1
|
González-Salazar LE, Flores-López A, Serralde-Zúñiga AE, Avila-Nava A, Medina-Vera I, Hernández-Gómez KG, Guizar-Heredia R, Ontiveros EP, Infante-Sierra H, Palacios-González B, Velázquez-Villegas LA, Ortíz-Guitérrez S, Vázquez-Manjarrez N, Aguirre-Tostado PI, Vigil-Martínez A, Torres N, Tovar AR, Guevara-Cruz M. Effect of dietary protein on serum hepcidin and iron in adults with obesity and insulin resistance: A randomized single blind clinical trial. Nutr Metab Cardiovasc Dis 2025; 35:103785. [PMID: 39674725 DOI: 10.1016/j.numecd.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND AIMS Both obesity and iron deficiency are public health problems. The association between the two problems could be explained by chronic low-grade inflammation in obesity, which could stimulate hepcidin expression and modify iron concentration that the consumption of high-protein diets could prevent. Thus, this study aimed to compare the effects of high-protein diets with a predominance of animal or vegetable protein on serum hepcidin and iron concentrations in adults with obesity. METHODS AND RESULTS This randomized clinical trial involved adults with obesity and insulin resistance, who were assigned to either a high animal protein (AP) group or a high vegetable protein (VP) group for a one-month intervention. Both groups followed a calorie-restricted diet, reducing energy intake by 750 kcal/day. Baseline and final measurements included serum concentrations of hepcidin and iron, biochemical parameters, anthropometric data, and body composition. A total of 33 participants (63 % female) were included in the study. Significant weight loss was observed in both groups after the intervention. Adjusted for weight loss percentage, the AP group showed a significant increase in hepcidin concentration (from 22.3 ± 14.7 to 27.5 ± 19.5 ng/mL) compared to the VP group (from 17.9 ± 15.1 to 17.2 ± 10.1 ng/mL) (p < 0.01), with no changes in serum iron concentration. Additionally, the VP diet significantly reduced serum adiponectin (p = 0.04) and C-reactive protein (p = 0.03) levels. CONCLUSIONS In adults with obesity following the AP diet for one month, hepcidin levels increased without affecting serum iron concentrations. TRIAL REGISTRATION NCT03627104.
Collapse
Affiliation(s)
- Luis E González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico; Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Adriana Flores-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Aurora E Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad Península de Yucatán, Servicios de Salud del Instituto Mexicano del Seguro Social para el Bienestar (IMSS-BIENESTAR), Mérida, Yucatán, México
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría (INP), Ciudad de México, Mexico
| | - Karla G Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Rocío Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Edgar Pichardo- Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Héctor Infante-Sierra
- Hospital Central Sur de Alta Especialidad de Petróleos Mexicanos (HCSAE PEMEX), Ciudad de México, Mexico
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable, Instituto Nacional de Medicina Genómica (INMEGEN), Centro de Investigación Sobre Envejecimiento (CIE-CINVESTAV Sur); Dirección de Investigación INMEGEN, Ciudad de México, México
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Salvador Ortíz-Guitérrez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Natalia Vázquez-Manjarrez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Priscila I Aguirre-Tostado
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Ana Vigil-Martínez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico.
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico.
| |
Collapse
|
2
|
Chatzikalil E, Arvanitakis K, Kalopitas G, Florentin M, Germanidis G, Koufakis T, Solomou EE. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers (Basel) 2025; 17:392. [PMID: 39941760 PMCID: PMC11815926 DOI: 10.3390/cancers17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is rising in global incidence and mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disease, is strongly linked to metabolic conditions that can progress to liver cirrhosis and HCC. Iron overload (IO), whether inherited or acquired, results in abnormal iron hepatic deposition, significantly impacting MASLD development and progression to HCC. While the pathophysiological connections between hepatic IO, MASLD, and HCC are not fully understood, dysregulation of glucose and lipid metabolism and IO-induced oxidative stress are being investigated as the primary drivers. Genomic analyses of inherited IO conditions reveal inconsistencies in the association of certain mutations with liver malignancies. Moreover, hepatic IO is also associated with hepcidin dysregulation and activation of ferroptosis, representing promising targets for HCC risk assessment and therapeutic intervention. Understanding the relationship between hepatic IO, MASLD, and HCC is essential for advancing clinical strategies against liver disease progression, particularly with recent IO-targeted therapies showing potential at improving liver biochemistry and insulin sensitivity. In this review, we summarize the current evidence on the pathophysiological association between hepatic IO and the progression of MASLD to HCC, underscoring the importance of early diagnosis, risk stratification, and targeted treatment for these interconnected conditions.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Matilda Florentin
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
3
|
Yang X, Wang X, Yang Z, Lu H. Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects. Curr Obes Rep 2025; 14:4. [PMID: 39753935 DOI: 10.1007/s13679-024-00600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases. RECENT FINDINGS Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis. It is involved in physiological processes such as energy storage, insulin sensitivity regulation and lipid metabolism. As a unique iron-sensing tissue, AT expresses related regulatory factors, including the classic hepcidin, ferroportin (FPN), iron regulatory protein/iron responsive element (IRP/IRE) and ferritin. Consequently, the interaction between AT and iron is intricately intertwined. Imbalance of iron homeostasis produces the potential risks of steatosis, impaired glucose tolerance and insulin resistance, leading to AT dysfunction diseases, including obesity, type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the role of AT iron has garnered increasing attention in recent years, a comprehensive review that systematically organizes the connection between iron and AT remains lacking. Given the necessity of iron homeostasis, emphasizing its potential impact on AT function and metabolism regulation provides valuable insights into physiological effects such as adipocyte differentiation and thermogenesis. Futhermore, regulators including adipokines, mitochondria and macrophages have been mentioned, along with analyzing the novel perspective of iron as a key mediator influencing the fat-gut crosstalk.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zhe Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
| |
Collapse
|
4
|
Zhang Y, Bai Z, Song K, Liu Y, Zhang W. High-iron diet damages brown adipose tissue mitochondria and exacerbates metabolic hazards of a high-fat diet. Biochem Biophys Res Commun 2024; 739:151008. [PMID: 39556936 DOI: 10.1016/j.bbrc.2024.151008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Metabolic diseases may be prevented by reducing carbohydrate intake and replacing plant-based diets with animal-based ones low in carbohydrates but high in protein, fat, and iron. While the effects of sugars on metabolic diseases are well-known, the role of iron remains unclear. This study aimed to explore the effects of a high-fat high-iron animal diet on body metabolism in mice. Micro-PET imaging was used to assess 18-F-labelled glucose uptake in BAT, and the morphology, respiratory function, and oxidative stress of BAT mitochondria were examined. The underlying mechanisms were elucidated by analyzing the expression of UCP-1, PGC-1α and PPARα. The high-iron high-fat diet increased appetite, impaired glucose tolerance, and reduced insulin sensitivity. Additionally, the high-iron diet promoted gluconeogenesis only in the absence of high-fat levels. Both high-iron and high-fat diets suppressed BAT activity, increased mitochondrial oxidative stress, decreased mitochondrial respiratory function, and lowered thermogenic gene expression. Weight loss strategies focusing solely on reducing carbohydrates and increasing animal foods, like ketogenic diets, may have long-term detrimental effects on metabolic health. Prioritizing dietary diversity and monitoring overall caloric intake is advisable for optimal outcomes.
Collapse
Affiliation(s)
- Yifan Zhang
- Air Force Medical University. Xi'an, Shaanxi Province, 710032, China; Qinghai Provincial People's Hospital. Xining, Qinghai, 810007, China
| | - Zhenzhong Bai
- Qinghai University Medical College. Xining, Qinghai, 810007, China
| | - Kang Song
- Qinghai Provincial People's Hospital. Xining, Qinghai, 810007, China
| | - Ying Liu
- Air Force Medical University. Xi'an, Shaanxi Province, 710032, China
| | - Wenbin Zhang
- Air Force Medical University. Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
5
|
Connolly BJ, Saxton SN. Recent updates on the influence of iron and magnesium on vascular, renal, and adipose inflammation and possible consequences for hypertension. J Hypertens 2024; 42:1848-1861. [PMID: 39258532 PMCID: PMC11451934 DOI: 10.1097/hjh.0000000000003829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
The inflammatory status of the kidneys, vasculature, and perivascular adipose tissue (PVAT) has a significant influence on blood pressure and hypertension. Numerous micronutrients play an influential role in hypertension-driving inflammatory processes, and recent reports have provided bases for potential targeted modulation of these micronutrients to reduce hypertension. Iron overload in adipose tissue macrophages and adipocytes engenders an inflammatory environment and may contribute to impaired anticontractile signalling, and thus a treatment such as chelation therapy may hold a key to reducing blood pressure. Similarly, magnesium intake has proven to greatly influence inflammatory signalling and concurrent hypertension in both healthy animals and in a model for chronic kidney disease, demonstrating its potential clinical utility. These findings highlight the importance of further research to determine the efficacy of micronutrient-targeted treatments for the amelioration of hypertension and their potential translation into clinical application.
Collapse
Affiliation(s)
- Benjamin J Connolly
- Divison of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
6
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Baird HJM, Shun-Shion AS, Mendes de Oliveira E, Stalder D, Liang L, Eden J, Chambers JE, Farooqi IS, Gershlick DC, Fazakerley DJ. A quantitative pipeline to assess secretion of human leptin coding variants reveals mechanisms underlying leptin deficiencies. J Biol Chem 2024; 300:107562. [PMID: 39002670 PMCID: PMC11366920 DOI: 10.1016/j.jbc.2024.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
The hormone leptin, primarily secreted by adipocytes, plays a crucial role in regulating whole-body energy homeostasis. Homozygous loss-of-function mutations in the leptin gene (LEP) cause hyperphagia and severe obesity, primarily through alterations in leptin's affinity for its receptor or changes in serum leptin concentrations. Although serum concentrations are influenced by various factors (e.g., gene expression, protein synthesis, stability in the serum), proper delivery of leptin from its site of synthesis in the endoplasmic reticulum via the secretory pathway to the extracellular serum is a critical step. However, the regulatory mechanisms and specific machinery involved in this trafficking route, particularly in the context of human LEP mutations, remain largely unexplored. We have employed the Retention Using Selective Hooks system to elucidate the secretory pathway of leptin. We have refined this system into a medium-throughput assay for examining the pathophysiology of a range of obesity-associated LEP variants. Our results reveal that leptin follows the default secretory pathway, with no additional regulatory steps identified prior to secretion. Through screening of leptin variants, we identified three mutations that lead to proteasomal degradation of leptin and one variant that significantly decreased leptin secretion, likely through aberrant disulfide bond formation. These observations have identified novel pathogenic effects of leptin variants, which can be informative for therapeutics and diagnostics. Finally, our novel quantitative screening platform can be adapted for other secreted proteins.
