1
|
Raftery AL, O'Brien CA, Shad A, L'Estrange-Stranieri E, Hsu AT, Jacobsen EA, Harris NL, Tsantikos E, Hibbs ML. Activated eosinophils in early life impair lung development and promote long-term lung damage. Mucosal Immunol 2024; 17:871-891. [PMID: 38901764 DOI: 10.1016/j.mucimm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Exaggeration of type 2 immune responses promotes lung inflammation and altered lung development; however, eosinophils, despite expansion in the postnatal lung, have not been specifically assessed in the context of neonatal lung disease. Furthermore, early life factors including prematurity and respiratory infection predispose infants to chronic obstructive pulmonary disease later in life. To assess eosinophils in the developing lung and how they may contribute to chronic lung disease, we generated mice harboring eosinophil-specific deletion of the negative regulatory enzyme SH2 domain-containing inositol 5' phosphatase-1. This increased the activity and number of pulmonary eosinophils in the developing lung, which was associated with impaired lung development, expansion of activated alveolar macrophages (AMφ), multinucleated giant cell formation, enlargement of airspaces, and fibrosis. Despite regression of eosinophils following completion of lung development, AMφ-dominated inflammation persisted, alongside lung damage. Bone marrow chimera studies showed that SH2 domain-containing inositol 5' phosphatase-1-deficient eosinophils were not sufficient to drive inflammatory lung disease in adult steady-state mice but once inflammation and damage were present, it could not be resolved. Depletion of eosinophils during alveolarization alleviated pulmonary inflammation and lung pathology, demonstrating an eosinophil-intrinsic effect. These results show that the presence of activated eosinophils during alveolarization aggravates AMφs and promotes sustained inflammation and long-lasting lung pathology.
Collapse
Affiliation(s)
- April L Raftery
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Caitlin A O'Brien
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ali Shad
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elan L'Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Amy T Hsu
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Nicola L Harris
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Evelyn Tsantikos
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Margaret L Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Pandey G, Mazzacurati L, Rowsell TM, Horvat NP, Amin NE, Zhang G, Akuffo AA, Colin-Leitzinger CM, Haura EB, Kuykendall AT, Zhang L, Epling-Burnette PK, Reuther GW. SHP2 inhibition displays efficacy as a monotherapy and in combination with JAK2 inhibition in preclinical models of myeloproliferative neoplasms. Am J Hematol 2024; 99:1040-1055. [PMID: 38440831 PMCID: PMC11096011 DOI: 10.1002/ajh.27282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Lucia Mazzacurati
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Tegan M. Rowsell
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Narmin E. Amin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Guolin Zhang
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Afua A. Akuffo
- Department of Immunology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Eric B. Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Ling Zhang
- Department of Pathology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Gary W. Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL USA
| |
Collapse
|
3
|
Safari F, Yeoh WJ, Perret-Gentil S, Klenke F, Dolder S, Hofstetter W, Krebs P. SHIP1 deficiency causes inflammation-dependent retardation in skeletal growth. Life Sci Alliance 2024; 7:e202302297. [PMID: 38388173 PMCID: PMC10883774 DOI: 10.26508/lsa.202302297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammation and skeletal homeostasis are closely intertwined. Inflammatory diseases are associated with local and systemic bone loss, and post-menopausal osteoporosis is linked to low-level chronic inflammation. Phosphoinositide-3-kinase signalling is a pivotal pathway modulating immune responses and controlling skeletal health. Mice deficient in Src homology 2-containing inositol phosphatase 1 (SHIP1), a negative regulator of the phosphoinositide-3-kinase pathway, develop systemic inflammation associated with low body weight, reduced bone mass, and changes in bone microarchitecture. To elucidate the specific role of the immune system in skeletal development, a genetic approach was used to characterise the contribution of SHIP1-controlled systemic inflammation to SHIP1-dependent osteoclastogenesis. Lymphocyte deletion entirely rescued the skeletal phenotype in Rag2 -/- /Il2rg -/- /SHIP1 -/- mice. Rag2 -/- /Il2rg -/- /SHIP1 -/- osteoclasts, however, displayed an intermediate transcriptomic signature between control and Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts while exhibiting aberrant in vitro development and functions similar to Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts. These data establish a cell-intrinsic role for SHIP1 in osteoclasts, with inflammation as the key driver of the skeletal phenotype in SHIP1-deficient mice. Our findings demonstrate the central role of the immune system in steering physiological skeletal development.
Collapse
Affiliation(s)
- Fatemeh Safari
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- AO Research Institute Davos, Davos, Switzerland
| | - Wen Jie Yeoh
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Saskia Perret-Gentil
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Frank Klenke
- Department of Orthopaedic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Silvia Dolder
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
5
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Mascarenhas J, Gleitz HFE, Chifotides HT, Harrison CN, Verstovsek S, Vannucchi AM, Rampal RK, Kiladjian JJ, Vainchenker W, Hoffman R, Schneider RK, List AF. Biological drivers of clinical phenotype in myelofibrosis. Leukemia 2023; 37:255-264. [PMID: 36434065 PMCID: PMC9898039 DOI: 10.1038/s41375-022-01767-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Myelofibrosis (MF) is a myeloproliferative disorder that exhibits considerable biological and clinical heterogeneity. At the two ends of the disease spectrum are the myelodepletive or cytopenic phenotype and the myeloproliferative phenotype. The cytopenic phenotype has a high prevalence in primary MF (PMF) and is characterized by low blood counts. The myeloproliferative phenotype is typically associated with secondary MF (SMF), mild anemia, minimal need for transfusion support, and normal to mild thrombocytopenia. Differences in somatic driver mutations and allelic burden, as well as the acquisition of non-driver mutations further influences these phenotypic differences, prognosis, and response to therapies such as JAK2 inhibitors. The outcome of patients with the cytopenic phenotype are comparatively worse and frequently pose a challenge to treat given the inherent exacerbation of cytopenias. Recent data indicate that an innate immune deregulated state that hinges on the myddosome-IRAK-NFκB axis favors the cytopenic myelofibrosis phenotype and offers opportunity for novel treatment approaches. We will review the biological and clinical features of the MF disease spectrum and associated treatment considerations.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hélène F E Gleitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Helen T Chifotides
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Srdan Verstovsek
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Raajit K Rampal
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebekka K Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | |
Collapse
|
7
|
Jin J, Wan Y, Shu Q, Liu J, Lai D. Knowledge mapping and research trends of IL-33 from 2004 to 2022: a bibliometric analysis. Front Immunol 2023; 14:1158323. [PMID: 37153553 PMCID: PMC10157155 DOI: 10.3389/fimmu.2023.1158323] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Background IL-33 has been studied widely but its comprehensive and systematic bibliometric analysis is yet available. The present study is to summarize the research progress of IL-33 through bibliometric analysis. Methods The publications related to IL-33 were identified and selected from the Web of Science Core Collection (WoSCC) database on 7 December 2022. The downloaded data was analyzed with bibliometric package in R software. CiteSpace and VOSviewer were used to conduct IL-33 bibliometric and knowledge mapping analysis. Results From 1 January 2004 to 7 December 2022, 4711 articles on IL-33 research published in 1009 academic journals by 24652 authors in 483 institutions from 89 countries were identified. The number of articles had grown steadily over this period. The United States of America(USA) and China are the major contributors in the field of research while University of Tokyo and University of Glasgow are the most active institutions. The most prolific journal is Frontiers in Immunology, while the Journal of Immunity is the top 1 co-cited journal. Andrew N. J. Mckenzie published the most significant number of articles and Jochen Schmitz was co-cited most. The major fields of these publications are immunology, cell biology, and biochemistry & molecular biology. After analysis, the high-frequency keywords of IL-33 research related to molecular biology (sST2, IL-1), immunological effects (type 2 immunity, Th2 cells), and diseases (asthma, cancer, cardiovascular diseases). Among these, the involvement of IL-33 in the regulation of type 2 inflammation has strong research potential and is a current research hotspot. Conclusion The present study quantifies and identifies the current research status and trends of IL-33 using bibliometric and knowledge mapping analysis. This study may offer the direction of IL-33-related research for scholars.
Collapse
Affiliation(s)
- Jingyi Jin
- Department of Neonatal Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Dengming Lai, ; Jinghua Liu,
| | - Dengming Lai
- Department of Neonatal Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Dengming Lai, ; Jinghua Liu,
| |
Collapse
|
8
|
Lei S, Jin J, Zhao X, Zhou L, Qi G, Yang J. The role of IL-33/ST2 signaling in the tumor microenvironment and Treg immunotherapy. Exp Biol Med (Maywood) 2022; 247:1810-1818. [PMID: 35733343 PMCID: PMC9679353 DOI: 10.1177/15353702221102094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 is a tissue-derived nuclear cytokine belonging to the IL-1 family. Stimulation-2 (ST2) is the only known IL-33 receptor. ST2 signals mostly on immune cells found within tissues, such as regulatory T cells (Treg cells), CD8+ T cells, and natural killer (NK) cells. Therefore, the IL-33/ST2 signaling pathway is important in the immune system. IL-33 deficiency impairs Treg cell function. ST2 signaling is also increased in active Treg cells, providing a new approach for Treg-related immunotherapy. The IL-33/ST2 signaling pathway regulates multiple immune-related cells by activating various intracellular kinases and factors in the tumor microenvironment (TME). Here, we review the latest studies on the role of the IL-33/ST2 signaling pathway in TME and Treg immunotherapy.
