
|
Dephosphorylation by protein phosphatase 2A regulates visual pigment regeneration and the dark adaptation of mammalian photoreceptors. Proc Natl Acad Sci U S A 2017; 114:E9675-E9684. [PMID: 29078372 DOI: 10.1073/pnas.1712405114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resetting of G-protein-coupled receptors (GPCRs) from their active state back to their biologically inert ground state is an integral part of GPCR signaling. This "on-off" GPCR cycle is regulated by reversible phosphorylation. Retinal rod and cone photoreceptors arguably represent the best-understood example of such GPCR signaling. Their visual pigments (opsins) are activated by light, transduce the signal, and are then inactivated by a GPCR kinase and arrestin. Although pigment inactivation by phosphorylation is well understood, the enzyme(s) responsible for pigment dephosphorylation and the functional significance of this reaction remain unknown. Here, we show that protein phosphatase 2A (PP2A) acts as opsin phosphatase in both rods and cones. Elimination of PP2A substantially slows pigment dephosphorylation, visual chromophore recycling, and ultimately photoreceptor dark adaptation. These findings demonstrate that visual pigment dephosphorylation regulates the dark adaptation of photoreceptors and provide insights into the role of this reaction in GPCR signaling.
Collapse
|
20
|
Qiu Y, Yu P, Lin R, Fu X, Hao B, Lei B. Genome-wide retinal transcriptome analysis of endotoxin-induced uveitis in mice with next-generation sequencing. Mol Vis 2017; 23:395-406. [PMID: 28706439 PMCID: PMC5501689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/30/2017] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Endotoxin-induced uveitis (EIU) is a well-established mouse model for studying human acute inflammatory uveitis. The purpose of this study is to investigate the genome-wide retinal transcriptome profile of EIU. METHODS The anterior segment of the mice was examined with a slit-lamp, and clinical scores were evaluated simultaneously. The histological changes in the posterior segment of the eyes were evaluated with hematoxylin and eosin (H&E) staining. A high throughput RNA sequencing (RNA-seq) strategy using the Illumina Hiseq 2500 platform was applied to characterize the retinal transcriptome profile from lipopolysaccharide (LPS)-treated and untreated mice. The validation of the differentially expressed genes (DEGs) was analyzed with real-time PCR. RESULTS At the 24th hour after challenge, the clinical score of the LPS group was significantly higher (3.83±0.75, mean ± standard deviation [SD]) than that of the control group (0.08±0.20, mean ± SD; p<0.001). The histological evaluation showed a large number of inflammatory cells infiltrated into the vitreous cavity in the LPS group compared with the control group. A total of 478 DEGs were identified with RNA-seq. Among these genes, 406 were upregulated and 72 were downregulated in the LPS group. Gene Ontology (GO) enrichment showed three significantly enriched upregulated terms. Twenty-one upregulated and seven downregulated pathways were remarkably enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Eleven inflammatory response-, complement system-, fibrinolytic system-, and cell stress-related genes were validated to show similar results as the RNA-seq. CONCLUSIONS We first reported the retinal transcriptome profile of the EIU mouse with RNA-seq. The results indicate that the abnormal changes in the inflammatory response-, complement system-, fibrinolytic system-, and cell stress-related genes occurred concurrently in EIU. These genes may play an important role in the pathogenesis of EIU. This study will lead to a better understanding of the underlying mechanisms and shed light on discovering novel therapeutic targets for ocular inflammation.