Collapse
Affiliation(s)
- Harry J M Baird
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Amber S Shun-Shion
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Edson Mendes de Oliveira
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Lu Liang
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Joseph E Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - I Sadaf Farooqi
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Chen M, Chen Y, Li C. Serum iron concentration and leptin inversely relate, partially mediated by body mass index in American adults. Nutr Res 2024; 124:1-12. [PMID: 38342069 DOI: 10.1016/j.nutres.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
Iron metabolism and leptin are interconnected, and both link with obesity. In this cross-sectional study, we hypothesized that serum iron markers associate with leptin, with body mass index (BMI) acting as a mediator, confounder, and effect modifier in this relationship. We analyzed data from the National Health and Nutrition Examination Survey III, with a focus on serum iron markers and leptin. The relationship between serum iron markers and leptin was determined by multiple linear regression. The bootstrap method was used to investigate the mediating effect of BMI on this association. Among 3888 American adults, serum iron and transferrin saturation showed a negative association with leptin (log2-transformed) (β: -0.010, 95% confidence interval [CI], -0.013 to -0.006, P < .001; β: -0.006, 95% CI, -0.008 to -0.004, P < .001). Total iron-binding capacity was positively associated with the serum concentration of leptin (log2-transformed) (β: 0.002, 95% CI, 0-0.004, P = .0292). Sex, BMI, and body fat percentage significantly influenced these associations. Notably, the association between the iron markers and leptin diminished in individuals with a BMI ≥30 kg/m2. There was no observable relationship between leptin and serum ferritin concentrations. BMI mediated 4.81% of the serum iron-leptin association, with no mediation of body fat percentage. Our study identified a link between serum iron and leptin, with BMI as a mediating factor. In clinical settings, it is vital to understand how treatments targeting iron metabolism can directly impact serum leptin concentration and the subsequent physiological changes.
Collapse
Affiliation(s)
- Mi Chen
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Yuebai Chen
- Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - Chao Li
- Department of Respiration, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
9
|
Abundis EM, Hernandez-Landero F, Escobar-Calderon G, Gomez-Crisostomo N, Contreras-Paredes A, de la Cruz-Hernandez E. Gene expression of cardiovascular risk markers in mononuclear cells of pregnant woman in relation to plasma leptin and homocysteine levels: A cross sectional study. Int J Gynaecol Obstet 2024; 165:350-360. [PMID: 38126620 DOI: 10.1002/ijgo.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To investigate the relationship between anthropometric, biochemical, and hematologic parameters and serum leptin and homocysteine (Hcy) levels. Also, to determine the effect of leptin and Hcy on expression of genes associated with cardiovascular disease susceptibility (APOA1, LRP1, COX-1, and COX-2) in mononuclear cells of healthy pregnant women. METHODS Between August 2018 and January 2020, a cross-sectional study was conducted on 161 healthy pregnant women in Tabasco, southeastern Mexico. The study population was classified by trimester, according to gestational pregnancy. Anthropometric, biochemical (leptin and homocysteine), and hematologic data were obtained under fasting conditions. APOA1, LRP1, COX-1, and COX-2 expression in mononuclear cells was evaluated using RT-qPCR. RESULTS Red cell indices (hemoglobin, hematocrit, and erythrocytes) were negatively and positively correlated with leptin and Hcy levels, respectively, in the first- and second-trimester groups. Increased leptin levels and low red cell indices were significantly associated with BMI <25.0 in the second-trimester group; however, no significant differences were observed in Hcy levels. Increased leptin and Hcy levels were significantly associated with high lipid indicators in the first- and third-trimester groups, respectively. High APOA1 and COX-2 expression was significantly associated with reduced leptin and increased Hcy levels in the second- and third-trimester groups. CONCLUSION Increased leptin and Hcy levels during pregnancy, mainly associated with modifications in erythrocytes and lipid indices, may lead to early modification of genes related to lipid metabolism (APOA1) and proinflammatory response (COX-2) and, thereby, increase cardiovascular disease risk.
Collapse
Affiliation(s)
- Eduardo Martínez Abundis
- Laboratorio de investigacion en Enfermedades Metabolicas e Infecciosas, Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Tabasco, Mexico
| | - Fernanda Hernandez-Landero
- Laboratorio de investigacion en Enfermedades Metabolicas e Infecciosas, Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Tabasco, Mexico
| | - Grecia Escobar-Calderon
- Laboratorio de investigacion en Enfermedades Metabolicas e Infecciosas, Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Tabasco, Mexico
| | - Nancy Gomez-Crisostomo
- Laboratorio de investigacion en Enfermedades Metabolicas e Infecciosas, Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Tabasco, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerología-Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Erick de la Cruz-Hernandez
- Laboratorio de investigacion en Enfermedades Metabolicas e Infecciosas, Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Tabasco, Mexico
| |
Collapse
|
10
|
Ramakrishnan U, Wimalasena ST, Young MF, Khuong LQ, Tran LM, Hoffman DJ, Martorell R, Nguyen PH. Preconception Micronutrient Supplementation Affects Maternal BMI and Body Composition Postpartum: A Randomized Controlled Trial in Vietnam. J Nutr 2024; 154:1440-1448. [PMID: 38417549 PMCID: PMC11347800 DOI: 10.1016/j.tjnut.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Although there is growing evidence on the role of preconception nutrition for birth outcomes, limited evidence exists for its effects on maternal health. OBJECTIVES This study evaluates the impact of preconception micronutrient supplementation on maternal BMI (kg/m2) and body composition at 6 to 7 y postpartum (PP). METHODS We followed females who participated in a randomized controlled trial of preconception supplementation in Vietnam and delivered live offspring (n = 1599). Females received weekly supplements containing either 2800 μg folic acid (FA) only, 60 mg iron and 2800 μg FA (IFA), or multiple micronutrients (MMs) (15 micronutrients including IFA) from baseline until conception followed by daily prenatal IFA supplements until delivery. Height, weight, mid-upper arm circumference, triceps skinfold, and waist-hip circumference were measured at recruitment and at 1, 2, and 6 to 7 y PP. Body fat was assessed using bioelectric impedance at 6 to 7 y PP (n = 867). Group comparisons were made using analysis of variance or chi-square tests and general linear models for adjusted models. RESULTS At 6 to 7 y PP, we found significant differences (P < 0.05) by treatment group for mean percent fat (MM: 29.2%; IFA: 27.6%; FA: 27.8%), absolute fat mass (MM: 15.1 kg; IFA: 14.0 kg; FA: 14.3 kg), and prevalence of underweight based on BMI < 18.5 (MM: 5.8%; IFA: 10.3%; FA: 14.3%). Mean BMI and triceps skinfold thickness were higher in the MM group, but these differences were not statistically significant; the differences in absolute fat mass were also attenuated after controlling for body weight. No differences were observed for fat-free mass, prevalence of overweight (BMI >23), or other anthropometric measurements. CONCLUSIONS Preconception MM supplementation was associated with lower prevalence of underweight and higher percent fat when compared with IFA and/or FA only. Preconception micronutrient interventions may have long-term effects on maternal health and merit further examination. This trial was registered at clinicaltrials.gov as NCT01665378.
Collapse
Affiliation(s)
- Usha Ramakrishnan
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States; Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta GA, United States.
| | - Sonia Tandon Wimalasena
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta GA, United States
| | - Melissa F Young
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States; Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta GA, United States
| | | | - Lan M Tran
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta GA, United States
| | - Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, New Jersey Institute for Food, Nutrition, and Health, Center for Childhood Nutrition Research, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Reynaldo Martorell
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States; Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta GA, United States
| | - Phuong H Nguyen
- Thai Nguyen University of Pharmacy and Medicine, Thai Nguyen, Vietnam; Poverty, Health, and Nutrition Division, International Food Policy Research Institute, Washington, DC, United States
| |
Collapse
|
11
|
Mannella V, Chaabane L, Canu T, Zanardi A, Raia S, Conti A, Ferrini B, Caricasole A, Musco G, Alessio M. Lipid dysmetabolism in ceruloplasmin-deficient mice revealed both in vivo and ex vivo by MRI, MRS and NMR analyses. FEBS Open Bio 2024; 14:258-275. [PMID: 37986139 PMCID: PMC10839333 DOI: 10.1002/2211-5463.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Ceruloplasmin (Cp) is a ferroxidase that plays a role in cellular iron homeostasis and is mainly expressed in the liver and secreted into the blood. Cp is also produced by adipose tissue, which releases it as an adipokine. Although a dysfunctional interaction of iron with the metabolism of lipids has been associated with several metabolic diseases, the role of Cp in adipose tissue metabolism and in the interplay between hepatocytes and adipocytes has been poorly investigated. We previously found that Cp-deficient (CpKO) mice become overweight and demonstrate adipose tissue accumulation together with liver steatosis during aging, suggestive of lipid dysmetabolism. In the present study, we investigated the lipid alterations which occur during aging in adipose tissue and liver of CpKO and wild-type mice both in vivo and ex vivo. During aging of CpKO mice, we observed adipose tissue accumulation and liver lipid deposition, both of which are associated with macrophage infiltration. Liver lipid deposition was characterized by accumulation of triglycerides, fatty acids and ω-3 fatty acids, as well as by a switch from unsaturated to saturated fatty acids, which is characteristic of lipid storage. Liver steatosis was preceded by iron deposition and macrophage infiltration, and this was observed to be already occurring in younger CpKO mice. The accumulation of ω-3 fatty acids, which can only be acquired through diet, was associated with body weight increase in CpKO mice despite food intake being equal to that of wild-type mice, thus underlining the alterations in lipid metabolism/catabolism in Cp-deficient animals.
