1
|
Boris-Lawrie K, Liebau J, Hayir A, Heng X. Emerging Roles of m7G-Cap Hypermethylation and Nuclear Cap-Binding Proteins in Bypassing Suppression of eIF4E-Dependent Translation. Viruses 2025; 17:372. [PMID: 40143300 PMCID: PMC11946201 DOI: 10.3390/v17030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Translation regulation is essential to the survival of hosts. Most translation initiation falls under the control of the mTOR pathway, which regulates protein production from mono-methyl-guanosine (m7G) cap mRNAs. However, mTOR does not regulate all translation; hosts and viruses alike employ alternative pathways, protein factors, and internal ribosome entry sites to bypass mTOR. Trimethylguanosine (TMG)-caps arise from hypermethylation of pre-existing m7G-caps by the enzyme TGS1 and are modifications known for snoRNA, snRNA, and telomerase RNA. New findings originating from HIV-1 research reveal that TMG-caps are present on mRNA and license translation via an mTOR-independent pathway. Research has identified TMG-capping of selenoprotein mRNAs, junD, TGS1, DHX9, and retroviral transcripts. TMG-mediated translation may be a missing piece for understanding protein synthesis in cells with little mTOR activity, including HIV-infected resting T cells and nonproliferating cancer cells. Viruses display a nuanced interface with mTOR and have developed strategies that take advantage of the delicate interplay between these translation pathways. This review covers the current knowledge of the TMG-translation pathway. We discuss the intimate relationship between metabolism and translation and explore how this is exploited by HIV-1 in the context of CD4+ T cells. We postulate that co-opting both translation pathways provides a winning strategy for HIV-1 to dictate the sequential synthesis of its proteins and balance viral production with host cell survival.
Collapse
Affiliation(s)
- Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Jessica Liebau
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Abdullgadir Hayir
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Lilie T, Bouzy J, Asundi A, Taylor J, Roche S, Olson A, Coxen K, Corry H, Jordan H, Clayton K, Lin N, Tsibris A. HIV-1 latency reversal agent boosting is not limited by opioid use. JCI Insight 2024; 9:e185480. [PMID: 39470739 PMCID: PMC11601940 DOI: 10.1172/jci.insight.185480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024] Open
Abstract
Opioid use may affect the HIV-1 reservoir and its reversal from latency. We studied 47 virally suppressed people with HIV (PWH) and observed that lower concentration of HIV-1 latency reversal agents (LRAs), used with small molecules that did not reverse latency, synergistically increased the magnitude of HIV-1 reactivation ex vivo, regardless of opioid use. This LRA boosting, which combined a second mitochondria-derived activator of caspases mimetic or low-dose PKC agonist with histone deacetylase inhibitors, generated more unspliced HIV-1 transcription than PMA with ionomycin (PMAi), the maximal known HIV-1 reactivator. LRA boosting associated with greater histone acetylation, modulated surface activation-induced markers, and altered T cell production of TNF-α, IL-2, and IFN-γ. HIV-1 reservoirs in PWH contained unspliced and polyadenylated virus mRNA, the ratios of which were greater in resting than total CD4+ T cells and corrected to 1:1 with PMAi exposure. We characterized treated suppressed HIV-1 infection as a period of inefficient, not absent, virus transcription. Multiply spliced HIV-1 transcripts and virion production did not consistently increase with LRA boosting, suggesting the presence of a persistent posttranscriptional block. LRA boosting can be leveraged to probe mechanisms of an effective cellular HIV-1 latency reversal program.
Collapse
Affiliation(s)
- Tyler Lilie
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Bouzy
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Archana Asundi
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jessica Taylor
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Grayken Center for Addiction, Boston Medical Center, Boston, Massachusetts, USA
| | - Samantha Roche
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alex Olson
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kendyll Coxen
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heather Corry
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah Jordan
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kiera Clayton
- Department of Pathology, University of Massachusetts T.H. Chan School of Medicine, Worcester, Massachusetts, USA
| | - Nina Lin
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Henrich TJ, Bosch RJ, Godfrey C, Mar H, Nair A, Keefer M, Fichtenbaum C, Moisi D, Clagett B, Buck AM, Deitchman AN, Aweeka F, Li JZ, Kuritzkes DR, Lederman MM, Hsue PY, Deeks SG. Sirolimus reduces T cell cycling, immune checkpoint marker expression, and HIV-1 DNA in people with HIV. Cell Rep Med 2024; 5:101745. [PMID: 39321793 PMCID: PMC11513808 DOI: 10.1016/j.xcrm.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/10/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Key HIV cure strategies involve reversing immune dysfunction and limiting the proliferation of infected T cells. We evaluate the safety of sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, in people with HIV (PWH) and study the impact of sirolimus on HIV-1 reservoir size and HIV-1-specific immunity in a single-arm study of 20 weeks of treatment in PWH on antiretroviral therapy (ART). Sirolimus treatment does not impact HIV-1-specific CD8 T cell responses but leads to a significant decrease in CD4+ T cell-associated HIV-1 DNA levels at 20 weeks of therapy in the primary efficacy population (n = 16; 31% decline, p = 0.008). This decline persists for at least 12 weeks following cessation of the study drug. Sirolimus treatment also leads to a significant reduction in CD4+ T cell cycling and PD-1 expression on CD8+ lymphocytes. These data suggest that homeostatic proliferation of infected cells, an important mechanism for HIV persistence, is an intriguing therapeutic target.
Collapse
Affiliation(s)
- Timothy J Henrich
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA.
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Catherine Godfrey
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Hanna Mar
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Apsara Nair
- Frontier Science and Technology Research Foundation, Amherst, NY 14226, USA
| | - Michael Keefer
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Carl Fichtenbaum
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniela Moisi
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian Clagett
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Amanda M Buck
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; San Francisco State University, San Francisco, CA 94132, USA
| | - Amelia N Deitchman
- Department of Clinical Pharmacology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael M Lederman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Priscilla Y Hsue
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
4
|
Janssens J, Kim P, Kim SJ, Wedrychowski A, Kadiyala GN, Hunt PW, Deeks SG, Wong JK, Yukl SA. Mechanisms and efficacy of small molecule latency-promoting agents to inhibit HIV reactivation ex vivo. JCI Insight 2024; 9:e183084. [PMID: 39163135 PMCID: PMC11466185 DOI: 10.1172/jci.insight.183084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Drugs that inhibit HIV transcription and/or reactivation of latent HIV have been proposed as a strategy to reduce HIV-associated immune activation or to achieve a functional cure, yet comparative studies are lacking. We evaluated 26 drugs, including drugs previously reported to inhibit HIV transcription (inhibitors of Tat-dependent HIV transcription, Rev, HSF-1/PTEF-b, HSP90, Jak/Stat, or SIRT1/Tat deacetylation) and other agents that were not tested before (inhibitors of PKC, NF-κB, SP-1, or histone acetyltransferase; NR2F1 agonists), elongation (inhibitors of CDK9/ PTEF-b), completion (inhibitors of PolyA-polymerase), or splicing (inhibitors of human splice factors). To investigate if those drugs would vary in their ability to affect different blocks to HIV transcription, we measured levels of initiated, elongated, midtranscribed, completed, and multiply spliced HIV RNA in PBMCs from antiretroviral therapy-suppressed individuals following ex vivo treatment with each drug and subsequent T cell activation. We identified new drugs that prevent HIV reactivation, including CDK and splicing inhibitors. While some drugs inhibited 1 or 2 steps, other drugs (CDK inhibitors, splicing inhibitors, tanespimycin, and triptolide) inhibited multiple stages of HIV transcription and blocked the production of supernatant viral RNA. These drugs and targets deserve further study in strategies aimed at reducing HIV-associated immune activation or achieving a functional cure.
Collapse
Affiliation(s)
- Julie Janssens
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peggy Kim
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Sun Jin Kim
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Adam Wedrychowski
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gayatri N. Kadiyala
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peter W. Hunt
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Joseph K. Wong
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Steven A. Yukl
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
5
|
Biological Aging in People Living with HIV on Successful Antiretroviral Therapy: Do They Age Faster? Curr HIV/AIDS Rep 2023; 20:42-50. [PMID: 36695947 PMCID: PMC10102129 DOI: 10.1007/s11904-023-00646-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW In the absence of a prophylactic/therapeutic vaccine or cure, the most amazing achievement in the battle against HIV was the discovery of effective, well-tolerated combination antiretroviral therapy (cART). The primary research question remains whether PLWH on prolonged successful therapy has accelerated, premature, or accentuated biological aging. In this review, we discuss the current understanding of the immunometabolic profile in PLWH, potentially associated with biological aging, and a better understanding of the mechanisms and temporal dynamics of biological aging in PLWH. RECENT FINDINGS Biological aging, defined by the epigenetic alterations analyzed by the DNA methylation pattern, has been reported in PLWH with cART that points towards epigenetic age acceleration. The hastened development of specific clinical geriatric syndromes like cardiovascular diseases, metabolic syndrome, cancers, liver diseases, neurocognitive diseases, persistent low-grade inflammation, and a shift toward glutamate metabolism in PLWH may potentiate a metabolic profile at-risk for accelerated aging.