Collapse
Affiliation(s)
- Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Lihua Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Guangying Qi
- Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jinfeng Yang
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China,Jinfeng Yang.
| |
Collapse
|
9
|
Mascarenhas J. Pacritinib for the treatment of patients with myelofibrosis and thrombocytopenia. Expert Rev Hematol 2022; 15:671-684. [PMID: 35983661 DOI: 10.1080/17474086.2022.2112565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Myelofibrosis (MF) is a rare myeloproliferative neoplasm characterized by a complex symptom profile, cytopenias, splenomegaly, and potential for leukemic progression. Severe thrombocytopenia is common in patients with MF and correlates with poor prognosis; however, until recently, treatment options for these patients were limited. Pacritinib, a potent Janus kinase (JAK) 2/interleukin-1 receptor-associated kinase 1 (IRAK1) inhibitor, has demonstrated significant reduction in splenomegaly, improved symptom control, and a manageable safety profile in patients with MF regardless of the severity of thrombocytopenia. AREAS COVERED : This review will outline the pacritinib drug profile and summarize key efficacy and safety data, focusing on the 200 mg twice daily dose from phase 2 and 3 studies that formed the basis for the recent US Food and Drug Administration approval of pacritinib in patients with MF and severe thrombocytopenia (platelet counts <50 x 109/L). EXPERT OPINION Pacritinib, with its unique mechanism of action targeting both JAK2 and IRAK1, offers patients with MF and severe thrombocytopenia a new treatment option, providing consistent disease and symptom control. Adverse events are easily manageable. Further analyses to identify ideal patient characteristics for pacritinib and other JAK inhibitors along with studies of pacritinib combinations are warranted, including in related myeloid malignancies.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Division of Hematology/Oncology Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
10
|
Yeoh WJ, Vu VP, Krebs P. IL-33 biology in cancer: An update and future perspectives. Cytokine 2022; 157:155961. [PMID: 35843125 DOI: 10.1016/j.cyto.2022.155961] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Kiem D, Wagner S, Magnes T, Egle A, Greil R, Melchardt T. The Role of Neutrophilic Granulocytes in Philadelphia Chromosome Negative Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22179555. [PMID: 34502471 PMCID: PMC8431305 DOI: 10.3390/ijms22179555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Philadelphia chromosome negative myeloproliferative neoplasms (MPN) are composed of polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The clinical picture is determined by constitutional symptoms and complications, including arterial and venous thromboembolic or hemorrhagic events. MPNs are characterized by mutations in JAK2, MPL, or CALR, with additional mutations leading to an expansion of myeloid cell lineages and, in PMF, to marrow fibrosis and cytopenias. Chronic inflammation impacting the initiation and expansion of disease in a major way has been described. Neutrophilic granulocytes play a major role in the pathogenesis of thromboembolic events via the secretion of inflammatory markers, as well as via interaction with thrombocytes and the endothelium. In this review, we discuss the molecular biology underlying myeloproliferative neoplasms and point out the central role of leukocytosis and, specifically, neutrophilic granulocytes in this group of disorders.
Collapse
Affiliation(s)
- Dominik Kiem
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Sandro Wagner
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Teresa Magnes
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alexander Egle
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Thomas Melchardt
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-57255-25801
| |
Collapse
|
12
|
Cupovic J, Ring SS, Onder L, Colston JM, Lütge M, Cheng HW, De Martin A, Provine NM, Flatz L, Oxenius A, Scandella E, Krebs P, Engeler D, Klenerman P, Ludewig B. Adenovirus vector vaccination reprograms pulmonary fibroblastic niches to support protective inflating memory CD8 + T cells. Nat Immunol 2021; 22:1042-1051. [PMID: 34267375 PMCID: PMC7611414 DOI: 10.1038/s41590-021-00969-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.
Collapse
Affiliation(s)
- Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Julia M Colston
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nicholas M Provine
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Berne, Berne, Switzerland
| | - Daniel Engeler
- Department of Urology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
The Janus Face of IL-33 Signaling in Tumor Development and Immune Escape. Cancers (Basel) 2021; 13:cancers13133281. [PMID: 34209038 PMCID: PMC8268428 DOI: 10.3390/cancers13133281] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Interleukin-33 (IL-33) is often released from damaged cells, acting as a danger signal. IL-33 exerts its function by interacting with its receptor suppression of tumorigenicity 2 (ST2) that is constitutively expressed on most immune cells. Therefore, IL-33/ST2 signaling can modulate immune responses to participate actively in a variety of pathological conditions, such as cancer. Like a two-faced Janus, which faces opposite directions, IL-33/ST2 signaling may play contradictory roles on its impact on cancer progression through both immune and nonimmune cellular components. Accumulating evidence demonstrates both pro- and anti-tumorigenic properties of IL-33, depending on the complex nature of different tumor immune microenvironments. We summarize and discuss the most recent studies on the contradictory effects of IL-33 on cancer progression and treatment, with a goal to better understanding the various ways for IL-33 as a therapeutic target. Abstract Interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays a critical role in maintaining tissue homeostasis as well as pathological conditions, such as allergy, infectious disease, and cancer, by promoting type 1 and 2 immune responses. Through its specific receptor ST2, IL-33 exerts multifaceted functions through the activation of diverse intracellular signaling pathways. ST2 is expressed in different types of immune cells, including Th2 cells, Th1 cells, CD8+ T cells, regulatory T cells (Treg), cytotoxic NK cells, group 2 innate lymphoid cells (ILC2s), and myeloid cells. During cancer initiation and progression, the aberrant regulation of the IL-33/ST2 axis in the tumor microenvironment (TME) extrinsically and intrinsically mediates immune editing via modulation of both innate and adaptive immune cell components. The summarized results in this review suggest that IL-33 exerts dual-functioning, pro- as well as anti-tumorigenic effects depending on the tumor type, expression levels, cellular context, and cytokine milieu. A better understanding of the distinct roles of IL-33 in epithelial, stromal, and immune cell compartments will benefit the development of a targeting strategy for this IL-33/ST2 axis for cancer immunotherapy.
Collapse
|
14
|
Plasma IL-33 levels are decreased in patients with high-risk myelodysplastic syndrome and show no correlation with pro-inflammatory IL-6 levels. Cytokine 2021; 148:155617. [PMID: 34130905 DOI: 10.1016/j.cyto.2021.155617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022]
Abstract
Aberrant inflammatory signaling has been shown to be a key pathogenic driver in myelodysplastic syndromes (MDS). Abnormal IL-33 expression has been implicated in inflammatory, immune-related disorders and, some tumors. However, its role in MDS remains widely unknown. This study aimed to evaluate the relationship between plasma levels of IL-33, clinical and prognostic data and, IL-6 levels in 101 patients with MDS. A comparative group of 59 healthy individuals was also evaluated. Plasma levels of cytokines were determined by enzyme-linked immunosorbent assay. Lower levels of IL-33 were found in patients with MDS when compared to the control group (p = 0.001), mainly in patients with more advanced stages of the disease and worse prognosis. No significant correlation between the levels of IL-33 and IL-6 was observed (r = 0.175; p = 0.081). These results reinforce the close association between immunological disorders and the pathogenesis of MDS. A greater understanding of the role of inflammatory cytokines in the disease can potentially provide new diagnosis and prognosis markers and new therapeutic targets.
Collapse
|
15
|
MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021; 10:19. [PMID: 33637673 PMCID: PMC7910556 DOI: 10.1038/s41389-021-00309-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
MYB transcription factors are highly conserved from plants to vertebrates, indicating that their functions embrace fundamental mechanisms in the biology of cells and organisms. In humans, the MYB gene family is composed of three members: MYB, MYBL1 and MYBL2, encoding the transcription factors MYB, MYBL1, and MYBL2 (also known as c-MYB, A-MYB, and B-MYB), respectively. A truncated version of MYB, the prototype member of the MYB family, was originally identified as the product of the retroviral oncogene v-myb, which causes leukaemia in birds. This led to the hypothesis that aberrant activation of vertebrate MYB could also cause cancer. Despite more than three decades have elapsed since the isolation of v-myb, only recently investigators were able to detect MYB genes rearrangements and mutations, smoking gun evidence of the involvement of MYB family members in human cancer. In this review, we will highlight studies linking the activity of MYB family members to human malignancies and experimental therapeutic interventions tailored for MYB-expressing cancers.
