1
|
Zuo X, Sun M, Bai H, Zhang S, Luan J, Yu Q, Fu Z, Zhao Q, Sun M, Zhao X, Feng X. The effects of 17β-trenbolone and bisphenol A on sexual behavior and social dominance via the hypothalamic-pituitary-gonadal axis in male mice. J Environ Sci (China) 2025; 151:54-67. [PMID: 39481959 DOI: 10.1016/j.jes.2024.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
17β-Trenbolone (17-TB) is well documented as an environmental endocrine disruptor in aquatic biological studies, but its effects on mammals remain poorly understood. Furthermore, 17-TB acts as a hormone with properties similar to testosterone, and the consequences of juvenile exposure on adult social behavior remain uncertain. Bisphenol A (BPA) acts as an estrogen-like hormone, compared to 17-TB. Three-week-old male Balb/c mice were exposed orally to 17-TB (100 µg/(kg·day)) and BPA (4 mg/(kg·day)) for 28 days. Assessments of social interactions and a three-chamber test showed that 17-TB increased virility in male mice, intensified both male and female sexual behavior, and attracted and accepted female mice. It also increased social dominance through tube tests in male mice and markedly activated the c-Fos+ immune response in the medial prefrontal cortex (mPFC) and basal amygdala (BLA). ELISA data showed that 17-TB and BPA exposure significantly affected serum gonadotropin-releasing hormone (GnRH), growth hormone (GH), estradiol (E2), and luteinizing hormone (LH) levels, as well as testicular lesions and androgen receptor (ARβ) and estrogen receptor (ERα) synthesis. Testicular transcriptomic analysis further confirmed that could disrupt steroid synthesis and linoleic acid-related biometabolic processes. These findings suggest the influence of 17-TB and BPA exposure on sexual behavior and fertility in male mice, possibly through modulation of the hypothalamic-pituitary-gonadal axis. This study provides insights relevant to human reproductive health and neuro-social behavioral research, and the potential risk of environmental disturbances should not be overlooked.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Minghe Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Ali ME, Al-Saeed FA, Ahmed AE, Gao M, Wang W, Lv H, Hua G, Yang L, Abdelrahman M. MicroRNA as Biomarkers for Physiological and Stress Processing in the Livestock. Reprod Domest Anim 2025; 60:e70034. [PMID: 40166888 DOI: 10.1111/rda.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Several microRNAs (miRNAs) have been identified as potential biomarkers widely dispersed in animals since 1993, and they have become a significant molecular biology research area. Because of their ability to activate extracellular molecules, stabilise bodily tissues, control cell-to-cell signals, and be easily extracted, miRNAs are outstandingly nominated as biomarkers. However, there is growing interest in targeting miRNAs to monitor physiological reproductive performance, including reproductive system development, embryo development, fertilisation, endocrinology, and animal welfare in stressful conditions. Moreover, miRNAs play significant roles in gene expression regulation; single miRNAs may have overlapping roles, and on a broader scale, multiple mRNAs govern a single function. Also, miRNAs serve as an intermediary messenger between the environment and reproductive performance, making them a vital component of miRNAs as performance biomarkers under environmental conditions like heat stress. This makes describing a unique miRNA's consequences and functions exceptionally challenging, which may confound many researchers. Also, enhancing our comprehension of miRNAs in response to testicular heat stress could potentially aid in preventing and treating spermatogenesis disorders. Therefore, the present review highlights miRNA's regulatory mechanisms on reproductive performance under heat stress to employ these findings in improving reproduction physiology research.
Collapse
Affiliation(s)
- Montaser Elsayed Ali
- Department of Animal Productions, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Fatimah A Al-Saeed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Min Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- National Sheep Genetic Evaluation Center, Inner Mongolia University, Hohhot, China
| | - Wei Wang
- School of Life Sciences, Henan University, Henan, China
| | - Haimiao Lv
- School of Life Sciences, Henan University, Henan, China
| | - Guohua Hua
- School of Life Sciences, Henan University, Henan, China
| | - Liguo Yang
- School of Life Sciences, Henan University, Henan, China
| | - Mohamed Abdelrahman
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut, Egypt
| |
Collapse
|
3
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3271-3296. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
4
|
Shulhai AM, Munerati A, Menzella M, Palanza P, Esposito S, Street ME. Insights into pubertal development: a narrative review on the role of epigenetics. J Endocrinol Invest 2025; 48:817-830. [PMID: 39704935 PMCID: PMC11950117 DOI: 10.1007/s40618-024-02513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Puberty is a key phase of growth and development, characterized by psychophysical transformations. It is driven by a combination of genetic, hormonal, and environmental variables. Epigenetic mechanisms, including histone post-translational modifications and chromatin remodeling, microRNAs, and DNA methylation, play important roles in orchestrating the developmental processes. We describe environmental factors that may interact with genetics, and factors influencing puberty onset, focusing in particular on epigenetic mechanisms that can help understand the timing and variations that lead to precocious or delayed puberty. METHODS We conducted a narrative review of associations between puberty and epigenetic mechanisms through a comprehensive search of PubMed, Scopus, and Web of Science databases. RESULTS The chromatin landscape of genes as KISS1 has revealed dynamic changes in histone modifications as puberty approaches, influencing the stimulation or inhibition of gene expression critical for reproductive maturation. MiRNAs regulate gene expression, whereas DNA methylation affects activation or repression of gene transcription of genes involved in pubertal timing. Moreover, studies in animal models have provided insights into the role of DNA methylation and miRNAs in brain sexual differentiation, highlighting the active involvement of epigenetic mechanisms in shaping sexually dimorphic brain structures. CONCLUSION This review highlights the importance of understanding the complex interplay between epigenetic regulation and pubertal development, which can lead to new therapeutic options and shed light on the fundamental processes driving reproductive maturation.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
- Department of Pediatrics №2, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Anna Munerati
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Marialaura Menzella
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Maria Elisabeth Street
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy.