Collapse
Affiliation(s)
- Valeria Mannella
- COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Linda Chaabane
- Preclinical Imaging, Experimental Imaging CentreIRCCS‐San Raffaele HospitalMilanoItaly
- Present address:
LC, Euro‐BioImaging ERIC, Med‐Hub section, Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
- Present address:
SR, Deloitte & Touche SpAMilanoItaly
| | - Tamara Canu
- Preclinical Imaging, Experimental Imaging CentreIRCCS‐San Raffaele HospitalMilanoItaly
| | - Alan Zanardi
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Sara Raia
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
- Present address:
LC, Euro‐BioImaging ERIC, Med‐Hub section, Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
- Present address:
SR, Deloitte & Touche SpAMilanoItaly
| | - Antonio Conti
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Barbara Ferrini
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Andrea Caricasole
- Department of Research & Innovation, Kedrion S.p.A.Loc BolognanaGallicanoItaly
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance, Division of Genetics and Cell BiologyIRCCS‐San Raffaele HospitalMilanoItaly
| | - Massimo Alessio
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| |
Collapse
|
12
|
Lu B, Guo S, Zhao J, Wang X, Zhou B. Adipose knockout of H-ferritin improves energy metabolism in mice. Mol Metab 2024; 80:101871. [PMID: 38184276 PMCID: PMC10803945 DOI: 10.1016/j.molmet.2024.101871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Ferritin, the principal iron storage protein, is essential to iron homeostasis. How iron homeostasis affects the adipose tissue is not well understood. We investigated the role of ferritin heavy chain in adipocytes in energy metabolism. METHODS We generated adipocyte-specific ferritin heavy chain (Fth, also known as Fth1) knockout mice, herein referred to as FthAKO. These mice were analyzed for iron homeostasis, oxidative stress, mitochondrial biogenesis and activity, adaptive thermogenesis, insulin sensitivity, and metabolic measurements. Mouse embryonic fibroblasts and primary mouse adipocytes were used for in vitro experiments. RESULTS In FthAKO mice, the adipose iron homeostasis was disrupted, accompanied by elevated expression of adipokines, dramatically induced heme oxygenase 1(Hmox1) expression, and a notable decrease in the mitochondrial ROS level. Cytosolic ROS elevation in the adipose tissue of FthAKO mice was very mild, and we only observed this in the brown adipose tissue (BAT) but not in the white adipose tissue (WAT). FthAKO mice presented an altered metabolic profile and showed increased insulin sensitivity, glucose tolerance, and improved adaptive thermogenesis. Interestingly, loss of ferritin resulted in enhanced mitochondrial respiration capacity and a preference for lipid metabolism. CONCLUSIONS These findings indicate that ferritin in adipocytes is indispensable to intracellular iron homeostasis and regulates systemic lipid and glucose metabolism.
Collapse
Affiliation(s)
- Binyu Lu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shanshan Guo
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jialin Zhao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoting Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bing Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
13
|
Zhang Q, Li Z, Li Q, Trammell SA, Schmidt MS, Pires KM, Cai J, Zhang Y, Kenny H, Boudina S, Brenner C, Abel ED. Control of NAD + homeostasis by autophagic flux modulates mitochondrial and cardiac function. EMBO J 2024; 43:362-390. [PMID: 38212381 PMCID: PMC10897141 DOI: 10.1038/s44318-023-00009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.
Collapse
Affiliation(s)
- Quanjiang Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhonggang Li
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Qiuxia Li
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Aj Trammell
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jinjin Cai
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yuan Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Helena Kenny
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - E Dale Abel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Xu T, Wan S, Shi J, Xu T, Wang L, Guan Y, Luo J, Luo Y, Sun M, An P, He J. Antioxidant Minerals Modified the Association between Iron and Type 2 Diabetes in a Chinese Population. Nutrients 2024; 16:335. [PMID: 38337620 PMCID: PMC10857573 DOI: 10.3390/nu16030335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Inconsistent findings exist regarding the relationship between heme iron intake and type 2 diabetes (T2D) among Western and Eastern populations. Easterners tend to consume a plant-based diet which is abundant in antioxidant minerals. To examine the hypothesis that antioxidant mineral may modify the relationship between iron and T2D, we performed a case-control study by measuring the serum mineral levels in 2198 Chinese subjects. A total of 2113 T2D patients and 2458 controls were invited; 502 T2D patients and 1696 controls were finally analyzed. In the total population, high serum iron showed a positive association with T2D odds (odds ratio [OR] = 1.27 [1.04, 1.55]); high magnesium (OR = 0.18 [0.14, 0.22]), copper (OR = 0.27 [0.21, 0.33]), zinc (OR = 0.37 [0.30, 0.46]), chromium (OR = 0.61 [0.50, 0.74]), or selenium concentrations (OR = 0.39 [0.31, 0.48]) were inversely associated with T2D odds. In contrast, in individuals with higher magnesium (>2673.2 µg/dL), zinc (>136.7 µg/dL), copper (>132.1 µg/dL), chromium (>14.0 µg/dL), or selenium concentrations (>16.8 µg/dL), serum iron displayed no association with T2D (p > 0.05). Serum copper and magnesium were significant modifiers of the association between iron and T2D in individuals with different physiological status (p < 0.05). Our findings support the idea that consuming a diet rich in antioxidant minerals is an effective approach for preventing T2D.
Collapse
Affiliation(s)
- Teng Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Sitong Wan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Jiaxin Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Tiancheng Xu
- School of Food and Health, Beijing Technology & Business University, Beijing 100048, China;
| | - Langrun Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Yiran Guan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Mingyue Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| |
Collapse
|
15
|
Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, Xiong T, Yue L, Yang X. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne) 2024; 14:1248934. [PMID: 38260171 PMCID: PMC10800994 DOI: 10.3389/fendo.2023.1248934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome is a medical condition characterized by several metabolic disorders in the body. Long-term metabolic disorders raise the risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Therefore, it is essential to actively explore the aetiology of metabolic syndrome (MetS) and its comorbidities to provide effective treatment options. Ferroptosis is a new form of cell death that is characterized by iron overload, lipid peroxide accumulation, and decreased glutathione peroxidase 4(GPX4) activity, and it involves the pathological processes of a variety of diseases. Lipid deposition caused by lipid diseases and iron overload is significant in metabolic syndrome, providing the theoretical conditions for developing ferroptosis. Recent studies have found that the major molecules of ferroptosis are linked to common metabolic syndrome consequences, such as T2DM and atherosclerosis. In this review, we first discussed the mechanics of ferroptosis, the regulatory function of inducers and inhibitors of ferroptosis, and the significance of iron loading in MetS. Next, we summarized the role of ferroptosis in the pathogenesis of MetS, such as obesity, type 2 diabetes, and atherosclerosis. Finally, we discussed relevant ferroptosis-targeted therapies and raised some crucial issues of concern to provide directions for future Mets-related treatments and research.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bing Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ting Chen
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - You Yao
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Tian Xiong
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Xi Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Moreno-Navarrete JM, Fernández-Real JM. Iron: The silent culprit in your adipose tissue. Obes Rev 2024; 25:e13647. [PMID: 37789591 DOI: 10.1111/obr.13647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023]
Abstract
Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
17
|
Faradina A, Tung YT, Chen SH, Liao YC, Chou MJ, Teng IC, Lin WL, Wang CC, Sheu MT, Chou PY, Shih CK, Skalny AV, Tinkov AA, Chang JS. Djulis Hull Enhances the Efficacy of Ferric Citrate Supplementation via Restoring Normal Iron Efflux through the IL-6-Hepcidin-Ferroportin Pathway in High-Fat-Diet-Induced Obese Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16691-16701. [PMID: 37877289 DOI: 10.1021/acs.jafc.3c02826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Obesity-related functional iron disorder remains a major nutritional challenge. We evaluated the effects of djulis hull (DH) on iron metabolism in 50% high-fat-diet-induced obese rats supplemented with ferric citrate (2 g iron/kg diet) for 12 weeks. DH supplementation (5, 10, 15% dry weight/kg diet) significantly increased serum and hepatic iron but decreased appetite hormones, body weight, hepcidin, and liver inflammation (all p < 0.05). The Spearman correlation showed that appetite hormones were negatively associated with iron but positively correlated with liver hepcidin (all p < 0.05). A Western blot analysis showed that DH significantly downregulated hepatic hepcidin through the IL-6-JAK-STAT3 and enhanced ferroportin (Fpn) via the Keap1-Nrf2 and PHD2-HIF-2α. An in vitro study revealed that major bioactive compounds of DH, hexacosanol, and squalene suppressed LPS-induced IL-6 and hepcidin but enhanced Fpn expression in activated THP-1 cells. In conclusion, DH may exert nutraceutical properties for the treatment of functional iron disorder and restoration of iron efflux may have beneficial effects on weight control.
Collapse
Affiliation(s)
- Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chi Liao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Meng-Jung Chou
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - I-Chun Teng
- Department of Nutritional Services, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Yu Chou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Anatoly V Skalny
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Yaroslavl State University, 150001 Yaroslavl, Russia
| | - Alexey A Tinkov
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Yaroslavl State University, 150001 Yaroslavl, Russia
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
18
|
Ouyang J, Zhou L, Wang Q. Spotlight on iron and ferroptosis: research progress in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1234824. [PMID: 37772084 PMCID: PMC10525335 DOI: 10.3389/fendo.2023.1234824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Iron, as the most abundant metallic element within the human organism, is an indispensable ion for sustaining life and assumes a pivotal role in governing glucose and lipid metabolism, along with orchestrating inflammatory responses. The presence of diabetes mellitus (DM) can induce aberrant iron accumulation within the corporeal system. Consequentially, iron overload precipitates a sequence of important adversities, subsequently setting in motion a domino effect wherein ferroptosis emerges as the utmost pernicious outcome. Ferroptosis, an emerging variant of non-apoptotic regulated cell death, operates independently of caspases and GSDMD. It distinguishes itself from alternative forms of controlled cell death through distinctive morphological and biochemical attributes. Its principal hallmark resides in the pathological accrual of intracellular iron and the concomitant generation of iron-driven lipid peroxides. Diabetic retinopathy (DR), established as the predominant cause of adult blindness, wields profound influence over the well-being and psychosocial strain experienced by afflicted individuals. Presently, an abundance of research endeavors has ascertained the pervasive engagement of iron and ferroptosis in the microangiopathy inherent to DR. Evidently, judicious management of iron overload and ferroptosis in the early stages of DR bears the potential to considerably decelerate disease progression. Within this discourse, we undertake a comprehensive exploration of the regulatory mechanisms governing iron homeostasis and ferroptosis. Furthermore, we expound upon the subsequent detriments induced by their dysregulation. Concurrently, we elucidate the intricate interplay linking iron overload, ferroptosis, and DR. Delving deeper, we engage in a comprehensive deliberation regarding strategies to modulate their influence, thereby effecting prospective interventions in the trajectory of DR's advancement or employing them as therapeutic modalities.