Collapse
|
16
|
Zhan H, Kaushansky K. The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:135-145. [PMID: 33119879 DOI: 10.1007/978-3-030-49270-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on instructive cues from the marrow microenvironment for their maintenance and function. Accumulating evidence indicates that the survival and proliferation of hematopoietic neoplasms are dependent not only on cell-intrinsic, genetic mutations, and other molecular alterations present within neoplastic stem cells, but also on the ability of the surrounding microenvironmental cells to nurture and promote the malignancy. It is anticipated that a better understanding of the molecular and cellular events responsible for these microenvironmental features of neoplastic hematopoiesis will lead to improved treatment for patients. This review will focus on the myeloproliferative neoplasms (MPNs), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), in which an acquired signaling kinase mutation (JAK2V617F) plays a central, pathogenetic role in 50-100% of patients with these disorders. Evidence is presented that the development of an MPN requires both an abnormal, mutation-bearing (i.e., neoplastic) HSC and an abnormal, mutation-bearing microenvironment.
Collapse
Affiliation(s)
- Huichun Zhan
- Division of Hematology-Oncology, Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA. .,Northport VA Medical Center, Northport, NY, USA.
| | | |
Collapse
|
17
|
Sharma V, Wright KL, Epling-Burnette PK, Reuther GW. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms. Front Immunol 2020; 11:604142. [PMID: 33329600 PMCID: PMC7734315 DOI: 10.3389/fimmu.2020.604142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023] Open
Abstract
The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are associated with clonal myelopoiesis, elevated risk of death due to thrombotic complications, and transformation to acute myeloid leukemia (AML). JAK2 inhibitors improve the quality of life for MPN patients, but these approved therapeutics do not readily reduce the natural course of disease or antagonize the neoplastic clone. An understanding of the molecular and cellular changes requisite for MPN development and progression are needed to develop improved therapies. Recently, murine MPN models were demonstrated to exhibit metabolic vulnerabilities due to a high dependence on glucose. Neoplastic hematopoietic progenitor cells in these mice express elevated levels of glycolytic enzymes and exhibit enhanced levels of glycolysis and oxidative phosphorylation, and the disease phenotype of these MPN model mice is antagonized by glycolytic inhibition. While all MPN-driving mutations lead to aberrant JAK2 activation, these mutations often co-exist with mutations in genes that encode epigenetic regulators, including loss of function mutations known to enhance MPN progression. In this perspective we discuss how altered activity of epigenetic regulators (e.g., methylation and acetylation) in MPN-driving stem and progenitor cells may alter cellular metabolism and contribute to the MPN phenotype and progression of disease. Specific metabolic changes associated with epigenetic deregulation may identify patient populations that exhibit specific metabolic vulnerabilities that are absent in normal hematopoietic cells, and thus provide a potential basis for the development of more effective personalized therapeutic approaches.
Collapse
Affiliation(s)
- Vasundhara Sharma
- Department of Leukemia, Princess Margaret Cancer Center-University Health Network, Toronto, ON, Canada
| | - Kenneth L Wright
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
18
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
19
|
Carbone M, Arron ST, Beutler B, Bononi A, Cavenee W, Cleaver JE, Croce CM, D'Andrea A, Foulkes WD, Gaudino G, Groden JL, Henske EP, Hickson ID, Hwang PM, Kolodner RD, Mak TW, Malkin D, Monnat RJ, Novelli F, Pass HI, Petrini JH, Schmidt LS, Yang H. Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nat Rev Cancer 2020; 20:533-549. [PMID: 32472073 PMCID: PMC8104546 DOI: 10.1038/s41568-020-0265-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
Cell division and organismal development are exquisitely orchestrated and regulated processes. The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism or other perturbations that cause DNA damage. Moreover, several environmental factors may damage the DNA, alter cellular metabolism or affect the ability of cells to interact with their microenvironment. While some environmental factors are well established as carcinogens, there remains a large knowledge gap of others owing to the difficulty in identifying them because of the typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases in cells harbouring mutations that impair their ability to correctly repair the DNA. Tumour predisposition syndromes in which cancers arise at an accelerated rate and in different organs - the equivalent of a sensitized background - provide a unique opportunity to examine how gene-environment interactions influence cancer risk when the initiating genetic defect responsible for malignancy is known. Understanding the molecular processes that are altered by specific germline mutations, environmental exposures and related mechanisms that promote cancer will allow the design of novel and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA.
| | - Sarah T Arron
- STA, JEC, Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Beutler
- Center for Genetic Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela Bononi
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Webster Cavenee
- Ludwig Institute, University of California, San Diego, San Diego, CA, USA
| | - James E Cleaver
- STA, JEC, Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH, USA
| | - Alan D'Andrea
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Giovanni Gaudino
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Elizabeth P Henske
- Center for LAM Research, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Paul M Hwang
- Cardiovascular Branch, National Institutes of Health, Bethesda, MD, USA
| | - Richard D Kolodner
- Ludwig Institute, University of California, San Diego, San Diego, CA, USA
| | - Tak W Mak
- Princess Margaret Cancer Center, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Raymond J Monnat
- Department Pathology, Washington University, Seattle, WA, USA
- Department of Genome Science, Washington University, Seattle, WA, USA
| | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Harvey I Pass
- Department of Cardiovascular Surgery, New York University, New York, NY, USA
| | - John H Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
20
|
Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, Paik S, Stagg J, Groves RA, Gallo M, Lewis IA, Geuking MB, McCoy KD. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 2020; 369:1481-1489. [PMID: 32792462 DOI: 10.1126/science.abc3421] [Citation(s) in RCA: 801] [Impact Index Per Article: 160.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Several species of intestinal bacteria have been associated with enhanced efficacy of checkpoint blockade immunotherapy, but the underlying mechanisms by which the microbiome enhances antitumor immunity are unclear. In this study, we isolated three bacterial species-Bifidobacterium pseudolongum, Lactobacillus johnsonii, and Olsenella species-that significantly enhanced efficacy of immune checkpoint inhibitors in four mouse models of cancer. We found that intestinal B. pseudolongum modulated enhanced immunotherapy response through production of the metabolite inosine. Decreased gut barrier function induced by immunotherapy increased systemic translocation of inosine and activated antitumor T cells. The effect of inosine was dependent on T cell expression of the adenosine A2A receptor and required costimulation. Collectively, our study identifies a previously unknown microbial metabolite immune pathway activated by immunotherapy that may be exploited to develop microbial-based adjuvant therapies.
Collapse
Affiliation(s)
- Lukas F Mager
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Regula Burkhard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nicola Pett
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Noah C A Cooke
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Kirsty Brown
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Hena Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Seungil Paik
- Department of Biochemistry and Molecular Biology and Department of Physiology and Pharmacology, Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada
| | - Ryan A Groves
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Marco Gallo
- Department of Biochemistry and Molecular Biology and Department of Physiology and Pharmacology, Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
21
|
|
22
|
The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol 2020; 18:711-722. [PMID: 32728200 DOI: 10.1038/s41423-020-0501-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
In cancer, myeloid cells have tumor-supporting roles. We reported that the protein GPNMB (glycoprotein nonmetastatic B) was profoundly upregulated in macrophages interacting with tumor cells. Here, using mouse tumor models, we show that macrophage-derived soluble GPNMB increases tumor growth and metastasis in Gpnmb-mutant mice (DBA/2J). GPNMB triggers in the cancer cells the formation of self-renewing spheroids, which are characterized by the expression of cancer stem cell markers, prolonged cell survival and increased tumor-forming ability. Through the CD44 receptor, GPNMB mechanistically activates tumor cells to express the cytokine IL-33 and its receptor IL-1R1L. We also determined that recombinant IL-33 binding to IL-1R1L is sufficient to induce tumor spheroid formation with features of cancer stem cells. Overall, our results reveal a new paracrine axis, GPNMB and IL-33, which is activated during the cross talk of macrophages with tumor cells and eventually promotes cancer cell survival, the expansion of cancer stem cells and the acquisition of a metastatic phenotype.
Collapse
|
23
|
Wang Y, Luo H, Wei M, Becker M, Hyde RK, Gong Q. IL-33/IL1RL1 axis regulates cell survival through the p38 MAPK pathway in acute myeloid leukemia. Leuk Res 2020; 96:106409. [PMID: 32652328 DOI: 10.1016/j.leukres.2020.106409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is often characterized by the presence of specific and recurrent chromosomal abnormalities. Current treatments have greatly increased remission rate, but relapse still occurs. Therefore, novel therapeutic approaches are required. Previously, using a conditional Cbfb-MYH11 knockin mouse model, we showed that Cbfb-MYH11 induces the expression of a cytokine receptor, IL1RL1. Treatment with IL-33, the only known ligand of IL1RL1, promotes leukemia cell survival in vitro. We further found that IL1RL1+ cells survive better with chemotherapy than IL1RL1- population. However, the mechanism is not clear. Here, we show that IL-33 treatment decreased drug sensitivity in the human inv(16) AML cell line ME-1. By RT-PCR, we found that IL-33 increased the expression of IL-4 and IL-6 and led to the activation of both p38 MAPK and NF-κB. We also showed that IL-33 decreased apoptosis with increased phosphorylation of p38 MAPK. Moreover, pre-treatment with MAPK inhibitor attenuated the phosphorylation of p38 enhanced by IL-33 and reversed the anti-apoptotic effect by IL-33. Taken together, our findings give news insights into the potential mechanism of the anti-apoptotic effect by IL-33/IL1RL1 axis in AML which will help in future drug development.