| |
Collapse
|
5
|
Fanis P, Morrou M, Tomazou M, Alghol HAM, Spyrou GM, Neocleous V, Phylactou LA. Identification of puberty related miRNAs in the hypothalamus of female mice. Mol Cell Endocrinol 2025; 598:112468. [PMID: 39842623 DOI: 10.1016/j.mce.2025.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND AIMS Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones. Major influence in pubertal timing has been attributed to genetic predisposition, environmental factors, and nutritional status. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as key regulators in various cellular processes by either repressing genes or activating them by inhibiting their repressors. The present study aims to investigate the involvement of miRNAs in the control of puberty. METHODS Small RNA sequencing was used to identify and compare the total population of miRNAs in the hypothalamus of female mice before, during and after puberty. Bioinformatic analysis was applied to analyse the expression profile of miRNAs with altered levels followed by pathway enrichment analysis. RESULTS Expression levels of several miRNAs were found up- or down-regulated from pre-pubertal to pubertal stage. Furthermore, monitoring the levels of these miRNAs at the post-pubertal stage revealed four expression patterns, in which pathway analysis displayed the associations of these miRNAs with developmental processes, cell cycle regulation, metabolic biosynthesis and epigenetic regulation. CONCLUSION The findings of the present study improve our understanding of the molecular pathways underlying puberty and stress the significance of miRNAs in fine-tuning gene expression within the hypothalamus during this critical developmental stage.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Hend Abdulgadr M Alghol
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
6
|
Hu C, Deng B, Fang W, Guo B, Chen P, Lu C, Dong Z, Pan M. Transgenic overexpression of bmo-miR-6498-5p increases resistance to Nosema bombycis in the silkworm, Bombyx mori. Appl Environ Microbiol 2024; 90:e0027024. [PMID: 39240120 PMCID: PMC11497792 DOI: 10.1128/aem.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/23/2024] [Indexed: 09/07/2024] Open
Abstract
Microsporidia are unfriendly microorganisms, and their infections cause considerable damage to economically or environmentally important insects like silkworms and honeybees. Thus, the identification of measures to improve host resistance to microsporidia infections is critically needed. Here, an overexpressed miR-6498-5p transgenic silkworm line was constructed. Importantly, the survival rates and median lethal doses of the transgenic line were clearly higher after infection with Nosema bombycis. H&E staining and RT-qPCR analyses revealed an inhibitory effect on the proliferation of N. bombycis in the transgenic larvae. Metabolomics analysis further revealed the presence of 56 differential metabolites between the two lines. KEGG analysis of these 56 metabolites found that they were involved in various amino acid and vitamin metabolism pathways. Notably, VB6 metabolism was enriched among the metabolites, and the pathway was well known for its involvement in the synthesis, interconversion, and degradation of amino acids. These suggest that miR-6498-5p modifies parasitic environments to inhibit the proliferation of N. bombycis by affecting the host amino acid metabolism. These results demonstrate the potential of microRNAs as biomolecules that can promote resistance to microsporidia and provide new insights and a new approach to generate microsporidia-resistant biological materials.IMPORTANCEMicrosporidia have an extremely wide host range and are capable of infecting a wide variety of insects and vertebrates, including humans, and their lethality to multiple species often poses significant environmental management challenge. Here, we successfully constructed a microsporidium-resistant line in the silkworm, based on the overexpression of miR-6498-5p. Our results strongly support the hypothesis that miR-6498-5p efficiently suppresses the proliferation of Nosema bombycis by regulating the host VB6 metabolism, a key pathway for enzymes involved in amino acid transport and protein metabolism. Our study provides new insights for understanding host anti-pathogen defenses toward microsporidia.
Collapse
Affiliation(s)
- Congwu Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bingyu Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Zou H, Wang P, Zhang J. Role of microRNAs in pituitary gonadotrope cells. Gen Comp Endocrinol 2024; 355:114557. [PMID: 38797341 DOI: 10.1016/j.ygcen.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The gonadotrope cells within the pituitary control vital processes of reproduction by producing follicle stimulating hormone (FSH) and luteinizing hormone (LH). Both external stimuli and internal regulatory factors contribute to the regulation of gonadotrope development and function. In recent years, growing evidences indicate that microRNAs (miRNAs), which regulate gene expression post-transcriptionally, play critical roles in multiple processes of gonadotrope development and function, including the syntheses of α or β subunits of FSH and LH, the secretion of LH, the regulation of GnRH signaling, and the maintenance of gonadotrope cell kinetics. Here, we review recent advances of miRNAs' expression, functions and mechanisms approached by using miRNA knockout mouse models, in silico analysis and the in vitro cultures of primary pituitary cells and gonadotrope-derived cell lines. By summarizing and discussing different roles of miRNAs in gonadotropes, this minireview helps to gain insights into the complex molecular network in gonadotropes and reproduction.
Collapse
Affiliation(s)
- He Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Peimin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Kane E, Mak TC, Latreille M. MicroRNA-7 regulates endocrine progenitor delamination and endocrine cell mass in developing pancreatic islets. iScience 2024; 27:110332. [PMID: 39055950 PMCID: PMC11269303 DOI: 10.1016/j.isci.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
β-cell replenishment in patients with diabetes through cadaveric islet transplantation has been successful; however, it requires long-term immunosuppression and suitable islet donors are scarce. Stepwise in vitro differentiation of pluripotent stem cells into β-cells represents a viable alternative, but limitations in our current understanding of in vivo islet endocrine differentiation constrains its clinical use. Here, we show that microRNA-7 (miR-7) is highly expressed in embryonic pancreatic endocrine progenitors. Genetic deletion of the miR-7 gene family in endocrine progenitors leads to reduced islet endocrine cell mass, due to endocrine progenitors failing to delaminate from the epithelial plexus. This is associated with a reduction in neurogenin-3 levels and increased expression of Sry-box transcription factor 9. Further, we observe that a significant number of endocrine progenitors lacking miR-7 differentiate into ductal cells. Our study suggests that increasing miR-7 expression could improve efficiency of in vitro differentiation and augment stem cell-derived β-cell terminal maturity.