Collapse
|
6
|
Mu W, Rezek V, Martin H, Carrillo MA, Tomer S, Hamid P, Lizarraga MA, Tibbe TD, Yang OO, Jamieson BD, Kitchen SG, Zhen A. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI Insight 2022; 7:e159136. [PMID: 36509289 PMCID: PMC9746825 DOI: 10.1172/jci.insight.159136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Philip Hamid
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Miguel A. Lizarraga
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tristan D. Tibbe
- Statistic Core, Department of Medicine at UCLA, Los Angeles, California, USA
| | - Otto O. Yang
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Disease and
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Choe K, Park HY, Ikram M, Lee HJ, Park TJ, Ullah R, Kim MO. Systematic Review of the Common Pathophysiological Mechanisms in COVID-19 and Neurodegeneration: The Role of Bioactive Compounds and Natural Antioxidants. Cells 2022; 11:cells11081298. [PMID: 35455977 PMCID: PMC9031507 DOI: 10.3390/cells11081298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus (2019-nCoVCOVID-19) belongs to the Beta coronavirus family, which contains MERS-CoV (Middle East respiratory syndrome coronavirus) and SARS-CoV (severe acute respiratory syndrome coronavirus). SARS-CoV-2 activates the innate immune system, thereby activating the inflammatory mechanism, causing the release of inflammatory cytokines. Moreover, it has been suggested that COVID-19 may penetrate the central nervous system, and release inflammatory cytokines in the brains, inducing neuroinflammation and neurodegeneration. Several links connect COVID-19 with Alzheimer’s disease (AD), such as elevated oxidative stress, uncontrolled release of the inflammatory cytokines, and mitochondrial apoptosis. There are severe concerns that excessive immune cell activation in COVID-19 may aggravate the neurodegeneration and amyloid-beta pathology of AD. Here, we have collected the evidence, showing the links between the two diseases. The focus has been made to collect the information on the activation of the inflammation, its contributors, and shared therapeutic targets. Furthermore, we have given future perspectives, research gaps, and overlapping pathological bases of the two diseases. Lastly, we have given the short touch to the drugs that have equally shown rescuing effects against both diseases. Although there is limited information available regarding the exact links between COVID-19 and neuroinflammation, we have insight into the pathological contributors of the diseases. Based on the shared pathological features and therapeutic targets, we hypothesize that the activation of the immune system may induce neurological disorders by triggering oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Hyun Young Park
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht Medical Center, 6229 ER Maastricht, The Netherlands
| | - Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK;
| | - Rahat Ullah
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
- Alz-Dementia Korea Co., Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
8
|
Varco-Merth BD, Brantley W, Marenco A, Duell DD, Fachko DN, Richardson B, Busman-Sahay K, Shao D, Flores W, Engelman K, Fukazawa Y, Wong SW, Skalsky RL, Smedley J, Axthelm MK, Lifson JD, Estes JD, Edlefsen PT, Picker L, Cameron CM, Henrich TJ, Okoye AA. Rapamycin limits CD4+ T cell proliferation in simian immunodeficiency virus-infected rhesus macaques on antiretroviral therapy. J Clin Invest 2022; 132:156063. [PMID: 35316218 PMCID: PMC9106346 DOI: 10.1172/jci156063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
Proliferation of latently infected CD4+ T cells with replication-competent proviruses is an important mechanism contributing to HIV persistence during antiretroviral therapy (ART). One approach to targeting this latent cell expansion is to inhibit mTOR, a regulatory kinase involved with cell growth, metabolism, and proliferation. Here, we determined the effects of chronic mTOR inhibition with rapamycin with or without T cell activation in SIV-infected rhesus macaques (RMs) on ART. Rapamycin perturbed the expression of multiple genes and signaling pathways important for cellular proliferation and substantially decreased the frequency of proliferating CD4+ memory T cells (TM cells) in blood and tissues. However, levels of cell-associated SIV DNA and SIV RNA were not markedly different between rapamycin-treated RMs and controls during ART. T cell activation with an anti-CD3LALA antibody induced increases in SIV RNA in plasma of RMs on rapamycin, consistent with SIV production. However, upon ART cessation, both rapamycin and CD3LALA–treated and control-treated RMs rebounded in less than 12 days, with no difference in the time to viral rebound or post-ART viral load set points. These results indicate that, while rapamycin can decrease the proliferation of CD4+ TM cells, chronic mTOR inhibition alone or in combination with T cell activation was not sufficient to disrupt the stability of the SIV reservoir.
Collapse
Affiliation(s)
- Benjamin D Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - William Brantley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Derick D Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Brian Richardson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, United States of America
| | - Walter Flores
- MassBiologics, University of Massachusetts Medical School, Boston, United States of America
| | - Kathleen Engelman
- MassBiologics, University of Massachusetts Medical School, Boston, United States of America
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, United States of America
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, United States of America
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, United States of America
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States of America
| | - Louis Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| | - Cheryl Ma Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, United States of America
| | - Timothy J Henrich
- Department of Medicine, UCSF, San Francisco, United States of America
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, United States of America
| |
Collapse
|
9
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
10
|
Gauthier T, Chen W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front Immunol 2022; 13:780839. [PMID: 35154105 PMCID: PMC8825490 DOI: 10.3389/fimmu.2022.780839] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
11
|
Akusjärvi SS, Ambikan AT, Krishnan S, Gupta S, Sperk M, Végvári Á, Mikaeloff F, Healy K, Vesterbacka J, Nowak P, Sönnerborg A, Neogi U. Integrative proteo-transcriptomic and immunophenotyping signatures of HIV-1 elite control phenotype: A cross-talk between glycolysis and HIF signaling. iScience 2022; 25:103607. [PMID: 35005552 PMCID: PMC8718889 DOI: 10.1016/j.isci.2021.103607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Natural control of HIV-1 is a characteristic of <1% of HIV-1-infected individuals, so called elite controllers (EC). In this study, we sought to identify signaling pathways associated with the EC phenotype using integrative proteo-transcriptomic analysis and immunophenotyping. We found HIF signaling and glycolysis as specific traits of the EC phenotype together with dysregulation of HIF target gene transcription. A higher proportion of HIF-1α and HIF-1β in the nuclei of CD4+ and CD8+ T cells in the male EC were observed, indicating a potential increased activation of the HIF signaling pathway. Furthermore, intracellular glucose levels were elevated in EC even as the surface expression of the metabolite transporters Glut1 and MCT-1 were decreased on lymphocytes indicative of unique metabolic uptake and flux profile. Combined, our data show that glycolytic modulation and altered HIF signaling is a unique feature of the male EC phenotype that may contribute to natural control of HIV-1. Proteo-transcriptomic integration identifying features of EC phenotype Sex-specific differences in EC phenotypes Enrichment of glycolysis and HIF signaling, a unique feature in the male EC Enrichment of HIF signaling independent on HIF-1α protein levels in EC
Collapse
Affiliation(s)
- Sara Svensson Akusjärvi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Campus Solna, 171 65 Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Katie Healy
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden.,Department of Medicine Huddinge, Division of Infectious Disease, Karolinska Institutet, I73, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52 Stockholm, Sweden.,Manipal Institute of Virology (MIV), Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Larragoite ET, Nell RA, Martins LJ, Barrows LR, Planelles V, Spivak AM. Histone deacetylase inhibition reduces deleterious cytokine release induced by ingenol stimulation. Biochem Pharmacol 2022; 195:114844. [PMID: 34801521 PMCID: PMC8712404 DOI: 10.1016/j.bcp.2021.114844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Latency reversing agents (LRAs), such as protein kinase C (PKC) agonists, constitute a promising strategy for exposing and eliminating the HIV-1 latent reservoir. PKC agonists activate NF-κB and induce deleterious pro-inflammatory cytokine production. Adjuvant pharmacological agents, such as ruxolitinib, a JAK inhibitor, have previously been combined with LRAs to reduce deleterious pro-inflammatory cytokine secretion without inhibiting HIV-1 reactivation in vitro. Histone deacetylase inhibitors (HDACi) are known to dampen pro-inflammatory cytokine secretion in the context of other diseases and synergize with LRAs to reactivate latent HIV-1. This study investigates whether a panel of epigenetic modifiers, including HDACi, could dampen PKC-induced pro-inflammatory cytokine secretion during latency reversal. We screened an epigenetic modifier library for compounds that reduced intracellular IL-6 production induced by the PKC agonist Ingenol-3,20-dibenzoate. We further tested the most promising epigenetic inhibitor class, HDACi, for their ability to reduce pro-inflammatory cytokines and reactivate latent HIV-1 ex vivo. We identified nine epigenetic modulators that reduced PKC-induced intracellular IL-6. In cells from aviremic individuals living with HIV-1, the HDAC1-3 inhibitor, suberohydroxamic acid (SBHA), reduced secretion of pro-inflammatory cytokines TNF-α, IL-5, IL-2r, and IL-17 but did not significantly reactivate latent HIV-1 when combined with Ingenol-3,20-dibenzoate. Combining SBHA and Ingenol-3,20-dibenzoate reduces deleterious cytokine production during latency reversal but does not induce significant viral reactivation in aviremic donor PBMCs. The ability of SBHA to reduce PKC-induced pro-inflammatory cytokines when combined with Ingenol-3,20-dibenzoate suggests SBHA can be used to reduced PKC induced pro-inflammatory cytokines but not to achieve latency reversal in the context of HIV-1.