Collapse
Affiliation(s)
- Yiqian Wang
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Huanmin Luo
- Third Clinical School, Guangzhou Medical University, Guangzhou, PR China
| | - Mengyi Wei
- Nanshan School, Guangzhou Medical University, Guangzhou, PR China
| | - Michelle Becker
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
24
|
Capitano ML, Griesenauer B, Guo B, Cooper S, Paczesny S, Broxmeyer HE. The IL-33 Receptor/ST2 acts as a positive regulator of functional mouse bone marrow hematopoietic stem and progenitor cells. Blood Cells Mol Dis 2020; 84:102435. [PMID: 32408242 PMCID: PMC7788514 DOI: 10.1016/j.bcmd.2020.102435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
There is a paucity of information on a potential role for the IL-33 receptor/ST2 in the regulation of mouse bone marrow (BM) hematopoietic stem (HSC) and progenitor (HPC) cells. Comparing the BM of st2−/− and wild type (WT) control mice using functional assays, it was found that st2−/− BM cells had poorer engrafting capacity than WT BM in a competitive repopulating assay using congenic mice, with no changes in reconstitution of B-, T- and myeloid cells following transplantation. The BM of st2−/− mice also had fewer granulocyte-macrophage, erythroid, and multipotential progenitors than that of WT BM and these st2−/− HPC were in a slow cycling state compared to that of the rapidly cycling HPC of the WT mice. While functional assessment of HSC and HPC demonstrated that ST2 has a positive influence on regulation of HSC, we could not pick up differences in st2−/− compared to WT BM using only phenotypic analysis of HSC and HPC populations prior to transplantation, again demonstrating that phenotypic analysis of HSC and HPC do not always recapitulate the functional assessments of these immature hematopoietic cells. ST2 is a positive modulator of hematopoiesis. ST2-/- is a positive modulator of hematopoiesis Immunophenotyping of st2-/- hematopoietic stem cell numbers does not recapitulate functional capability of these cells.
Collapse
Affiliation(s)
- Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Brad Griesenauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Bin Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| |
Collapse
|
25
|
Pasvenskaite A, Vilkeviciute A, Liutkeviciene R, Gedvilaite G, Liutkevicius V, Uloza V. Associations of IL6 rs1800795, BLK rs13277113, TIMP3 rs9621532, IL1RL1 rs1041973 and IL1RAP rs4624606 single gene polymorphisms with laryngeal squamous cell carcinoma. Gene 2020; 747:144700. [PMID: 32330537 DOI: 10.1016/j.gene.2020.144700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Survival rate of laryngeal squamous cell carcinoma (LSCC) patients is not improving. To understand more complete biology of LSCC, studies focused on identification of new specific and prognostic markers are performed. The aim of current study was to evaluate the impact of five different single nucleotide polymorphisms (SNP) (IL6 rs1800795, BLK rs13277113, TIMP3 rs9621532, IL1RL1 rs1041973 and IL1RAP rs4624606) on LSCC development. MATERIAL AND METHODS A total of 891 subjects (353 histologically verified LSCC patients and 538 healthy controls) were involved in this study. The genotyping was carried out using the real-time-PCR. RESULTS Statistical analysis revealed statistically significant associations between TIMP3 rs96215332 variants and LSCC in the codominant (OR = 0.600; 95% CI: 0.390-0.922; p = 0.020), overdominant (OR = 0.599; 95% CI: 0.390-0.922; p = 0.020) and additive (OR = 0.675; 95% CI: 0.459-0.991; p = 0.045) models. Also, significant variants of IL1RAP rs4624606 were determined in the codominant (OR = 1.372; 95% CI: 1.031-1.827; p = 0.030), overdominant (OR = 1.353; 95% CI: 1.018-1.798; p = 0.037) and additive (OR = 1.337; 95% CI: 1.038-1.724; p = 0.025) models. CONCLUSION Results of the current study indicate significant associations between TIMP3 rs9621532 and IL1RAP rs4624606 gene polymorphisms and LSCC development.
Collapse
Affiliation(s)
- Agne Pasvenskaite
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
26
|
Feng X, Liu H, Chu X, Sun P, Huang W, Liu C, Yang X, Sun W, Bai H, Ma Y. Recombinant virus-like particles presenting IL-33 successfully modify the tumor microenvironment and facilitate antitumor immunity in a model of breast cancer. Acta Biomater 2019; 100:316-325. [PMID: 31542504 DOI: 10.1016/j.actbio.2019.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, interleukin (IL)-33 has been closely associated with a variety of clinical cancers. IL-33 presents both protumorigenic, and less frequently, antitumorigenic functions depending on disease conditions. IL-33 signaling appears to be a possible target for the treatment of applicable tumor diseases. This study aimed to develop an effective approach to intervene in IL-33 functioning in tumors and reveal the immunotherapeutic potential of anti-IL-33 active immunization. Recombinant truncated hepatitis B virus core antigen (HBcAg), presenting mature IL-33 molecules on the surface of virus-like particles (VLPs), was prepared and used to immunize BALB/c mice in a model of murine 4T1 breast cancer. The immunization was performed through either a preventive or therapeutic strategy in two separate studies. Anti-IL-33 immunization with VLPs elicited a persistent and highly titrated specific antibody response and significantly suppressed orthotopic tumor growth in the preventive study and lung metastasis in both studies. The underlying mechanisms might include promoting tumor-specific Th1 and CTL-mediated cellular responses and the expression of the effector molecule interferon-γ (IFN-γ), suppressing T-helper type 2 (Th2) responses, and significantly reducing the infiltration of immunosuppressive Treg (regulatory T) cells and myeloid-derived suppressor cells (MDSCs) into tumor tissues in the immunized mice. In conclusion, anti-IL-33 active immunization employing recombinant VLPs as an antigen delivery platform effectively modified the tumor microenvironment and promoted antitumor immunity, indicating the potential of this approach as a new and promising immunotherapeutic strategy for the treatment of cancers where IL-33 plays a definite protumorigenic role. STATEMENT OF SIGNIFICANCE: Interleukin (IL)-33 is closely associated with a variety of clinical cancers. IL-33 signaling appears to be a possible target for the treatment of applicable tumor diseases. Recombinant truncated hepatitis B virus core antigen (HBcAg), presenting mature IL-33 molecules on the surface of virus-like particles (VLPs), was prepared and used to immunize BALB/c mice in a model of murine 4T1 breast cancer. The immunization was performed through either a preventive or therapeutic strategy in two separate studies. Anti-IL-33 immunization with VLPs elicited a persistent and highly titrated specific antibody response and significantly suppressed orthotopic tumor growth and lung metastasis in both studies. Furthermore, anti-IL-33 active immunization employing recombinant VLPs as an antigen delivery platform effectively modified the tumor microenvironment and promoted antitumor immunity, indicating its potential as a new and promising immunotherapeutic strategy for the treatment of cancers where IL-33 plays a definite protumorigenic role.
Collapse
Affiliation(s)
- Xuejun Feng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Department of Experimental Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxian Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Xiaojie Chu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Pengyan Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Cunbao Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Wenjia Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China.
| |
Collapse
|
27
|
Rustowska-Rogowska A, Gleń J, Jarząbek T, Rogowski W, Rębała K, Zabłotna M, Czajkowska K, Nowicki R, Kowalczyk A, Sokołowska-Wojdyło M. Interleukin-33 polymorphisms and serum concentrations in mycosis fungoides. Int J Dermatol 2019; 59:345-351. [PMID: 31663123 DOI: 10.1111/ijd.14696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/25/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mycosis fungoides (MF) skin lesions are characterized by low-grade inflammation, which may be sustained by proinflammatory cytokines as probably interleukin-33 (IL-33). We compared serum concentrations of IL-33 and its receptor ST2 and the frequency of selected IL-33 single nucleotide polymorphisms (SNPs) between patients with MF and healthy controls. METHODS In 88 patients with MF and 66 healthy controls, we analyzed SNPs in the 9894 and 11877 loci of the IL-33 gene. Moreover, we measured serum concentrations of IL-33 and its receptor ST2. RESULTS There were no statistically significant differences in the frequencies of both IL-33 SNPs between patients and controls. Compared with controls, patients with MF had similar IL-33 serum concentrations (P = 0.71) but significantly increased ST2 concentrations (P < 0.001). Patients in MF-IA stage had significantly lower ST2 serum concentrations than those with the remaining MF stages (P = 0.002). The studied variables were not related to pruritus severity. Patients with the C(+) IL-33 11877 SNP had lower ST2 serum concentrations than patients with the C(-) 11877 SNP (P = 0.043). CONCLUSIONS It was published before that the knockout of the ST2 gene after injection of IL-33 is associated with a reduced inflammatory reaction in the skin, as well as that IL-33 plays a role in allergic and neoplastic disorders. Concerning the difference in ST2 concentration between control and MF group, and C IL-33 11877 SNP possibly influencing the ST2 concentration, the role of IL-33/ST2 signaling, needs further studies.