Collapse
Affiliation(s)
- Junlin Ouyang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Boicean LC, Birlutiu RM, Birlutiu V. Correlations between serum leptin levels and classical biomarkers in SARS-CoV-2 infection, in critically ill patients. Microb Pathog 2023; 182:106238. [PMID: 37419217 DOI: 10.1016/j.micpath.2023.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Altered levels of some blood markers might be linked with the degree of severity and mortality of patients with SARS-CoV-2 infection. This study aimed to find out if there are correlations between serum leptin levels and classical biomarkers. MATERIALS AND METHODS We present a single-center observational cohort study on SARS-CoV-2 infected patients. The study was conducted at Infectious Diseases Clinic of Academic Emergency Hospital Sibiu, from May through November 2020. In this study, we retrospectively analyzed 54 patients, all with confirmed SARS-CoV-2 infection. RESULTS Our results revealed that there is a negative correlation between serum leptin and Interleukin-6 levels and a positive correlation between serum leptin and blood glucose levels. A positive correlation between ferritin and lactate dehydrogenase levels was also observed. No correlation was found between leptin and other biomarkers such as ferritin, neutrophil/lymphocyte ratio, lactate dehydrogenase, C-reactive protein, fibrinogen, erythrocyte sedimentation rate, or D-dimer. CONCLUSIONS Further studies need to be conducted to investigate the role of leptin in SARS-CoV-2 infection. The results of this research could contribute to the introduction of the determination of serum leptin levels in the routine evaluation of patients with critical illness.
Collapse
Affiliation(s)
- Loredana Camelia Boicean
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Sibiu, Romania; Academic Emergency Hospital Sibiu, Infectious Diseases Clinic, Sibiu, Romania.
| | | | - Victoria Birlutiu
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Sibiu, Romania; Academic Emergency Hospital Sibiu, Infectious Diseases Clinic, Sibiu, Romania
| |
Collapse
|
20
|
Deschemin JC, Ransy C, Bouillaud F, Chung S, Galy B, Peyssonnaux C, Vaulont S. Hepcidin deficiency in mice impairs white adipose tissue browning possibly due to a defect in de novo adipogenesis. Sci Rep 2023; 13:12794. [PMID: 37550331 PMCID: PMC10406828 DOI: 10.1038/s41598-023-39305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
The role of iron in the two major sites of adaptive thermogenesis, namely the beige inguinal (iWAT) and brown adipose tissues (BAT) has not been fully understood yet. Body iron levels and distribution is controlled by the iron regulatory peptide hepcidin. Here, we explored iron homeostasis and thermogenic activity in brown and beige fat in wild-type and iron loaded Hepcidin KO mice. Hepcidin-deficient mice displayed iron overload in both iWAT and BAT, and preferential accumulation of ferritin in stromal cells compared to mature adipocytes. In contrast to BAT, the iWAT of Hepcidin KO animals featured with defective thermogenesis evidenced by an altered beige signature, including reduced UCP1 levels and decreased mitochondrial respiration. This thermogenic modification appeared cell autonomous and persisted after a 48 h-cold challenge, a potent trigger of thermogenesis, suggesting compromised de novo adipogenesis. Given that WAT browning occurs in both mice and humans, our results provide physiological results to interrogate the thermogenic capacity of patients with iron overload disorders.
Collapse
Affiliation(s)
- Jean-Christophe Deschemin
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Céline Ransy
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France
| | - Frédéric Bouillaud
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Bruno Galy
- German Cancer Research Center, "Division of Virus-Associated Carcinogenesis", Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Carole Peyssonnaux
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sophie Vaulont
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France.
- Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
21
|
Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond) 2023; 47:554-563. [PMID: 37029208 PMCID: PMC10299911 DOI: 10.1038/s41366-023-01299-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
A bidirectional relationship exists between adipose tissue metabolism and iron regulation. Total body fat, fat distribution and exercise influence iron status and components of the iron-regulatory pathway, including hepcidin and erythroferrone. Conversely, whole body and tissue iron stores associate with fat mass and distribution and glucose and lipid metabolism in adipose tissue, liver, and muscle. Manipulation of the iron-regulatory proteins erythroferrone and erythropoietin affects glucose and lipid metabolism. Several lines of evidence suggest that iron accumulation and metabolism may play a role in the development of metabolic diseases including obesity, type 2 diabetes, hyperlipidaemia and non-alcoholic fatty liver disease. In this review we summarise the current understanding of the relationship between iron homoeostasis and metabolic disease.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
McClorry S, Ji P, Parenti MG, Slupsky CM. Antibiotics augment the impact of iron deficiency on metabolism in a piglet model. J Nutr Biochem 2023:109405. [PMID: 37311489 DOI: 10.1016/j.jnutbio.2023.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Infancy and childhood represent a high-risk period for developing iron deficiency (ID) and is a period of increased susceptibility to infectious disease. Antibiotic use is high in children from low-, middle-, and high-income countries, and thus we sought to determine the impact of antibiotics in the context of ID. In this study, a piglet model was used to assess the impact of ID and antibiotics on systemic metabolism. ID was induced by withholding a ferrous sulfate injection after birth to piglets in the ID group and providing an iron deficient diet upon weaning on postnatal day (PD) 25. Antibiotics (gentamicin and spectinomycin) were administered on PD34-36 to a set of control (Con*+Abx) and ID piglets (ID+Abx) after weaning. Blood was analyzed on PD30 (before antibiotic administration) and PD43 (7 days after antibiotic administration). All ID piglets exhibited growth faltering and had lower hemoglobin and hematocrit compared to control (Con) and Con*+Abx throughout. The metabolome of ID piglets at weaning and sacrifice exhibited elevated markers of oxidative stress, ketosis, and ureagenesis compared to Con. The impact of antibiotics on Con*+Abx piglets did not result in significant changes to the serum metabolome 7-days after treatment; however, the impact of antibiotics on ID+Abx piglets resulted in the same metabolic changes observed in ID piglets, but with a greater magnitude when compared to Con. These results suggest that antibiotic administration in the context of ID exacerbates the negative metabolic impacts of ID and may have long lasting impacts on development.
Collapse
Affiliation(s)
- Shannon McClorry
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Peng Ji
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mariana G Parenti
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA; Department of Food Science and Technology, UC Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
24
|
Hinojosa-Moscoso A, Motger-Albertí A, De la Calle-Vargas E, Martí-Navas M, Biarnés C, Arnoriaga-Rodríguez M, Blasco G, Puig J, Luque-Córdoba D, Priego-Capote F, Moreno-Navarrete JM, Fernández-Real JM. The Longitudinal Changes in Subcutaneous Abdominal Tissue and Visceral Adipose Tissue Volumetries Are Associated with Iron Status. Int J Mol Sci 2023; 24:4750. [PMID: 36902180 PMCID: PMC10002479 DOI: 10.3390/ijms24054750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Excess iron is known to trigger adipose tissue dysfunction and insulin resistance. Circulating markers of iron status have been associated with obesity and adipose tissue in cross-sectional studies. We aimed to evaluate whether iron status is linked to changes in abdominal adipose tissue longitudinally. Subcutaneous abdominal tissue (SAT) and visceral adipose tissue (VAT) and its quotient (pSAT) were assessed using magnetic resonance imaging (MRI), at baseline and after one year of follow-up, in 131 (79 in follow-up) apparently healthy subjects, with and without obesity. Insulin sensitivity (euglycemic- hyperinsulinemic clamp) and markers of iron status were also evaluated. Baseline serum hepcidin (p = 0.005 and p = 0.002) and ferritin (p = 0.02 and p = 0.01)) were associated with an increase in VAT and SAT over one year in all subjects, while serum transferrin (p = 0.01 and p = 0.03) and total iron-binding capacity (p = 0.02 and p = 0.04) were negatively associated. These associations were mainly observed in women and in subjects without obesity, and were independent of insulin sensitivity. After controlling for age and sex, serum hepcidin was significantly associated with changes in subcutaneous abdominal tissue index (iSAT) (β = 0.406, p = 0.007) and visceral adipose tissue index (iVAT) (β = 0.306, p = 0.04), while changes in insulin sensitivity (β = 0.287, p = 0.03) and fasting triglycerides (β = -0.285, p = 0.03) were associated with changes in pSAT. These data indicated that serum hepcidin are associated with longitudinal changes in SAT and VAT, independently of insulin sensitivity. This would be the first prospective study evaluating the redistribution of fat according to iron status and chronic inflammation.
Collapse
Affiliation(s)
- Alejandro Hinojosa-Moscoso
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Anna Motger-Albertí
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - Elena De la Calle-Vargas
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Marian Martí-Navas
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
| | - Carles Biarnés
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
| | - María Arnoriaga-Rodríguez
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - Gerard Blasco
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | - Diego Luque-Córdoba
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14014 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14014 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Carlos III Institute of Health, 28029 Madrid, Spain
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| |
Collapse
|
25
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
26
|
Ding X, Bian N, Wang J, Chang X, An Y, Wang G, Liu J. Serum Ferritin Levels Are Associated with Adipose Tissue Dysfunction-Related Indices in Obese Adults. Biol Trace Elem Res 2023; 201:636-643. [PMID: 35297006 DOI: 10.1007/s12011-022-03198-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023]
Abstract
Iron overload is associated with type 2 diabetes and metabolic syndrome. However, little is known about the role of iron status on adipose tissue. We aimed to investigate the association of iron metabolism markers with adipose tissue dysfunction-related indices in obese individuals. A total of 226 obese adults with body mass index (BMI) ≥ 30 kg/m2 were recruited into the study. Hemoglobin, serum ferritin, iron, soluble transferrin receptor (sTfR), total iron-binding capacity (TIBC), transferrin saturation (TSAT), and other clinical parameters were measured. Adipose tissue dysfunction was assessed by adipose tissue insulin resistance (adipose-IR), visceral adiposity index (VAI), and lipid accumulation product (LAP) index. Serum ferritin levels, adipose-IR, and VAI progressively increased from class I to class III obesity and significantly higher in class III obesity. Correlation analysis suggested that only serum ferritin levels were positively correlated with adipose-IR (r = 0.284, P < 0.001), VAI (r = 0.209, P = 0.002), and LAP (r = 0.324, P < 0.001). Moreover, further logistic regression analysis revealed serum ferritin was significantly associated with elevated adipose-IR, VAI, and LAP. After adjustment for potential confounders, serum ferritin levels remained independently associated with elevated adipose-IR (OR = 1.004, 95% CI 1.000-1.009, P < 0.05) and VAI (OR = 1.005, 95% CI 1.001-1.009, P < 0.05). Serum ferritin was associated with elevated adipose-IR, VAI, and LAP, suggesting that ferritin could be an important early indicator for the risk of developing adipose tissue dysfunction in obese individuals.