Collapse
Affiliation(s)
- Yiguo Qiu
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Peng Yu
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Ru Lin
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Xinyu Fu
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Bingtao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Bo Lei
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China,Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Chen Y, Brooks MJ, Gieser L, Swaroop A, Palczewski K. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacol Res 2016; 115:1-13. [PMID: 27838510 DOI: 10.1016/j.phrs.2016.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
Abstract
Mammalian cells are commonly employed in screening assays to identify active compounds that could potentially affect the progression of different human diseases including retinitis pigmentosa (RP), a class of inherited diseases causing retinal degeneration with compromised vision. Using transcriptome analysis, we compared NIH3T3 cells expressing wildtype (WT) rod opsin with a retinal disease-causing single P23H mutation. Surprisingly, heterologous expression of WT opsin in NIH3T3 cells caused more than a 2-fold change in 783 out of 16,888 protein coding transcripts. The perturbed genes encoded extracellular matrix proteins, growth factors, cytoskeleton proteins, glycoproteins and metalloproteases involved in cell adhesion, morphology and migration. A different set of 347 transcripts was either up- or down-regulated when the P23H mutant opsin was expressed suggesting an altered molecular perturbation compared to WT opsin. Transcriptome perturbations elicited by drug candidates aimed at mitigating the effects of the mutant protein revealed that different drugs targeted distinct molecular pathways that resulted in a similar phenotype selected by a cell-based high-throughput screen. Thus, transcriptome profiling can provide essential information about the therapeutic potential of a candidate drug to restore normal gene expression in pathological conditions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
22
|
Kam JH, Jeffery G. To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss. Oncotarget 2016; 6:26690-701. [PMID: 26393878 PMCID: PMC4694945 DOI: 10.18632/oncotarget.5614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial function declines with age and is associated with age-related disorders and cell death. In the retina this is critical as photoreceptor energy demands are the greatest in the body and aged cell loss large (~30%). But mitochondria can fuse or divide to accommodate changing demands. We explore ageing mitochondrial dynamics in young (1 month) and old (12 months) mouse retina, investigating changes in mitochondrial fission (Fis1) and fusion (Opa1) proteins, cytochrome C oxidase (COX III), which reflects mitochondrial metabolic status, and heat shock protein 60 (Hsp60) that is a mitochondrial chaperon for protein folding.Western blots showed each protein declined with age. However, within this, immunostaining revealed increases of around 50% in Fis1 and Opa1 in photoreceptor inner segments (IS). Electron microscope analysis revealed mitochondrial fragmentation with age and marked changes in morphology in IS, consistent with elevated dynamics. COX III declined by approximately 30% in IS, but Hsp60 reductions were around 80% in the outer plexiform layer.Our results are consistent with declining mitochondrial metabolism. But also with increased photoreceptor mitochondrial dynamics that differ from other retinal regions, perhaps reflecting attempts to maintain function. These changes are the platform for age related photoreceptor loss initiated after 12 months.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
23
|
Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, Fariss RN, Wong WT. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia 2016; 64:1479-91. [PMID: 27314452 PMCID: PMC4958518 DOI: 10.1002/glia.23016] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation‐bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis and proinflammatory factor production, however mechanisms regulating these contributions are not well‐defined. In this study, we investigate the role of CX3CR1, a microglia‐specific receptor, in regulating microglia‐mediated degeneration using the well‐established rd10 mouse model of RP. We found that in CX3CR1‐deficient (CX3CR1GFP/GFP) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1‐sufficient (CX3CR1GFP/+) rd10 littermates. CX3CR1‐deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at‐risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1‐CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1‐CX3CR1 signaling is a molecular mechanism capable of modulating microglial‐mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479–1491
Collapse
Affiliation(s)
- Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yikui Zhang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Shaimar R Gonzalez
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 2016; 7:1179-97. [PMID: 26139610 PMCID: PMC4568951 DOI: 10.15252/emmm.201505298] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.
Collapse
Affiliation(s)
- Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Parth Shah
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Parkhurst
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wen-Biao Gan
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Meléndez García R, Arredondo Zamarripa D, Arnold E, Ruiz-Herrera X, Noguez Imm R, Baeza Cruz G, Adán N, Binart N, Riesgo-Escovar J, Goffin V, Ordaz B, Peña-Ortega F, Martínez-Torres A, Clapp C, Thebault S. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death. EBioMedicine 2016; 7:35-49. [PMID: 27322457 PMCID: PMC4909382 DOI: 10.1016/j.ebiom.2016.03.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
The identification of pathways necessary for retinal pigment epithelium (RPE) function is fundamental to uncover therapies for blindness. Prolactin (PRL) receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19) human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2) expression, which inhibits the TRPM2-mediated intracellular Ca(2+) rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr(-/-)) mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.