Collapse
Affiliation(s)
- Eva Kane
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Tracy C.S. Mak
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Mathieu Latreille
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
9
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
10
|
Etezadi A, Akhtare A, Asadikalameh Z, Aghaei ZH, Panahinia P, Arman M, Abtahian A, Khorasani FF, Hazari V. Linc00513 sponges miR-7 to modulate TGF-β signaling in azoospermia. Eur J Transl Myol 2024; 34:12516. [PMID: 38952199 PMCID: PMC11487652 DOI: 10.4081/ejtm.2024.12516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Azoospermia, or the complete absence of sperm in the ejaculate, affects about 1% of men worldwide and is a significant fertility challenge. This study investigates Linc00513, a long non-coding RNA, and its potential role in regulating the TGF-β signaling pathway, a key player in spermatogenesis, in the context of azoospermia. We show that Linc00513 expression is significantly lower in testicular tissues from azoospermic patients than in HS1 controls. Linc00513 interacts directly with microRNA-7 (miR-7) via complementary base pairing, acting as a competing endogenous RNA (ceRNA). This interaction effectively inhibits miR-7's inhibitory action on the TGF-β receptor 1 (TGFBR1), a critical component of the TGF-β signaling cascade. Downregulating Linc00513 reduces TGFBR1 repression and increases TGF-β signaling in azoospermic testes. Functional assays with spermatogonial cell lines support these findings. Silencing Linc00513 leads to increased cell proliferation and decreased apoptosis, similar to TGF-β inhibition. Overexpression of miR-7 inhibits the effects of Linc00513 on TGF-β signaling. Our study sheds new light on how Linc00513, miR-7, and the TGF-β signaling pathway interact in azoospermia. Linc00513 regulates TGFBR1 expression and thus influences spermatogonial cell fate by acting as a miR-7 ceRNA. These findings identify a potential therapeutic target for azoospermia treatment, paving the way for future research into restoring fertility in affected individuals.
Collapse
Affiliation(s)
- Atoosa Etezadi
- Department of Gynecology, School of Medicine, Alzahra Hospital, Guilan University of Medical Sciences.
| | | | - Zahra Asadikalameh
- Department of Gynecology and Obstetrics, Yasuj University of Medical Sciences, Yasuj.
| | - Zeinab Hashem Aghaei
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran.
| | - Paria Panahinia
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran.
| | | | - Amene Abtahian
- Nical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University Medical Science, Tehran.
| | - Fereshteh Faghih Khorasani
- General Physician in Medicine Program, General Doctorate Degree of Yazd, Shahid Sadoughi University of Medical Sciences, Yazd.
| | - Vajihe Hazari
- Department of Obstetrics and Gynecology, School of Medicine, Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand.
| |
Collapse
|
11
|
Hao EY, Liu XL, Chen XY, Xue H, Su BF, Chen YF, Wang DH, Shi L, Bai K, Hou F, Hou JK, Bao HL, Chen H. Melatonin alleviates endoplasmic reticulum stress and follicular granulosa cell apoptosis by regulating ATF4 to activate mTOR signaling pathway in chickens. Poult Sci 2024; 103:103656. [PMID: 38583308 PMCID: PMC11004419 DOI: 10.1016/j.psj.2024.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Follicular atresia in chickens reduces the number of follicles that can further develop, leading to decrease egg laying. Endoplasmic reticulum stress (ERS) can initiate a unique pathway inducing the apoptosis of follicular granulosa cells, thus reducing egg laying. Melatonin (MEL) is involved in the regulation of follicle development, ovulation, and oocyte maturation, and is closely related to follicle fate. Mammalian target of Rapamycin (mTOR) signaling pathway plays an important role in cell growth regulation, and that there is a possible crosstalk between melatonin and mTOR activity in granular cells maturation and ovulation. This study aimed to investigate whether MEL inhibits ERS and follicular granulosa cell apoptosis by regulating ATF4 to activate mTOR signaling pathway in chickens. Frist, we established an in vitro ERS cell model using tunicamycin (TM). The results showed that different concentrations of TM exhibited dose-dependent inhibition of cell activity and induction of granulosa cells (P<0.01). Therefore, we chose 5 µg/mL of TM and a treatment time for 6 h as the optimal concentration for the following experiments. Then we investigate whether melatonin can inhibit ERS. TM treatment decreased the cell viability and Bcl-2 expression, increasing ROS levels and the mRNA expression of Grp78, ATF4, CHOP, PERK, eIF-2α, and BAX (P<0.01), whereas TM+MEL treatment significantly inhibited these changes (P<0.01). Then we explored whether melatonin protects follicular granulosa cells from ERS-induced apoptosis through the mammalian target of rapamycin (mTOR) signaling pathway by regulating ATF4, we found that ATF4 knockdown inhibited ERS by decreasing the expression of ERS-related genes and proteins and activating mTOR signaling pathway by increasing the protein expression of p4E-BP1 and pT389-S6K (P<0.001), while these changes were promoted by TM+si-ATF4+MEL treatment (P<0.01). These results indicate that MEL could alleviate TM-induced ERS by regulating ATF4 to activate mTOR signaling pathway in follicular granulosa cells, thus providing a new perspective for prolonging the laying cycle in chickens.
Collapse
Affiliation(s)
- Er-Ying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Xue-Lu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Xiang-Yu Chen
- Baoding Livestock Husbandry Workstation, Baoding Hebei 071001, China
| | - Han Xue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Bo-Fei Su
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Yi-Fan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - De-He Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Kang Bai
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Fei Hou
- Shunping County Agriculture and Rural Affairs Bureau, Baoding Hebei 071001, China
| | - Jian-Ku Hou
- Shunping County Agriculture and Rural Affairs Bureau, Baoding Hebei 071001, China
| | - Hui-Ling Bao
- Animal Disease Prevention and Control Center, Shijiazhuang Hebei 050000, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China.
| |
Collapse
|
12
|
Sevim-Wunderlich S, Dang T, Rossius J, Schnütgen F, Kühn R. A Mouse Model of X-Linked Chronic Granulomatous Disease for the Development of CRISPR/Cas9 Gene Therapy. Genes (Basel) 2024; 15:706. [PMID: 38927642 PMCID: PMC11203339 DOI: 10.3390/genes15060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) is a promising technology for therapy for CGD. To support the establishment of efficient and safe gene therapies for CGD, we generated a mouse model harboring a patient-derived mutation in the CYBB gene. Our CybbC517del mouse line shows the hallmarks of CGD and provides a source for Cybb-deficient HSPCs that can be used to evaluate gene-therapy approaches in vitro and in vivo. In a setup using Cas9 RNPs and an AAV repair vector in HSPCs, we show that the mutation can be repaired in 19% of treated cells and that treatment restores ROS production by macrophages. In conclusion, our CybbC517del mouse line provides a new platform for refining and evaluating novel gene therapies and studying X-CGD pathophysiology.
