1
|
Wang H, Tan Q, Duan Y, Wu M, Zuo B, Li J. VPS33B-dependent exosomes modulate cellular senescence of mesenchymal stem cells via an autocrine signaling pathway. Exp Gerontol 2025; 207:112786. [PMID: 40383211 DOI: 10.1016/j.exger.2025.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Mesenchymal stem cell (MSC)-derived exosomes have been intensively studied for their therapeutic effects on tissue repair and regeneration. However, the specific contributions of exosomes derived from endogenous bone marrow MSCs to the maintenance of bone tissue homeostasis remain unclear. In this study, we impaired MSC-derived exosome secretion by specifically deleting vascular protein sorting 33B (VPS33B). Mice deficient in VPS33B (VPS33B-cKO mice) exhibited premature bone loss and imbalanced bone remodeling processes, which were associated with a reduction in MSC number and an increase in bone marrow inflammation. MSCs derived from VPS33B-cKO mice exhibited impaired self-renewal, proliferation, osteoblastic differentiation, and increased cellular senescence. Incubation with exosomes (Y-Exo) derived from MSCs of wildtype young mice greatly ameliorated senescent phenotypes observed in VPS33B-deficient MSCs. We further demonstrated exosome autocrine pathway through a fluorescent-labeled uptake assay and observed a significant association between autocrinal exosomes and the senescence of MSCs. Mechanistically, miR-136-3p and miR-146a-5p were highly enriched in Y-Exo but not in exosomes from senescent MSCs, which promoted cell proliferation while inhibiting inflammation by targeting the PI3K-Akt and NF-κB pathway, respectively. Furthermore, intramedullary transplantation of Y-Exo successfully mitigated age-related MSC exhaustion and bone loss. Our findings indicate that endogenous MSC-derived exosomes play a crucial regulatory role in the maintenance of bone homeostasis, and propose the potential therapeutic application of young MSC-derived exosomes for the treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, China
| | - Qi Tan
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, China
| | - Yijuan Duan
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, China
| | - Mingduo Wu
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jiao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
2
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
4
|
Ye Z, Li G, Lei J. Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Exp Mol Med 2024; 56:2365-2381. [PMID: 39528800 PMCID: PMC11612210 DOI: 10.1038/s12276-024-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint proteins (ICPs) serve as critical regulators of the immune system, ensuring protection against damage due to overly activated immune responses. However, within the tumor environment, excessive ICP activation weakens antitumor immunity. Despite the development of numerous immune checkpoint blockade (ICB) drugs in recent years, their broad application has been inhibited by uncertainties about their clinical efficacy. A thorough understanding of ICP regulation in the tumor microenvironment is essential for advancing the development of more effective and safer ICB therapies. Extracellular vesicles (EVs), which are pivotal mediators of cell-cell communication, have been extensively studied and found to play key roles in the functionality of ICPs. Nonetheless, a comprehensive review summarizing the current knowledge about the crosstalk between EVs and ICPs in the tumor environment is lacking. In this review, we summarize the interactions between EVs and several widely studied ICPs as well as their potential clinical implications, providing a theoretical basis for further investigation of EV-related ICB therapeutic approaches.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Li M, Sun G, Zhao J, Pu S, Lv Y, Wang Y, Li Y, Zhao X, Wang Y, Yang S, Cheng T, Cheng H. Small extracellular vesicles derived from acute myeloid leukemia cells promote leukemogenesis by transferring miR-221-3p. Haematologica 2024; 109:3209-3221. [PMID: 38450521 PMCID: PMC11443396 DOI: 10.3324/haematol.2023.284145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEV) transfer cargos between cells and participate in various physiological and pathological processes through their autocrine and paracrine effects. However, the pathological mechanisms employed by sEV-encapsulated microRNA (miRNA) in acute myeloid leukemia (AML) are still obscure. In this study, we aimed to investigate the effects of AML cell-derived sEV (AML-sEV) on AML cells and delineate the underlying mechanisms. We initially used high-throughput sequencing to identify miR-221-3p as the miRNA prominently enriched in AML-sEV. Our findings revealed that miR-221-3p promoted AML cell proliferation and leukemogenesis by accelerating cell cycle entry and inhibiting apoptosis. Furthermore, Gbp2 was confirmed as a target gene of miR-221-3p by dual luciferase reporter assays and rescue experiments. Additionally, AML-sEV impaired the clonogenicity, particularly the erythroid differentiation ability, of hematopoietic stem and progenitor cells. Taken together, our findings reveal how sEV-delivered miRNA contribute to AML pathogenesis, which can be exploited as a potential therapeutic target to attenuate AML progression.
Collapse
MESH Headings
- MicroRNAs/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Cell Proliferation
- Apoptosis/genetics
- Cell Line, Tumor
- Mice
- Animals
- Gene Expression Regulation, Leukemic
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Differentiation/genetics
Collapse
Affiliation(s)
- Mengyu Li
- State Key Laboratory of Experimental Hematology; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Jinlian Zhao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming
| | - Shuangshuang Pu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematologyand Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Celland Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming.
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| |
Collapse
|
7
|
Wu Y, Chen GY. The Novel Role of GDI2: A Mini-Review. ANNALS OF MEDICINE AND MEDICAL RESEARCH 2024; 7:1083. [PMID: 39831280 PMCID: PMC11742367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
GDP Dissociation Inhibitor 2 (GDI2) plays a crucial role in maintaining cellular homeostasis by regulating Rab GTPases involved in vesicular transport. This review highlights the importance of GDI2 in various biological processes, particularly embryonic development, apoptosis regulation, cancer, and immune responses. GDI2's essential function in embryonic development is evidenced by the embryonic lethality observed in GDI2 knockout mice. In apoptosis, GDI2 is implicated in the caspase pathway, influencing cell survival and death. In cancer, dysregulation of GDI2 contributes to altered tumor cell-macrophage interactions, promoting inflammation and metastasis, with GDI2 acting as a metastasis suppressor in certain cancers. Furthermore, GDI2's role in immune responses, particularly during bacterial infections, and its potential therapeutic implications in conditions like Alzheimer's disease are explored. This review emphasizes the need for further research to elucidate the molecular mechanisms of GDI2 and its potential as a therapeutic target in developmental disorders, cancer, and immune-related diseases.