Collapse
Affiliation(s)
- Erin T. Larragoite
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Racheal A. Nell
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Laura J. Martins
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, United States
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Adam M. Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, United States, Corresponding Author: Adam M. Spivak, 50 North Medical Drive, Division of Infectious Diseases, Room 4B319, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, Phone: 801-587-1964, Fax: 801-585-3377,
| |
Collapse
|
13
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
14
|
Castro-Gonzalez S, Chen Y, Benjamin J, Shi Y, Serra-Moreno R. Residues T 48 and A 49 in HIV-1 NL4-3 Nef are responsible for the counteraction of autophagy initiation, which prevents the ubiquitin-dependent degradation of Gag through autophagosomes. Retrovirology 2021; 18:33. [PMID: 34711257 PMCID: PMC8555152 DOI: 10.1186/s12977-021-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Autophagy plays an important role as a cellular defense mechanism against intracellular pathogens, like viruses. Specifically, autophagy orchestrates the recruitment of specialized cargo, including viral components needed for replication, for lysosomal degradation. In addition to this primary role, the cleavage of viral structures facilitates their association with pattern recognition receptors and MHC-I/II complexes, which assists in the modulation of innate and adaptive immune responses against these pathogens. Importantly, whereas autophagy restricts the replicative capacity of human immunodeficiency virus type 1 (HIV-1), this virus has evolved the gene nef to circumvent this process through the inhibition of early and late stages of the autophagy cascade. Despite recent advances, many details of the mutual antagonism between HIV-1 and autophagy still remain unknown. Here, we uncover the genetic determinants that drive the autophagy-mediated restriction of HIV-1 as well as the counteraction imposed by Nef. Additionally, we also examine the implications of autophagy antagonism in HIV-1 infectivity. RESULTS We found that sustained activation of autophagy potently inhibits HIV-1 replication through the degradation of HIV-1 Gag, and that this effect is more prominent for nef-deficient viruses. Gag re-localizes to autophagosomes where it interacts with the autophagosome markers LC3 and SQSTM1. Importantly, autophagy-mediated recognition and recruitment of Gag requires the myristoylation and ubiquitination of this virus protein, two post-translational modifications that are essential for Gag's central role in virion assembly and budding. We also identified residues T48 and A49 in HIV-1 NL4-3 Nef as responsible for impairing the early stages of autophagy. Finally, a survey of pandemic HIV-1 transmitted/founder viruses revealed that these isolates are highly resistant to autophagy restriction. CONCLUSIONS This study provides evidence that autophagy antagonism is important for virus replication and suggests that the ability of Nef to counteract autophagy may have played an important role in mucosal transmission. Hence, disabling Nef in combination with the pharmacological manipulation of autophagy represents a promising strategy to prevent HIV spread.
Collapse
Affiliation(s)
| | - Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jared Benjamin
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuhang Shi
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
15
|
HIV-Related Immune Activation and Inflammation: Current Understanding and Strategies. J Immunol Res 2021; 2021:7316456. [PMID: 34631899 PMCID: PMC8494587 DOI: 10.1155/2021/7316456] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Although antiretroviral therapy effectively controls human immunodeficiency virus (HIV) replication, a residual chronic immune activation/inflammation persists throughout the disease. This aberrant immune activation and inflammation are considered an accelerator of non-AIDS-related events and one of the driving forces of CD4+ T cell depletion. Unfortunately, HIV-associated immune activation is driven by various factors, while the mechanism of excessive inflammation has not been formally clarified. To date, several clinical interventions or treatment candidates undergoing clinical trials have been proposed to combat this systemic immune activation/inflammation. However, these strategies revealed limited results, or their nonspecific anti-inflammatory properties are similar to previous interventions. Here, we reviewed recent learnings of immune activation and persisting inflammation associated with HIV infection, as well as the current directions to overcome it. Of note, a more profound understanding of the specific mechanisms for aberrant inflammation is still imperative for identifying an effective clinical intervention strategy.
Collapse
|
16
|
Erlandson KM, Piggott DA. Frailty and HIV: Moving from Characterization to Intervention. Curr HIV/AIDS Rep 2021; 18:157-175. [PMID: 33817767 PMCID: PMC8193917 DOI: 10.1007/s11904-021-00554-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW While the characteristics associated with frailty in people with HIV (PWH) have been well described, little is known regarding interventions to slow or reverse frailty. Here we review interventions to prevent or treat frailty in the general population and in people with HIV (PWH). RECENT FINDINGS Frailty interventions have primarily relied on nonpharmacologic interventions (e.g., exercise and nutrition). Although few have addressed frailty, many of these therapies have shown benefit on components of frailty including gait speed, strength, and low activity among PWH. When nonpharmacologic interventions are insufficient, pharmacologic interventions may be necessary. Many interventions have been tested in preclinical models, but few have been tested or shown benefit among older adults with or without HIV. Ultimately, pharmacologic and nonpharmacologic interventions have the potential to improve vulnerability that underlies frailty in PWH, though clinical data is currently sparse.
Collapse
Affiliation(s)
- Kristine M Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado-Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Damani A Piggott
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Feng Z, Yang Z, Gao X, Xue Y, Wang X. Resveratrol Promotes HIV-1 Tat Accumulation via AKT/FOXO1 Signaling Axis and Potentiates Vorinostat to Antagonize HIV-1 Latency. Curr HIV Res 2021; 19:238-247. [PMID: 33461468 DOI: 10.2174/1570162x19666210118151249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The latent reservoir of HIV-1 is a major barrier to achieving the eradication of HIV-1/AIDS. One strategy is termed "shock and kill", which aims to awaken the latent HIV-1 using latency reversing agents (LRAs) to replicate and produce HIV-1 particles. Subsequently, the host cells containing HIV-1 can be recognized and eliminated by the immune response and anti-retroviral therapy. Although many LRAs have been found and tested, their clinical trials were dissatisfactory. OBJECTIVE To aim of the study was to investigate how resveratrol reactivates silent HIV-1 transcription and assess if resveratrol could be a candidate drug for the "shock" phase in "shock and kill" strategy. METHODS We used established HIV-1 transcription cell models (HeLa-based NH1 and NH2 cells) and HIV-1 latent cell models (J-Lat A72 and Jurkat 2D10 cells). We performed resveratrol treatment on these cell lines and studied the mechanism of how resveratrol stimulates HIV-1 gene transcription. We also tested resveratrol's bioactivity on primary cells isolated from HIV-1 latent infected patients. RESULTS Resveratrol promoted HIV-1 Tat protein levels, and resveratrol-induced Tat promotion was found to be dependent on the AKT/FOXO1 signaling axis. Resveratrol could partially dissociate P-TEFb (Positive Transcription Elongation Factor b) from 7SK snRNP (7SK small nuclear Ribonucleoprotein) and promote Tat-SEC (Super Elongation Complex) interaction. Preclinical studies showed that resveratrol potentiated Vorinostat to awaken HIV-1 latency in HIV-1 latent infected cells isolated from patients. CONCLUSION We found a new mechanism of resveratrol stimulating the production of HIV-1. Resveratrol could be a promising candidate drug to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Zeming Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
18
|
Singh V, Dashti A, Mavigner M, Chahroudi A. Latency Reversal 2.0: Giving the Immune System a Seat at the Table. Curr HIV/AIDS Rep 2021; 18:117-127. [PMID: 33433817 PMCID: PMC7985101 DOI: 10.1007/s11904-020-00540-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW For most people living with HIV (PLWH), treatment with effective antiretroviral therapy (ART) results in suppression of viremia below the limit of detection of clinical assays, immune reconstitution, reduced immune activation, avoidance of opportunistic infections, and progression to AIDS. However, ART alone is not curative, and HIV persists in a non-replicating, latent form. In this review, we provide a historical perspective on non-specific latency reversal approaches (LRA 1.0) and summarize recent advances in latency reversal strategies that target specific signaling pathways within CD4+ T cells or other immune cells to induce expression of latent HIV (immune-based latency reversal, or LRA 2.0). RECENT FINDINGS The HIV reservoir is primarily composed of latently infected CD4+ T cells carrying integrated, replication-competent provirus that can give rise to rebound viremia if ART is stopped. Myeloid lineage cells also contribute to HIV latency in certain tissues; we focus here on CD4+ T cells as a sufficient body of evidence regarding latency reversal in myeloid cells is lacking. The immunomodulatory LRA 2.0 approaches we describe include pattern recognition receptor agonists, immune checkpoint inhibitors, non-canonical NF-kB stimulation, and transient CD8+ lymphocyte depletion, along with promising combination strategies. We highlight recent studies demonstrating robust latency reversal in nonhuman primate models. While significant strides have been made in terms of virus reactivation from latency, initial hopes for latency reversal alone to result in a reduction of infected cells, through viral cytopathic effect or an unboosted immune system, have not been realized and it seems clear that even effective latency reversal strategies will need to be paired with an approach that facilitates immune recognition and clearance of cells containing reactivated virus.