Collapse
Affiliation(s)
- Seren Sevim-Wunderlich
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (S.S.-W.); (T.D.); (J.R.)
| | - Tu Dang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (S.S.-W.); (T.D.); (J.R.)
| | - Jana Rossius
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (S.S.-W.); (T.D.); (J.R.)
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany;
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (S.S.-W.); (T.D.); (J.R.)
| |
Collapse
|
13
|
Shen HT, Hung CS, Davis C, Su CM, Liao LM, Shih HM, Lee KD, Ansar M, Lin RK. Hypermethylation of the Gene Body in SRCIN1 Is Involved in Breast Cancer Cell Proliferation and Is a Potential Blood-Based Biomarker for Early Detection and a Poor Prognosis. Biomolecules 2024; 14:571. [PMID: 38785978 PMCID: PMC11118508 DOI: 10.3390/biom14050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To verify the methylation status, quantitative methylation-specific PCR (qMSP) was performed on genomic DNA and circulating cell-free DNA samples, and mRNA expression analysis was performed using RT‒qPCR. The results were validated in a Western population; for this analysis, the samples included plasma samples from breast cancer patients from the USA and from The Cancer Genome Atlas (TCGA) cohort. To study the SRCIN1 pathway, we conducted cell viability assays, gene manipulation and RNA sequencing. SRCIN1 hypermethylation was identified in 61.8% of breast cancer tissues from Taiwanese patients, exhibiting specificity to this malignancy. Furthermore, its presence correlated significantly with unfavorable 5-year overall survival outcomes. The levels of methylated SRCIN1 in the blood of patients from Taiwan and the USA correlated with the stage of breast cancer. The proportion of patients with high methylation levels increased from 0% in healthy individuals to 63.6% in Stage 0, 80% in Stage I and 82.6% in Stage II, with a sensitivity of 78.5%, an accuracy of 90.3% and a specificity of 100%. SRCIN1 hypermethylation was significantly correlated with increased SRCIN1 mRNA expression (p < 0.001). Knockdown of SRCIN1 decreased the viability of breast cancer cells. SRCIN1 silencing resulted in the downregulation of ESR1, BCL2 and various cyclin protein expressions. SRCIN1 hypermethylation in the blood may serve as a noninvasive biomarker, facilitating early detection and prognosis evaluation, and SRCIN1-targeted therapies could be used in combination regimens for breast cancer patients.
Collapse
Affiliation(s)
- Hsieh-Tsung Shen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- EG BioMed US Inc., Covina, CA 91722, USA;
| | - Chin-Sheng Hung
- EG BioMed US Inc., Covina, CA 91722, USA;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Clilia Davis
- International Master Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chih-Ming Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
| | - Hsiu-Ming Shih
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
| | - Kuan-Der Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ruo-Kai Lin
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- EG BioMed US Inc., Covina, CA 91722, USA;
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Pharmacognosy, Ph.D. Program in Drug Discovery and Development Industry, Masters Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Clinical Trial Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
14
|
Dong S, Jiang S, Hou B, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. miR-128-3p Regulates Follicular Granulosa Cell Proliferation and Apoptosis by Targeting the Growth Hormone Secretagogue Receptor. Int J Mol Sci 2024; 25:2720. [PMID: 38473968 DOI: 10.3390/ijms25052720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.
Collapse
Affiliation(s)
- Shucan Dong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shengwei Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Biwei Hou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Song P, Yue Q, Chen X, Fu Q, Zhang P, Zhou R. Identification of ID1 and miR-150 interaction and effects on proliferation and apoptosis in ovine granulosa cells. Theriogenology 2023; 212:1-8. [PMID: 37672890 DOI: 10.1016/j.theriogenology.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Granulosa cells (GCs) proliferation and apoptosis play a significantly role in follicular development and atresia. ID1 and miR-150 are involved in cell apoptosis and follicular atresia, but the interaction and function of ID1 and miR-150 in GCs are unclear. This study focuses on ID1 and miR-150 in terms of the interaction and effects on proliferation and apoptosis in ovine granulosa cells. Our findings revealed that ID1 decreased the promoter activity and expression level of oar-miR-150. However, the expression of ID1 was downregulated by miR-150, and ID1 was identified as a target gene of oar-miR-150. miR-150 mimic inhibited proliferation and upregulated apoptosis rate in ovine GCs, while the results of miR-150 inhibitor were opposite. Overexpression of ID1 significantly inhibited ovine GCs proliferation and cell cycle-related genes (CDK1, CDK2, CDK4, CCND2, CDC20, and PCNA) expression, whereas knockdown of ID1 promoted cell proliferation and those genes expression. Overexpression of ID1 significantly downregulated mitochondrial membrane potential and Bcl-2 expression in ovine GCs, and upregulated the expression of pro-apoptosis genes Bax, Caspase-3, and Caspase-9, whereas the results of ID1 knockdown were reversed. Collectively, these findings indicate the interaction and the vital role of ID1 and miR-150 on proliferation and apoptosis in ovine granulosa cells, which may suggest a novel target for ovine follicular development and atresia.