Collapse
Affiliation(s)
- Y Wu
- Department of Pediatrics, Children's Foundation Research Institute at Le Bonheur Children's Hospital, University of Tennessee Health Science Center, USA
| | - G Y Chen
- Department of Pediatrics, Children's Foundation Research Institute at Le Bonheur Children's Hospital, University of Tennessee Health Science Center, USA
| |
Collapse
|
8
|
Fathi E, Valipour B, Jafari S, Kazemi A, Montazersaheb S, Farahzadi R. The role of the hematopoietic stem/progenitor cells-derived extracellular vesicles in hematopoiesis. Heliyon 2024; 10:e35051. [PMID: 39157371 PMCID: PMC11327835 DOI: 10.1016/j.heliyon.2024.e35051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are tightly regulated by specific microenvironments called niches to produce an appropriate number of mature blood cell types. Self-renewal and differentiation are two hallmarks of hematopoietic stem and progenitor cells, and their balance is critical for proper functioning of blood and immune cells throughout life. In addition to cell-intrinsic regulation, extrinsic cues within the bone marrow niche and systemic factors also affect the fate of HSCs. Despite this, many paracrine and endocrine factors that influence the function of hematopoietic cells remain unknown. In hematological malignancies, malignant cells remodel their niche into a permissive environment to enhance the survival of leukemic cells. These events are accompanied by loss of normal hematopoiesis. It is well known that extracellular vehicles (EVs) mediate intracellular interactions under physiological and pathological conditions. In other words, EVs transfer biological information to surrounding cells and contribute not only to physiological functions but also to the pathogenesis of some diseases, such as cancers. Therefore, a better understanding of cell-to-cell interactions may lead to identification of potential therapeutic targets. Recent reports have suggested that EVs are evolutionarily conserved constitutive mediators that regulate hematopoiesis. Here, we focus on the emerging roles of EVs in normal and pathological conditions, particularly in hematological malignancies. Owing to the high abundance of EVs in biological fluids, their potential use as biomarkers and therapeutic tools is discussed.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdolhassan Kazemi
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Morganti C, Bonora M, Ito K. Metabolism and HSC fate: what NADPH is made for. Trends Cell Biol 2024:S0962-8924(24)00141-7. [PMID: 39054107 PMCID: PMC11757803 DOI: 10.1016/j.tcb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial metabolism plays a central role in the regulation of hematopoietic stem cell (HSC) biology. Mitochondrial fatty acid oxidation (FAO) is pivotal in controlling HSC self-renewal and differentiation. Herein, we discuss recent evidence suggesting that NADPH generated in the mitochondria can influence the fate of HSCs. Although NADPH has multiple functions, HSCs show high levels of NADPH that are preferentially used for cholesterol biosynthesis. Endogenous cholesterol supports the biogenesis of extracellular vesicles (EVs), which are essential for maintaining HSC properties. We also highlight the significance of EVs in hematopoiesis through autocrine signaling. Elucidating the mitochondrial NADPH-cholesterol axis as part of the metabolic requirements of healthy HSCs will facilitate the development of new therapies for hematological disorders.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA.
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Sun X, Li W, Zhao L, Fan K, Qin F, Shi L, Gao F, Zheng C. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications. Front Immunol 2024; 15:1401867. [PMID: 38846947 PMCID: PMC11153741 DOI: 10.3389/fimmu.2024.1401867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.
Collapse
Affiliation(s)
- Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
11
|
Mendes M, Monteiro AC, Neto E, Barrias CC, Sobrinho-Simões MA, Duarte D, Caires HR. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression. Int J Mol Sci 2024; 25:4430. [PMID: 38674015 PMCID: PMC11050723 DOI: 10.3390/ijms25084430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.
Collapse
Affiliation(s)
- Manuel Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Manuel A. Sobrinho-Simões
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Clinical Haematology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
- Clinical Haematology, Department of Medicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Delfim Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, Instituto Português de Oncologia (IPO)-Porto, 4200-072 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
| |
Collapse
|
12
|
Bonora M, Morganti C, van Gastel N, Ito K, Calura E, Zanolla I, Ferroni L, Zhang Y, Jung Y, Sales G, Martini P, Nakamura T, Lasorsa FM, Finkel T, Lin CP, Zavan B, Pinton P, Georgakoudi I, Romualdi C, Scadden DT, Ito K. A mitochondrial NADPH-cholesterol axis regulates extracellular vesicle biogenesis to support hematopoietic stem cell fate. Cell Stem Cell 2024; 31:359-377.e10. [PMID: 38458178 PMCID: PMC10957094 DOI: 10.1016/j.stem.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Enrica Calura
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - Ilaria Zanolla
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Yookyung Jung
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriele Sales
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Takahisa Nakamura
- Divisions of Endocrinology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Francesco Massimo Lasorsa
- Department of Biosciences Biotechnologies and Environment University of Bari and Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70125 Bari, Italy
| | - Toren Finkel
- Aging Institute and Department of Medicine, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
13
|
Cheng J, Xu Z, Tan W, He J, Pan B, Zhang Y, Deng Y. METTL16 promotes osteosarcoma progression by downregulating VPS33B in an m 6 A-dependent manner. J Cell Physiol 2024; 239:e31068. [PMID: 37357526 DOI: 10.1002/jcp.31068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
N6-methyladenosine (m6 A) is one of the main epitranscriptomic modifications that accelerates the progression of malignant tumors by modifying RNA. Methyltransferase-like 16 (METTL16) is a newly identified methyltransferase that has been found to play an important oncogenic role in a few malignancies; however, its function in osteosarcoma (OS) remains unclear. In this study, METTL16 was found to be upregulated in OS tissues, and associated with poor prognosis in OS patients. Functionally, METTL16 substantially promoted OS cell proliferation, migration, and invasion in vitro and OS growth in vivo. Mechanistically, vacuolar protein sorting protein 33b (VPS33B) was identified as the downstream target of METTL16, which induced m6 A modification of VPS33B and impaired the stability of the VPS33B transcript, thereby degrading VPS33B. In addition, VPS33B was found to be downregulated in OS tissues, VPS33B knockdown markedly attenuated shMETTL16-mediated inhibition on OS progression. Finally, METTL16/VPS33B might facilitate OS progression through PI3K/AKT pathway. In summary, this study revealed an important role for the METTL16-mediated m6 A modification in OS progression, implying it as a promising target for OS treatment.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhihao Xu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boyu Pan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Huang D, Yuan Y, Cao L, Zhang D, Jiang Y, Zhang Y, Chen C, Yu Z, Xie L, Wei Y, Wan J, Zheng J. Endothelial-derived small extracellular vesicles support B-cell acute lymphoblastic leukemia development. Cell Oncol (Dordr) 2024; 47:129-140. [PMID: 37751067 PMCID: PMC10899377 DOI: 10.1007/s13402-023-00855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSE The bone marrow niche plays an important role in leukemia development. However, the contributions of different niche components to leukemia development and their underlying mechanisms remain largely unclear. METHOD Cre/LoxP-based conditional knockout technology was used to delete VPS33B or ANGPTL2 gene in niche cells. Murine B-ALL model was established by overexpressing the N-Myc oncogene in hematopoietic stem progenitor cells. The frequency of leukemia cells and immunophenotypic B220+ CD43+ LICs was detected by flow cytometry. SEVs was isolated by sequential centrifugation and mass spectrometry was performed to analyze the different components of SEVs. Immunoprecipitation and western blot were used to measure the interaction of VPS33B and ANGPTL2. RESULTS Here, we showed that specific knockout of vascular protein sorting 33b (Vps33b) in endothelial cells (ECs), but not megakaryocytes or mesenchymal stem cells, resulted in a significant decrease in the secretion of small extracellular vesicles (SEVs) and a delay in the development of B-cell lymphoblastic leukemia (B-ALL). Vps33b knockdown endothelial cells contained much lower levels of SEVs that contained angiopoietin-like protein 2 (ANGPTL2) than the control cells. Importantly, conditional knockout of Angptl2 in ECs significantly delayed B-ALL progression. Moreover, C-terminal region of ANGPTL2 (aa247-471) could directly interact with Sec1-like domain 1 of VPS33B (aa1-aa146). We further demonstrated that the point mutations R399H and G402S in ANGPTL2 led to a dramatic decrease in the secretion of ANGPTL2-SEVs. We also showed that wild-type ANGPTL2-containing SEVs, but not mutant ANGPTL2-containing SEVs, significantly enhanced B-ALL development. CONCLUSION In summary, our findings indicate that the secretion of ANGPTL2-containing SEVs in ECs sustains the leukemogenic activities of B-ALL cells, which is fine-tuned by the direct interaction of VPS33B and ANGPTL2. These findings reveal that niche-specific SEVs play an important role in B-ALL development.