Collapse
Affiliation(s)
- Rodrigo Meléndez García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - David Arredondo Zamarripa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ramsés Noguez Imm
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - German Baeza Cruz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Nadine Binart
- Institut National de la Santé et de la Recherche Médicale, U1185, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre 94270, France
| | - Juan Riesgo-Escovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Vincent Goffin
- Institut National de la Santé et de la Recherche Médicale, U1151, Institut Necker Enfants Malades, Université Paris-Descartes, Faculté de Médecine, Sorbonne Paris Cité, 75014, France
| | - Benito Ordaz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Stéphanie Thebault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
26
|
Kohno H, Koso H, Okano K, Sundermeier TR, Saito S, Watanabe S, Tsuneoka H, Sakai T. Expression pattern of Ccr2 and Cx3cr1 in inherited retinal degeneration. J Neuroinflammation 2015; 12:188. [PMID: 26458944 PMCID: PMC4603985 DOI: 10.1186/s12974-015-0408-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022] Open
Abstract
Background Though accumulating evidence suggests that microglia, resident macrophages in the retina, and bone marrow-derived macrophages can cause retinal inflammation which accelerates photoreceptor cell death, the details of how these cells are activated during retinal degeneration (RD) remain uncertain. Therefore, it is important to clarify which cells play a dominant role in fueling retinal inflammation. However, distinguishing between microglia and macrophages is difficult using conventional techniques such as cell markers (e.g., Iba-1). Recently, two mouse models for visualizing chemokine receptors were established, Cx3cr1GFP/GFP and Ccr2RFP/RFP mice. As Cx3cr1 is expressed in microglia and Ccr2 is reportedly expressed in activated macrophages, these mice have the potential to distinguish microglia and macrophages, yielding novel information about the activation of these inflammatory cells and their individual roles in retinal inflammation. Methods In this study, c-mer proto-oncogene tyrosine kinase (Mertk)−/− mice, which show photoreceptor cell death due to defective retinal pigment epithelium phagocytosis, were employed as an animal model of RD. Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice were established by breeding Mertk−/−, Cx3cr1GFP/GFP, and Ccr2RFP/RFP mice. The retinal morphology and pattern of inflammatory cell activation and invasion of Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice were evaluated using retina and retinal pigment epithelium (RPE) flat mounts, retinal sections, and flow cytometry. Results Four-week-old Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice showed Cx3cr1-GFP-positive microglia in the inner retina. Cx3cr1-GFP and Ccr2-RFP dual positive activated microglia were observed in the outer retina and subretinal space of 6- and 8-week-old animals. Ccr2-RFP single positive bone marrow-derived macrophages were observed to migrate into the retina of Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice. These invading cells were still observed in the subretinal space in 18-week-old animals. Conclusions Cx3cr1-GFP-positive microglia and Ccr2-RFP-positive macrophages were distinguishable in the retinas of Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice. In addition, Ccr2 expression in Cx3cr1 positive microglia is a feature of microglial activation in RD. Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice enabled observation of microglial activation over time during RD and may be useful for developing inflammation-targeted treatment strategies for RD in the future.
Collapse
Affiliation(s)
- Hideo Kohno
- Department of Ophthalmology, The Jikei University School of Medicine, 105-8461, Tokyo, Japan. .,Tokyu Hospital, 145-0062, Tokyo, Japan.
| | - Hideto Koso
- Division of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, 108-8639, Tokyo, Japan
| | - Kiichiro Okano
- Department of Ophthalmology, The Jikei University School of Medicine, 105-8461, Tokyo, Japan
| | - Thomas R Sundermeier
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Saburo Saito
- Department of Molecular Immunology, The Jikei University School of Medicine, 105-8461, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, 108-8639, Tokyo, Japan
| | - Hiroshi Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, 105-8461, Tokyo, Japan
| | - Tsutomu Sakai
- Department of Ophthalmology, The Jikei University School of Medicine, 105-8461, Tokyo, Japan.
| |
Collapse
|
27
|
van Ginkel PR, Yan MB, Bhattacharya S, Polans AS, Kenealey JD. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells. Toxicol Appl Pharmacol 2015; 288:453-62. [PMID: 26341291 DOI: 10.1016/j.taap.2015.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death.
Collapse
Affiliation(s)
- Paul R van Ginkel
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, United States; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792, United States
| | - Michael B Yan
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, United States; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792, United States
| | - Saswati Bhattacharya
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, United States; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792, United States; Department of Pediatrics, University of Wisconsin, Madison, WI 53792, United States
| | - Arthur S Polans
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, United States; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792, United States.
| | - Jason D Kenealey
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, United States; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792, United States; Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, United States
| |
Collapse
|
28
|
Chen Y, Palczewski K. Systems Pharmacology Links GPCRs with Retinal Degenerative Disorders. Annu Rev Pharmacol Toxicol 2015; 56:273-98. [PMID: 25839098 DOI: 10.1146/annurev-pharmtox-010715-103033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In most biological systems, second messengers and their key regulatory and effector proteins form links between multiple cellular signaling pathways. Such signaling nodes can integrate the deleterious effects of genetic aberrations, environmental stressors, or both in complex diseases, leading to cell death by various mechanisms. Here we present a systems (network) pharmacology approach that, together with transcriptomics analyses, was used to identify different G protein-coupled receptors that experimentally protected against cellular stress and death caused by linked signaling mechanisms. We describe the application of this concept to degenerative and diabetic retinopathies in appropriate mouse models as an example. Systems pharmacology also provides an attractive framework for devising strategies to combat complex diseases by using (repurposing) US Food and Drug Administration-approved pharmacological agents.