Collapse
Affiliation(s)
- Xiaoyu Ding
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Nannan Bian
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Jiaxuan Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China.
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China.
| |
Collapse
|
27
|
Raia S, Conti A, Zanardi A, Ferrini B, Scotti GM, Gilberti E, De Palma G, David S, Alessio M. Ceruloplasmin-Deficient Mice Show Dysregulation of Lipid Metabolism in Liver and Adipose Tissue Reduced by a Protein Replacement. Int J Mol Sci 2023; 24:ijms24021150. [PMID: 36674661 PMCID: PMC9863737 DOI: 10.3390/ijms24021150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Ceruloplasmin is a ferroxidase that plays a role in iron homeostasis; its deficiency fosters inter alia iron accumulation in the liver, which expresses the soluble form of the protein secreted into the bloodstream. Ceruloplasmin is also secreted by the adipose tissue, but its role in adipocytes has been poorly investigated. We hypothesized that ceruloplasmin might have a role in iron/lipid interplay. We investigated iron/lipid dysmetabolism in the liver and adipose tissue of the ceruloplasmin-deficient mouse (CpKO) model of aceruloplasminemia and evaluated the effectiveness of ceruloplasmin replacement. We found that CpKO mice were overweight, showing adipose tissue accumulation, liver iron deposition and steatosis. In the adipose tissue of CpKO mice, iron homeostasis was not altered. Conversely, the levels of adiponectin and leptin adipokines behaved opposite to the wild-type. Increased macrophage infiltration was observed in adipose tissue and liver of CpKO mice, indicating tissue inflammation. The treatment of CpKO mice with ceruloplasmin limited liver iron accumulation and steatosis without normalizing the expression of iron homeostasis-related proteins. In the CpKO mice, the protein replacement limited macrophage infiltration in both adipose and hepatic tissues reduced the level of serum triglycerides, and partially recovered adipokines levels in the adipose tissue. These results underline the link between iron and lipid dysmetabolism in ceruloplasmin-deficient mice, suggesting that ceruloplasmin in adipose tissue has an anti-inflammatory role rather than a role in iron homeostasis. Furthermore, these data also indicate that ceruloplasmin replacement therapy may be effective at a systemic level.
Collapse
Affiliation(s)
- Sara Raia
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Antonio Conti
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Alan Zanardi
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Barbara Ferrini
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Giulia Maria Scotti
- COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
| | - Enrica Gilberti
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Giuseppe De Palma
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Samuel David
- Center for Research in Neuroscience, The Research Institute of The McGill University Health Center, Montreal, QC H3G 1A4, Canada
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS-San Raffaele Hospital, 20132 Milan, Italy
- Correspondence:
| |
Collapse
|
28
|
Fujiwara S, Izawa T, Mori M, Atarashi M, Yamate J, Kuwamura M. Dietary iron overload enhances Western diet induced hepatic inflammation and alters lipid metabolism in rats sharing similarity with human DIOS. Sci Rep 2022; 12:21414. [PMID: 36496443 PMCID: PMC9741655 DOI: 10.1038/s41598-022-25838-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatic iron overload is often concurrent with nonalcoholic fatty liver disease (NAFLD). Dysmetabolic iron overload syndrome (DIOS) is characterized by an increase in the liver and body iron stores and metabolic syndrome components. Increasing evidences suggest an overlap between NAFLD with iron overload and DIOS; however, the mechanism how iron is involved in their pathogenesis remains unclear. Here we investigated the role of iron in the pathology of a rat model of NAFLD with iron overload. Rats fed a Western (high-fat and high-fructose) diet for 26 weeks represented hepatic steatosis with an increased body weight and dyslipidemia. Addition of dietary iron overload to the Western diet feeding further increased serum triglyceride and cholesterol, and enhanced hepatic inflammation; the affected liver had intense iron deposition in the sinusoidal macrophages/Kupffer cells, associated with nuclear translocation of NFκB and upregulation of Th1/M1-related cytokines. The present model would be useful to investigate the mechanism underlying the development and progression of NAFLD as well as DIOS, and to elucidate an important role of iron as one of the "multiple hits" factors.
Collapse
Affiliation(s)
- Sakura Fujiwara
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Mutsuki Mori
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Machi Atarashi
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| |
Collapse
|
29
|
Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, Chen X, Wang N. The role of iron metabolism in chronic diseases related to obesity. Mol Med 2022; 28:130. [PMID: 36335331 PMCID: PMC9636637 DOI: 10.1186/s10020-022-00558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body’s sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.
Collapse
|
30
|
Joffin N, Gliniak CM, Funcke JB, Paschoal VA, Crewe C, Chen S, Gordillo R, Kusminski CM, Oh DY, Geldenhuys WJ, Scherer PE. Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations. Nat Metab 2022; 4:1474-1494. [PMID: 36329217 PMCID: PMC11750126 DOI: 10.1038/s42255-022-00664-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Iron is essential to many fundamental biological processes, but its cellular compartmentalization and concentration must be tightly controlled. Although iron overload can contribute to obesity-associated metabolic deterioration, the subcellular localization and accumulation of iron in adipose tissue macrophages is largely unknown. Here, we show that macrophage mitochondrial iron levels control systemic metabolism in male mice by altering adipocyte iron concentrations. Using various transgenic mouse models to manipulate the macrophage mitochondrial matrix iron content in an inducible fashion, we demonstrate that lowering macrophage mitochondrial matrix iron increases numbers of M2-like macrophages in adipose tissue, lowers iron levels in adipocytes, attenuates inflammation and protects from high-fat-diet-induced metabolic deterioration. Conversely, elevating macrophage mitochondrial matrix iron increases M1-like macrophages and iron levels in adipocytes, exacerbates inflammation and worsens high-fat-diet-induced metabolic dysfunction. These phenotypes are robustly reproduced by transplantation of a small amount of fat from transgenic to wild-type mice. Taken together, we identify macrophage mitochondrial iron levels as a crucial determinant of systemic metabolic homeostasis in mice.
Collapse
Affiliation(s)
- Nolwenn Joffin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vivian A Paschoal
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, Washington University, St. Louis, MO, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Kim SL, Shin S, Yang SJ. Iron Homeostasis and Energy Metabolism in Obesity. Clin Nutr Res 2022; 11:316-330. [PMID: 36381472 PMCID: PMC9633967 DOI: 10.7762/cnr.2022.11.4.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Iron plays a role in energy metabolism as a component of vital enzymes and electron transport chains (ETCs) for adenosine triphosphate (ATP) synthesis. The tricarboxylic acid (TCA) cycle and oxidative phosphorylation are crucial in generating ATP in mitochondria. At the mitochondria matrix, heme and iron-sulfur clusters are synthesized. Iron-sulfur cluster is a part of the aconitase in the TCA cycle and a functional or structural component of electron transfer proteins. Heme is the prosthetic group for cytochrome c, a principal component of the respiratory ETC. Regarding fat metabolism, iron regulates mitochondrial fat oxidation and affects the thermogenesis of brown adipose tissue (BAT). Thermogenesis is a process that increases energy expenditure, and BAT is a tissue that generates heat via mitochondrial fuel oxidation. Iron deficiency may impair mitochondrial fuel oxidation by inhibiting iron-containing molecules, leading to decreased energy expenditure. Although it is expected that impaired mitochondrial fuel oxidation may be restored by iron supplementation, its underlying mechanisms have not been clearly identified. Therefore, this review summarizes the current evidence on how iron regulates energy metabolism considering the TCA cycle, oxidative phosphorylation, and thermogenesis. Additionally, we relate iron-mediated metabolic regulation to obesity and obesity-related complications.
Collapse
Affiliation(s)
- Se Lin Kim
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| | - Sunhye Shin
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
| |
Collapse
|
32
|
Ameka MK, Beavers WN, Shaver CM, Ware LB, Kerchberger VE, Schoenfelt KQ, Sun L, Koyama T, Skaar EP, Becker L, Hasty AH. An Iron Refractory Phenotype in Obese Adipose Tissue Macrophages Leads to Adipocyte Iron Overload. Int J Mol Sci 2022; 23:ijms23137417. [PMID: 35806422 PMCID: PMC9267114 DOI: 10.3390/ijms23137417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Adipocyte iron overload is a maladaptation associated with obesity and insulin resistance. The objective of the current study was to determine whether and how adipose tissue macrophages (ATMs) regulate adipocyte iron concentrations and whether this is impacted by obesity. Using bone marrow-derived macrophages (BMDMs) polarized to M0, M1, M2, or metabolically activated (MMe) phenotypes, we showed that MMe BMDMs and ATMs from obese mice have reduced expression of several iron-related proteins. Furthermore, the bioenergetic response to iron in obese ATMs was hampered. ATMs from iron-injected lean mice increased their glycolytic and respiratory capacities, thus maintaining metabolic flexibility, while ATMs from obese mice did not. Using an isotope-based system, we found that iron exchange between BMDMs and adipocytes was regulated by macrophage phenotype. At the end of the co-culture, MMe macrophages transferred and received more iron from adipocytes than M0, M1, and M2 macrophages. This culminated in a decrease in total iron in MMe macrophages and an increase in total iron in adipocytes compared with M2 macrophages. Taken together, in the MMe condition, the redistribution of iron is biased toward macrophage iron deficiency and simultaneous adipocyte iron overload. These data suggest that obesity changes the communication of iron between adipocytes and macrophages and that rectifying this iron communication channel may be a novel therapeutic target to alleviate insulin resistance.