Collapse
Affiliation(s)
- Vidisha Singh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Amir Dashti
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University Atlanta, Atlanta, GA, USA.
| |
Collapse
|
19
|
Yeh YHJ, Jenike KM, Calvi RM, Chiarella J, Hoh R, Deeks SG, Ho YC. Filgotinib suppresses HIV-1-driven gene transcription by inhibiting HIV-1 splicing and T cell activation. J Clin Invest 2021; 130:4969-4984. [PMID: 32573496 DOI: 10.1172/jci137371] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite effective antiretroviral therapy, HIV-1-infected cells continue to produce viral antigens and induce chronic immune exhaustion. We propose to identify HIV-1-suppressing agents that can inhibit HIV-1 reactivation and reduce HIV-1-induced immune activation. Using a newly developed dual-reporter system and a high-throughput drug screen, we identified FDA-approved drugs that can suppress HIV-1 reactivation in both cell line models and CD4+ T cells from virally suppressed HIV-1-infected individuals. We identified 11 cellular pathways required for HIV-1 reactivation as druggable targets. Using differential expression analysis, gene set enrichment analysis, and exon-intron landscape analysis, we examined the impact of drug treatment on the cellular environment at a genome-wide level. We identified what we believe to be a new function of a JAK inhibitor, filgotinib, that suppresses HIV-1 splicing. First, filgotinib preferentially suppresses spliced HIV-1 RNA transcription. Second, filgotinib suppresses HIV-1-driven aberrant cancer-related gene expression at the integration site. Third, we found that filgotinib suppresses HIV-1 transcription by inhibiting T cell activation and by modulating RNA splicing. Finally, we found that filgotinib treatment reduces the proliferation of HIV-1-infected cells. Overall, the combination of a drug screen and transcriptome analysis provides systematic understanding of cellular targets required for HIV-1 reactivation and drug candidates that may reduce HIV-1-related immune activation.
Collapse
Affiliation(s)
- Yang-Hui Jimmy Yeh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Katharine M Jenike
- Human Genetics PhD Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachela M Calvi
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jennifer Chiarella
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Khan N. mTOR: A possible therapeutic target against SARS-CoV-2 infection. ARCHIVES OF STEM CELL AND THERAPY 2021; 2:5-7. [PMID: 34179893 PMCID: PMC8225252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| |
Collapse
|
21
|
Khan N, Chen X, Geiger JD. Possible Therapeutic Use of Natural Compounds Against COVID-19. JOURNAL OF CELLULAR SIGNALING 2021; 2:63-79. [PMID: 33768214 PMCID: PMC7990267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The outbreak of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has led to coronavirus disease-19 (COVID-19); a pandemic disease that has resulted in devastating social, economic, morbidity and mortality burdens. SARS-CoV-2 infects cells following receptor-mediated endocytosis and priming by cellular proteases. Following uptake, SARS-CoV-2 replicates in autophagosome-like structures in the cytosol following its escape from endolysosomes. Accordingly, the greater endolysosome pathway including autophagosomes and the mTOR sensor may be targets for therapeutic interventions against SARS-CoV-2 infection and COVID-19 pathogenesis. Naturally existing compounds (phytochemicals) through their actions on endolysosomes and mTOR signaling pathways might provide therapeutic relief against COVID-19. Here, we discuss evidence that some natural compounds through actions on the greater endolysosome system can inhibit SARS-CoV-2 infectivity and thereby might be repurposed for use against COVID-19.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| |
Collapse
|
22
|
Benedetti F, Sorrenti V, Buriani A, Fortinguerra S, Scapagnini G, Zella D. Resveratrol, Rapamycin and Metformin as Modulators of Antiviral Pathways. Viruses 2020; 12:v12121458. [PMID: 33348714 PMCID: PMC7766714 DOI: 10.3390/v12121458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Balanced nutrition and appropriate dietary interventions are fundamental in the prevention and management of viral infections. Additionally, accurate modulation of the inflammatory response is necessary to achieve an adequate antiviral immune response. Many studies, both in vitro with mammalian cells and in vivo with small animal models, have highlighted the antiviral properties of resveratrol, rapamycin and metformin. The current review outlines the mechanisms of action of these three important compounds on the cellular pathways involved with viral replication and the mechanisms of virus-related diseases, as well as the current status of their clinical use.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
- Bendessere™ Study Center, Via Prima Strada 23/3, 35129 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: (G.S.); (D.Z.)
| | - Davide Zella
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: (G.S.); (D.Z.)
| |
Collapse
|
23
|
Sahay B, Mergia A. The Potential Contribution of Caveolin 1 to HIV Latent Infection. Pathogens 2020; 9:pathogens9110896. [PMID: 33121153 PMCID: PMC7692328 DOI: 10.3390/pathogens9110896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is not capable of eradicating HIV from infected individuals mainly due to HIV’s persistence in small reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription have been described. Despite these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore, there is a need for more understanding of novel mechanisms that are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin 1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1 in lymphocytes has been controversial. Recent evidence, however, convincingly established the expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to understand HIV latent infection.
Collapse
Affiliation(s)
| | - Ayalew Mergia
- Correspondence: ; Tel.: +352-294-4139; Fax: +352-392-9704
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To review the potential use of senotherapeutics, pharmacologic agents that target senescent cells, in addressing HIV-1 persistence. RECENT FINDINGS Treated HIV-1 infection results in a state of immune exhaustion, which may involve reprogramming of infected and bystander cells toward a state of cellular senescence. Aging research has recently uncovered pathways that make senescent cells uniquely susceptible to pharmacologic intervention. Specific compounds, known as senotherapeutics, have been identified that interrupt pathways senescent cells depend on for survival. Several of these pathways are important in modulating the cellular microenvironment in chronically and latently infected cells. Strategies targeting these pathways may prove useful in combating both HIV-1 persistence and HIV-1-associated immune exhaustion. Senotherapeutics have recently been described as potential therapeutics for aging-associated diseases driven by senescent cells. Recently, correlations have emerged between HIV-1 infection, senescence, lifelong chronic infection, and viral persistence. New insights and therapies targeting cellular senescence may offer a novel strategy to address both HIV-1 persistence and immune exhaustion induced by chronic viral infection.
Collapse
Affiliation(s)
- Matthew A Szaniawski
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, 30 North 1900 East, Room 4B319, Salt Lake City, UT, 84132, USA
| | - Adam M Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, 30 North 1900 East, Room 4B319, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
25
|
Kang S, Tang H. HIV-1 Infection and Glucose Metabolism Reprogramming of T Cells: Another Approach Toward Functional Cure and Reservoir Eradication. Front Immunol 2020; 11:572677. [PMID: 33117366 PMCID: PMC7575757 DOI: 10.3389/fimmu.2020.572677] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
With the emerging of highly active antiretroviral therapy, HIV-1 infection has transferred from a fatal threat to a chronic disease that could be managed. Nevertheless, inextricable systemic immune activation and chronic inflammation despite viral suppression render patients still at higher risk of HIV-1-associated non-AIDS complications. Immunometabolism has nowadays raised more and more attention for that targeting metabolism may become a promising approach to modulate immune system and play a role in treating cancer, HIV-1 infection and autoimmune diseases. HIV-1 mainly infects CD4+ T cells and accumulating evidence has brought to light the association between T cell metabolism reprogramming and HIV-1 pathogenesis. Here, we will focus on the interplay of glycometabolism reprogramming of T cells and HIV-1 infection, making an effort to delineate the possibility of utilizing immunometabolism as a new target towards HIV-1 management and even sterilizing cure through eliminating viral reservoir.