Collapse
Affiliation(s)
- Yu Chen
- Yueyang Hospital and.,Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106;
| |
Collapse
|
29
|
Farkas MH, Au ED, Sousa ME, Pierce EA. RNA-Seq: Improving Our Understanding of Retinal Biology and Disease. Cold Spring Harb Perspect Med 2015; 5:a017152. [PMID: 25722474 PMCID: PMC4561396 DOI: 10.1101/cshperspect.a017152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the past several years, rapid technological advances have allowed for a dramatic increase in our knowledge and understanding of the transcriptional landscape, because of the ability to study gene expression in greater depth and with more detail than previously possible. To this end, RNA-Seq has quickly become one of the most widely used methods for studying transcriptomes of tissues and individual cells. Unlike previously favored analysis methods, RNA-Seq is extremely high-throughput, and is not dependent on an annotated transcriptome, laying the foundation for novel genetic discovery. Additionally, RNA-Seq derived transcriptomes provide a basis for widening the scope of research to identify potential targets in the treatment of retinal disease.
Collapse
Affiliation(s)
- Michael H Farkas
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Elizabeth D Au
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Maria E Sousa
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
30
|
Kevany BM, Zhang N, Jastrzebska B, Palczewski K. Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration. Hum Mol Genet 2015; 24:2627-40. [PMID: 25616964 DOI: 10.1093/hmg/ddv025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/21/2015] [Indexed: 02/01/2023] Open
Abstract
Genetic mapping was recently used to identify the underlying cause for a previously uncharacterized cohort of autosomal recessive retinitis pigmentosa cases. Genetic mapping of affected individuals resulted in the identification of an uncharacterized gene, C2Orf71, as the causative locus. However, initial homology searches failed to reveal similarities to any previously characterized protein or domain. To address this issue, we characterized the mouse homolog, BC027072. Immunohistochemistry with a custom polyclonal antibody showed staining localized to the inner segments (IS) of photoreceptor cells, as well as the outer segments (OS) of cone cells. A knockout mouse line (BC(-/-)) was generated and demonstrated that loss of this gene results in a severe, early-onset retinal degeneration. Histology and electron microscopy (EM) revealed disorganized OS as early as 3 weeks with complete loss by 24 weeks of age. EM micrographs displayed packets of cellular material containing OS discs or IS organelles in the OS region and abnormal retinal pigmented epithelium cells. Analyses of retinoids and rhodopsin levels showed <20% in BC(-/-) versus wild-type mice early in development. Electroretinograms demonstrated that affected mice were virtually non-responsive to light by 8 weeks of age. Lastly, RNAseq analysis of ocular gene expression in BC(-/-) mice revealed clues to the causes of the progressive retinal degenerations. Although its function remains unknown, this protein appears essential for normal OS development/maintenance and vision in humans and mice. RNAseq data are available in the GEO database under accession: GSE63810.