Collapse
Affiliation(s)
- Magdalene K. Ameka
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37212, USA;
| | - William N. Beavers
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (C.M.S.); (L.B.W.); (V.E.K.)
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (C.M.S.); (L.B.W.); (V.E.K.)
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA;
| | - Vern Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (C.M.S.); (L.B.W.); (V.E.K.)
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA;
| | - Kelly Q. Schoenfelt
- Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA; (K.Q.S.); (L.B.)
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (L.S.); (T.K.)
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (L.S.); (T.K.)
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA;
| | - Lev Becker
- Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA; (K.Q.S.); (L.B.)
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37212, USA;
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
- Correspondence:
| |
Collapse
|
33
|
Brugaletta G, Greene E, Ramser A, Maynard CW, Tabler TW, Sirri F, Anthony NB, Orlowski S, Dridi S. Effect of Cyclic Heat Stress on Hypothalamic Oxygen Homeostasis and Inflammatory State in the Jungle Fowl and Three Broiler-Based Research Lines. Front Vet Sci 2022; 9:905225. [PMID: 35692291 PMCID: PMC9174949 DOI: 10.3389/fvets.2022.905225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Heat stress (HS) is devastating to poultry production sustainability due its detrimental effects on performance, welfare, meat quality, and profitability. One of the most known negative effects of HS is feed intake depression, which is more pronounced in modern high-performing broilers compared to their ancestor unselected birds, yet the underlying molecular mechanisms are not fully defined. The present study aimed, therefore, to determine the hypothalamic expression of a newly involved pathway, hypoxia/oxygen homeostasis, in heat-stressed broiler-based research lines and jungle fowl. Three populations of broilers (slow growing ACRB developed in 1956, moderate growing 95RB from broilers available in 1995, and modern fast growing MRB from 2015) and unselected Jungle fowl birds were exposed to cyclic heat stress (36°C, 9 h/day for 4 weeks) in a 2 × 4 factorial experimental design. Total RNAs and proteins were extracted from the hypothalamic tissues and the expression of target genes and proteins was determined by real-time quantitative PCR and Western blot, respectively. It has been previously shown that HS increased core body temperature and decreased feed intake in 95RB and MRB, but not in ACRB or JF. HS exposure did not affect the hypothalamic expression of HIF complex, however there was a line effect for HIF-1α (P = 0.02) with higher expression in JF under heat stress. HS significantly up regulated the hypothalamic expression of hemoglobin subunits (HBA1, HBBR, HBE, HBZ), and HJV in ACRB, HBA1 and HJV in 95RB and MRB, and HJV in JF, but it down regulated FPN1 in JF. Additionally, HS altered the hypothalamic expression of oxygen homeostasis- up and down-stream signaling cascades. Phospho-AMPKThr172 was activated by HS in JF hypothalamus, but it decreased in that of the broiler-based research lines. Under thermoneutral conditions, p-AMPKThr172 was higher in broiler-based research lines compared to JF. Ribosomal protein S6K1, however, was significantly upregulated in 95RB and MRB under both environmental conditions. HS significantly upregulated the hypothalamic expression of NF-κB2 in MRB, RelB, and TNFα in ACRB, abut it down regulated RelA in 95RB. The regulation of HSPs by HS seems to be family- and line-dependent. HS upregulated the hypothalamic expression of HSP60 in ACRB and 95RB, down regulated HSP90 in JF only, and decreased HSP70 in all studied lines. Taken together, this is the first report showing that HS modulated the hypothalamic expression of hypoxia- and oxygen homeostasis-associated genes as well as their up- and down-stream mediators in chickens, and suggests that hypoxia, thermotolerance, and feed intake are interconnected, which merit further in-depth investigations.
Collapse
Affiliation(s)
- Giorgio Brugaletta
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Elizabeth Greene
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Alison Ramser
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Craig W. Maynard
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Travis W. Tabler
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Nicholas B. Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Sami Dridi
| |
Collapse
|
34
|
Ribas-Latre A, Eckel-Mahan K. Nutrients and the Circadian Clock: A Partnership Controlling Adipose Tissue Function and Health. Nutrients 2022; 14:2084. [PMID: 35631227 PMCID: PMC9147080 DOI: 10.3390/nu14102084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
White adipose tissue (WAT) is a metabolic organ with flexibility to retract and expand based on energy storage and utilization needs, processes that are driven via the coordination of different cells within adipose tissue. WAT is comprised of mature adipocytes (MA) and cells of the stromal vascular cell fraction (SVF), which include adipose progenitor cells (APCs), adipose endothelial cells (AEC) and infiltrating immune cells. APCs have the ability to proliferate and undergo adipogenesis to form MA, the main constituents of WAT being predominantly composed of white, triglyceride-storing adipocytes with unilocular lipid droplets. While adiposity and adipose tissue health are controlled by diet and aging, the endogenous circadian (24-h) biological clock of the body is highly active in adipose tissue, from adipocyte progenitor cells to mature adipocytes, and may play a unique role in adipose tissue health and function. To some extent, 24-h rhythms in adipose tissue rely on rhythmic energy intake, but individual circadian clock proteins are also thought to be important for healthy fat. Here we discuss how and why the clock might be so important in this metabolic depot, and how temporal and qualitative aspects of energy intake play important roles in maintaining healthy fat throughout aging.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, University Hospital Leipzig, D-04103 Leipzig, Germany
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Wyart E, Hsu MY, Sartori R, Mina E, Rausch V, Pierobon ES, Mezzanotte M, Pezzini C, Bindels LB, Lauria A, Penna F, Hirsch E, Martini M, Mazzone M, Roetto A, Geninatti Crich S, Prenen H, Sandri M, Menga A, Porporato PE. Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia. EMBO Rep 2022; 23:e53746. [PMID: 35199910 PMCID: PMC8982578 DOI: 10.15252/embr.202153746] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer-induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor-bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor-bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer-induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases.
Collapse
Affiliation(s)
- Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Myriam Y Hsu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Erica Mina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Valentina Rausch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Elisa S Pierobon
- Department of Surgical, Oncological and Gastroenterological Sciences, Padova University Hospital, Padova, Italy
| | - Mariarosa Mezzanotte
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Camilla Pezzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andrea Lauria
- Department of Life Sciences and System Biology, University of Torino, Turin, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Massimiliano Mazzone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy.,Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Katholieke Universiteit Leuven (KUL), Leuven, Belgium
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Hans Prenen
- Department of Medical Oncology, University Hospital Antwerp, Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
36
|
Meral R, Malandrino N, Walter M, Neidert AH, Muniyappa R, Oral EA, Brown RJ. Endogenous Leptin Concentrations Poorly Predict Metreleptin Response in Patients With Partial Lipodystrophy. J Clin Endocrinol Metab 2022; 107:e1739-e1751. [PMID: 34677608 PMCID: PMC8947785 DOI: 10.1210/clinem/dgab760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Leptin replacement with metreleptin improves glycemia and hypertriglyceridemia in severely hypoleptinemic patients with generalized lipodystrophy (GLD), but its effects are variable in partially leptin-deficient patients with partial lipodystrophy (PLD). OBJECTIVE Compare 3 leptin assays (Study I); identify diagnostic performance of leptin assays to detect responders to metreleptin for each assay (Study II). DESIGN Study I: cross-sectional analysis of average bias between leptin assays. Study II: retrospective analysis of diagnostic accuracy of potential leptin cut points to detect clinical responders to metreleptin. SETTING National Institutes of Health; University of Michigan. PARTICIPANTS AND INTERVENTIONS Study I: Metreleptin-naïve patients with lipodystrophy (GLD, n = 33, PLD, n = 67) and healthy volunteers (n = 239). Study II: GLD (n = 66) and PLD (n = 84) patients treated with metreleptin for 12 months. OUTCOME MEASURES Leptin concentrations by Millipore radioimmunoassay (RIA), Millipore enzyme-linked immunosorbent assay (MELISA), and R&D Systems enzyme-linked immunosorbent assay (RDELISA). Response to metreleptin therapy was defined as either reduction ≥1.0% in A1c or ≥30% in serum triglycerides. RESULTS RDELISA measured 3.0 ± 9.5 ng/mL higher than RIA; MELISA measured 11.0 ± 17.8 and 14.0 ±19.2 less than RIA and RDELISA, respectively. Leptin by RIA, MELISA, and RDELISA modestly predicted metreleptin response in GLD + PLD [receiver operating characteristic (ROC) area under the curve (AUC) 0.74, 0.69, and 0.71, respectively; P < 0.01 for all] with lower predictive power in PLD (ROC AUC 0.63, 0.61 and 0.65, respectively; P > 0.05 for all). The only reproducible cut point identified on sensitivity analyses was RIA leptin 7.2 ng/mL (sensitivity 56%; specificity 78%). CONCLUSIONS Three common leptin assays are not interchangeable, and a reliable cut point to select responders to metreleptin was not identified.
Collapse
Affiliation(s)
- Rasimcan Meral
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Noemi Malandrino
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
| | - Mary Walter
- Clinical Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam H Neidert
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ranganath Muniyappa
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
| | - Elif Arioglu Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rebecca J Brown
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Rebecca J. Brown, MD, MHSc, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10-CRC, Room 6-5942, 10 Center Dr, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Romero AR, Mu A, Ayres JS. Adipose triglyceride lipase mediates lipolysis and lipid mobilization in response to iron-mediated negative energy balance. iScience 2022; 25:103941. [PMID: 35265813 PMCID: PMC8899412 DOI: 10.1016/j.isci.2022.103941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
Maintenance of energy balance is essential for overall organismal health. Mammals have evolved complex regulatory mechanisms that control energy intake and expenditure. Traditionally, studies have focused on understanding the role of macronutrient physiology in energy balance. In the present study, we examined the role of the essential micronutrient iron in regulating energy balance. We found that a short course of dietary iron caused a negative energy balance resulting in a severe whole body wasting phenotype. This disruption in energy balance was because of impaired intestinal nutrient absorption. In response to dietary iron-induced negative energy balance, adipose triglyceride lipase (ATGL) was necessary for wasting of subcutaneous white adipose tissue and lipid mobilization. Fat-specific ATGL deficiency protected mice from fat wasting, but caused a severe cachectic response in mice when fed iron. Our work reveals a mechanism for micronutrient control of lipolysis that is necessary for regulating mammalian energy balance.