Collapse
Affiliation(s)
- Dan Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yamin Yuan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyuan Cao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Difan Zhang
- Department of Hematology, Xinhua Hospital, Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu Jiang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yujuan Wei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital, Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Hurwitz SN, Jung SK, Kobulsky DR, Fazelinia H, Spruce LA, Pérez EB, Groen N, Mesaros C, Kurre P. Neutral sphingomyelinase blockade enhances hematopoietic stem cell fitness through an integrated stress response. Blood 2023; 142:1708-1723. [PMID: 37699202 PMCID: PMC10667352 DOI: 10.1182/blood.2023022147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation serves as a curative therapy for many benign and malignant hematopoietic disorders and as a platform for gene therapy. However, growing needs for ex vivo manipulation of HSPC-graft products are limited by barriers in maintaining critical self-renewal and quiescence properties. The role of sphingolipid metabolism in safeguarding these essential cellular properties has been recently recognized, but not yet widely explored. Here, we demonstrate that pharmacologic and genetic inhibition of neutral sphingomyelinase 2 (nSMase-2) leads to sustained improvements in long-term competitive transplantation efficiency after ex vivo culture. Mechanistically, nSMase-2 blockade activates a canonical integrated stress response (ISR) and promotes metabolic quiescence in human and murine HSPCs. These adaptations result in part from disruption in sphingolipid metabolism that impairs the release of nSMase-2-dependent extracellular vesicles (EVs). The aggregate findings link EV trafficking and the ISR as a regulatory dyad guarding HSPC homeostasis and long-term fitness. Translationally, transient nSMase-2 inhibition enables ex vivo graft manipulation with enhanced HSPC potency.
Collapse
Affiliation(s)
- Stephanie N. Hurwitz
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Seul K. Jung
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Danielle R. Kobulsky
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hossein Fazelinia
- Proteomics Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lynn A. Spruce
- Proteomics Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
16
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
17
|
Zhan Z, Ye M, Jin X. The roles of FLOT1 in human diseases (Review). Mol Med Rep 2023; 28:212. [PMID: 37772385 PMCID: PMC10552069 DOI: 10.3892/mmr.2023.13099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 09/30/2023] Open
Abstract
FLOT1, a scaffold protein of lipid rafts, is involved in several biological processes, including lipid raft protein‑-dependent or clathrin‑independent endocytosis, and the formation of hippocampal synapses, amongst others. Increasing evidence has shown that FLOT1 can function as both a cancer promoter and cancer suppressor dependent on the type of cancer. FLOT1 can affect the occurrence and development of several types of cancer by affecting epithelial‑mesenchymal transition, proliferation of cancer cells, and relevant signaling pathways, and is regulated by long intergenic non‑coding RNAs or microRNAs. In the nervous system, overexpression or abnormally low expression of FLOT1 may lead to the occurrence of neurological diseases, such as Alzheimer's disease, Parkinson's disease, major depressive disorder and other diseases. Additionally, it is also associated with dilated cardiomyopathy, pathogenic microbial infection, diabetes‑related diseases, and gynecological diseases, amongst other diseases. In the present review, the structure and localization of FLOT1, as well as the physiological processes it is involved in are reviewed, and then the upstream and downstream regulation of FLOT1 in human disease, particularly in different types of cancer and neurological diseases are discussed, with a focus on potentially targeting FLOT1 for the clinical treatment of several diseases.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
18
|
Liu RJY, Al-Molieh Y, Chen SZ, Drobac M, Urban D, Chen CH, Yao HHY, Geng RSQ, Li L, Pluthero FG, Benlekbir S, Rubinstein JL, Kahr WHA. The Sec1/Munc18 protein VPS33B forms a uniquely bidirectional complex with VPS16B. J Biol Chem 2023; 299:104718. [PMID: 37062417 DOI: 10.1016/j.jbc.2023.104718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Loss of function variants of VPS33B and VIPAS39 (encoding VPS16B) are causative for arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, where early lethality of patients indicates that VPS33B and VPS16B play essential cellular roles. VPS33B is a member of the Sec1/Munc18 (SM) protein family, and thus thought to facilitate vesicular fusion via interaction with SNARE complexes, as does its paralog VPS33A in the homotypic fusion and vacuole sorting (HOPS) complex. VPS33B and VPS16B have been shown to associate, but little is known about the composition, structure or function of the VPS33B/VPS16B complex. We show here that human VPS33B/VPS16B is a high molecular weight complex, which we expressed in yeast to obtain material for structural, composition and stability analysis. Circular dichroism data indicate VPS33B/VPS16B has a well-folded α-helical secondary structure, for which size exclusion chromatography-multi angle light scattering revealed a MW of ∼315 kDa. Quantitative immunoblotting indicated the complex has a VPS33B:VPS16B ratio of 2:3. Expression of ARC syndrome-causing VPS33B missense variants showed that L30P disrupts complex formation, but not S243F or H344D. Truncated VPS16B containing amino acids 143-316 was sufficient to form a complex with VPS33B. Small angle X-ray scattering and negative staining electron microscopy revealed a two-lobed shape for VPS33B/VPS16B. Avidin tagging indicated that each lobe contains a VPS33B molecule, and they are oriented in opposite directions. From this we propose a structure for VPS33B/VPS16B that allows the copies of VPS33B at each end to interact with separate SNARE bundles and/or SNAREpins, plus their associated membrane components. Thus our observations reveal the only known potentially bidirectional SM protein complex.
Collapse
Affiliation(s)
- Richard J Y Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yusef Al-Molieh
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shao Z Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marko Drobac
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Denisa Urban
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chang H Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Helen H Y Yao
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ryan S Q Geng
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
19
|
Hayashi Y, Nishimura K, Tanaka A, Inoue D. Extracellular vesicle-mediated remodeling of the bone marrow microenvironment in myeloid malignancies. Int J Hematol 2023; 117:821-829. [PMID: 37041345 DOI: 10.1007/s12185-023-03587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
Hematopoiesis is maintained and regulated by a bone marrow-specific microenvironment called a niche. In hematological malignancies, tumor cells induce niche remodeling, and the reconstructed niche is closely linked to disease pathogenesis. Recent studies have suggested that extracellular vesicles (EVs) secreted from tumor cells play a principal role in niche remodeling in hematological malignancies. Although EVs are emerging as potential therapeutic targets, the underlying mechanism of action remains unclear, and selective inhibition remains a challenge. This review summarizes remodeling of the bone marrow microenvironment in hematological malignancies and its contribution to pathogenesis, as well as roles of tumor-derived EVs, and provides a perspective on future research in this field.
Collapse
Affiliation(s)
- Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-3-7, Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-3-7, Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-3-7, Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-3-7, Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
20
|
Li Q, Wang M, Liu L. The role of exosomes in the stemness maintenance and progression of acute myeloid leukemia. Biochem Pharmacol 2023; 212:115539. [PMID: 37024061 DOI: 10.1016/j.bcp.2023.115539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of myeloid hematopoietic cells, which is characterized by the aberrant clonal proliferation of immature myeloblasts and compromised hematopoiesis. The leukemic cell population is strongly heterogeneous. Leukemic stem cells (LSCs) are an important leukemic cell subset with stemness characteristics and self-renewal ability, which contribute to the development of refractory or relapsed AML. It is now acknowledged that LSCs develop from hematopoietic stem cells (HSCs) or phenotypically directed cell populations with transcriptional stemness characteristics under selective pressure from the bone marrow (BM) niche. Exosomes are extracellular vesicles containing bioactive substances involved in intercellular communication and material exchange under steady state and pathological conditions. Several studies have reported that exosomes mediate molecular crosstalk between LSCs, leukemic blasts, and stromal cells in the BM niche, promoting LSC maintenance and AML progression. This review briefly describes the process of LSC transformation and the biogenesis of exosomes, highlighting the role of leukemic-cell- and BM-niche-derived exosomes in the maintenance of LSCs and AML progression. In addition, we discuss the potential application of exosomes in the clinic as biomarkers, therapeutic targets, and carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Li G, Chen T, Dahlman J, Eniola‐Adefeso L, Ghiran IC, Kurre P, Lam WA, Lang JK, Marbán E, Martín P, Momma S, Moos M, Nelson DJ, Raffai RL, Ren X, Sluijter JPG, Stott SL, Vunjak‐Novakovic G, Walker ND, Wang Z, Witwer KW, Yang PC, Lundberg MS, Ochocinska MJ, Wong R, Zhou G, Chan SY, Das S, Sundd P. Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. J Extracell Vesicles 2023; 12:e12305. [PMID: 36775986 PMCID: PMC9923045 DOI: 10.1002/jev2.12305] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 01/09/2022] [Indexed: 02/14/2023] Open
Abstract
Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.