Collapse
Affiliation(s)
- Brian M Kevany
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ning Zhang
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Abstract
Rhodopsin is a key light-sensitive protein expressed exclusively in rod photoreceptor cells of the retina. Failure to express this transmembrane protein causes a lack of rod outer segment formation and progressive retinal degeneration, including the loss of cone photoreceptor cells. Molecular studies of rhodopsin have paved the way to understanding a large family of cell-surface membrane proteins called G protein-coupled receptors (GPCRs). Work started on rhodopsin over 100 years ago still continues today with substantial progress made every year. These activities underscore the importance of rhodopsin as a prototypical GPCR and receptor required for visual perception-the fundamental process of translating light energy into a biochemical cascade of events culminating in vision.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | | |
Collapse
|
32
|
Mustafi D, Kikano S, Palczewski K. Serial block face-scanning electron microscopy: a method to study retinal degenerative phenotypes. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2014; 4:197-204. [PMID: 25621191 PMCID: PMC4303034 DOI: 10.1002/9780470942390.mo140169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retinal degenerative conditions can vary in their clinical features and often present with subtle phenotypic features before the onset of clinically overt disease. To capture these isolated events that precipitate disease, large representative areas of the retina must be imaged at high resolution. Compared to light microscopic methods, traditional electron microscopy can provide images at sufficient resolution to detect subtle pathologic changes in the retina, but are limited to the area being surveyed. The advent of serial block face-scanning electron microscopy (SBF-SEM) provides the resolution needed with the unprecedented advantage of imaging large volumes of retinal tissue. Furthermore, automation of SBF-SEM bypasses errors from manual sectioning and can produce reliable serial sections as thin as 25 nanometers. Moreover, the three-dimensional structures generated can highlight cellular connectivity and interactions in the retina and reveal pathological changes. Using SBF-SEM, we have identified subtle phenotypic features in mouse models of various human retinal dystrophies. This method will allow researchers to identify and monitor the time course of these pathologies. This article provides details on SBF-SEM methodology and its application to mouse models of retinal degeneration.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | | |
Collapse
|
33
|
Palczewski K. Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2014; 55:6651-72. [PMID: 25338686 DOI: 10.1167/iovs.14-15502] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Visual transduction is the process in the eye whereby absorption of light in the retina is translated into electrical signals that ultimately reach the brain. The first challenge presented by visual transduction is to understand its molecular basis. We know that maintenance of vision is a continuous process requiring the activation and subsequent restoration of a vitamin A-derived chromophore through a series of chemical reactions catalyzed by enzymes in the retina and retinal pigment epithelium (RPE). Diverse biochemical approaches that identified key proteins and reactions were essential to achieve a mechanistic understanding of these visual processes. The three-dimensional arrangements of these enzymes' polypeptide chains provide invaluable insights into their mechanisms of action. A wealth of information has already been obtained by solving high-resolution crystal structures of both rhodopsin and the retinoid isomerase from pigment RPE (RPE65). Rhodopsin, which is activated by photoisomerization of its 11-cis-retinylidene chromophore, is a prototypical member of a large family of membrane-bound proteins called G protein-coupled receptors (GPCRs). RPE65 is a retinoid isomerase critical for regeneration of the chromophore. Electron microscopy (EM) and atomic force microscopy have provided insights into how certain proteins are assembled to form much larger structures such as rod photoreceptor cell outer segment membranes. A second challenge of visual transduction is to use this knowledge to devise therapeutic approaches that can prevent or reverse conditions leading to blindness. Imaging modalities like optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) applied to appropriate animal models as well as human retinal imaging have been employed to characterize blinding diseases, monitor their progression, and evaluate the success of therapeutic agents. Lately two-photon (2-PO) imaging, together with biochemical assays, are revealing functional aspects of vision at a new molecular level. These multidisciplinary approaches combined with suitable animal models and inbred mutant species can be especially helpful in translating provocative cell and tissue culture findings into therapeutic options for further development in animals and eventually in humans. A host of different approaches and techniques is required for substantial progress in understanding fundamental properties of the visual system.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
34
|
Higuchi H, Macke EL, Lee WH, Miller SA, Xu JC, Ikeda S, Ikeda A. Genetic basis of age-dependent synaptic abnormalities in the retina. Mamm Genome 2014; 26:21-32. [PMID: 25273269 DOI: 10.1007/s00335-014-9546-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
Understanding the normal aging process will help us determine the mechanisms of how age-related diseases are caused and progress. A/J inbred mice have been shown to exhibit accelerated aging phenotypes in the retina including increased inflammation and photoreceptor cell degeneration, which resemble human aging symptoms. C57BL/6J (B6) inbred mice are less susceptible for these abnormalities, indicating the existence of genetic factor(s) that affect their severity. In this study, we determined that another age-dependent phenotype, ectopic synapse formation, is also accelerated in the A/J retina compared to the B6 retina. Through genetic mapping utilizing recombinant inbred strains, we identified quantitative trait loci (QTLs) on chromosome 7 and 19, which contribute to abnormal retinal synapses as well as other age-dependent phenotypes. Using consomic single chromosome substitution lines where a single chromosome is from A/J and the rest of the genome is B6, we investigated the individual effect of each QTL on retinal aging phenotypes. We observed that both QTLs independently contribute to abnormal retinal synapses, reduction in the number of cone cells, and an up-regulation of retinal stress marker, glial fibrillary acidic protein (GFAP). Mice with a single chromosome substitution on chromosome 19 also exhibited an increase in inflammatory cells, which is characteristic of aging and age-related macular degeneration. Thus, we identified QTLs that are independently capable of affecting the severity and progression of age-dependent retinal abnormalities in mice.