Collapse
Affiliation(s)
- Alicja Rustowska-Rogowska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland.,Medpharma CRL, Nowa Wieś Rzeczna, Poland
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Krzysztof Rębała
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Monika Zabłotna
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Czajkowska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Kowalczyk
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland.,Polish Lymphoma Research Group, PLRG, Warsaw, Poland
| |
Collapse
|
28
|
Ozler S, Oztas E, Guler BG, Caglar AT. Increased levels of serum IL-33 is associated with adverse maternal outcomes in placenta previa accreta. J Matern Fetal Neonatal Med 2019; 34:3192-3199. [PMID: 31608786 DOI: 10.1080/14767058.2019.1679766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE IL-33 is associated with invasion, proliferation, and metastasis of various cancers. The trophoblastic cells of placenta previa accreta (PPA) invade into the myometrium in a similar way to the invasion of cancers. We studied the role of IL-33 in PPA and also aimed to investigate its relation with adverse maternal outcome in this placental disorder. METHODS A total of 87 pregnant patients were enrolled in this prospective case-control study [27 with PPA, 30 with placenta previa totalis (PPT; nonadherent placenta previa), and 30 controls]. IL-33 and IL-6 levels were studied in maternal serum at late preterm gestation weeks. Multiple logistic regression analyses analyzed the risk factors which are associated with PPA and adverse maternal outcomes. Adjusted odds ratios and 95% confidence intervals were also calculated. Enzyme-linked immunosorbent assay (ELISA) method was used to determine maternal serum IL-33 and IL-6 levels. RESULTS Serum IL-33 levels were significantly higher in PPA patients when compared with both nonadherent PPT and the control groups (p = .011, p = .010). Serum IL-6 and neutrophil/lymphocyte ratio levels were significantly higher than the control group's (p = .045, p = .028). IL-33 levels and history of previous cesarean section were found to be significantly associated with PPA (OR: 1.039, 95% CI: 1.004-1.075; p = .030 and OR: 0.067, 95% CI: 0.014-0.309, p = .001, respectively). Serum IL-33 levels were positively correlated with previous cesarean section history in PPA. Increased maternal serum IL-33 levels were found to be independently associated with a cesarean hysterectomy and massive transfusion in PPA patients (OR: 1.098, 95% CI: 0.998-1.207; p = .049 and OR: 1.162 95% CI: 1.010-1.337; p = .036). CONCLUSION Increased levels of maternal serum IL-33 and history of previous cesarean section were found to be significantly associated with PPA, and also increased maternal serum IL-33 levels were related to cesarean hysterectomy and massive blood transfusion in PPA. We suggest that IL-33 may have a role in abnormal placental invasion.
Collapse
Affiliation(s)
- Sibel Ozler
- Department of Perinatology, Selcuk University Medical School, Konya, Turkey
| | - Efser Oztas
- Department of Perinatology, Eskisehir City Hospital, Eskisehir, Turkey
| | | | - Ali Turhan Caglar
- Department of Pathology, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
29
|
The ST2/Interleukin-33 Axis in Hematologic Malignancies: The IL-33 Paradox. Int J Mol Sci 2019; 20:ijms20205226. [PMID: 31652497 PMCID: PMC6834139 DOI: 10.3390/ijms20205226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-33 is a chromatin-related nuclear interleukin that is a component of IL-1 family. IL-33 production augments the course of inflammation after cell damage or death. It is discharged into the extracellular space. IL-33 is regarded as an “alarmin” able to stimulate several effectors of the immune system, regulating numerous immune responses comprising cancer immune reactions. IL-33 has been demonstrated to influence tumorigenesis. However, as far as this cytokine is concerned, we are faced with what has sometimes been defined as the IL-33 paradox. Several studies have demonstrated a relevant role of IL-33 to numerous malignancies, where it may have pro- and—less frequently—antitumorigenic actions. In the field of hematological malignancies, the role of IL-33 seems even more complex. Although we can affirm the existence of a negative role of IL-33 in Chronic myelogenos leukemia (CML) and in lymphoproliferative diseases and a positive role in pathologies such as Acute myeloid leukemia (AML), the action of IL-33 seems to be multiple and sometimes contradictory within the same pathology. In the future, we will have to learn to govern the negative aspects of activating the IL-33/ST2 axis and exploit the positive ones.
Collapse
|
30
|
The characteristics of vessel lining cells in normal spleens and their role in the pathobiology of myelofibrosis. Blood Adv 2019; 2:1130-1145. [PMID: 29776986 DOI: 10.1182/bloodadvances.2017015073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
The CD34-CD8α+, sinusoid lining, littoral cells (LCs), and CD34+CD8α-, splenic vascular endothelial cells (SVECs) represent 2 distinct cellular types that line the vessels within normal spleens and those of patients with myelofibrosis (MF). To further understand the respective roles of LCs and SVECs, each was purified from normal and MF spleens, cultured, and characterized. Gene expression profiling indicated that LCs were a specialized type of SVEC. LCs possessed a distinct gene expression profile associated with cytoskeleton regulation, cellular interactions, endocytosis, and iron transport. LCs also were characterized by strong phagocytic activity, less robust tube-forming capacity and a limited proliferative potential. These characteristics underlie the role of LCs as cellular filters and scavengers. Although normal LCs and SVECs produced overlapping as well as distinct hematopoietic factors and adhesion molecules, the gene expression profile of MF LCs and SVECs distinguished them from their normal counterparts. MF SVECs were characterized by activated interferon signaling and cell cycle progression pathways and increased vascular endothelial growth factor receptor, angiopoietin-2, stem cell factor, interleukin (IL)-33, Notch ligands, and IL-15 transcripts. In contrast, the transcription profile of MF LCs was associated with mitochondrial dysfunction, reduced energy production, protein biosynthesis, and catabolism. Normal SVECs formed in vitro confluent cell layers that supported MF hematopoietic colony formation to a greater extent than normal colony formation. These data provide an explanation for the reduced density of LCs observed within MF spleens and indicate the role of SVECs in the development of extramedullary hematopoiesis in MF.
Collapse
|
31
|
Wang Y, Richter L, Becker M, Amador C, Hyde RK. IL1RL1 is dynamically expressed on Cbfb-MYH11 + leukemia stem cells and promotes cell survival. Sci Rep 2019; 9:1729. [PMID: 30742053 PMCID: PMC6370767 DOI: 10.1038/s41598-018-38408-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is often characterized by the presence of specific, recurrent chromosomal abnormalities. One of the most common aberrations, inversion of chromosome 16 [inv(16)], generates the fusion oncogene CBFB-MYH11. Previously, we used a mouse knock-in model to show that Cbfb-MYH11 induces changes in gene expression and results in the accumulation of abnormal myeloid cells, a subset of which are enriched for leukemia stem cell (LSC) activity. One gene upregulated by Cbfb-MYH11 encodes the cytokine receptor IL1RL1 (ST2). IL1RL1 and its ligand IL-33 are known regulators of mature myeloid cells, but their roles in AML are not known. Here, we use Cbfb-MYH11 knock-in mice to show that IL1RL1 is expressed by cell populations with high LSC activity, and that the cell surface expression of IL1RL1 is dynamic, implying that the expression of IL1RL1 is not restricted to a specific stage of differentiation. We also show that treatment with IL-33 increased serial replating ability and expression of pro-survival proteins in vitro. Finally, we show that IL1RL1+ cells can survive chemotherapy better than IL1RL1− cells in vivo. Collectively, our results indicate that IL1RL1 is dynamically expressed in Cbfb-MYH11+ leukemia cells and promotes their survival.
Collapse
Affiliation(s)
- Yiqian Wang
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lisa Richter
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michelle Becker
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
32
|
Helper-like innate lymphoid cells and cancer immunotherapy. Semin Immunol 2019; 41:101274. [DOI: 10.1016/j.smim.2019.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/31/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
|
33
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
34
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
35
|
Jin Z, Lei L, Lin D, Liu Y, Song Y, Gong H, Zhu Y, Mei Y, Hu B, Wu Y, Zhang G, Liu H. IL-33 Released in the Liver Inhibits Tumor Growth via Promotion of CD4 + and CD8 + T Cell Responses in Hepatocellular Carcinoma. THE JOURNAL OF IMMUNOLOGY 2018; 201:3770-3779. [PMID: 30446569 DOI: 10.4049/jimmunol.1800627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022]
Abstract
IL-33 released by epithelial cells and immune cells functions as an alarmin and can induce both type 1 and type 2 immune responses. However, the role of IL-33 release in tumor development is still not clear. In this study, we examined the function of released IL-33 in murine hepatocellular carcinoma (HCC) models by hydrodynamically injecting either IL-33-expressing tumor cells or IL-33-expressing plasmids into the liver of tumor-bearing mice. Tumor growth was greatly inhibited by IL-33 release. This antitumor effect of IL-33 was dependent on suppression of tumorigenicity 2 (ST2) because it was diminished in ST2-/- mice. Moreover, HCC patients with high IL-33 expression have prolonged overall survival compared with the patients with low IL-33 expression. Further study showed that there were increased percentages and numbers of activated and effector CD4+ and CD8+ T cells in both spleen and liver in IL-33-expressing tumor-bearing mice. Moreover, IFN-γ production of the CD4+ and CD8+ T cells was upregulated in both spleen and liver by IL-33. The cytotoxicity of CTLs from IL-33-expressing mice was also enhanced. In vitro rIL-33 treatment could preferentially expand CD8+ T cells and promote CD4+ and CD8+ T cell activation and IFN-γ production. Depletion of CD4+ and CD8+ T cells diminished the antitumor activity of IL-33, suggesting that the antitumor function of released IL-33 was mediated by both CD4+ and CD8+ T cells. Taken together, we demonstrated in murine HCC models that IL-33 release could inhibit tumor development through its interaction with ST2 to promote antitumor CD4+ and CD8+ T cell responses.