Collapse
Affiliation(s)
- Pengyan Song
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Qiang Fu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Peiying Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China.
| |
Collapse
|
16
|
Ralston BA, Khan L, DeVore SB, Bronnenberg TA, Flock JW, Sequoia AO, Thompson PR, Navratil AM, Cherrington BD. Peptidylarginine deiminase 2 regulates expression of DGCR8 affecting miRNA biogenesis in gonadotrope cells. Reproduction 2023; 166:125-134. [PMID: 37310889 PMCID: PMC10561559 DOI: 10.1530/rep-22-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In brief DGCR8 microprocessor complex, which is important for miRNA biogenesis, is regulated by peptidylarginine deiminase 2 and expression fluctuates in gonadotrope cells across the mouse estrous cycle. Abstract Canonical miRNA biogenesis requires DGCR8 microprocessor complex subunit, which helps cleave pri-miRNAs into pre-miRNAs. Previous studies found that inhibiting peptidylarginine deiminase (PAD) enzyme activity results in increased DGCR8 expression. PADs are expressed in mouse gonadotrope cells, which play a central role in reproduction by synthesizing and secreting the luteinizing and follicle stimulating hormones. Given this, we tested whether inhibiting PADs alters expression of DGCR8, DROSHA, and DICER in the gonadotrope-derived LβT2 cell line. To test this, LβT2 cells were treated with vehicle or 1 µM pan-PAD inhibitor for 12 h. Our results show that PAD inhibition leads to an increase in DGCR8 mRNA and protein. To corroborate our results, dispersed mouse pituitaries were also treated with 1 µM pan-PAD inhibitor for 12 h which increases DGCR8 expression in gonadotropes. Since PADs epigenetically regulate gene expression, we hypothesized that histone citrullination alters Dgcr8 expression thereby affecting miRNA biogenesis. LβT2 samples were subjected to ChIP using an antibody to citrullinated histone H3, which shows that citrullinated histones are directly associated with Dgcr8. Next, we found that when DGCR8 expression is elevated in LβT2 cells, pri-miR-132 and -212 are reduced, while mature miR-132 and -212 are increased suggesting heightened miRNA biogenesis. In mouse gonadotropes, DGCR8 expression is higher in diestrus as compared to estrus, which is the inverse of PAD2 expression. Supporting this idea, treatment of ovariectomized mice with 17β-estradiol results in an increase in PAD2 expression in gonadotropes with a corresponding decrease in DGCR8. Collectively, our work suggests that PADs regulate DGCR8 expression leading to changes in miRNA biogenesis in gonadotropes.
Collapse
Affiliation(s)
- Brett A. Ralston
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Lamia Khan
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Stanley B. DeVore
- University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45267, USA
| | - Trent A. Bronnenberg
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Joseph W. Flock
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Ari O. Sequoia
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Paul R. Thompson
- University of Massachusetts Medical School, Program in Chemical Biology, Worcester, MA 01605, USA
| | - Amy M. Navratil
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Brian D. Cherrington
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| |
Collapse
|
17
|
miR-450-5p and miR-202-5p Synergistically Regulate Follicle Development in Black Goat. Int J Mol Sci 2022; 24:ijms24010401. [PMID: 36613843 PMCID: PMC9820456 DOI: 10.3390/ijms24010401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Follicle maturation is a complex biological process governed by numerous factors, and researchers have observed follicle development by studying the proliferation and apoptosis of follicular granulosa cells (GCs). However, the regulatory mechanisms of GCs proliferation and death during follicle development are largely unknown. To investigate the regulatory mechanisms of lncRNAs, mRNAs, and microRNAs, RNA sequencing (RNA-seq) and small RNA-seq were performed on large (>10 mm) and small follicles (<3 mm) of Leizhou black goat during estrus. We discovered two microRNAs, miR-450-5p and miR-202-5p, which can target GCs in goats and may be involved in follicle maturation, and the effects of miR-450-5p and miR-202-5p on ovarian granulosa cell lines were investigated (KGN). Using cell counting kit-8 (CCK-8) assays, 5-Ethynyl-2’-deoxyuridine (EdU) assay and flow cytometry, miR-202-5p overexpression could suppress the proliferation and induce apoptosis of GCs, whereas miR-450-5p overexpression induced the opposite effects. The dual-luciferase reporter assay confirmed that miR-450-5p could directly target the BMF gene (a BCL2 modifying factor), and miR-202-5p targeted the BCL2 gene. A considerable rise in phosphorylated Akt (p-AKT) protein was observed following the downregulation of BMF by miR-450-5p mimics. After BMF gene RNAi therapy, a notable elevation in p-AKT was detected. Mimics of miR-202-5p inhibited BCL2 protein expression, significantly decreasing p-AMPK protein expression. These results imply that during the follicular development in black goats, the miR-450-5p-BMF axis favored GC proliferation on a wide scale, while the miR-202-5p-BCL2 axis triggered GC apoptosis.
Collapse
|
18
|
Han M, Liang C, Liu Y, He X, Chu M. Integrated Transcriptome Analysis Reveals the Crucial mRNAs and miRNAs Related to Fecundity in the Hypothalamus of Yunshang Black Goats during the Luteal Phase. Animals (Basel) 2022; 12:ani12233397. [PMID: 36496918 PMCID: PMC9738480 DOI: 10.3390/ani12233397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
A normal estrus cycle is essential for the breeding of goats, and the luteal phase accounts for most of the estrus cycle. The corpus luteum (CL) formed during the luteal phase is a transient endocrine gland that is crucial for the reproductive cycle and pregnancy maintenance, and is controlled by many regulatory factors. However, the molecular mechanism of the hypothalamus effect on the reproductive performance of different litter sizes during the luteal phase of goats has not been elucidated. In this study, RNA-sequencing was used to analyze the mRNA and miRNA expression profiles of the hypothalamic tissues with the high-fecundity goats during the luteal phase (LP-HF) and low-fecundity goats during the luteal phase (LP-LF). The RNA-seq results found that there were 1963 differentially expressed genes (DEGs) (890 up-regulated and 1073 down-regulated). The miRNA-seq identified 57 differentially expressed miRNAs (DEMs), including 11 up-regulated and 46 down-regulated, of which 199 DEGs were predicted to be potential target genes of DEMs. Meanwhile, the functional enrichment analysis identified several mRNA-miRNA pairs involved in the regulation of the hypothalamic activity, such as the common target gene MEA1 of novel-miR-972, novel-miR-125 and novel-miR-403, which can play a certain role as a related gene of the reproductive development in the hypothalamic-pituitary-gonadal (HPG) axis and its regulated network, by regulating the androgen secretion. While another target gene ADIPOR2 of the novel-miR-403, is distributed in the hypothalamus and affects the reproductive system through a central role on the HPG axis and a peripheral role in the gonadal tissue. An annotation analysis of the DE miRNA-mRNA pairs identified targets related to biological processes, such as anion binding (GO:0043168) and small molecule binding (GO: 0036094). Subsequently, the KEGG(Kyoto Encyclopedia of Genes and Genomes) pathways were performed to analyze the miRNA-mRNA pairs with negatively correlated miRNAs. We found that the GnRH signaling pathway (ko04912), the estrogen signaling pathway (ko04915), the Fc gamma R-mediated phagocytosis (ko04666), and the IL-17 signaling pathway (ko04657), etc., were directly and indirectly associated with the reproductive process. These targeting interactions may be closely related to the reproductive performance of goats. The results of this study provide a reference for further research on the molecular regulation mechanism for the high fertility in goats.