Collapse
Affiliation(s)
- Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kohno H, Maeda T, Perusek L, Pearlman E, Maeda A. CCL3 production by microglial cells modulates disease severity in murine models of retinal degeneration. THE JOURNAL OF IMMUNOLOGY 2014; 192:3816-27. [PMID: 24639355 DOI: 10.4049/jimmunol.1301738] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many degenerative retinal diseases illustrate retinal inflammatory changes that include infiltration of microglia and macrophages into the subretinal space. In this study, we examined the role of chemokines in the Abca4(-/-)Rdh8(-/-) mouse model of Stargardt disease and the Mertk(-/-) mouse model of retinitis pigmentosa. PCR array analysis of 84 chemokines and related molecules revealed 84.6-fold elevated expression of Ccl3 (MIP-1a) 24 h after light exposure in Abca4(-/-)Rdh8(-/-) mice. Only MIP-1 chemokines, including Ccl3 and Ccl4, displayed peak expression 24 h after light exposure, and peaked earlier than the other chemokines. Secretion of Ccl3 was documented only in microglia, whereas both microglia and retinal pigment epithelium cells produced Ccl2. Exposure of Cx3Cr1(gfp/Δ)Abca4(-/-)Rdh8(-/-) mice to intense light resulted in the appearance of Cx3Cr1GFP(+) monocytes in the subretinal space. To address the in vivo role of CCL3 in retinal degeneration, Ccl3(-/-)Abca4(-/-)Rdh8(-/-) mice and Ccl3(-/-)Mertk(-/-) mice were generated. Following intense light exposure, Ccl3(-/-)Abca4(-/-)Rdh8(-/-) mice displayed persistent retinal inflammation with appearance of Iba-1(+) cells in the subretinal space, severe photoreceptor cell death, and increased Ccl4 expression compared with Abca4(-/-)Rdh8(-/-) mice. In contrast, Ccl3(-/-)Abca4(-/-)Rdh8(-/-) mice exhibited a milder retinal inflammation and degeneration than Abca4(-/-)Rdh8(-/-) mice did in age-related chronic retinal degeneration under room light conditions. The deficiency of Ccl3 also attenuated the severity of retinal degeneration in Mertk(-/-) mice. Taken together, our results indicate that Ccl3 has an essential role in regulating the severity of retinal inflammation and degeneration in these mouse models.
Collapse
Affiliation(s)
- Hideo Kohno
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | |
Collapse
|
36
|
Karlstetter M, Langmann T. Microglia in the Aging Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:207-12. [DOI: 10.1007/978-1-4614-3209-8_27] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
37
|
Orban T, Jastrzebska B, Palczewski K. Structural approaches to understanding retinal proteins needed for vision. Curr Opin Cell Biol 2013; 27:32-43. [PMID: 24680428 DOI: 10.1016/j.ceb.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022]
Abstract
The past decade has witnessed an impressive expansion of our knowledge of retinal photoreceptor signal transduction and the regulation of the visual cycle required for normal eyesight. Progress in human genetics and next generation sequencing technologies have revealed the complexity behind many inherited retinal diseases. Structural studies have markedly increased our understanding of the visual process. Moreover, technical innovations and improved methodologies in proteomics, macromolecular crystallization and high resolution imaging at different levels set the scene for even greater advances. Pharmacology combined with structural biology of membrane proteins holds great promise for developing innovative accessible therapies for millions robbed of their sight or progressing toward blindness.