Collapse
Affiliation(s)
- Shuang Kang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Pinto DO, DeMarino C, Vo TT, Cowen M, Kim Y, Pleet ML, Barclay RA, Noren Hooten N, Evans MK, Heredia A, Batrakova EV, Iordanskiy S, Kashanchi F. Low-Level Ionizing Radiation Induces Selective Killing of HIV-1-Infected Cells with Reversal of Cytokine Induction Using mTOR Inhibitors. Viruses 2020; 12:E885. [PMID: 32823598 PMCID: PMC7472203 DOI: 10.3390/v12080885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the "shock and kill" strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Thy T. Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Robert A. Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Elena V. Batrakova
- Department of Medicine, University of North Carolina HIV Cure Center; University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Sergey Iordanskiy
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| |
Collapse
|
27
|
Abstract
: With current antiretroviral therapy, the lifespan of newly diagnosed persons with HIV (PWH) approaches that of uninfected persons. However, metabolic abnormalities related to both the disease and the virus itself, along with comorbidities of aging, have resulted in end-organ disease and organ failure as a major cause of morbidity and mortality. Solid organ transplantation is a life-saving therapy for PWH who have organ failure, and the approval of the HIV Organ Policy Equity Act has opened and expanded opportunities for PWH to donate and receive organs. The current environment of organ transplantation for PWH will be reviewed and future directions of research and treatment will be discussed.
Collapse
Affiliation(s)
| | - Valentina Stosor
- Divisions of Infectious Diseases and Organ Transplantation and Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
28
|
Modulation of mTORC1 Signaling Pathway by HIV-1. Cells 2020; 9:cells9051090. [PMID: 32354054 PMCID: PMC7291251 DOI: 10.3390/cells9051090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to different stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradication.
Collapse
|
29
|
Boucau J, Das J, Joshi N, Le Gall S. Latency reversal agents modulate HIV antigen processing and presentation to CD8 T cells. PLoS Pathog 2020; 16:e1008442. [PMID: 32196533 PMCID: PMC7112239 DOI: 10.1371/journal.ppat.1008442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/01/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023] Open
Abstract
Latency reversal agents (LRA) variably induce HIV re-expression in CD4 T cells but reservoirs are not cleared. Whether HIV epitope presentation is similar between latency reversal and initial infection of CD4 T cells is unknown yet crucial to define immune responses able to detect HIV-infected CD4 T cells after latency reversal. HIV peptides displayed by MHC comes from the intracellular degradation of proteins by proteasomes and post-proteasomal peptidases but the impact of LRAs on antigen processing is not known. Here we show that HDAC inhibitors (HDCAi) reduced cytosolic proteolytic activities while PKC agonists (PKCa) increased them to a lesser extent than that induced by TCR activation. During the cytosolic degradation of long HIV peptides in LRA-treated CD4 T cells extracts, HDACi and PKCa modulated degradation patterns of peptides and altered the production of HIV epitopes in often opposite ways. Beyond known HIV epitopes, HDACi narrowed the coverage of HIV antigenic fragments by 8-11aa degradation peptides while PKCa broadened it. LRAs altered HIV infection kinetics and modulated CD8 T cell activation in an epitope- and time-dependent manner. Interestingly the efficiency of endogenous epitope processing and presentation to CD8 T cells was increased by PKCa Ingenol at early time points despite low levels of antigens. LRA-induced modulations of antigen processing should be considered and exploited to enhance and broaden HIV peptide presentation by CD4 T cells and to improve immune recognition after latency reversal. This property of LRAs, if confirmed with other antigens, might be exploited to improve immune detection of diseased cells beyond HIV. Latently HIV-infected CD4 T cells persist and remain invisible to the immune system. Strategies to flush out HIV reservoirs propose to re-express HIV with latency reversal agents (LRAs), leading to CD4 T cell death or clearance by HIV-specific immune responses. LRAs tested so far variably induced HIV re-expression but did not eliminate reservoirs. The activation of HIV-specific immune responses is triggered by HIV peptides displayed by infected cells after HIV intracellular degradation. Whether HIV antigens are similarly degraded and displayed by CD4 T cells after latency reversal or during initial infection is unknown. We showed that LRAs altered the activities of the degradation machinery and changed the degradation patterns of HIV into peptides. LRA-treated HIV-infected CD4 T cells were variably recognized by immune cells in a time- and peptide-dependent manner. Some LRAs increased the efficiency of HIV peptide presentation despite low levels of HIV antigens inside CD4 T cells. The modulation of HIV peptide presentation by current or future LRAs should be accounted for and exploited to improve HIV peptide presentation and enhance immune detection of HIV-infected CD4 T cells after latency reversal.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neelambari Joshi
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
31
|
Khan SZ, Gasperino S, Zeichner SL. Nuclear Transit and HIV LTR Binding of NF-κB Subunits Held by IκB Proteins: Implications for HIV-1 Activation. Viruses 2019; 11:v11121162. [PMID: 31888181 PMCID: PMC6949894 DOI: 10.3390/v11121162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
No effective therapy to eliminate the HIV latently infected cell reservoir has been developed. One approach, “shock and kill”, employs agents that activate HIV, subsequently killing the activated infected cells and/or virus. Shock and kill requires agents that safely and effectively activate HIV. One class of activation agents works through classical NF-κB pathways, but global NF-κB activators are non-specific and toxic. There exist two major IκBs: IκBα, and IκBε, which hold activating NF-κB subunits in the cytoplasm, releasing them for nuclear transit upon cell stimulation. IκBα was considered the main IκB responsible for gene expression regulation, including HIV activation. IκBε is expressed in cells constituting much of the latent HIV reservoir, and IκBε knockout mice have a minimal phenotype, suggesting that IκBε could be a valuable target for HIV activation and reservoir depletion. We previously showed that targeting IκBε yields substantial increases in HIV expression. Here, we show that IκBε holds c-Rel and p65 activating NF-κB subunits in the cytoplasm, and that targeting IκBε with siRNA produces a strong increase in HIV expression associated with enhanced c-Rel and p65 transit to the nucleus and binding to the HIV LTR of the activating NF-κBs, demonstrating a mechanism through which targeting IκBε increases HIV expression. The findings suggest that it may be helpful to develop HIV activation approaches, acting specifically to target IκBε and its interactions with the NF-κBs.
Collapse
Affiliation(s)
- Sohrab Z. Khan
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
| | - Sofia Gasperino
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
| | - Steven L. Zeichner
- Department of Pediatrics, Child Health Research Center, and the Pendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908, USA; (S.Z.K.); (S.G.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
32
|
Bohn-Wippert K, Tevonian EN, Lu Y, Huang MY, Megaridis MR, Dar RD. Cell Size-Based Decision-Making of a Viral Gene Circuit. Cell Rep 2019; 25:3844-3857.e5. [PMID: 30590053 PMCID: PMC7050911 DOI: 10.1016/j.celrep.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Latently infected T cells able to reinitiate viral propagation throughout the body remain a major barrier to curing HIV. Distinguishing between latently infected cells and uninfected cells will advance efforts for viral eradication. HIV decision-making between latency and active replication is stochastic, and drug cocktails that increase bursts of viral gene expression enhance reactivation from latency. Here, we show that a larger host-cell size provides a natural cellular mechanism for enhancing burst size of viral expression and is necessary to destabilize the latent state and bias viral decision-making. Latently infected Jurkat and primary CD4+ T cells reactivate exclusively in larger activated cells, while smaller cells remain silent. In addition, reactivation is cell-cycle dependent and can be modulated with cell-cycle-arresting compounds. Cell size and cell-cycle dependent decision-making of viral circuits may guide stochastic design strategies and applications in synthetic biology and may provide important determinants to advance diagnostics and therapies. Bohn-Wippert et al. investigate reactivation of T cells latently infected with HIV. They discover that only larger cells exit latency, while smaller cells remain silent. Viral expression bursts are cell size and cell-cycle dependent, presenting dynamic cell states, capable of active control, as sources of viral fate determination.