Collapse
Affiliation(s)
- Guoping Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Tianji Chen
- Department of Pediatrics, College of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - James Dahlman
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgiaUSA
| | - Lola Eniola‐Adefeso
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Ionita C. Ghiran
- Department of Anesthesia and Pain MedicineBeth Israel Deaconess Medical Center, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Peter Kurre
- Children's Hospital of Philadelphia, Comprehensive Bone Marrow Failure Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Department of PediatricsEmory School of MedicineAflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jennifer K. Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical SciencesVeterans Affairs Western New York Healthcare SystemBuffaloNew YorkUSA
| | - Eduardo Marbán
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Stefan Momma
- Institute of Neurology (Edinger Institute)University HospitalGoethe UniversityFrankfurt am MainGermany
| | - Malcolm Moos
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and ResearchUnited States Food and Drug AdministrationSilver SpringMarylandUSA
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological SciencesThe University of ChicagoChicagoIllinoisUSA
| | - Robert L. Raffai
- Department of Veterans Affairs, Surgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Department of Surgery, Division of Vascular and Endovascular SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Xi Ren
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Joost P. G. Sluijter
- Department of Experimental Cardiology, Circulatory Health LaboratoryRegenerative Medicine Centre, UMC Utrecht, University UtrechtUtrechtThe Netherlands
| | - Shannon L. Stott
- Massachusetts General Hospital Cancer Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Gordana Vunjak‐Novakovic
- Department of Biomedical Engineering, Department of MedicineColumbia UniversityNew YorkNew YorkUSA
| | - Nykia D. Walker
- Department of Biological SciencesUniversity of Maryland Baltimore CountyBaltimoreMarylandUSA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Department of Neurology and Neurosurgeryand The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Phillip C. Yang
- Division of Cardiovascular Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Martha S. Lundberg
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Margaret J. Ochocinska
- Division of Blood Diseases and Resources, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Renee Wong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Cardiology and Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Saumya Das
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Pulmonary Allergy and Critical Care Medicine and Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
22
|
Pinho S, Zhao M. Hematopoietic Stem Cells and Their Bone Marrow Niches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:17-28. [PMID: 38228956 PMCID: PMC10881178 DOI: 10.1007/978-981-99-7471-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are maintained in the bone marrow microenvironment, also known as the niche, that regulates their proliferation, self-renewal, and differentiation. In this chapter, we will introduce the history of HSC niche research and review the interdependencies between HSCs and their niches. We will further highlight recent advances in our understanding of HSC heterogeneity with regard to HSC subpopulations and their interacting cellular and molecular bone marrow niche constituents.
Collapse
Affiliation(s)
- Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Chen Y, Huang Y, Deng Y, Liu X, Ye J, Li Q, Luo Y, Lin Y, Liang R, Wei J, Zhang J, Li Y. Cancer Therapy Empowered by Extracellular Vesicle-Mediated Targeted Delivery. Biol Pharm Bull 2023; 46:1353-1364. [PMID: 37779037 DOI: 10.1248/bpb.b23-00378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Extracellular vesicles (EVs) are a class of nanoparticles that mediate signaling molecules delivery between donor and recipient cells. Heterogeneity in the content of EVs and their membrane surface proteins determines their unique targetability. Their low immunogenicity, capability to cross various biological barriers, and superior biocompatibility enable engineering-modified EVs to be ideal drug delivery carriers. In addition, the engineered EVs that emerge in recent years have become a powerful tool for cancer treatment through the selective delivery of bioactive molecules to therapeutic targets, such as tumor cells and stroma. Our review focuses on the various types of EV modifications and their promoting therapeutic capabilities, which provide an innovative means for cancer precision therapy.
Collapse
Affiliation(s)
- Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Xue Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Qiuyun Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Yue Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region
- Institute of Oncology, Guangxi Academy of Medical Sciences
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital
| |
Collapse
|
24
|
Wu M, Wang M, Jia H, Wu P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv 2022; 29:2513-2538. [PMID: 35915054 PMCID: PMC9347476 DOI: 10.1080/10717544.2022.2104404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing evidences show that unmodified extracellular vesicles (EVs) derived from various cells can effectively inhibit the malignant progression of different types of tumors by delivering the bioactive molecules. Therefore, EVs are expected to be developed as emerging anticancer drugs. Meanwhile, unmodified EVs as an advanced and promising nanocarrier that is frequently used in targeted delivery therapeutic cargos and personalized reagents for the treatment and diagnosis of cancer. To improve the efficacy of EV-based treatments, researchers are trying to engineering EVs as an emerging nanomedicine translational therapy platform through biological, physical and chemical approaches, which can be broaden and altered to enhance their therapeutic capability. EVs loaded with therapeutic components such as tumor suppressor drugs, siRNAs, proteins, peptides, and conjugates exhibit significantly enhanced anti-tumor effects. Moreover, the design and preparation of tumor-targeted modified EVs greatly enhance the specificity and effectiveness of tumor therapy, and these strategies are expected to become novel ideas for tumor precision medicine. This review will focus on reviewing the latest research progress of functionalized EVs, clarifying the superior biological functions and powerful therapeutic potential of EVs, for researchers to explore new design concepts based on EVs and build next-generation nanomedicine therapeutic platforms.
Collapse
Affiliation(s)
- Manling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Haoyuan Jia
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| |
Collapse
|
25
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Sun G, Gu Q, Zheng J, Cheng H, Cheng T. Emerging roles of extracellular vesicles in normal and malignant hematopoiesis. J Clin Invest 2022; 132:160840. [PMID: 36106632 PMCID: PMC9479752 DOI: 10.1172/jci160840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem cells, regulated by their microenvironment (or “niche”), sustain the production of mature blood and immune cells. Leukemia cells remodel the microenvironment to enhance their survival, which is accompanied by the loss of support for normal hematopoiesis in hematologic malignancies. Extracellular vesicles (EVs) mediate intercellular communication in physiological and pathological conditions, and deciphering their functions in cell-cell interactions in the ecosystem can highlight potential therapeutic targets. In this Review, we illustrate the utility of EVs derived from various cell types, focusing on the biological molecules they contain and the behavioral alterations they can induce in recipient cells. We also discuss the potential for clinical application in hematologic malignancies, including EV-based therapeutic regimens, drug delivery via EVs, and the use of EVs (or their cargoes) as biomarkers.
Collapse
Affiliation(s)
- Guohuan Sun
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
27
|
Abstract
INTRODUCTION GDI2 regulates the GDP/GTP exchange reaction of Rab proteins by inhibiting the dissociation of GDP and the subsequent binding of GTP, dysregulation of GDI2 has been reported in many different cancers. Recently, we found that GDI2 bound to the ITIM domain of Siglec-G under normal homeostasis, whereas Rab1a was recruited to the ITIM domain during bacterial infection. Therefore, GDI2 and Rab1a may regulate the immune response through interaction with the ITIM domain during bacterial infection. However, the regulation of the inflammatory response by GDI2 in vivo and its regulatory mechanism remain unknown. METHODS We generated a Gdi2 null mutant mouse with a trapped Gdi2 gene and examined the expression by X-gal and immunohistochemistry staining. TUNEL staining was used to determine the apoptosis cells. RESULTS Here we show that Gdi2 is essential for embryonic development. One functional Gdi2 allele is sufficient for murine embryo development, but complete loss of Gdi2 leads to embryonic lethality. Developmental retardation of Gdi2-/- mice is apparent at E10.5 to E14.5, with no viable Gdi2-/- embryos detected after E14.5. Histological analysis revealed extensive cell death and cell loss in Gdi2-/- embryos. Apoptosis was confirmed by staining with cleaved caspase-3, suggesting that Gdi2 maintain homeostasis by regulating the apoptosis of the cells. There was no significant difference in cytokine production and survival between wild-type and Gdi2+/- mice after LPS challenge. DISCUSSION These findings suggest that one Gdi2 allele is sufficient to maintain function. However, the detailed molecular mechanism underlying Gdi2 in regulating the embryonic development needs further identification.