Collapse
Affiliation(s)
- Ziqi Jin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yuan Song
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore.,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Ying Zhu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yu Mei
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore.,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yan Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; and.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Haiyan Liu
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore; .,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
36
|
Fournié JJ, Poupot M. The Pro-tumorigenic IL-33 Involved in Antitumor Immunity: A Yin and Yang Cytokine. Front Immunol 2018; 9:2506. [PMID: 30416507 PMCID: PMC6212549 DOI: 10.3389/fimmu.2018.02506] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
Interleukin-33 (IL-33), considered as an alarmin released upon tissue stress or damage, is a member of the IL-1 family and binds the ST2 receptor. First described as a potent initiator of type 2 immune responses through the activation of T helper 2 (TH2) cells and mast cells, IL-33 is now also known as an effective stimulator of TH1 immune cells, natural killer (NK) cells, iNKT cells, and CD8 T lymphocytes. Moreover, IL-33 was shown to play an important role in several cancers due to its pro and anti-tumorigenic functions. Currently, IL-33 is a possible inducer and prognostic marker of cancer development with a direct effect on tumor cells promoting tumorigenesis, proliferation, survival, and metastasis. IL-33 also promotes tumor growth and metastasis by remodeling the tumor microenvironment (TME) and inducing angiogenesis. IL-33 favors tumor progression through the immune system by inducing M2 macrophage polarization and tumor infiltration, and upon activation of immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) or regulatory T cells. The anti-tumor functions of IL-33 also depend on infiltrated immune cells displaying TH1 responses. This review therefore summarizes the dual role of this cytokine in cancer and suggests that new proposals for IL-33-based cancer immunotherapies should be considered with caution.
Collapse
Affiliation(s)
- Jean-Jacques Fournié
- INSERM UMR 1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), ERL 5294 CNRS, Université Toulouse III Paul Sabatier, Laboratoire d'excellence Toucan, Toulouse, France
| | - Mary Poupot
- INSERM UMR 1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), ERL 5294 CNRS, Université Toulouse III Paul Sabatier, Laboratoire d'excellence Toucan, Toulouse, France
| |
Collapse
|
37
|
The Role of IL-33/ST2 Pathway in Tumorigenesis. Int J Mol Sci 2018; 19:ijms19092676. [PMID: 30205617 PMCID: PMC6164146 DOI: 10.3390/ijms19092676] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer is initiated by mutations in critical regulatory genes; however, its progression to malignancy is aided by non-neoplastic cells and molecules that create a permissive environment known as the tumor stroma or microenvironment (TME). Interleukin 33 (IL-33) is a dual function cytokine that also acts as a nuclear factor. IL-33 typically resides in the nucleus of the cells where it is expressed. However, upon tissue damage, necrosis, or injury, it is quickly released into extracellular space where it binds to its cognate receptor suppression of tumorigenicity 2 (ST2)L found on the membrane of target cells to potently activate a T Helper 2 (Th2) immune response, thus, it is classified as an alarmin. While its role in immunity and immune-related disorders has been extensively studied, its role in tumorigenesis is only beginning to be elucidated and has revealed opposing roles in tumor development. The IL-33/ST2 axis is emerging as a potent modulator of the TME. By recruiting a cohort of immune cells, it can remodel the TME to promote malignancy or impose tumor regression. Here, we review its multiple functions in various cancers to better understand its potential as a therapeutic target to block tumor progression or as adjuvant therapy to enhance the efficacy of anticancer immunotherapies.
Collapse
|
38
|
Zhang Y, Lin CHS, Kaushansky K, Zhan H. JAK2V617F Megakaryocytes Promote Hematopoietic Stem/Progenitor Cell Expansion in Mice Through Thrombopoietin/MPL Signaling. Stem Cells 2018; 36:1676-1684. [PMID: 30005133 DOI: 10.1002/stem.2888] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023]
Abstract
The myeloproliferative neoplasms (MPNs) are stem cell disorders characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of mature blood cells. The acquired kinase mutation JAK2V617F plays a central role in these disorders. The mechanisms responsible for HSPC expansion in MPNs are not fully understood, limiting the effectiveness of current treatments. One hallmark feature of the marrow in patients with MPNs is megakaryocyte (MK) hyperplasia. Previously, we reported that JAK2V617F-bearing MKs cause a murine myeloproliferative syndrome with HSPC expansion. Here we show that JAK2V617F MKs promote MPN stem cell function by inducing HSPC quiescence with increased repopulating capacity. In addition, we demonstrate that thrombopoietin and its receptor MPL are critical for the JAK2V617F-bearing MK-induced myeloproliferation, both by directly affecting the quantity and quality of MKs and by altering the MK-endothelial interaction and vascular niche function. Therefore, targeting HSPC niche-forming MKs and/or their interactions within the vascular niche could provide novel, more effective therapeutic strategies in patients with MPNs. Stem Cells 2018;36:1676-1684.
Collapse
Affiliation(s)
- Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Suzhou, People's Republic of China
| | - Chi Hua Sarah Lin
- Department of Medicine, Division of Hematology-Oncology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Kenneth Kaushansky
- Office of the Sr. Vice President, Health Sciences, Stony Brook Medicine, Stony Brook, New York, USA
| | - Huichun Zhan
- Department of Medicine, Division of Hematology-Oncology, Stony Brook Medicine, Stony Brook, New York, USA.,Department of Medicine, Northport VA Medical Center, Northport, New York, USA
| |
Collapse
|
39
|
Serum of myeloproliferative neoplasms stimulates hematopoietic stem and progenitor cells. PLoS One 2018; 13:e0197233. [PMID: 29851963 PMCID: PMC5979002 DOI: 10.1371/journal.pone.0197233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Background Myeloproliferative neoplasms (MPN)—such as polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF)—are typically diseases of the elderly caused by acquired somatic mutations. However, it is largely unknown how the malignant clone interferes with normal hematopoiesis. In this study, we analyzed if serum of MPN patients comprises soluble factors that impact on hematopoietic stem and progenitor cells (HPCs). Methods CD34+ HPCs were cultured in medium supplemented with serum samples of PV, ET, or MF patients, or healthy controls. The impact on proliferation, maintenance of immature hematopoietic surface markers, and colony forming unit (CFU) potential was systematically analyzed. In addition, we compared serum of healthy young (<25 years) and elderly donors (>50 years) to determine how normal aging impacts on the hematopoiesis-supportive function of serum. Results Serum from MF, PV and ET patients significantly increased proliferation as compared to controls. In addition, serum from MF and ET patients attenuated the loss of a primitive immunophenotype during in vitro culture. The CFU counts were significantly higher if HPCs were cultured with serum of MPN patients as compared to controls. Furthermore, serum of healthy young versus old donors did not evoke significant differences in proliferation or immunophenotype of HPCs, whereas the CFU frequency was significantly increased by serum from elderly patients. Conclusion Our results indicate that serum derived from patients with MPN comprises activating feedback signals that stimulate the HPCs–and this stimulatory signal may result in a viscous circle that further accelerates development of the disease.
Collapse
|
40
|
Schürch CM. Therapeutic Antibodies for Myeloid Neoplasms-Current Developments and Future Directions. Front Oncol 2018; 8:152. [PMID: 29868474 PMCID: PMC5968093 DOI: 10.3389/fonc.2018.00152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) such as antibody-drug conjugates, ligand-receptor antagonists, immune checkpoint inhibitors and bispecific T cell engagers have shown impressive efficacy in the treatment of multiple human cancers. Numerous therapeutic mAbs that have been developed for myeloid neoplasms, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), are currently investigated in clinical trials. Because AML and MDS originate from malignantly transformed hematopoietic stem/progenitor cells-the so-called leukemic stem cells (LSCs) that are highly resistant to most standard drugs-these malignancies frequently relapse and have a high disease-specific mortality. Therefore, combining standard chemotherapy with antileukemic mAbs that specifically target malignant blasts and particularly LSCs or utilizing mAbs that reinforce antileukemic host immunity holds great promise for improving patient outcomes. This review provides an overview of therapeutic mAbs for AML and MDS. Antibody targets, the molecular mechanisms of action, the efficacy in preclinical leukemia models, and the results of clinical trials are discussed. New developments and future studies of therapeutic mAbs in myeloid neoplasms will advance our understanding of the immunobiology of these diseases and enhance current therapeutic strategies.