Collapse
Affiliation(s)
- Miaoceng Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62819850
| |
Collapse
|
19
|
Saengkaew T, Howard SR. Genetics of pubertal delay. Clin Endocrinol (Oxf) 2022; 97:473-482. [PMID: 34617615 PMCID: PMC9543006 DOI: 10.1111/cen.14606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
The timing of pubertal development is strongly influenced by the genetic background, and clinical presentations of delayed puberty are often found within families with clear patterns of inheritance. The discovery of the underlying genetic regulators of such conditions, in recent years through next generation sequencing, has advanced the understanding of the pathogenesis of disorders of pubertal timing and the potential for genetic testing to assist diagnosis for patients with these conditions. This review covers the significant advances in the understanding of the biological mechanisms of delayed puberty that have occurred in the last two decades.
Collapse
Affiliation(s)
- Tansit Saengkaew
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Endocrinology Unit, Department of Paediatrics, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
20
|
LaPierre MP, Lawler K, Godbersen S, Farooqi IS, Stoffel M. MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis. Nat Commun 2022; 13:5733. [PMID: 36175420 PMCID: PMC9522793 DOI: 10.1038/s41467-022-33367-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) modulate physiological responses by repressing the expression of gene networks. We found that global deletion of microRNA-7 (miR-7), the most enriched miRNA in the hypothalamus, causes obesity in mice. Targeted deletion of miR-7 in Single-minded homolog 1 (Sim1) neurons, a critical component of the hypothalamic melanocortin pathway, causes hyperphagia, obesity and increased linear growth, mirroring Sim1 and Melanocortin-4 receptor (MC4R) haplo-insufficiency in mice and humans. We identified Snca (α-Synuclein) and Igsf8 (Immunoglobulin Superfamily Member 8) as miR-7 target genes that act in Sim1 neurons to regulate body weight and endocrine axes. In humans, MIR-7-1 is located in the last intron of HNRNPK, whose promoter drives the expression of both genes. Genetic variants at the HNRNPK locus that reduce its expression are associated with increased height and truncal fat mass. These findings demonstrate that miR-7 suppresses gene networks involved in the hypothalamic melanocortin pathway to regulate mammalian energy homeostasis.
Collapse
Affiliation(s)
- Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland.
- Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
21
|
Xia J, Liu D, Zhou W, Yi S, Wang X, Li B, Jawad M, Xu H, Gui L, Li M. Comparative transcriptome analysis of brain and gonad reveals reproduction-related miRNAs in the giant prawn, Macrobrachium rosenbergii. Front Genet 2022; 13:990677. [PMID: 36092927 PMCID: PMC9459145 DOI: 10.3389/fgene.2022.990677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Macrobrachium rosenbergii (M. rosenbergii), as a species of common prawn, is a delicacy that is consumed all over the world. By interacting with the target gene 3′-untranslated region (3'-UTR), microRNAs (miRNAs) regulate its expression and ultimately participate in the regulation of reproductive development. However, research focusing on miRNA regulation during gonadal development in M. rosenbergii received very little attention. To explore the association between miRNA and reproduction, we performed RNA sequencing (RNA-seq) on brain and gonad organs in male and female M. rosenbergii. A total of 494 miRNAs were obtained in RNA-seq, including 31 and 59 differentially expressed (DE) miRNAs in the brain and gonads, respectively. Furthermore, 9 DE miRNAs were randomly selected from the brain and gonads, and qRT-PCR was conducted to validate the results of RNA-seq. Interestingly, dpu-miR-133 was found to be substantially expressed in the male brain and testis but poorly expressed in the female brain, ovary, and other organs. Analysis of dpu-miR-133 by Targetscan and MiRanda predicted to target 5-HT1. Furthermore, the dual-luciferase reporter assay manifested that dpu-miR-133 can combine with 5-HT1. Overall, our research work provides basic data for further study on the miRNA-mediated regulation of brain, gonad, and reproductive development of study M. rosenbergii.
Collapse
Affiliation(s)
- Jiao Xia
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Dong Liu
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wenzong Zhou
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Wenzong Zhou, ; Mingyou Li,
| | - Shaokui Yi
- College of Life Sciences, Huzhou University, Zhejiang, China
| | - Xinhai Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, China
| | - Beilei Li
- Huzhou Fengshengwan Aquatic Seed Industry Co. Ltd., Zhejiang, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Haijing Xu
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Wenzong Zhou, ; Mingyou Li,
| |
Collapse
|
22
|
Li L, Zhang J, Lu C, Wang B, Guo J, Zhang H, Cui S. MicroRNA-7a2 Contributes to Estrogen Synthesis and Is Modulated by FSH via the JNK Signaling Pathway in Ovarian Granulosa Cells. Int J Mol Sci 2022; 23:ijms23158565. [PMID: 35955699 PMCID: PMC9369042 DOI: 10.3390/ijms23158565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
MicroRNA-7a2 (miR-7a2) plays fundamental roles in the female reproductive axis, and estrogen is indispensable for maintaining ovary function. However, the interaction between miR-7a2 and ovarian function is unclear. The present study aimed to determine whether and how miR-7a2 functions in estrogen synthesis. Firstly, the results verified that miR-7a was highly expressed in ovarian granulosa cells. The knockout (KO) of miR-7a2 caused infertility and abnormal ovarian function in mice. Concomitantly, the Cyp19a1 expression and estrogen synthesis were significantly inhibited, which was validated in primary granulosa cells. The mice transplanted with miR-7a2 KO ovaries showed similar results; however, estrogen supplementation reversed infertility. In the in vitro experiment, follicle-stimulating hormone (FSH) significantly improved the expression of miR-7a and Cyp19a1 and the synthesis of estrogen. However, the miR-7a2 KO markedly reversed the function of FSH. Also, FSH upregulated miR-7a by activating the (c-Jun N-terminal kinase) JNK signaling pathway. In addition, Golgi apparatus protein 1 (Glg1) was shown to be the target gene of miR-7a2. These findings indicated that miR-7a2 is essential for ovarian functions with respect to estrogen synthesis through the targeted inhibition of the expression of Glg1 and then promoting Cyp19a1 expression; the physiological process was positively regulated by FSH via the JNK signaling pathway in granulosa cells.