Collapse
Affiliation(s)
- Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Meng-Yao Huang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright St, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Alternate NF-κB-Independent Signaling Reactivation of Latent HIV-1 Provirus. J Virol 2019; 93:JVI.00495-19. [PMID: 31243131 DOI: 10.1128/jvi.00495-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
Current combination antiretroviral therapies (cART) are unable to eradicate HIV-1 from infected individuals because of the establishment of proviral latency in long-lived cellular reservoirs. The shock-and-kill approach aims to reactivate viral replication from the latent state (shock) using latency-reversing agents (LRAs), followed by the elimination of reactivated virus-producing cells (kill) by specific therapeutics. The NF-κB RelA/p50 heterodimer has been characterized as an essential component of reactivation of the latent HIV-1 long terminal repeat (LTR). Nevertheless, prolonged NF-κB activation contributes to the development of various autoimmune, inflammatory, and malignant disorders. In the present study, we established a cellular model of HIV-1 latency in J-Lat CD4+ T cells that stably expressed the NF-κB superrepressor IκB-α 2NΔ4 and demonstrate that conventional treatments with bryostatin-1 and hexamethylenebisacetamide (HMBA) or ionomycin synergistically reactivated HIV-1 from latency, even under conditions where NF-κB activation was repressed. Using specific calcineurin phosphatase, p38, and MEK1/MEK2 kinase inhibitors or specific short hairpin RNAs, c-Jun was identified to be an essential factor binding to the LTR enhancer κB sites and mediating the combined synergistic reactivation effect. Furthermore, acetylsalicylic acid (ASA), a potent inhibitor of the NF-κB activator kinase IκB kinase β (IKK-β), did not significantly diminish reactivation in a primary CD4+ T central memory (TCM) cell latency model. The present work demonstrates that the shock phase of the shock-and-kill approach to reverse HIV-1 latency may be achieved in the absence of NF-κB, with the potential to avoid unwanted autoimmune- and or inflammation-related side effects associated with latency-reversing strategies.IMPORTANCE The shock-and-kill approach consists of the reactivation of HIV-1 replication from latency using latency-reversing agents (LRAs), followed by the elimination of reactivated virus-producing cells. The cellular transcription factor NF-κB is considered a master mediator of HIV-1 escape from latency induced by LRAs. Nevertheless, a systemic activation of NF-κB in HIV-1-infected patients resulting from the combined administration of different LRAs could represent a potential risk, especially in the case of a prolonged treatment. We demonstrate here that conventional treatments with bryostatin-1 and hexamethylenebisacetamide (HMBA) or ionomycin synergistically reactivate HIV-1 from latency, even under conditions where NF-κB activation is repressed. Our study provides a molecular proof of concept for the use of anti-inflammatory drugs, like aspirin, capable of inhibiting NF-κB in patients under combination antiretroviral therapy during the shock-and-kill approach, to avoid potential autoimmune and inflammatory disorders that can be elicited by combinations of LRAs.
Collapse
|
34
|
van Montfort T, van der Sluis R, Darcis G, Beaty D, Groen K, Pasternak AO, Pollakis G, Vink M, Westerhout EM, Hamdi M, Bakker M, van der Putten B, Jurriaans S, Prins JH, Jeeninga R, Thomas AAM, Speijer D, Berkhout B. Dendritic cells potently purge latent HIV-1 beyond TCR-stimulation, activating the PI3K-Akt-mTOR pathway. EBioMedicine 2019; 42:97-108. [PMID: 30824386 PMCID: PMC6491380 DOI: 10.1016/j.ebiom.2019.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background The latent HIV-1 reservoir in treated patients primarily consists of resting memory CD4+ T cells. Stimulating the T-cell receptor (TCR), which facilitates transition of resting into effector T cells, is the most effective strategy to purge these latently infected cells. Here we supply evidence that TCR-stimulated effector T cells still frequently harbor latent HIV-1. Methods Primary HIV-1 infected cells were used in a latency assay with or without dendritic cells (DCs) and reversion of HIV-1 latency was determined, in the presence or absence of specific pathway inhibitors. Findings Renewed TCR-stimulation or subsequent activation with latency reversing agents (LRAs) did not overcome latency. However, interaction of infected effector cells with DCs triggered further activation of latent HIV-1. When compared to TCR-stimulation only, CD4+ T cells from aviremic patients receiving TCR + DC-stimulation reversed latency more frequently. Such a “one-two punch” strategy seems ideal for purging the reservoir. We determined that DC contact activates the PI3K-Akt-mTOR pathway in CD4+ T cells. Interpretation This insight could facilitate the development of a novel class of potent LRAs that purge latent HIV beyond levels reached by T-cell activation.
Collapse
Affiliation(s)
- Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands.
| | - Renée van der Sluis
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Gilles Darcis
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands; Department of Infectious Diseases, Liege University Hospital, Liege, Belgium
| | - Doyle Beaty
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Kevin Groen
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Alexander O Pasternak
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), University of Liverpool, Liverpool, 8 West Derby Street, United Kingdom
| | - Monique Vink
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Ellen M Westerhout
- Department of Oncogenomics, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Mohamed Hamdi
- Department of Oncogenomics, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Margreet Bakker
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Boas van der Putten
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Suzanne Jurriaans
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Jan H Prins
- Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Rienk Jeeninga
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Adri A M Thomas
- Department Developmental Biology, Faculty Beta-Science, Utrecht, Padualaan 8, 3584, CH, the Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam University Medical Centers, Amsterdam, Meibergdreef 15, 1105AZ, the Netherlands
| |
Collapse
|
35
|
Colomb F, Giron LB, Premeaux TA, Mitchell BI, Niki T, Papasavvas E, Montaner LJ, Ndhlovu LC, Abdel-Mohsen M. Galectin-9 Mediates HIV Transcription by Inducing TCR-Dependent ERK Signaling. Front Immunol 2019; 10:267. [PMID: 30842775 PMCID: PMC6391929 DOI: 10.3389/fimmu.2019.00267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Endogenous plasma levels of the immunomodulatory carbohydrate-binding protein galectin-9 (Gal-9) are elevated during HIV infection and remain elevated after antiretroviral therapy (ART) suppression. We recently reported that Gal-9 regulates HIV transcription and potently reactivates latent HIV. However, the signaling mechanisms underlying Gal-9-mediated viral transcription remain unclear. Given that galectins are known to modulate T cell receptor (TCR)-signaling, we hypothesized that Gal-9 modulates HIV transcriptional activity, at least in part, through inducing TCR signaling pathways. Gal-9 induced T cell receptor ζ chain (CD3ζ) phosphorylation (11.2 to 32.1%; P = 0.008) in the J-Lat HIV latency model. Lck inhibition reduced Gal-9-mediated viral reactivation in the J-Lat HIV latency model (16.8-0.9%; P < 0.0001) and reduced both Gal-9-mediated CD4+ T cell activation (10.3 to 1.65% CD69 and CD25 co-expression; P = 0.0006), and IL-2/TNFα secretion (P < 0.004) in primary CD4+ T cells from HIV-infected individuals on suppressive ART. Using phospho-kinase antibody arrays, we found that Gal-9 increased the phosphorylation of the TCR-downstream signaling molecules ERK1/2 (26.7-fold) and CREB (6.6-fold). ERK and CREB inhibitors significantly reduced Gal-9-mediated viral reactivation (16.8 to 2.6 or 12.6%, respectively; P < 0.0007). Given that the immunosuppressive rapamycin uncouples HIV latency reversal from cytokine-associated toxicity, we also investigated whether rapamycin could uncouple Gal-9-mediated latency reactivation from its concurrent pro-inflammatory cytokine production. Rapamycin reduced Gal-9-mediated secretion of IL-2 (4.4-fold, P = 0.001) and TNF (4-fold, P = 0.02) without impacting viral reactivation (16.8% compared to 16.1%; P = 0.2). In conclusion, Gal-9 modulates HIV transcription by activating the TCR-downstream ERK and CREB signaling pathways in an Lck-dependent manner. Our findings could have implications for understanding the role of endogenous galectin interactions in modulating TCR signaling and maintaining chronic immune activation during ART-suppressed HIV infection. In addition, uncoupling Gal-9-mediated viral reactivation from undesirable pro-inflammatory effects, using rapamycin, may increase the potential utility of recombinant Gal-9 within the reversal of HIV latency eradication framework.
Collapse
Affiliation(s)
- Florent Colomb
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Leila B. Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Thomas A. Premeaux
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Brooks I. Mitchell
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Toshiro Niki
- GalPharma Co. Ltd., Takamatsu-shi, Takamatsu, Japan
- Department of Immunology and Immunopathology, Kagawa University, Takamatsu, Japan
| | - Emmanouil Papasavvas
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
36
|
Inhibitors of Signaling Pathways That Block Reversal of HIV-1 Latency. Antimicrob Agents Chemother 2019; 63:AAC.01744-18. [PMID: 30455231 DOI: 10.1128/aac.01744-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Signaling pathways play a key role in HIV-1 latency. In this study, we used the 24ST1NLESG cell line of HIV-1 latency to screen a library of structurally diverse, medicinally active, cell permeable kinase inhibitors, which target a wide range of signaling pathways, to identify inhibitors of HIV-1 latency reversal. The screen was carried out in the absence or presence of three mechanistically distinct latency-reversing agents (LRAs), namely, prostratin, panobinostat, and JQ-1. We identified inhibitors that only blocked the activity of a specific LRA, as well as inhibitors that blocked the activity of all LRAs. For example, we identified 12 inhibitors targeted toward protein kinase C or downstream kinases that blocked the activity of prostratin. We also identified 12 kinase inhibitors that blocked the reversal of HIV-1 latency irrespective of the LRA used in the screen. Of these, danusertib, an Aurora kinase inhibitor, and PF-3758309, a PAK4 inhibitor, were the most potent. The 50% inhibitory concentrations in the 24ST1NLESG cells ranged from 40 to 147 nM for danusertib (selectivity indices, >150) and from 0.1 to 1 nM for PF-3758309 (selectivity indices, >3,300). Both danusertib and PF-3758309 inhibited latency reversal in CD4+ T cells isolated from HIV-1-infected donors. Collectively, our study describes a chemical approach that can be applied to elucidate the role of signaling pathways involved in LRA activity or the maintenance of HIV-1 latency and also identifies inhibitors of latent HIV-1 reactivation that could be used with antiretroviral therapy to reduce residual viremia.