Collapse
Affiliation(s)
- Christian M. Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
41
|
Lin CHS, Zhang Y, Kaushansky K, Zhan H. JAK2V617F-bearing vascular niche enhances malignant hematopoietic regeneration following radiation injury. Haematologica 2018; 103:1160-1168. [PMID: 29567773 PMCID: PMC6029534 DOI: 10.3324/haematol.2017.185736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myeloproliferative neoplasms are clonal stem cell disorders characterized by hematopoietic stem/progenitor cell expansion. The acquired kinase mutation JAK2V617F plays a central role in these disorders. Abnormalities of the marrow microenvironment are beginning to be recognized as an important factor in the development of myeloproliferative neoplasms. Endothelial cells are an essential component of the hematopoietic vascular niche. Endothelial cells carrying the JAK2V617F mutation can be detected in patients with myeloproliferative neoplasms, suggesting that the mutant vascular niche is involved in the pathogenesis of these disorders. Here, using a transgenic mouse expressing JAK2V617F specifically in all hematopoietic cells (including hematopoietic stem/progenitor cells) and endothelial cells, we show that the JAK2V617F-mutant hematopoietic stem/progenitor cells are relatively protected by the JAK2V617F-bearing vascular niche from an otherwise lethal dose of irradiation during conditioning for stem cell transplantation. Gene expression analysis revealed that chemokine (C-X-C motif) ligand 12, epidermal growth factor, and pleiotrophin are up-regulated in irradiated JAK2V617F-bearing endothelial cells compared to wild-type cells. Our findings suggest that the mutant vascular niche may contribute to the high incidence of disease relapse in patients with myeloproliferative neoplasms following allogeneic stem cell transplantation, the only curative treatment for these disorders.
Collapse
Affiliation(s)
| | - Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Kenneth Kaushansky
- Office of the Sr. Vice President, Health Sciences, Stony Brook School of Medicine, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, NY, USA .,Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
42
|
Decreased IL-33 Production Contributes to Trophoblast Cell Dysfunction in Pregnancies with Preeclampsia. Mediators Inflamm 2018; 2018:9787239. [PMID: 29736154 PMCID: PMC5875049 DOI: 10.1155/2018/9787239] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a life-threatening pregnancy complication which is related to aggradation of risk regarding fetal and maternal morbidity and mortality. Dysregulation of systemic inflammatory response and dysfunction of trophoblast cells have been proposed to be involved in the development and progression of PE. Some studies have demonstrated that interleukin-33 (IL-33) is an immunomodulatory cytokine that is associated with the immune regulation of tumor cells. However, little is known whether IL-33 and its receptor ST2/IL-1 R4 could regulate trophoblast cells, which are associated with the pathogenesis of PE. In this study, our target is to explore the impact of IL-33 on trophoblast cells and elucidate its underlying pathophysiological mechanisms. Placental tissues from the severe PE group (n = 11) and the normotensive pregnant women's group (n = 11) were collected for the protein expression and distribution of IL-33 along with its receptor ST2/IL-1 R4 via Western blot analysis and immunohistochemistry, respectively. We discovered that the level of IL-33 was decreased in placental tissues of pregnant women with PE, while no distinction was observed in the expression of ST2/IL-1 R4. These results were further verified in villous explants which were treated with sodium nitroprusside with different concentrations, to simulate the pathological environment of PE. To investigate IL-33 effects on trophoblast cells separately, IL-33 shRNA was introduced into HTR8/SVneo cells and villi. IL-33 shRNA weakened the proliferation, migration, and invasion capacity of HTR8/SVneo cells. The migration distance of villous explants was also markedly decreased. The reduced invasion of trophoblast cells is a result of IL-33 knockdown which could be related to the decline of MMP2/9 activity and the increased utterance of TIMP1/2. Overall, our findings demonstrated that the reduction of IL-33 production was connected with the reduced functional capability of trophoblast cells, thus inducing placental insufficiency that has been linked to the development of PE.
Collapse
|
43
|
Ravichandran K, Holditch S, Brown CN, Wang Q, Ozkok A, Weiser-Evans MC, Nemenoff R, Miyazaki M, Thiessen-Philbrook H, Parikh CR, Ljubanovic D, Edelstein CL. IL-33 deficiency slows cancer growth but does not protect against cisplatin-induced AKI in mice with cancer. Am J Physiol Renal Physiol 2018; 314:F356-F366. [PMID: 29070568 PMCID: PMC5899219 DOI: 10.1152/ajprenal.00040.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
The effect of IL-33 deficiency on acute kidney injury (AKI) and cancer growth in a 4-wk model of cisplatin-induced AKI in mice with cancer was determined. Mice were injected subcutaneously with murine lung cancer cells. Ten days later, cisplatin (10 mg·kg-¹·wk-¹) was administered weekly for 4 wk. The increase in kidney IL-33 preceded the AKI and tubular injury, suggesting that IL-33 may play a causative role. However, the increase in serum creatinine, blood urea nitrogen, serum neutrophil gelatinase-associated lipoprotein, acute tubular necrosis, and apoptosis scores in the kidney in cisplatin-induced AKI was the same in wild-type and IL-33-deficient mice. There was an increase in kidney expression of pro-inflammatory cytokines CXCL1 and TNF-α, known mediators of cisplatin-induced AKI, in IL-33-deficient mice. Surprisingly, tumor weight, tumor volume, and tumor growth were significantly decreased in IL-33-deficient mice, and the effect of cisplatin on tumors was enhanced in IL-33-deficient mice. As serum IL-33 was increased in cisplatin-induced AKI in mice, it was determined whether serum IL-33 is an early biomarker of AKI in patients undergoing cardiac surgery. Immediate postoperative serum IL-33 concentrations were higher in matched AKI cases compared with non-AKI controls. In conclusion, even though the cancer grows slower in IL-33-deficient mice, the data that IL-33 deficiency does not protect against AKI in a clinically relevant model suggest that IL-33 inhibition may not be useful to attenuate AKI in patients with cancer. However, serum IL-33 may serve as a biomarker of AKI.
Collapse
Affiliation(s)
- Kameswaran Ravichandran
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Sara Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Qian Wang
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Abdullah Ozkok
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Mary C Weiser-Evans
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Raphael Nemenoff
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Heather Thiessen-Philbrook
- Program of Applied Translational Research, Department of Medicine, Yale University , New Haven, Connecticut
| | - Chirag R Parikh
- Program of Applied Translational Research, Department of Medicine, Yale University , New Haven, Connecticut
| | - Danica Ljubanovic
- University of Zagreb School of Medicine and Dubrava University Hospital , Zagreb , Croatia
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| |
Collapse
|
44
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2017; 281:154-168. [DOI: 10.1111/imr.12619] [Citation(s) in RCA: 601] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| |
Collapse
|
45
|
Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:470-479. [PMID: 29222295 PMCID: PMC6142568 DOI: 10.1182/asheducation-2017.1.470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Substantial progress has been made in our understanding of the pathogenetic basis of myeloproliferative neoplasms. The discovery of mutations in JAK2 over a decade ago heralded a new age for patient care as a consequence of improved diagnosis and the development of therapeutic JAK inhibitors. The more recent identification of mutations in calreticulin brought with it a sense of completeness, with most patients with myeloproliferative neoplasm now having a biological basis for their excessive myeloproliferation. We are also beginning to understand the processes that lead to acquisition of somatic mutations and the factors that influence subsequent clonal expansion and emergence of disease. Extended genomic profiling has established a multitude of additional acquired mutations, particularly prevalent in myelofibrosis, where their presence carries prognostic implications. A major goal is to integrate genetic, clinical, and laboratory features to identify patients who share disease biology and clinical outcome, such that therapies, both existing and novel, can be better targeted.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, United Kingdom; and
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
46
|
Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood 2017; 130:2475-2483. [PMID: 29212804 DOI: 10.1182/blood-2017-06-782037] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023] Open
Abstract
Substantial progress has been made in our understanding of the pathogenetic basis of myeloproliferative neoplasms. The discovery of mutations in JAK2 over a decade ago heralded a new age for patient care as a consequence of improved diagnosis and the development of therapeutic JAK inhibitors. The more recent identification of mutations in calreticulin brought with it a sense of completeness, with most patients with myeloproliferative neoplasm now having a biological basis for their excessive myeloproliferation. We are also beginning to understand the processes that lead to acquisition of somatic mutations and the factors that influence subsequent clonal expansion and emergence of disease. Extended genomic profiling has established a multitude of additional acquired mutations, particularly prevalent in myelofibrosis, where their presence carries prognostic implications. A major goal is to integrate genetic, clinical, and laboratory features to identify patients who share disease biology and clinical outcome, such that therapies, both existing and novel, can be better targeted.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, United Kingdom; and
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
47
|
Trabanelli S, Chevalier MF, Martinez-Usatorre A, Gomez-Cadena A, Salomé B, Lecciso M, Salvestrini V, Verdeil G, Racle J, Papayannidis C, Morita H, Pizzitola I, Grandclément C, Bohner P, Bruni E, Girotra M, Pallavi R, Falvo P, Leibundgut EO, Baerlocher GM, Carlo-Stella C, Taurino D, Santoro A, Spinelli O, Rambaldi A, Giarin E, Basso G, Tresoldi C, Ciceri F, Gfeller D, Akdis CA, Mazzarella L, Minucci S, Pelicci PG, Marcenaro E, McKenzie ANJ, Vanhecke D, Coukos G, Mavilio D, Curti A, Derré L, Jandus C. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat Commun 2017; 8:593. [PMID: 28928446 PMCID: PMC5605498 DOI: 10.1038/s41467-017-00678-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/19/2017] [Indexed: 01/29/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are involved in human diseases, such as allergy, atopic dermatitis and nasal polyposis, but their function in human cancer remains unclear. Here we show that, in acute promyelocytic leukaemia (APL), ILC2s are increased and hyper-activated through the interaction of CRTH2 and NKp30 with elevated tumour-derived PGD2 and B7H6, respectively. ILC2s, in turn, activate monocytic myeloid-derived suppressor cells (M-MDSCs) via IL-13 secretion. Upon treating APL with all-trans retinoic acid and achieving complete remission, the levels of PGD2, NKp30, ILC2s, IL-13 and M-MDSCs are restored. Similarly, disruption of this tumour immunosuppressive axis by specifically blocking PGD2, IL-13 and NKp30 partially restores ILC2 and M-MDSC levels and results in increased survival. Thus, using APL as a model, we uncover a tolerogenic pathway that may represent a relevant immunosuppressive, therapeutic targetable, mechanism operating in various human tumour types, as supported by our observations in prostate cancer.Group 2 innate lymphoid cells (ILC2s) modulate inflammatory and allergic responses, but their function in cancer immunity is still unclear. Here the authors show that, in acute promyelocytic leukaemia, tumour-activated ILC2s secrete IL-13 to induce myeloid-derived suppressor cells and support tumour growth.