Collapse
Affiliation(s)
- Liuhui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Bingjie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Jiajia Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Haitong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
23
|
Li L, Lu C, Zhang D, Liu H, Cui S. Taurine promotes estrogen synthesis by regulating microRNA-7a2 in mice ovarian granulosa cells. Biochem Biophys Res Commun 2022; 626:129-134. [DOI: 10.1016/j.bbrc.2022.07.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
|
24
|
Zhao T, Ren L, Li C, Liu L, Zou Y, Yan H, Zhan Y, Chang Y. MiR-7 Regulates Pathogen-Induced Immune Response via PAK1 in the Sea Cucumber Apostichopus japonicus. Front Immunol 2022; 13:927796. [PMID: 35911684 PMCID: PMC9329918 DOI: 10.3389/fimmu.2022.927796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA-7 (miR-7) is a highly conserved short non-coding RNA involved in various bioprocesses via the regulation of multiple target genes. To enrich our knowledge of the functions of miR-7 in innate immune regulation in echinoderms, we first investigated the targeting relationship between miR-7 and PAK1 in the sea cucumber Apostichopus japonicus and then explored the functions of miR-7, the PAK1 gene, and the miR-7/PAK1 axis in the pathogen-induced immune response of A. japonicus. Our results showed that miR-7 can bind to the 3ʹUTR of PAK1 and negatively regulate the expression of PAK1 in A. japonicus. Overexpression and inhibition of miR-7 and inhibition of the expression of PAK1 can alter phagocytosis, cellular agglutination, and lysozyme contents in A. japonicus. Both miR-7 and the PAK1 gene are involved in immune defense against Vibrio splendidus infection; the miR-7/AjPAK1 axis showed immune regulatory function at 48 to 72 h post-infection (hpi) after V. splendidus infection in A. japonicus. In summary, the results of this study established that miR-7 regulates the pathogen-induced immune response by targeting PAK1 in A. japonicus.
Collapse
Affiliation(s)
- Tanjun Zhao
- College of Life Science, Liaoning Normal University, Dalian, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Liyuan Ren
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Chengda Li
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Li Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
- *Correspondence: Yaoyao Zhan, ; Yaqing Chang,
| | - Yaqing Chang
- College of Life Science, Liaoning Normal University, Dalian, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
- *Correspondence: Yaoyao Zhan, ; Yaqing Chang,
| |
Collapse
|
25
|
Zhang W, Ren W, Han D, Zhao G, Wang H, Guo H, Zheng Y, Ji Z, Gao W, Yuan B. LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells. J Zhejiang Univ Sci B 2022; 23:502-514. [PMID: 35686528 DOI: 10.1631/jzus.b2101052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) are expressed in different species and different tissues, and perform different functions, but little is known about their involvement in the synthesis or secretion of follicle-stimulating hormone (FSH). In general, we have revealed lncRNA‒microRNA (miRNA)‒messenger RNA (mRNA) interactions that may play important roles in rat primary pituitary cells. In this study, a new lncRNA was identified for the first time. First, we analyzed the gene expression of lncRNA-m18as1 in different tissues and different stages by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and observed the localization of lncRNA-m18as1 with fluorescence in situ hybridization, which indicated that this lncRNA was distributed mainly in the cytoplasm. Next, we used RT-qPCR and enzyme-linked immunosorbent assay (ELISA) to analyze the regulation of FSH synthesis and secretion after overexpression or knockdown of lncRNA-m18as1 and found that lncRNA-m18as1 was positively correlated with FSH synthesis and secretion. In addition, mothers against decapentaplegic homolog 2 (Smad2) was highly expressed in our sequencing results. We also screened miR-18a-5p from our sequencing results as a miRNA that may bind to lncRNA-m18as1 and Smad2. We used RNA immunoprecipitation-qPCR (RIP-qPCR) and/or dual luciferase assays to confirm that lncRNA-m18as1 interacted with miR-18a-5p and miR-18a-5p interacted with Smad2. Fluorescence in situ hybridization (FISH) showed that lncRNA-m18as1 and miR-18a-5p were localized mainly in the cytoplasm. Finally, we determined the relationship among lncRNA-m18as1, miR-18a-5p, and the Smad2/3 pathway. Overall, we found that lncRNA-m18as1 acts as a molecular sponge of miR-18a-5p to regulate the synthesis and secretion of FSH through the Smad2/3 pathway.