Collapse
Affiliation(s)
- Yin Wu
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Darong Yang
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Guo-Yun Chen
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
28
|
Padinharayil H, Varghese J, John MC, Rajanikant GK, Wilson CM, Al-Yozbaki M, Renu K, Dewanjee S, Sanyal R, Dey A, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, George A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
29
|
Vps33B controls Treg cell suppressive function through inhibiting lysosomal nutrient sensing complex-mediated mTORC1 activation. Cell Rep 2022; 39:110943. [PMID: 35705052 DOI: 10.1016/j.celrep.2022.110943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
The suppressive function of regulatory T (Treg) cells is tightly controlled by nutrient-fueled mechanistic target of rapamycin complex 1 (mTORC1) activation, yet its dynamics and negative regulation remain unclear. Here we show that Treg-specific depletion of vacuolar protein sorting 33B (Vps33B) in mice results in defective Treg cell suppressive function and acquisition of effector phenotype, which in turn leads to disturbed T cell homeostasis and boosted antitumor immunity. Mechanistically, Vps33B binds with lysosomal nutrient-sensing complex (LYNUS) and promotes late endosome and lysosome fusion and clearance of the LYNUS-containing late endosome/lysosome, and therefore suppresses mTORC1 activation. Vps33B deficiency in Treg cells results in disordered endosome lysosome fusion, which leads to accumulation of LYNUS that causes elevated mTORC1 activation and hyper-glycolytic metabolism. Taken together, our study reveals that Vps33B maintains Treg cell suppressive function through sustaining endolysosomal homeostasis and therefore restricting amino acid-licensed mTORC1 activation and metabolism.
Collapse
|
30
|
An old player, the right niche. BLOOD SCIENCE 2022; 4:99. [PMID: 35968269 PMCID: PMC9354721 DOI: 10.1097/bs9.0000000000000105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022] Open
|
31
|
Nowak JK, Szymańska CJ, Walkowiak J. Differential correlation network analysis of rectal transcriptomes reveals cystic fibrosis-related disturbance. Pharmacogenomics 2022; 23:339-344. [PMID: 35189732 DOI: 10.2217/pgs-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Intestinal pathology in cystic fibrosis (CF) remains mechanistically underexplored. Aim: We hypothesized that differential correlation network analysis of expression data would reveal hub genes of CF-related disturbance in the large bowel. Materials & methods: Transcriptomes of 29 rectal tissue samples were accessed at ArrayExpress (E-GEOD-15568 by Stanke et al.). Results: We identified 279 transcript pairs differentially correlating in CF and controls, including: ESRRA and RPL18 (rCF = 0.55; rcontrols = -0.68; padj = 1.60 × 10-100), SRP14 and FAU (rCF = -0.69; rcontrols = 0.48; padj = 2.99 × 10-90), SRP14 and GDI2 (rCF = -0.34; rcontrols = 0.60; padj = 1.05 × 10-78). The genes related to membrane protein targeting (q = 8.34 × 10-14) and one cluster was clearly linked to male infertility. Conclusion: FAU, SRP14 and GDI2 may be involved in a compensatory protein trafficking mechanism in CF rectum, highlighting their potential therapeutic value.
Collapse
Affiliation(s)
- Jan K Nowak
- Department of Pediatric Gastroenterology & Metabolic Diseases, Poznan University of Medical Sciences, Poznan, 60-572, Poland
| | - Cyntia J Szymańska
- Department of Pediatric Gastroenterology & Metabolic Diseases, Poznan University of Medical Sciences, Poznan, 60-572, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology & Metabolic Diseases, Poznan University of Medical Sciences, Poznan, 60-572, Poland
| |
Collapse
|
32
|
Endothelial cell-derived angiopoietin-like protein 2 supports hematopoietic stem cell activities in bone marrow niches. Blood 2021; 139:1529-1540. [PMID: 34929029 PMCID: PMC9015010 DOI: 10.1182/blood.2021011644] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Endothelial cell-derived ANGPTL2 is important for the maintenance of HSC activities in bone marrow niches. ANGPTL2-mediated signaling pathways enhance PPARδ expression to transactivate G0s2 to sustain HSC activities.
Bone marrow niche cells have been reported to fine-tune hematopoietic stem cell (HSC) stemness via direct interaction or secreted components. Nevertheless, how niche cells control HSC activities remains largely unknown. We previously showed that angiopoietin-like protein 2 (ANGPTL2) can support the ex vivo expansion of HSCs by binding to human leukocyte immunoglobulin-like receptor B2. However, how ANGPTL2 from specific niche cell types regulates HSC activities under physiological conditions is still not clear. Herein, we generated an Angptl2-flox/flox transgenic mouse line and conditionally deleted Angptl2 expression in several niche cells, including Cdh5+ or Tie2+ endothelial cells, Prx1+ mesenchymal stem cells, and Pf4+ megakaryocytes, to evaluate its role in the regulation of HSC fate. Interestingly, we demonstrated that only endothelial cell-derived ANGPTL2 and not ANGPTL2 from other niche cell types plays important roles in supporting repopulation capacity, quiescent status, and niche localization. Mechanistically, ANGPTL2 enhances peroxisome-proliferator-activated receptor D (PPARD) expression to transactivate G0s2 to sustain the perinuclear localization of nucleolin to prevent HSCs from entering the cell cycle. These findings reveal that endothelial cell-derived ANGPTL2 serves as a critical niche component to maintain HSC stemness, which may benefit the understanding of stem cell biology in bone marrow niches and the development of a unique strategy for the ex vivo expansion of HSCs.
Collapse
|
33
|
Ma J, Han M, Yang D, Zheng T, Hu R, Wang B, Ye Y, Liu J, Huang G. Vps33B in Dendritic Cells Regulates House Dust Mite-Induced Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:2649-2659. [PMID: 34732466 DOI: 10.4049/jimmunol.2100502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) are the most specialized APCs that play a critical role in driving Th2 differentiation, but the mechanism is not fully understood. Here we show that vacuolar protein sorting 33B (Vps33B) plays an important role in this process. Mice with Vps33b-specific deletion in DCs, but not in macrophages or T cells, were more susceptible to Th2-mediated allergic lung inflammation than wild-type mice. Deletion of Vps33B in DCs led to enhanced CD4+ T cell proliferation and Th2 differentiation. Moreover, Vps33B specifically restrained reactive oxygen species production in conventional DC1s to inhibit Th2 responses in vitro, whereas Vps33B in monocyte-derived DCs and conventional DC2s was dispensable for Th2 development in asthma pathogenesis. Taken together, our results identify Vps33B as an important molecule that mediates the cross-talk between DCs and CD4+ T cells to further regulate allergic asthma pathogenesis.