Collapse
Affiliation(s)
- Tivadar Orban
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
38
|
Chen Y, Palczewska G, Mustafi D, Golczak M, Dong Z, Sawada O, Maeda T, Maeda A, Palczewski K. Systems pharmacology identifies drug targets for Stargardt disease-associated retinal degeneration. J Clin Invest 2013; 123:5119-34. [PMID: 24231350 DOI: 10.1172/jci69076] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022] Open
Abstract
A systems pharmacological approach that capitalizes on the characterization of intracellular signaling networks can transform our understanding of human diseases and lead to therapy development. Here, we applied this strategy to identify pharmacological targets for the treatment of Stargardt disease, a severe juvenile form of macular degeneration. Diverse GPCRs have previously been implicated in neuronal cell survival, and crosstalk between GPCR signaling pathways represents an unexplored avenue for pharmacological intervention. We focused on this receptor family for potential therapeutic interventions in macular disease. Complete transcriptomes of mouse and human samples were analyzed to assess the expression of GPCRs in the retina. Focusing on adrenergic (AR) and serotonin (5-HT) receptors, we found that adrenoceptor α 2C (Adra2c) and serotonin receptor 2a (Htr2a) were the most highly expressed. Using a mouse model of Stargardt disease, we found that pharmacological interventions that targeted both GPCR signaling pathways and adenylate cyclases (ACs) improved photoreceptor cell survival, preserved photoreceptor function, and attenuated the accumulation of pathological fluorescent deposits in the retina. These findings demonstrate a strategy for the identification of new drug candidates and FDA-approved drugs for the treatment of monogenic and complex diseases.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/deficiency
- ATP-Binding Cassette Transporters/genetics
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adenine/therapeutic use
- Adenylyl Cyclase Inhibitors
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Agonists/therapeutic use
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic alpha-Antagonists/therapeutic use
- Alcohol Oxidoreductases/deficiency
- Alcohol Oxidoreductases/genetics
- Animals
- Cell Survival
- Disease Models, Animal
- Doxazosin/pharmacology
- Doxazosin/therapeutic use
- Drug Evaluation, Preclinical
- Guanabenz/pharmacology
- Guanabenz/therapeutic use
- Humans
- Light/adverse effects
- Macaca fascicularis
- Macular Degeneration/congenital
- Macular Degeneration/drug therapy
- Macular Degeneration/genetics
- Macular Degeneration/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Molecular Targeted Therapy
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Photoreceptor Cells, Vertebrate/drug effects
- Photoreceptor Cells, Vertebrate/pathology
- Photoreceptor Cells, Vertebrate/physiology
- Photoreceptor Cells, Vertebrate/radiation effects
- Reactive Oxygen Species
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/genetics
- Receptors, Adrenergic, alpha-2/biosynthesis
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Serotonin Antagonists/pharmacology
- Serotonin Antagonists/therapeutic use
- Signal Transduction
- Stargardt Disease
Collapse
|
39
|
Mustafi D, Kevany BM, Genoud C, Bai X, Palczewski K. Photoreceptor phagocytosis is mediated by phosphoinositide signaling. FASEB J 2013; 27:4585-95. [PMID: 23913857 DOI: 10.1096/fj.13-237537] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Circadian oscillations in peripheral tissues, such as the retinal compartment of the eye, are critical to anticipating changing metabolic demands. Circadian shedding of retinal photoreceptor cell discs with subsequent phagocytosis by the neighboring retinal pigmented epithelium (RPE) is essential for removal of toxic metabolites and lifelong survival of these postmitotic neurons. Defects in photoreceptor phagocytosis can lead to severe retinal pathology, but the biochemical mechanisms remain poorly defined. By first documenting a 2.8-fold burst of photoreceptor phagocytosis events in the mouse eye in the morning compared with the afternoon by serial block face imaging, we established time points to assess transcriptional readouts by RNA sequencing (RNA-Seq). We identified 365 oscillating protein-coding transcripts that implicated the phosphoinositide lipid signaling network mediating the discrete steps of photoreceptor phagocytosis. Moreover, examination of overlapping cistromic sites by core clock transcription factors and promoter elements of these effector genes provided a functional basis for the circadian cycling of these transcripts. RNA-Seq also revealed oscillating expression of 16 long intergenic noncoding RNAs and key histone modifying enzymes critical for circadian gene expression. Our phenotypic and genotypic characterization reveals a complex global landscape of overlapping and temporally controlled networks driving the essential circadian process in the eye.
Collapse
Affiliation(s)
- Debarshi Mustafi
- 1Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4965, USA.