Collapse
Affiliation(s)
- Sara Trabanelli
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland.
| | - Mathieu F Chevalier
- Urology Research Unit, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Amaia Martinez-Usatorre
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Alejandra Gomez-Cadena
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Bérengère Salomé
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Mariangela Lecciso
- Department of Specialistic, Diagnostic and Experimental Medicine, Institute of Hematology "Seràgnoli", University of Bologna, 40138, Bologna, Italy
| | - Valentina Salvestrini
- Department of Specialistic, Diagnostic and Experimental Medicine, Institute of Hematology "Seràgnoli", University of Bologna, 40138, Bologna, Italy
| | - Grégory Verdeil
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Julien Racle
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Cristina Papayannidis
- Department of Specialistic, Diagnostic and Experimental Medicine, Institute of Hematology "Seràgnoli", University of Bologna, 40138, Bologna, Italy
| | - Hideaki Morita
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7270, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, 7265, Davos, Switzerland
| | - Irene Pizzitola
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Camille Grandclément
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Perrine Bohner
- Urology Research Unit, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Elena Bruni
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20133, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089, Rozzano-Milan, Italy
| | - Mukul Girotra
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Rani Pallavi
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Paolo Falvo
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | | | - Gabriela M Baerlocher
- Department of Hematology, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Carmelo Carlo-Stella
- Humanitas Cancer Center, Humanitas Clinical and Research Center, 20089, Rozzano-Milan, Italy.,Department of Biomedical Sciences, Humanitas University, 20089, Rozzano-Milan, Italy
| | - Daniela Taurino
- Humanitas Cancer Center, Humanitas Clinical and Research Center, 20089, Rozzano-Milan, Italy.,Department of Biomedical Sciences, Humanitas University, 20089, Rozzano-Milan, Italy
| | - Armando Santoro
- Humanitas Cancer Center, Humanitas Clinical and Research Center, 20089, Rozzano-Milan, Italy.,Department of Biomedical Sciences, Humanitas University, 20089, Rozzano-Milan, Italy
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, 24127, Bergamo, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, 24127, Bergamo, Italy.,Università Statale di Milano, 20122, Milan, Italy
| | - Emanuela Giarin
- Dipartimento per la Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, University of Padova, 35128, Padova, Italy
| | - Giuseppe Basso
- Dipartimento per la Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, University of Padova, 35128, Padova, Italy
| | - Cristina Tresoldi
- Immunoematologia e Medicina Trasfusionale, Laboratorio Ematologia Molecolare, Biobanca Neoplasie Ematologiche, San Raffaele Hospital, 20132, Milano, Italy
| | - Fabio Ciceri
- Divisione di Ricerca di Medicina Rigenerativa, Terapia Cellulare e Genica IRCCS, San Raffaele Hospital, 20132, Milano, Italy
| | - David Gfeller
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7270, Davos, Switzerland
| | - Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy.,Division of Innovative Therapies, European Institute of Oncology, 20141, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, 20139, Milan, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DI.ME.S.)-Section of Histology, and Center of Excellent of Biomedical Research (CEBR), University of Genoa, 16132, Genoa, Italy
| | | | - Dominique Vanhecke
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20133, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089, Rozzano-Milan, Italy
| | - Antonio Curti
- Department of Specialistic, Diagnostic and Experimental Medicine, Institute of Hematology "Seràgnoli", University of Bologna, 40138, Bologna, Italy
| | - Laurent Derré
- Urology Research Unit, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Camilla Jandus
- Ludwig Institute for Cancer Research, Department of Fundamental Oncology, University of Lausanne, Biopole 3-02DB61, Ch. Des Boveresses 155, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
48
|
Ramadan A, Land WG, Paczesny S. Editorial: Danger Signals Triggering Immune Response and Inflammation. Front Immunol 2017; 8:979. [PMID: 28848564 PMCID: PMC5554486 DOI: 10.3389/fimmu.2017.00979] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Abdulraouf Ramadan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Walter G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
49
|
Gbolahan OB, Zeidan AM, Stahl M, Abu Zaid M, Farag S, Paczesny S, Konig H. Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment. Int J Mol Sci 2017; 18:E1660. [PMID: 28758974 PMCID: PMC5578050 DOI: 10.3390/ijms18081660] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Intensive chemotherapeutic protocols and allogeneic stem cell transplantation continue to represent the mainstay of acute myeloid leukemia (AML) treatment. Although this approach leads to remissions in the majority of patients, long-term disease control remains unsatisfactory as mirrored by overall survival rates of approximately 30%. The reason for this poor outcome is, in part, due to various toxicities associated with traditional AML therapy and the limited ability of most patients to tolerate such treatment. More effective and less toxic therapies therefore represent an unmet need in the management of AML, a disease for which therapeutic progress has been traditionally slow when compared to other cancers. Several studies have shown that leukemic blasts elicit immune responses that could be exploited for the development of novel treatment concepts. To this end, early phase studies of immune-based therapies in AML have delivered encouraging results and demonstrated safety and feasibility. In this review, we discuss opportunities for immunotherapeutic interventions to enhance the potential to achieve a cure in AML, thereby focusing on the role of monoclonal antibodies, hypomethylating agents and the leukemic microenvironment.
Collapse
Affiliation(s)
- Olumide Babajide Gbolahan
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Amer M Zeidan
- Department of Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Maximilian Stahl
- Department of Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mohammad Abu Zaid
- Department of Medicine, Bone Marrow and Stem Cell Transplantation, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Sherif Farag
- Department of Medicine, Bone Marrow and Stem Cell Transplantation, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Sophie Paczesny
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Heiko Konig
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
50
|
Zhan H, Lin CHS, Segal Y, Kaushansky K. The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms. Leukemia 2017; 32:462-469. [PMID: 28744010 PMCID: PMC5783797 DOI: 10.1038/leu.2017.233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/15/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
The acquired kinase mutation JAK2V617F plays a central role in myeloproliferative neoplasms (MPNs). However, the mechanisms responsible for the malignant hematopoietic stem/progenitor cell (HSPC) expansion seen in patients with MPNs are not fully understood, limiting the effectiveness of current treatment. Endothelial cells (ECs) are an essential component of the hematopoietic niche, and they have been shown to express the JAK2V617F mutation in patients with MPNs. We show that the JAK2V617F-bearing vascular niche promotes the expansion of the JAK2V617F HSPCs in preference to JAK2WT HSPCs, potentially contributing to poor donor cell engraftment and disease relapse following stem cell transplantation. The expression of Chemokine (C-X-C motif) ligand 12 (CXCL12) and stem cell factor (SCF) were upregulated in JAK2V617F-bearing ECs compared to wild-type ECs, potentially accounting for this observation. We further identify that the thrombopoietin (TPO)/MPL signaling pathway is critical for the altered vascular niche function. A better understanding of how the vascular niche contributes to HSPC expansion and MPN development is essential for the design of more effective therapeutic strategies for patients with MPNs.
Collapse
Affiliation(s)
- H Zhan
- Northport VA Medical Center, Northport, NY, USA.,Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - C H S Lin
- Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - Y Segal
- Northport VA Medical Center, Northport, NY, USA
| | - K Kaushansky
- Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA.,Office of the Sr. Vice President, Health Sciences, Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|