Collapse
Affiliation(s)
- Jingyu Ma
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Di Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| | - Ran Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| |
Collapse
|
34
|
Shi H, Wang M, Sun Y, Yang D, Xu W, Qian H. Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Front Cell Dev Biol 2021; 9:736022. [PMID: 34722517 PMCID: PMC8553038 DOI: 10.3389/fcell.2021.736022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are lipid bilayer vesicles released by multiple cell types. These bioactive vesicles are gradually becoming a leading star in intercellular communication involving in various pathological and physiological process. Exosomes convey specific and bioactive transporting cargos, including lipids, nucleic acids and proteins which can be reflective of their parent cells, rendering them attractive in cell-free therapeutics. Numerous findings have confirmed the crucial role of exosomes in restraining scars, burning, senescence and wound recovery. Moreover, the biology research of exosomes in cutting-edge studies are emerging, allowing for the development of particular guidelines and quality control methodology, which favor their possible application in the future. In this review, we discussed therapeutic potential of exosomes in different relevant mode of dermatologic diseases, as well as the various molecular mechanisms. Furthermore, given the advantages of favorable biocompatibility and transporting capacity, the bioengineering modification of exosomes is also involved.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dakai Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
35
|
Xu N, Guo R, Yang X, Li N, Yu J, Zhang P. Exosomes-mediated tumor treatment: One body plays multiple roles. Asian J Pharm Sci 2021; 17:385-400. [PMID: 35782325 PMCID: PMC9237599 DOI: 10.1016/j.ajps.2021.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are vesicles secreted by a variety of living cells, containing proteins, RNA and other components, which are nanoscale capsules commonly existed in the body. Exosomes play important roles in a variety of physiological and pathological processes by participating in material and information exchange between cells, which can play multiple roles in tumor treatment. On the one hand, exosomes can be used as carriers and biomarkers, participate in the apoptosis signaling pathway and improve chemotherapy resistance, thus playing beneficial roles in tumor treatment. On the other hand, exosomes play unfavorable roles in tumor treatment. Tumor cell exosomes contain PD-L1, which is a nuclear weapon for tumor growth, metastasis, and immunosuppression. In addition, exosomes can not only promote the epithelial-mesenchymal transition process, tumor angiogenesis and chemoresistance, but also participate in the autocrine pathway. In this review, the multiple roles of exosomes and their prospects in the treatment of tumor were reviewed in detail.
Collapse
|
36
|
Exosomes as cell-derivative carriers in the diagnosis and treatment of central nervous system diseases. Drug Deliv Transl Res 2021; 12:1047-1079. [PMID: 34365576 PMCID: PMC8942947 DOI: 10.1007/s13346-021-01026-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are extracellular vesicles with the diameter ranging from 50 to 100 nm and are found in different body fluids such as blood, cerebrospinal fluid (CSF), urine and saliva. Like in case of various diseases, based on the parent cells, the content of exosomes (protein, mRNA, miRNA, DNA, lipids and metabolites) varies and thus can be utilized as potential biomarker for diagnosis and prognosis of the brain diseases. Furthermore, utilizing the natural potential exosomes to cross the blood–brain barrier and by specifically decorating it with the ligand as per the desired brain sites therapeutics can be delivered to brain parenchyma. This review article conveys the importance of exosomes and their use in the treatment and diagnosis of brain/central nervous system diseases.
Collapse
|
37
|
Pelissier Vatter FA, Cioffi M, Hanna SJ, Castarede I, Caielli S, Pascual V, Matei I, Lyden D. Extracellular vesicle- and particle-mediated communication shapes innate and adaptive immune responses. J Exp Med 2021; 218:212439. [PMID: 34180950 PMCID: PMC8241538 DOI: 10.1084/jem.20202579] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication among immune cells is vital for the coordination of proper immune responses. Extracellular vesicles and particles (EVPs) act as messengers in intercellular communication, with important consequences for target cell and organ physiology in both health and disease. Under normal physiological conditions, immune cell-derived EVPs participate in immune responses by regulating innate and adaptive immune responses. EVPs play a major role in antigen presentation and immune activation. On the other hand, immune cell-derived EVPs exert immunosuppressive and regulatory effects. Consequently, EVPs may contribute to pathological conditions, such as autoimmune and inflammatory diseases, graft rejection, and cancer progression and metastasis. Here, we provide an overview of the role of EVPs in immune homeostasis and pathophysiology, with a particular focus on their contribution to innate and adaptive immunity and their potential use for immunotherapies.
Collapse
Affiliation(s)
- Fanny A Pelissier Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Samer J Hanna
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Ines Castarede
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
38
|
Peng X, Li X, Yang S, Huang M, Wei S, Ma Y, Li Y, Wu B, Jin H, Li B, Tang S, Fan Q, Liu J, Yang L, Li H. LINC00511 drives invasive behavior in hepatocellular carcinoma by regulating exosome secretion and invadopodia formation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:183. [PMID: 34088337 PMCID: PMC8176717 DOI: 10.1186/s13046-021-01990-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
Background Tumor cells are known to release large numbers of exosomes containing active substances that participate in cancer progression. Abnormally expressed long noncoding RNAs (lncRNAs) have been confirmed to regulate multiple processes associated with tumor progression. However, the mechanism by which lncRNAs affect exosome secretion remains unclear. Methods The underlying mechanisms of long noncoding RNA LINC00511 (LINC00511) regulation of multivesicular body (MVB) trafficking, exosome secretion, invadopodia formation, and tumor invasion were determined through gene set enrichment analysis (GSEA), immunoblotting, nanoparticle tracking analysis, confocal colocalization analysis, electron microscopy, and invasion experiments. Results We revealed that the tumorigenesis process is associated with a significant increase in vesicle secretion in hepatocellular carcinoma (HCC). Additionally, LINC00511 was significantly more highly expressed in HCC tissues and is related to vesicle trafficking and MVB distribution. We also found that in addition to the formation of invadopodia in HCC progression, abnormal LINC00511 induces invadopodia formation in HCC cells by regulating the colocalization of vesicle associated membrane protein 7 (VAMP7) and synaptosome associated protein 23 (SNAP23) to induce the invadopodia formation, which are key secretion sites for MVBs and control exosome secretion. Finally, we revealed that LINC0051-induced invadopodia and exosome secretion were involved in tumor progression. Conclusions Our experiments revealed novel findings on the relationship between LINC00511 dysregulation in HCC and invadopodia production and exosome secretion. This is a novel mechanism by which LINC00511 regulates invadopodia biogenesis and exosome secretion to further promote cancer progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01990-y.
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.,Department of General Surgery, Liberation Army Air Force General Hospital, Beijing, 100142, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.,Department of Radiation Oncology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shilei Tang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
39
|
Abstract
[Figure: see text].
Collapse
|
40
|
Wang X, Zhou Y, Ding K. Roles of exosomes in cancer chemotherapy resistance, progression, metastasis and immunity, and their clinical applications (Review). Int J Oncol 2021; 59:44. [PMID: 34013358 PMCID: PMC8143748 DOI: 10.3892/ijo.2021.5224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are a type of vesicle that are secreted by cells, with a diameter of 40-100 nm, and that appear as a cystic shape under an electron microscope. Exosome cargo includes a variety of biologically active substances such as non-coding RNA, lipids and small molecule proteins. Exosomes can be taken up by neighboring cells upon secretion or by distant cells within the circulatory system, affecting gene expression of the recipient cells. The present review discusses the formation and secretion of exosomes, and how they can remodel the tumor microenvironment, enhancing cancer cell chemotherapy resistance and tumor progression. Exosome-mediated induction of tumor metastasis is also highlighted. More importantly, the review discusses the manner in which exosomes can change the metabolism of cancer cells and the immune system, which may help to devise novel therapeutic approaches for cancer treatment. With the development of nanotechnology, exosomes can also be used as biomarkers and for the delivery of chemical drugs, serving as a tool to diagnose and treat cancer.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Yuan Zhou
- Gruduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Kaiyang Ding
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
41
|
Forte D, Barone M, Palandri F, Catani L. The "Vesicular Intelligence" Strategy of Blood Cancers. Genes (Basel) 2021; 12:genes12030416. [PMID: 33805807 PMCID: PMC7999060 DOI: 10.3390/genes12030416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Blood cancers are a heterogeneous group of disorders including leukemia, multiple myeloma, and lymphoma. They may derive from the clonal evolution of the hemopoietic stem cell compartment or from the transformation of progenitors with immune potential. Extracellular vesicles (EVs) are membrane-bound nanovesicles which are released by cells into body fluids with a role in intercellular communication in physiology and pathology, including cancer. EV cargos are enriched in nucleic acids, proteins, and lipids, and these molecules can be delivered to target cells to influence their biological properties and modify surrounding or distant targets. In this review, we will describe the “smart strategy” on how blood cancer-derived EVs modulate tumor cell development and maintenance. Moreover, we will also depict the function of microenvironment-derived EVs in blood cancers and discuss how the interplay between tumor and microenvironment affects blood cancer cell growth and spreading, immune response, angiogenesis, thrombogenicity, and drug resistance. The potential of EVs as non-invasive biomarkers will be also discussed. Lastly, we discuss the clinical application viewpoint of EVs in blood cancers. Overall, blood cancers apply a ‘vesicular intelligence’ strategy to spread signals over their microenvironment, promoting the development and/or maintenance of the malignant clone.