Collapse
|
37
|
Matignon M, Lelièvre JD, Lahiani A, Abbassi K, Desvaux D, Diallo A, Peraldi MN, Taburet AM, Saillard J, Delaugerre C, Costagliola D, Assoumou L, Grimbert P. Low incidence of acute rejection within 6 months of kidney transplantation in HIV-infected recipients treated with raltegravir: the Agence Nationale de Recherche sur le Sida et les Hépatites Virales (ANRS) 153 TREVE trial. HIV Med 2019; 20:202-213. [PMID: 30688008 DOI: 10.1111/hiv.12700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES High rates of clinical acute rejection after kidney transplantation have been reported in people living with HIV (PLHIV), probably as a consequence of drug interactions. We therefore investigated the incidence of acute rejection within 6 months of transplantation in HIV-infected recipients treated with a protease-inhibitor-free raltegravir-based regimen. METHODS The Agence Nationale de Recherche sur le Sida et les Hépatites Virales (ANRS) 153 TREVE (NCT01453192) study was a prospective multicentre single-arm trial in adult PLHIV awaiting kidney transplantation, with viral load < 50 HIV-1 RNA copies/mL, CD4 T-cell count > 200 cells/μL, and HIV-1 strains sensitive to raltegravir, aiming to demonstrate 6-month clinical acute rejection rates < 30%. Time to transplantation was compared with that for uninfected subjects matched for age, sex and registration date. RESULTS In total, 61 participants were enrolled in the study, and 26 underwent kidney transplantation. Two participants experienced clinical acute rejection, corresponding to an estimated clinical acute rejection rate of 8% [95% confidence interval (CI) 2-24%] at 6 and 12 months post-transplantation. HIV infection remained under control in all but one participant, who temporarily stopped antiretroviral treatment. Median time to transplantation was longer in PLHIV than in controls (4.3 versus 2.8 years, respectively; P = 0.002) and was not influenced by blood group. CONCLUSIONS Acute rejection rates were low after kidney transplantation in PLHIV treated with a raltegravir-based regimen. However, PLHIV have poorer access to transplantation than HIV-uninfected individuals after registration on the waiting list.
Collapse
Affiliation(s)
- M Matignon
- Nephrology and Kidney Transplantation Department, Assistance Publique-Hôpitaux de Paris, Institut Francilien de Recherche en Néphrologie et Transplantation, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Créteil, France.,INSERM U955, Université Paris-Est-Créteil, (UPEC), Créteil, France
| | - J-D Lelièvre
- INSERM U955, Université Paris-Est-Créteil, (UPEC), Créteil, France.,Clinical Immunology and Infectious Diseases Department, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Créteil, France.,Vaccine Research Institute, Créteil, France
| | - A Lahiani
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
| | - K Abbassi
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
| | - D Desvaux
- INSERM U955, Université Paris-Est-Créteil, (UPEC), Créteil, France.,Anatomopathology Department, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Créteil, France
| | - A Diallo
- ANRS, France Recherche Nord & Sud SIDA-HIV Hépatites, Paris, France
| | - M-N Peraldi
- Nephrology and Kidney Transplantation Department, Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | - A-M Taburet
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud Bicêtre, Le Kremlin-Bicêtre, France.,INSERM UMR1184, Le Kremlin-Bicêtre, France
| | - J Saillard
- ANRS, France Recherche Nord & Sud SIDA-HIV Hépatites, Paris, France
| | - C Delaugerre
- Laboratoire de Virologie, Hôpital Saint louis, INSERM U941, Université Paris Diderot, Paris, France
| | - D Costagliola
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
| | - L Assoumou
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
| | - P Grimbert
- Nephrology and Kidney Transplantation Department, Assistance Publique-Hôpitaux de Paris, Institut Francilien de Recherche en Néphrologie et Transplantation, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Créteil, France.,INSERM U955, Université Paris-Est-Créteil, (UPEC), Créteil, France.,Assistance Publique-Hôpitaux de Paris, CIC-Biothérapies, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Créteil, France
| | | |
Collapse
|
38
|
Pang J, Xiong H, Zhan T, Cheng G, Jia H, Ye Y, Su Z, Chen H, Lin H, Lai L, Ou Y, Xu Y, Chen S, Huang Q, Liang M, Cai Y, Zhang X, Xu X, Zheng Y, Yang H. Sirtuin 1 and Autophagy Attenuate Cisplatin-Induced Hair Cell Death in the Mouse Cochlea and Zebrafish Lateral Line. Front Cell Neurosci 2019; 12:515. [PMID: 30692914 PMCID: PMC6339946 DOI: 10.3389/fncel.2018.00515] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cisplatin-induced ototoxicity is one of the major adverse effects in cisplatin chemotherapy, and hearing protective approaches are unavailable in clinical practice. Recent work unveiled a critical role of autophagy in cell survival in various types of hearing loss. Since the excessive activation of autophagy can contribute to apoptotic cell death, whether the activation of autophagy increases or decreases the rate of cell death in CDDP ototoxicity is still being debated. In this study, we showed that CDDP induced activation of autophagy in the auditory cell HEI-OC1 at the early stage. We then used rapamycin, an autophagy activator, to increase the autophagy activity, and found that the cell death significantly decreased after CDDP injury. In contrast, treatment with the autophagy inhibitor 3-methyladenine (3-MA) significantly increased cell death. In accordance with in vitro results, rapamycin alleviated CDDP-induced death of hair cells in zebrafish lateral line and cochlear hair cells in mice. Notably, we found that CDDP-induced increase of Sirtuin 1 (SIRT1) in the HEI-OC1 cells modulated the autophagy function. The specific SIRT1 activator SRT1720 could successfully protect against CDDP-induced cell loss in HEI-OC1 cells, zebrafish lateral line, and mice cochlea. These findings suggest that SIRT1 and autophagy activation can be suggested as potential therapeutic strategies for the treatment of CDDP-induced ototoxicity.
Collapse
Affiliation(s)
- Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Ting Zhan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gui Cheng
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiying Jia
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongyi Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Chen
- Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yaodong Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xueyuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
39
|
New insight into the mechanisms of achieving antiretroviral therapy-free HIV-1 control. AIDS 2018; 32:2839-2840. [PMID: 30407254 DOI: 10.1097/qad.0000000000002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Chowdhury FZ, Ouyang Z, Buzon M, Walker BD, Lichterfeld M, Yu XG. Metabolic pathway activation distinguishes transcriptional signatures of CD8+ T cells from HIV-1 elite controllers. AIDS 2018; 32:2669-2677. [PMID: 30289807 DOI: 10.1097/qad.0000000000002007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Elite controllers, defined as persons maintaining undetectable levels of HIV-1 replication in the absence of antiretroviral therapy, represent living evidence that sustained, natural control of HIV-1 is possible, at least in relatively rare instances. Understanding the complex immunologic and virologic characteristics of these specific patients holds promise for inducing drug-free control of HIV-1 in broader populations of HIV-1 infected patients. DESIGN We used an unbiased transcriptional profiling approach to characterize CD8+ T cells, the strongest correlate of HIV-1 immune control identified thus far, in a large cohort of elite controllers (n = 51); highly active antiretrovial therapy (HAART)-treated patients (n = 32) and HIV-1 negative (n = 10) served as reference cohorts. METHODS We isolated mRNA from total CD8+ T cells isolated from peripheral blood mononuclear cell (PBMC) of each individual followed by microarray analysis of the transcriptional signatures. RESULTS We observed profound transcriptional differences [590 transcripts, false discovery rate (FDR)-adjusted P < 0.05] between elite controller and HAART-treated patients. Interestingly, metabolic and signalling pathways governed by mammalian target of rapamycin (mTOR) and eIF2, known for their key roles in regulating cellular growth, proliferation and metabolism, were among the top functions enriched in the differentially expressed genes, suggesting a therapeutically actionable target as a distinguishing feature of spontaneous HIV-1 immune control. A subsequent bootstrapping approach distinguished five different subgroups of elite controller, each characterized by distinct transcriptional signatures. However, despite this marked heterogeneity, differential regulation of mTOR and eIF2 signalling remained the dominant functional pathway in three of these elite controller subgroups. CONCLUSION These studies suggest that mTOR and eIF2 signalling may play a remarkably universal role for regulating CD8 T-cell function from elite controllers.