Collapse
Affiliation(s)
- Alicia R. Romero
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Gene Expression Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andre Mu
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Gene Expression Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S. Ayres
- Molecular and Systems Physiology Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Gene Expression Lab, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Corresponding author
| |
Collapse
|
38
|
Harrison OA, Hays NP, Ansong RS, Datoghe D, Vuvor F, Steiner‐Asiedu M. Effect of iron-fortified infant cereal on nutritional status of infants in Ghana. Food Sci Nutr 2022; 10:286-294. [PMID: 35035929 PMCID: PMC8751428 DOI: 10.1002/fsn3.2669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/07/2023] Open
Abstract
Iron deficiency anemia is prevalent among infants in Ghana. This study evaluated the effect of micronutrient-fortified infant cereal on the nutritional status of infants in the La Nkwantanang Municipality of the Greater Accra Region of Ghana, located in western Africa. In this double-blind, controlled trial, infants aged 6-18 months were cluster-randomized to receive either micronutrient-fortified infant cereal containing 3.75 mg iron as ferrous fumarate/50 g cereal (INT; n = 107) or the same cereal without iron (CTL; n = 101) to complement other foods and breast milk. The intervention phase lasted six months followed by a two-month post-intervention phase (with no further study product feeding). Hemoglobin and anthropometry were assessed every 2 months for the 8-month study period. After the 6-month intervention phase, adjusted mean ± standard error change in hemoglobin from baseline in INT and CTL was 1.97 ± 0.19 and 1.16 ± 0.21 g/dl, respectively (p < .01 for each); the increase in hemoglobin was significantly larger in INT versus CTL (increase 0.68 ± 0.30 g/dl; p = .02). Prevalence of anemia declined to a significantly greater extent in INT (84.1% to 42.8%) compared to CTL (89.1% to 62.8%; p = .006). There was no significant difference between groups in weight gain (p = .41) or height gain (p = .21) over the study period. In infants aged 6-18 months, micronutrient-fortified infant cereal consumed for 6 months promoted greater reductions in iron-deficiency anemia, which is a significant public health concern not only in Ghana but also in many developing countries globally.
Collapse
Affiliation(s)
| | | | - Richard S. Ansong
- Department of Nutrition and Food ScienceUniversity of GhanaLegon‐AccraGhana
| | - Dominic Datoghe
- Department of Nutrition and Food ScienceUniversity of GhanaLegon‐AccraGhana
| | - Frederick Vuvor
- Department of Nutrition and Food ScienceUniversity of GhanaLegon‐AccraGhana
| | | |
Collapse
|
39
|
Kimita W, Bharmal SH, Ko J, Cho J, Petrov MS. Relationship between Energy Balance and Circulating Levels of Hepcidin and Ferritin in the Fasted and Postprandial States. Nutrients 2021; 13:3557. [PMID: 34684558 PMCID: PMC8539037 DOI: 10.3390/nu13103557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
Markers of iron metabolism are altered in new-onset diabetes, but their relationship with metabolic signals involved in the maintenance of energy balance is poorly understood. The primary aim was to explore the associations between markers of iron metabolism (hepcidin and ferritin) and markers of energy balance (leptin, ghrelin, and the leptin/ghrelin ratio) in both the fasted and postprandial states. These associations were also studied in the sub-groups stratified by diabetes status. This was a cross-sectional study of individuals without disorders of iron metabolism who were investigated after an overnight fast and, in addition, some of these individuals underwent a mixed meal test to determine postprandial responses of metabolic signals. The associations between hepcidin, ferritin, and leptin, ghrelin, leptin/ghrelin ratio were studied using several multiple linear regression models. A total of 76 individuals in the fasted state and 34 individuals in the postprandial state were included. In the overall cohort, hepcidin was significantly inversely associated with leptin (in the most adjusted model, the β coefficient ± SE was -883.45 ± 400.94; p = 0.031) and the leptin/ghrelin ratio (in the most adjusted model, the β coefficient ± SE was -148.26 ± 61.20; p = 0.018) in the fasted state. The same associations were not statistically significant in the postprandial state. In individuals with new-onset prediabetes or diabetes (but not in those with normoglycaemia or longstanding prediabetes or diabetes), hepcidin was significantly inversely associated with leptin (in the most adjusted model, the β coefficient ± SE was -806.09 ± 395.44; p = 0.050) and the leptin/ghrelin ratio (in the most adjusted model, the β coefficient ± SE was -129.40 ± 59.14; p = 0.037). Leptin appears to be a mediator in the link between iron metabolism and new-onset diabetes mellitus. These findings add to the growing understanding of mechanisms underlying the derangements of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Maxim S. Petrov
- School of Medicine, University of Auckland, Auckland 1023, New Zealand; (W.K.); (S.H.B.); (J.K.); (J.C.)
| |
Collapse
|
40
|
Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis. Proc Natl Acad Sci U S A 2021; 118:2109186118. [PMID: 34593646 DOI: 10.1073/pnas.2109186118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a β3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.
Collapse
|
41
|
Zhang Z, Funcke JB, Zi Z, Zhao S, Straub LG, Zhu Y, Zhu Q, Crewe C, An YA, Chen S, Li N, Wang MY, Ghaben AL, Lee C, Gautron L, Engelking LJ, Raj P, Deng Y, Gordillo R, Kusminski CM, Scherer PE. Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metab 2021; 33:1624-1639.e9. [PMID: 34174197 PMCID: PMC8338877 DOI: 10.1016/j.cmet.2021.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Iron overload is positively associated with diabetes risk. However, the role of iron in adipose tissue remains incompletely understood. Here, we report that transferrin-receptor-1-mediated iron uptake is differentially required for distinct subtypes of adipocytes. Notably, adipocyte-specific transferrin receptor 1 deficiency substantially protects mice from high-fat-diet-induced metabolic disorders. Mechanistically, low cellular iron levels have a positive impact on the health of the white adipose tissue and can restrict lipid absorption from the intestine through modulation of vesicular transport in enterocytes following high-fat diet feeding. Specific reduction of adipocyte iron by AAV-mediated overexpression of the iron exporter Ferroportin1 in adult mice effectively mimics these protective effects. In summary, our studies highlight an important role of adipocyte iron in the maintenance of systemic metabolism through an adipocyte-enterocyte axis, offering an additional level of control over caloric influx into the system after feeding by regulating intestinal lipid absorption.
Collapse
Affiliation(s)
- Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenzhen Zi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon G Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi Zhu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - May-Yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luke J Engelking
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
42
|
Akinci EY, Boutros S, Ryan BJ, Sargin P, Akinci B, Neidert AH, Hench R, Horowitz JF, Oral EA. Iron parameters in patients with partial lipodystrophy and impact of exogenous leptin therapy. BMJ Open Diabetes Res Care 2021; 9:9/1/e002385. [PMID: 34373262 PMCID: PMC8354259 DOI: 10.1136/bmjdrc-2021-002385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Efe Y Akinci
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Sabine Boutros
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pinar Sargin
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Baris Akinci
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam H Neidert
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita Hench
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elif A Oral
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Ghafoor L, Entezari V, Fallah A, Hajian A. Lipoabdominoplasty and the leptin hormone. Ann Med Surg (Lond) 2021; 68:102633. [PMID: 34386225 PMCID: PMC8346541 DOI: 10.1016/j.amsu.2021.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022] Open
Abstract
Background Obesity contributes to a chronic disease with lethal complications. Leptin as an adiponectin interacts with fat metabolism. Surgical extra fat resection is an interventional approach to control obesity. We aimed to evaluate how body contouring surgery would influence on leptin plasma level. Methods Females candidate for body contouring surgery were allocated in to two groups included abdominal wall liposuction alone and in combination with abdominoplasty from 2018 to 2020. Demographic data was registered. Serum plasma level of leptin with the ELISA method was measured on the day before the operation and also after 3, 6, and 12 months after surgery with 8 h fasting prior to blood sampling. Finally the amounts of resected fat, type of surgical approach, and plasma level of leptin were analyzed. Results Total 124 females with mean age of 37 ± 10.1 years underwent abdominal wall liposuction (58%) and liposuction + abdominoplasty (42%) respectively. Mean weight and BMI significantly decreased postoperatively for both groups (p < 0.01). Although in both groups leptin concentration was higher in all triple blood sampling following operation in compared to preoperative measurement, changes were not significantly considerable (p = 0.6). Coefficient of correlation between amounts of resected fat and plasma level of leptin was directly positive and calculated 0.4 (p = 0.03). Conclusion Leptin interacts independently from abdominal wall contouring surgery. However it could be a marker for amounts of resected fat after operation.