Collapse
Affiliation(s)
- Dorian Forte
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
| | - Martina Barone
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero—Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy
- Correspondence: (F.P.); (L.C.); Tel.: +39-5121-43044 (F.P.); +39-5121-43837 (L.C.)
| | - Lucia Catani
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
- IRCCS Azienda Ospedaliero—Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy
- Correspondence: (F.P.); (L.C.); Tel.: +39-5121-43044 (F.P.); +39-5121-43837 (L.C.)
| |
Collapse
|
42
|
Pinto DO, Al Sharif S, Mensah G, Cowen M, Khatkar P, Erickson J, Branscome H, Lattanze T, DeMarino C, Alem F, Magni R, Zhou W, Alais S, Dutartre H, El-Hage N, Mahieux R, Liotta LA, Kashanchi F. Extracellular vesicles from HTLV-1 infected cells modulate target cells and viral spread. Retrovirology 2021; 18:6. [PMID: 33622348 PMCID: PMC7901226 DOI: 10.1186/s12977-021-00550-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Human T-cell Lymphotropic Virus Type-1 (HTLV-1) is a blood-borne pathogen and etiological agent of Adult T-cell Leukemia/Lymphoma (ATLL) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 has currently infected up to 10 million globally with highly endemic areas in Japan, Africa, the Caribbean and South America. We have previously shown that Extracellular Vesicles (EVs) enhance HTLV-1 transmission by promoting cell-cell contact. RESULTS Here, we separated EVs into subpopulations using differential ultracentrifugation (DUC) at speeds of 2 k (2000×g), 10 k (10,000×g), and 100 k (100,000×g) from infected cell supernatants. Proteomic analysis revealed that EVs contain the highest viral/host protein abundance in the 2 k subpopulation (2 k > 10 k > 100 k). The 2 k and 10 k populations contained viral proteins (i.e., p19 and Tax), and autophagy proteins (i.e., LC3 and p62) suggesting presence of autophagosomes as well as core histones. Interestingly, the use of 2 k EVs in an angiogenesis assay (mesenchymal stem cells + endothelial cells) caused deterioration of vascular-like-tubules. Cells commonly associated with the neurovascular unit (i.e., astrocytes, neurons, and macrophages) in the blood-brain barrier (BBB) showed that HTLV-1 EVs may induce expression of cytokines involved in migration (i.e., IL-8; 100 k > 2 k > 10 k) from astrocytes and monocyte-derived macrophages (i.e., IL-8; 2 k > 10 k). Finally, we found that EVs were able to promote cell-cell contact and viral transmission in monocytic cell-derived dendritic cell. The EVs from both 2 k and 10 k increased HTLV-1 spread in a humanized mouse model, as evidenced by an increase in proviral DNA and RNA in the Blood, Lymph Node, and Spleen. CONCLUSIONS Altogether, these data suggest that various EV subpopulations induce cytokine expression, tissue damage, and viral spread.
Collapse
Affiliation(s)
- Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gifty Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Thomas Lattanze
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Farhang Alem
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
43
|
Nair S, Ormazabal V, Lappas M, McIntyre HD, Salomon C. Extracellular vesicles and their potential role inducing changes in maternal insulin sensitivity during gestational diabetes mellitus. Am J Reprod Immunol 2021; 85:e13361. [PMID: 33064367 DOI: 10.1111/aji.13361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common endocrine disorders during gestation and affects around 15% of all pregnancies worldwide, paralleling the global increase in obesity and type 2 diabetes. Normal pregnancies are critically dependent on the development of maternal insulin resistance balanced by an increased capacity to secrete insulin, which allows for the allocation of nutrients for adequate foetal growth and development. Several factors including placental hormones, inflammatory mediators and nutrients have been proposed to alter insulin sensitivity and insulin response and underpin the pathological outcomes of GDM. However, other factors may also be involved in the regulation of maternal metabolism and a complete understanding of GDM pathophysiology requires the identification of these factors, and the mechanisms associated with them. Recent studies highlight the potential utility of tissue-specific extracellular vesicles (EVs) in the diagnosis of disease onset and treatment monitoring for several pregnancy-related complications, including GDM. To date, there is a paucity of data defining changes in the release, content, bioactivity and diagnostic utility of circulating EVs in pregnancies complicated by GDM. Placental EVs may engage in paracellular interactions including local cell-to-cell communication between the cell constituents of the placenta and contiguous maternal tissues, and/or distal interactions involving the release of placental EVs into biological fluids and their transport to a remote site of action. Hence, the aim of this review is to discuss the biogenesis, isolation methods and role of EVs in the physiopathology of GDM, including changes in maternal insulin sensitivity during pregnancy.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| | - H David McIntyre
- Mater Research, The University of Queensland, South Brisbane, Qld, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia.,Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
44
|
Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesicles in hematological malignancies? Life Sci 2021; 271:119177. [PMID: 33577843 DOI: 10.1016/j.lfs.2021.119177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a complex disease in which a bidirectional collaboration between malignant cells and surrounding microenvironment creates an appropriate platform which ultimately facilitates the progression of the disease. The discovery of extracellular vesicles (EVs) was a turning point in the modern era of cancer biology, as their importance in human malignancies has set the stage to widen research interest in the field of cell-to-cell communication. The implication in short- and long-distance interaction via horizontally transfer of cellular components, ranging from non-coding RNAs to functional proteins, as well as stimulating target cells receptors by the means of ligands anchored on their membrane endows these "tiny vesicles with giant impacts" with incredible potential to re-educate normal tissues, and thus, to re-shape the surrounding niche. In this review, we highlight the pathogenic roles of EVs in human cancers, with an extensive focus on the recent advances in hematological malignancies.