| | | | | | | | | |
Collapse
|
40
|
Mustafi D, Kevany BM, Bai X, Maeda T, Sears JE, Khalil AM, Palczewski K. Evolutionarily conserved long intergenic non-coding RNAs in the eye. Hum Mol Genet 2013; 22:2992-3002. [PMID: 23562822 PMCID: PMC3699063 DOI: 10.1093/hmg/ddt156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/02/2013] [Indexed: 02/01/2023] Open
Abstract
The discovery that the mammalian transcriptome encodes thousands of long intergenic non-coding (linc) RNA transcripts, together with recent evidence that lincRNAs can regulate protein-coding genes, has added a new level of complexity to cellular transcriptional/translational regulation. Indeed several reports now link mutations in lincRNAs to heritable human disorders. Here, we identified a subset of lincRNAs in terminally differentiated adult human retinal neurons based on their sequence conservation across species. RNA sequencing of eye tissue from several mammalian species with varied rod/cone photoreceptor content identified 18 lincRNAs that were highly conserved across these species. Sixteen of the 18 were conserved in human retinal tissue with 14 of these also conserved in the macular region. A subset of lincRNAs exhibited restricted tissue expression profiles in mice, with preferential expression in the retina. Mouse models with different populations of retinal cells as well as in situ hybridization provided evidence that these lincRNAs localized to specific retinal compartments, most notably to the photoreceptor neuronal layer. Computational genomic loci and promoter region analyses provided a basis for regulated expression of these conserved lincRNAs in retinal post-mitotic neurons. This combined approach identified several lincRNAs that could be critical for retinal and visual maintenance in adults.
Collapse
Affiliation(s)
| | | | | | - Tadao Maeda
- Department of Ophthalmology and Visual Sciences and
| | - Jonathan E. Sears
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106-4965, USA and
| | - Ahmad M. Khalil
- Center for RNA Molecular Biology
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4965, USA
| | | |
Collapse
|
41
|
Kozhevnikova OS, Korbolina EE, Ershov NI, Kolosova NG. Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle 2013; 12:1745-61. [PMID: 23656783 DOI: 10.4161/cc.24825] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, remains poorly understood due to the paucity of animal models that fully replicate the human disease. Recently, we showed that senescence-accelerated OXYS rats develop a retinopathy similar to human AMD. To identify alterations in response to normal aging and progression of AMD-like retinopathy, we compared gene expression profiles of retina from 3- and 18-mo-old OXYS and control Wistar rats by means of high-throughput RNA sequencing (RNA-Seq). We identified 160 and 146 age-regulated genes in Wistar and OXYS retinas, respectively. The majority of them are related to the immune system and extracellular matrix turnover. Only 24 age-regulated genes were common for the two strains, suggestive of different rates and mechanisms of aging. Over 600 genes showed significant differences in expression between the two strains. These genes are involved in disease-associated pathways such as immune response, inflammation, apoptosis, Ca ( 2+) homeostasis and oxidative stress. The altered expression for selected genes was confirmed by qRT-PCR analysis. To our knowledge, this study represents the first analysis of retinal transcriptome from young and old rats with biologic replicates generated by RNA-Seq technology. We can conclude that the development of AMD-like retinopathy in OXYS rats is associated with an imbalance in immune and inflammatory responses. Aging alters the expression profile of numerous genes in the retina, and the genetic background of OXYS rats has a profound impact on the development of AMD-like retinopathy.
Collapse
Affiliation(s)
- Oyuna S Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | | | | | | |
Collapse
|
42
|
Zhang N, Kolesnikov AV, Jastrzebska B, Mustafi D, Sawada O, Maeda T, Genoud C, Engel A, Kefalov VJ, Palczewski K. Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. J Clin Invest 2012; 123:121-37. [PMID: 23221340 DOI: 10.1172/jci66176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of the E150K mutation in the rod opsin gene associated with autosomal recessive retinitis pigmentosa (arRP) has yet to be determined. We generated knock-in mice carrying a single nucleotide change in exon 2 of the rod opsin gene resulting in the E150K mutation. This novel mouse model displayed severe retinal degeneration affecting rhodopsin's stabilization of rod outer segments (ROS). Homozygous E150K (KK) mice exhibited early-onset retinal degeneration, with disorganized ROS structures, autofluorescent deposits in the subretinal space, and aberrant photoreceptor phagocytosis. Heterozygous (EK) mice displayed a delayed-onset milder retinal degeneration. Further, mutant receptors were mislocalized to the inner segments and perinuclear region. Though KK mouse rods displayed markedly decreased phototransduction, biochemical studies of the mutant rhodopsin revealed only minimally affected chromophore binding and G protein activation. Ablation of the chromophore by crossing KK mice with mice lacking the critical visual cycle protein LRAT slowed retinal degeneration, whereas blocking phototransduction by crossing KK mice with GNAT1-deficient mice slightly accelerated this process. This study highlights the importance of proper higher-order organization of rhodopsin in the native tissue and provides information about the signaling properties of this mutant rhodopsin. Additionally, these results suggest that patients heterozygous for the E150K mutation should be periodically reevaluated for delayed-onset retinal degeneration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Li Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, USA
| | | |
Collapse
|