Collapse
|
41
|
Ahmed D, Roy D, Cassol E. Examining Relationships between Metabolism and Persistent Inflammation in HIV Patients on Antiretroviral Therapy. Mediators Inflamm 2018; 2018:6238978. [PMID: 30363715 PMCID: PMC6181007 DOI: 10.1155/2018/6238978] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022] Open
Abstract
With the advent of antiretroviral therapy (ART), HIV-infected individuals are now living longer and healthier lives. However, ART does not completely restore health and treated individuals are experiencing increased rates of noncommunicable diseases such as dyslipidemia, insulin resistance, type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. While it is well known that persistent immune activation and inflammation contribute to the development of these comorbid diseases, the mechanisms underlying this chronic activation remain incompletely understood. In this review, we will discuss emerging evidence that suggests that alterations in cellular metabolism may play a central role in driving this immune dysfunction in HIV patients on ART.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
42
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
43
|
Jin S, Liao Q, Chen J, Zhang L, He Q, Zhu H, Zhang X, Xu J. TSC1 and DEPDC5 regulate HIV-1 latency through the mTOR signaling pathway. Emerg Microbes Infect 2018; 7:138. [PMID: 30087333 PMCID: PMC6081400 DOI: 10.1038/s41426-018-0139-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 01/10/2023]
Abstract
The latent reservoir of HIV-1 presents a major barrier to viral eradication. The mechanism of the establishment and maintenance of the latent viral reservoir is not yet fully understood, which hinders the development of effective curative strategies. In this study, we identified two inhibitory genes, TSC1 and DEPDC5, that maintained HIV-1 latency by suppressing the mTORC1 pathway. We first adapted a genome-wide CRISPR screening approach to identify host factors required for HIV latency in a T-cell-based latency model and discovered two inhibitory genes, TSC1 and DEPDC5, which are potentially involved in HIV-1 latency. Knockout of either TSC1 or DEPDC5 led to enhanced HIV-1 reactivation in both a T-cell line (C11) and a monocyte cell line (U1), and this enhancement could be antagonized by the mTORC1 inhibitor rapamycin. Further evaluation of the mechanism revealed that TSC1 suppresses AKT-mTORC1-S6 via downregulation of Rheb, whereas DEPDC5 inhibits AKT-mTORC1-S6 through RagA. Overall, both TSC1 and DEPDC5 negatively regulate the AKT-mTORC1 pathway, and thus their agonists could be used in the development of new therapeutic approaches for activating HIV-1 latency.
Collapse
Affiliation(s)
- Shan Jin
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China. .,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
44
|
Clutton GT, Jones RB. Diverse Impacts of HIV Latency-Reversing Agents on CD8+ T-Cell Function: Implications for HIV Cure. Front Immunol 2018; 9:1452. [PMID: 29988382 PMCID: PMC6023971 DOI: 10.3389/fimmu.2018.01452] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral therapy regimens durably suppress HIV replication, but do not cure infection. This is partially attributable to the persistence of long-lived pools of resting CD4+ T-cells harboring latent replication-competent virus. Substantial clinical and pre-clinical research is currently being directed at purging this viral reservoir by combining pharmacological latency reversal with immune effectors, such as HIV-specific CD8+ T-cells, capable of eliminating reactivated targets-the so-called "shock-and-kill" approach. However, several studies indicate that the latency-reversing agents (LRAs) may affect CD8+ T-cell function. The current review aims to frame recent advances, and ongoing challenges, in implementing "shock-and-kill" strategies from the perspective of effectively harnessing CD8+ T-cells. We review and contextualize findings indicating that LRAs often have unintended impacts on CD8+ T-cell function, both detrimental and beneficial. We identify and attempt to bridge the gap between viral reactivation, as measured by the detection of RNA or protein, and bona fide presentation of viral antigens to CD8+ T-cells. Finally, we highlight factors on the effector (CD8+) and target (CD4+) cell sides that contribute to whether or not infected-cell recognition results in killing/elimination. These perspectives may contribute to an integrated view of "shock-and-kill," with implications for therapeutic development.
Collapse
Affiliation(s)
- Genevieve Tyndale Clutton
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - R. Brad Jones
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
- Infectious Disease Division, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
45
|
Sengupta S, Siliciano RF. Targeting the Latent Reservoir for HIV-1. Immunity 2018; 48:872-895. [PMID: 29768175 PMCID: PMC6196732 DOI: 10.1016/j.immuni.2018.04.030] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy can effectively block HIV-1 replication and prevent or reverse immunodeficiency in HIV-1-infected individuals. However, viral replication resumes within weeks of treatment interruption. The major barrier to a cure is a small pool of resting memory CD4+ T cells that harbor latent HIV-1 proviruses. This latent reservoir is now the focus of an intense international research effort. We describe how the reservoir is established, challenges involved in eliminating it, and pharmacologic and immunologic strategies for targeting this reservoir. The development of a successful cure strategy will most likely require understanding the mechanisms that maintain HIV-1 proviruses in a latent state and pathways that drive the proliferation of infected cells, which slows reservoir decay. In addition, a cure will require the development of effective immunologic approaches to eliminating infected cells. There is renewed optimism about the prospect of a cure, and the interventions discussed here could pave the way.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Reservoirs of HIV-1-infected cells persist long-term despite highly effective antiretroviral suppression therapy and represent the main barrier against a cure for HIV-1. This review summarizes recent advances in understanding the complexity and diversity of viral reservoir cells. RECENT FINDINGS Latently infected memory CD4 T cells are the predominant cell compartment responsible for viral persistence, but some studies suggest that myeloid cells, and possibly hematopoietic progenitors, can also serve as long-term viral reservoirs. Specific phenotypic markers, including T-cell activation and exhaustion molecules, may denote CD4 T cells enriched for replication-competent proviruses. Clonal proliferation of infected CD4 T cells in vivo represents an important mechanism responsible for the remarkable long-term stability of the viral reservoir. Multiple new assays, including near full-genome proviral sequencing and simplified versions of viral outgrowth assays, are being developed to analyze and quantify persisting reservoirs of HIV-1-infected cells. SUMMARY Recent technological advances allow to profile the molecular structure and composition of viral reservoir cells in great detail. Continuous progress in understanding phenotypic and functional properties of viral reservoir cells provides clues for novel clinical interventions to destabilize viral persistence during antiretroviral therapy.
Collapse
Affiliation(s)
- Hsiao-Hsuan Kuo
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Palmer CS, Palchaudhuri R, Albargy H, Abdel-Mohsen M, Crowe SM. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging. F1000Res 2018; 7:125. [PMID: 29445452 PMCID: PMC5791007 DOI: 10.12688/f1000research.11881.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of “inflammaging”, a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV
+ individuals.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Riya Palchaudhuri
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Hassan Albargy
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | | | - Suzanne M Crowe
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Abstract
Antiretroviral therapy (ART) has rendered HIV-1 infection a treatable illness; however, ART is not curative owing to the persistence of replication-competent, latent proviruses in long-lived resting T cells. Strategies that target these latently infected cells and allow immune recognition and clearance of this reservoir will be necessary to eradicate HIV-1 in infected individuals. This review describes current pharmacologic approaches to reactivate the latent reservoir so that infected cells can be recognized and targeted, with the ultimate goal of achieving an HIV-1 cure.
Collapse
Affiliation(s)
- Adam M Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| |
Collapse
|
49
|
Shehata HM, Murphy AJ, Lee MKS, Gardiner CM, Crowe SM, Sanjabi S, Finlay DK, Palmer CS. Sugar or Fat?-Metabolic Requirements for Immunity to Viral Infections. Front Immunol 2017; 8:1311. [PMID: 29085369 PMCID: PMC5649203 DOI: 10.3389/fimmu.2017.01311] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
The realization that an intricate link exists between the metabolic state of immune cells and the nature of the elicited immune responses has brought a dramatic evolution to the field of immunology. We will focus on how metabolic reprogramming through the use of glycolysis and fatty-acid oxidation (sugar or fat) regulates the capacity of immune cells to mount robust and effective immune responses. We will also discuss how fine-tuning sugar and fat metabolism may be exploited as a novel immunotherapeutic strategy to fight viral infections or improve vaccine efficacy.
Collapse
Affiliation(s)
- Hesham M Shehata
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, United States
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Man Kit Sam Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Shomyseh Sanjabi
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, United States
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Clovis Steve Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C, Zhou J, Simar D, Lewin SR, Ostrowski M, McCune JM, Crowe SM. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett 2017; 591:3319-3332. [PMID: 28892135 PMCID: PMC5658250 DOI: 10.1002/1873-3468.12843] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/04/2022]
Abstract
High glucose transporter 1 (Glut1) surface expression is associated with increased glycolytic activity in activated CD4+ T cells. Phosphatidylinositide 3‐kinases (PI3K) activation measured by p‐Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrates hyperresponsive PI3K‐mammalian target of rapamycin signaling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)‐treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in ‘virologically suppressed’ cART‐treated HIV+ persons.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Gabriel A Duette
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Suah Saleh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Candida Pereira
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Jingling Zhou
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - David Simar
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Matias Ostrowski
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia
| |
Collapse
|