Collapse
|
45
|
Yu S, Luo F, Jin LH. Rab5 and Rab11 maintain hematopoietic homeostasis by restricting multiple signaling pathways in Drosophila. eLife 2021; 10:60870. [PMID: 33560224 PMCID: PMC7891935 DOI: 10.7554/elife.60870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
The hematopoietic system of Drosophila is a powerful genetic model for studying hematopoiesis, and vesicle trafficking is important for signal transduction during various developmental processes; however, its interaction with hematopoiesis is currently largely unknown. In this article, we selected three endosome markers, Rab5, Rab7, and Rab11, that play a key role in membrane trafficking and determined whether they participate in hematopoiesis. Inhibiting Rab5 or Rab11 in hemocytes or the cortical zone (CZ) significantly induced cell overproliferation and lamellocyte formation in circulating hemocytes and lymph glands and disrupted blood cell progenitor maintenance. Lamellocyte formation involves the JNK, Toll, and Ras/EGFR signaling pathways. Notably, lamellocyte formation was also associated with JNK-dependent autophagy. In conclusion, we identified Rab5 and Rab11 as novel regulators of hematopoiesis, and our results advance the understanding of the mechanisms underlying the maintenance of hematopoietic homeostasis as well as the pathology of blood disorders such as leukemia.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
46
|
Contribution of extracellular vesicles in normal hematopoiesis and hematological malignancies. Heliyon 2021; 7:e06030. [PMID: 33521365 PMCID: PMC7820922 DOI: 10.1016/j.heliyon.2021.e06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/05/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed microparticles that have prominent roles in the intercellular crosstalk. EVs are secreted after fusion of endosomes with the plasma membrane (exosomes) or shed from the plasma membrane (microvesicles). These microparticles modulate bone marrow microenvironment and alter differentiation and expansion of normal hematopoietic cells. EVs originated from mesenchymal stromal cells have been shown to enhance expansion of myeloid-biased hematopoietic progenitor cells. In addition, megakaryocytic microparticles stimulate differentiation of hematopoietic stem and progenitor cells into mature megakaryocytes. The ability of EVs in induction of maturation and expansion of certain hematopoietic cells has implications in transfusion medicine and in targeted therapeutic modalities. Important prerequisites for these interventions are identification the specific targets of EVs, transferred biomolecules and molecular mechanisms underlying the fate decision in the target cells. EVs are also involved in the pathogenesis and progression of hematological malignancies including acute leukemia and multiples myeloma. In the current review, we provide a summary of studies which evaluated the significance of EVs in normal hematopoiesis and hematological malignancies.
Collapse
|
47
|
Huang D, Sun G, Hao X, He X, Zheng Z, Chen C, Yu Z, Xie L, Ma S, Liu L, Zhou BO, Cheng H, Zheng J, Cheng T. ANGPTL2-containing small extracellular vesicles from vascular endothelial cells accelerate leukemia progression. J Clin Invest 2021; 131:138986. [PMID: 33108353 DOI: 10.1172/jci138986] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Small extracellular vesicles (SEVs) are functional messengers of certain cellular niches that permit noncontact cell communications. Whether niche-specific SEVs fulfill this role in cancer is unclear. Here, we used 7 cell type-specific mouse Cre lines to conditionally knock out Vps33b in Cdh5+ or Tie2+ endothelial cells (ECs), Lepr+ BM perivascular cells, Osx+ osteoprogenitor cells, Pf4+ megakaryocytes, and Tcf21+ spleen stromal cells. We then examined the effects of reduced SEV secretion on progression of MLL-AF9-induced acute myeloid leukemia (AML), as well as normal hematopoiesis. Blocking SEV secretion from ECs, but not perivascular cells, megakaryocytes, or spleen stromal cells, markedly delayed the leukemia progression. Notably, reducing SEV production from ECs had no effect on normal hematopoiesis. Protein analysis showed that EC-derived SEVs contained a high level of ANGPTL2, which accelerated leukemia progression via binding to the LILRB2 receptor. Moreover, ANGPTL2-SEVs released from ECs were governed by VPS33B. Importantly, ANGPTL2-SEVs were also required for primary human AML cell maintenance. These findings demonstrate a role of niche-specific SEVs in cancer development and suggest targeting of ANGPTL2-SEVs from ECs as a potential strategy to interfere with certain types of AML.
Collapse
Affiliation(s)
- Dan Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiaoxin Hao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, State Key Laboratory of Experimental Hematology, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
48
|
Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials 2020; 269:120467. [PMID: 33189359 DOI: 10.1016/j.biomaterials.2020.120467] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have unique structural, compositional, and morphological characteristics as well as predominant physiochemical stability and biocompatibility properties. They play a crucial role in pathophysiological regulation, and also have broad prospects for clinical application in the diagnosis, prognosis, and therapy of disease, and tissue regeneration and repair. Herein, the biosynthesis and physiological functions and current methods for separation and identification of EVs are summarized. Specifically, engineered EVs may be used to enhance targeted therapy in cancer and repair damaged tissues, and they may be developed as an individualized imaging diagnostic reagent, among other potential applications. We will focus on reviewing recent studies on engineered EVs in which alterations enhanced their therapeutic capability or diagnostic imaging potential via physical, chemical, and biological modification approaches. This review will clarify the superior biological functions and powerful therapeutic potential of EVs, particularly with regard to new designs based on EVs and their utilization in a new generation of nanomedicine diagnosis and treatment platforms.
Collapse
Affiliation(s)
- Peipei Wu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Dickson Kofi Wiredu Ocansey
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Wenrong Xu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, PR China.
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, PR China.
| |
Collapse
|
49
|
Hematopoietic stem and progenitor cell signaling in the niche. Leukemia 2020; 34:3136-3148. [PMID: 33077865 DOI: 10.1038/s41375-020-01062-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are responsible for lifelong maintenance of hematopoiesis through self-renewal and differentiation into mature blood cell lineages. Traditional models hold that HSPCs guard homeostatic function and adapt to regenerative demand by integrating cell-autonomous, intrinsic programs with extrinsic cues from the niche. Despite the biologic significance, little is known about the active roles HSPCs partake in reciprocally shaping the function of their microenvironment. Here, we review evidence of signals emerging from HSPCs through secreted autocrine or paracrine factors, including extracellular vesicles, and via direct contact within the niche. We also discuss the functional impact of direct cellular interactions between hematopoietic elements on niche occupancy in the context of leukemic infiltration. The aggregate data support a model whereby HSPCs are active participants in the dynamic adaptation of the stem cell niche unit during development and homeostasis, and under inflammatory stress, malignancy, or transplantation.
Collapse
|
50
|
Mechanism of platelet α-granule biogenesis: study of cargo transport and the VPS33B-VPS16B complex in a model system. Blood Adv 2020; 3:2617-2626. [PMID: 31501156 DOI: 10.1182/bloodadvances.2018028969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Platelet α-granules play important roles in platelet function. They contain hundreds of proteins that are synthesized by the megakaryocyte or taken up by endocytosis. The trafficking pathways that mediate platelet α-granule biogenesis are incompletely understood, especially with regard to cargo synthesized by the megakaryocyte. Vacuolar-protein sorting 33B (VPS33B) and VPS16B are essential proteins for α-granule biogenesis, but they are largely uncharacterized. Here, we adapted a powerful method to directly map the pathway followed by newly synthesized cargo proteins to reach α-granules. Using this method, we revealed the recycling endosome as a key intermediate compartment in α-granule biogenesis. We then used CRISPR/Cas9 gene editing to knock out VPS33B in pluripotent stem cell-derived immortalized megakaryocyte cells (imMKCLs). Consistent with the observations in platelets from patients with VPS33B mutation, VPS33B-knockout (KO) imMKCLs have drastically reduced levels of α-granule proteins platelet factor 4, von Willebrand factor, and P-selectin. VPS33B and VPS16B form a distinct and small complex in imMKCLs with the same hydrodynamic radius as the recombinant VPS33B-VPS16B heterodimer purified from bacteria. Mechanistically, the VPS33B-VPS16B complex ensures the correct trafficking of α-granule proteins. VPS33B deficiency results in α-granule cargo degradation in lysosomes. VPS16B steady-state levels are significantly lower in VPS33B-KO imMKCLs, suggesting that VPS16B is destabilized in the absence of its partner. Exogenous expression of green fluorescent protein-VPS33B in VPS33B-KO imMKCLs reconstitutes the complex, which localizes to the recycling endosome, further defining this compartment as a key intermediate in α-granule biogenesis. These results advance our understanding of platelet α-granule biogenesis and open new avenues for the study of these organelles.
Collapse
|