Collapse
Affiliation(s)
- Leila Ghafoor
- Department of General Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Entezari
- Department of General Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefe Fallah
- Kashan University of Medical Sciences, Kashan, Iran
| | - Abbas Hajian
- Department of General Surgery, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
44
|
Akinci B, Subauste A, Ajluni N, Esfandiari NH, Meral R, Neidert AH, Eraslan A, Hench R, Rus D, Mckenna B, Hussain HK, Chenevert TL, Tayeh MK, Rupani AR, Innis JW, Mantzoros CS, Conjeevaram HS, Burant CL, Oral EA. Metreleptin therapy for nonalcoholic steatohepatitis: Open-label therapy interventions in two different clinical settings. MED 2021; 2:814-835. [DOI: 10.1016/j.medj.2021.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Nirengi S, Taniguchi H, Ishibashi A, Fujibayashi M, Akiyama N, Kotani K, Ishihara K, Sakane N. Comparisons Between Serum Levels of Hepcidin and Leptin in Male College-Level Endurance Runners and Sprinters. Front Nutr 2021; 8:657789. [PMID: 34136516 PMCID: PMC8202679 DOI: 10.3389/fnut.2021.657789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Hepcidin-25 is a 25 amino acid hepatokine and a key regulator of iron metabolism related to iron deficiency anemia. Recent studies have suggested that an elevated hepcidin level is correlated with low energy availability. Leptin is an appetite-suppressing adipokine and has been reported to stimulate hepcidin production in animals and cultured cells. While leptin is modulated by exercise, it is known that endurance runners and sprinters practice different types of exercise. This study investigated and compared the relationships between hepcidin and leptin levels, iron status, and body fat to understand better the risk of iron deficiency anemia in endurance runners and sprinters. Methods: Thirty-six male college track and field athletes (15 endurance runners and 21 sprinters) were recruited for this study. Dietary intake, body composition, and blood levels of ferritin, hepcidin-25, leptin, and adiponectin were measured. Correlations between hepcidin levels and ferritin, body fat, leptin, and adiponectin were evaluated using Pearson's correlation coefficient for each group. Results: The endurance runners had lower hepcidin levels and higher leptin and adiponectin levels compared with sprinters. Ferritin was positively correlated with hepcidin-25 levels in both the endurance and sprinter groups. A positive correlation was observed between hepcidin-25 and body fat or leptin levels only in sprinters. Conclusion: This is the first study investigating the relationship between blood levels of hepcidin and leptin in athletes. The positive correlation between hepcidin-25 and leptin was observed in sprinters but not endurance runners.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Hirokazu Taniguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Aya Ishibashi
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mami Fujibayashi
- Faculty of Agriculture, Department of Food Science and Human Nutrition, Setsunan University, Osaka, Japan
| | - Nao Akiyama
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Kazuhiko Kotani
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University, Tochigi, Japan
| | - Kengo Ishihara
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
46
|
Crossing the Antarctica: Exploring the Effects of Appetite-Regulating Hormones and Indicators of Nutrition Status during a 93-Day Solo-Expedition. Nutrients 2021; 13:nu13061777. [PMID: 34070968 PMCID: PMC8224809 DOI: 10.3390/nu13061777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
Future deep space astronauts must maintain adequate nutrition despite highly stressful, isolated, confined and dangerous environments. The present case-study investigated appetite regulating hormones, nutrition status, and physical and emotional stress in a space analog condition: an explorer conducting a 93-day unsupported solo crossing of Antarctica. Using the dried blood spot (DBS) method, the subject drew samples of his blood on a regular basis during the expedition. The DBSs were later analyzed for the appetite regulating hormones leptin and adiponectin. Energy intake and nutritional status were monitored by analysis of albumin and globulin (including their ratio). Interleukin-6 (IL-6) was also analyzed and used as an energy sensor. The results showed a marked reduction in levels of the appetite-reducing hormone, leptin, and the appetite stimulating hormone, adiponectin, during both extreme physical and psychological strain. Nutrition status showed a variation over the expedition, with below-normal levels during extreme psychological strain and levels abutting the lower bounds of the normal range during a phase dominated by extreme physical hardship. The IL-6 levels varied substantially, with levels above the normal range except during the recovery phase. It was concluded that a daily intake of 5058 to 5931 calories seemed to allow recovery of both appetite and nutritional status between extreme physical and psychological hardship during a long Arctic expedition. Furthermore, IL-6 may be a sensor in the muscle-liver, muscle-fat and muscle-brain crosstalk. These results may help guide nutrition planning for future astronaut crews, mountaineers and others involved in highly demanding missions.
Collapse
|
47
|
Ma W, Jia L, Xiong Q, Feng Y, Du H. The role of iron homeostasis in adipocyte metabolism. Food Funct 2021; 12:4246-4253. [PMID: 33876811 DOI: 10.1039/d0fo03442h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron plays a vital role in the metabolism of adipose tissue. On the one hand, iron is essential for differentiation, endocrine, energy supply and other physiological functions of adipocytes. Iron homeostasis affects the progression of many chronic metabolic diseases such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. In adipose tissue, iron deficiency is associated with obesity, mainly due to inflammation. Nevertheless, excessive iron in adipose tissue leads to decreased insulin sensitivity owing to mitochondrial dysfunction and adipokine changes. On the other hand, iron has an effect on the thermogenesis of adipocytes. Iron deficiency affects the production of beige fat and the direction of the differentiation of brown fat. In this review, we summarize the current understanding of the crosstalk between iron homeostasis and metabolism in adipose tissue.
Collapse
Affiliation(s)
- Wan Ma
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China.
| | | | | | | | | |
Collapse
|
48
|
Tang Y, Wang D, Zhang H, Zhang Y, Wang J, Qi R, Yang J, Shen H, Xu Y, Li M. Rapid responses of adipocytes to iron overload increase serum TG level by decreasing adiponectin. J Cell Physiol 2021; 236:7544-7553. [PMID: 33855731 DOI: 10.1002/jcp.30391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/14/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Iron overload is tightly connected with metabolic disorders. Excess iron in the adipose and its roles in dyslipidemia are of interest to be identified. In acute iron overload mice receiving intraperitoneal injection of 100 mg/kg/day dextran-iron for 5 days, the epididymis adipose showed a remarkable increase in iron. Serum triglyceride and low-density lipoprotein cholesterol (LDL-C) levels were increased and high-density lipoprotein cholesterol (HDL-C) level was decreased, while serum alkaline phosphatase, aspartate aminotransferase, glucose, and insulin were not affected. The serum-cytokine-microarray showed that adipocytokines, including adiponectin, leptin, and resistin were significantly decreased. Other serum cytokines, including pro-insulin cytokines, inflammatory cytokines, chemokines, and growth factors were not changed, except that ghrelin and chemokine RANTES were increased. Iron overload decreased expressions of adiponectin and leptin both in vivo and in vitro. Intraperitoneal injection of recombinant leptin at 1 μg/g in acute iron overload mice had no significant effects on serum levels of TC, TG, HDL-C, and LDL-C, while intraperitoneal injection of recombinant adiponectin at 3 μg/g partially restored serum TG level through improving activities of lipoprotein lipase and hepatic lipase, but abnormal serum LDL-C and HDL-C were not redressed, suggesting other mechanisms also existed. In conclusion, the adipose responds to iron overload at an early stage to interfere with lipid metabolism by secreting adipocytokines, which may further affect glucose metabolism, inflammation, and other iron overload-induced effects on the body.
Collapse
Affiliation(s)
- Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Faculty of Pharmacy, Shanghai University, Shanghai, China
| | - Hongwei Zhang
- Department of Nutrition, Second Military Medical University, Shanghai, China.,Department of Clinical Nutrition, Zhumadian Second People's Hospital, Henan, China
| | - Yinyin Zhang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Jie Wang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Ruirui Qi
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Yan Xu
- Institute of International Medical Science and Technology, Sanda University, Shanghai, China
| | - Min Li
- Department of Nutrition, Second Military Medical University, Shanghai, China.,Institute of International Medical Science and Technology, Sanda University, Shanghai, China
| |
Collapse
|
49
|
Perng V, Li C, Klocke CR, Navazesh SE, Pinneles DK, Lein PJ, Ji P. Iron Deficiency and Iron Excess Differently Affect Dendritic Architecture of Pyramidal Neurons in the Hippocampus of Piglets. J Nutr 2021; 151:235-244. [PMID: 33245133 DOI: 10.1093/jn/nxaa326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 10/01/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Both iron deficiency and overload may adversely affect neurodevelopment. OBJECTIVES The study assessed how changes in early-life iron status affect iron homeostasis and cytoarchitecture of hippocampal neurons in a piglet model. METHODS On postnatal day (PD) 1, 30 Hampshire × Yorkshire crossbreed piglets (n = 15/sex) were stratified by sex and litter and randomly assigned to experimental groups receiving low (L-Fe), adequate (A-Fe), or high (H-Fe) levels of iron supplement during the pre- (PD1-21) and postweaning periods (PD22-35). Pigs in the L-Fe, A-Fe, and H-Fe groups orally received 0, 1, and 30 mg Fe · kg weight-1 · d-1 preweaning and were fed a diet containing 30, 125, and 1000 mg Fe/kg postweaning, respectively. Heme indexes were analyzed weekly, and gene and protein expressions of iron regulatory proteins in duodenal mucosa, liver, and hippocampus were analyzed through qRT-PCR and western blot, respectively, on PD35. Hippocampal neurons stained using the Golgi-Cox method were traced and their dendritic arbors reconstructed in 3-D using Neurolucida. Dendritic complexity was quantified using Sholl and branch order analyses. RESULTS Pigs in the L-Fe group developed iron deficiency anemia (hemoglobin = 8.2 g/dL, hematocrit = 20.1%) on PD35 and became stunted during week 5 with lower final body weight than H-Fe group pigs (6.6 compared with 9.6 kg, P < 0.05). In comparison with A-Fe, H-Fe increased hippocampal ferritin expression by 38% and L-Fe decreased its expression by 52% (P < 0.05), suggesting altered hippocampal iron stores. Pigs in the H-Fe group had greater dendritic complexity in CA1/3 pyramidal neurons than L-Fe group pigs as shown by more dendritic intersections with Sholl rings (P ≤ 0.04) and a greater number of dendrites (P ≤ 0.016). CONCLUSIONS In piglets, the developing hippocampus is susceptible to perturbations by dietary iron, with deficiency and overload differentially affecting dendritic arborization.
Collapse
Affiliation(s)
- Vivian Perng
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Chong Li
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Carolyn R Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Shya E Navazesh
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Danna K Pinneles
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
50
|
Mleczko‐Sanecka K, Silvestri L. Cell-type-specific insights into iron regulatory processes. Am J Hematol 2021; 96:110-127. [PMID: 32945012 DOI: 10.1002/ajh.26001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Despite its essential role in many biological processes, iron is toxic when in excess due to its propensity to generate reactive oxygen species. To prevent diseases associated with iron deficiency or iron loading, iron homeostasis must be tightly controlled. Intracellular iron content is regulated by the Iron Regulatory Element-Iron Regulatory Protein (IRE-IRP) system, whereas systemic iron availability is adjusted to body iron needs chiefly by the hepcidin-ferroportin (FPN) axis. Here, we aimed to review advances in the field that shed light on cell-type-specific regulatory mechanisms that control or modify systemic and local iron balance, and how shifts in cellular iron levels may affect specialized cell functions.
Collapse
Affiliation(s)
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| |
Collapse
|