Collapse
Affiliation(s)
- Weidi Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenzhi Ren
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China
| | - Dongxu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoqi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Bao Yuan
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China. ,
| |
Collapse
|
26
|
Mala U, Baral TK, Somasundaram K. Integrative analysis of cell adhesion molecules in glioblastoma identified prostaglandin F2 receptor inhibitor (PTGFRN) as an essential gene. BMC Cancer 2022; 22:642. [PMID: 35690717 PMCID: PMC9188228 DOI: 10.1186/s12885-022-09682-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor in adults exhibiting infiltration into surrounding tissues, recurrence, and resistance to therapy. GBM infiltration is accomplished by many deregulated factors such as cell adhesion molecules (CAMs), which are membrane proteins that participate in cell-cell and cell-ECM interactions to regulate survival, proliferation, migration, and stemness. Methods A comprehensive bioinformatics analysis of CAMs (n = 518) in multiple available datasets revealed genetic and epigenetic alterations among CAMs in GBM. Univariate Cox regression analysis using TCGA dataset identified 127 CAMs to be significantly correlated with survival. The poor prognostic indicator PTGFRN was chosen to study its role in glioma. Silencing of PTGFRN in glioma cell lines was achieved by the stable expression of short hairpin RNA (shRNA) against the PTGFRN gene. PTGFRN was silenced and performed cell growth, migration, invasion, cell cycle, and apoptosis assays. Neurosphere and limiting dilution assays were also performed after silencing of PTGFRN in GSCs. Results Among the differentially regulated CAMs (n = 181, 34.9%), major proportion of them were found to be regulated by miRNAs (n = 95, 49.7%) followed by DNA methylation (n = 32, 16.7%), and gene copy number variation (n = 12, 6.2%). We found that PTGFRN to be upregulated in GBM tumor samples and cell lines with a significant poor prognostic correlation with patient survival. Silencing PTGFRN diminished cell growth, colony formation, anchorage-independent growth, migration, and invasion and led to cell cycle arrest and induction of apoptosis. At the mechanistic level, silencing of PTGFRN reduced pro-proliferative and promigratory signaling pathways such as ERK, AKT, and mTOR. PTGFRN upregulation was found to be due to the loss of its promoter methylation and downregulation of miR-137 in GBM. PTGFRN was also found to be higher in glioma stem-like cells (GSCs) than the matched differentiated glioma cells (DGCs) and is required for GSC growth and survival. Silencing of PTGFRN in GSCs reduced transcript levels of reprogramming factors (Olig2, Pou3f2, Sall2, and Sox2). Conclusion In this study, we provide a comprehensive overview of the differential regulation of CAMs and the probable causes for their deregulation in GBM. We also establish an oncogenic role of PTGFRN and its regulation by miR-137 in GBM, thus signifying it as a potential therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09682-2.
Collapse
Affiliation(s)
- Uchurappa Mala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Tapan Kumar Baral
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
27
|
Zhang J, Zhou Y, Guo J, Li L, Liu H, Lu C, Jiang Y, Cui S. MicroRNA-7a2 is required for the development of pituitary stem cells. Stem Cells Dev 2022; 31:357-368. [PMID: 35652338 DOI: 10.1089/scd.2022.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The pituitary gland is inhabited by a subpopulation of SOX2+ stem cells. However, the regulatory mechanisms underlying pituitary stem cell development remain poorly understood. Here, we demonstrate that microRNA-7a (miR-7a) is enriched in the developing pituitary and is spatiotemporally expressed in the pituitary stem cells. Constitutive deletion of miR-7a2 in mice results in pituitary dysplasia emerging during birth, which is primarily manifested as malformed anterior lobes. Using immunofluorescence, immunohistochemistry or in situ hybridization, we observe that the specification of hormone-expressing cells is not impeded post miR-7a2 deletion at birth, although the terminal differentiation of gonadotropes is inhibited. Further investigation of neonatal and adult pituitaries in miR-7a2 knockout mice reveals an expansion of the SOX2+ pituitary stem cell compartment. The inhibition of epithelial-mesenchymal like transition seems to be responsible for this phenotype, rather than abnormal proliferation or apoptosis. Furthermore, our data suggest that Gli3 and Ckap4 are potential targets of miR-7a in pituitary stem cells. In summary, our results identify miR-7a2 as a crucial factor involved in pituitary stem cell development.
Collapse
Affiliation(s)
- Jinglin Zhang
- Yangzhou University, 38043, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu, China.,Yangzhou University, 38043, Institute of Reproduction and Metabolism, Yangzhou, Jiangsu, China;
| | - Yewen Zhou
- Yangzhou University, 38043, College of Veterinary Medicine, Yangzhou, Jiangsu, China.,Yangzhou University, 38043, Institute of Reproduction and Metabolism, Yangzhou, Jiangsu, China;
| | - Jiajia Guo
- Yangzhou University, 38043, College of Veterinary Medicine, Yangzhou, Jiangsu, China;
| | - Liuhui Li
- Yangzhou University, 38043, College of Veterinary Medicine, Yangzhou, Jiangsu, China;
| | - Hui Liu
- Yangzhou University, 38043, College of Veterinary Medicine, Yangzhou, Jiangsu, China;
| | - Chenyang Lu
- Yangzhou University, 38043, College of Veterinary Medicine, Yangzhou, Jiangsu, China;
| | - Ying Jiang
- Yangzhou University, 38043, College of Veterinary Medicine, Yangzhou, Jiangsu, China;
| | - Sheng Cui
- Yangzhou University, 38043, College of Veterinary Medicine, Yangzhou, Jiangsu, China.,Yangzhou University, 38043, Institute of Reproduction and Metabolism, Yangzhou, Jiangsu, China.,Yangzhou University, 38043, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China;
| |
Collapse
|
28
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
29
|
Jia B, Zhang L, Ma F, Wang X, Li J, Diao N, Leng X, Shi K, Zeng F, Zong Y, Liu F, Gong Q, Cai R, Yang F, Du R, Chang Z. Comparison of miRNA and mRNA Expression in Sika Deer Testes With Age. Front Vet Sci 2022; 9:854503. [PMID: 35464385 PMCID: PMC9019638 DOI: 10.3389/fvets.2022.854503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
To elucidate the complex physiological process of testis development and spermatogenesis in Sika deer, this study evaluated the changes of miRNA and mRNA profiles in the four developmental stages of testis in the juvenile (1-year-old), adolescence (3-year-old), adult (5-year-old), and aged (10-year-old) stages. The results showed that a total of 198 mature, 66 novel miRNAs, and 23,558 differentially expressed (DE) unigenes were obtained; 14,918 (8,413 up and 6,505 down), 4,988 (2,453 up and 2,535 down), and 5,681 (2,929 up and 2,752 down) DE unigenes, as well as 88 (43 up and 45 down), 102 (44 up and 58 down), and 54 (18 up and 36 down) DE miRNAs were identified in 3- vs. 1-, 5- vs. 3-, and 10- vs. 5-year-old testes, respectively. By integrating miRNA and mRNA expression profiles, we predicted 10,790 mRNA-mRNA and 69,883 miRNA-mRNA interaction sites. The target genes were enriched by GO and KEGG pathways to obtain DE mRNA (IGF1R, ALKBH5, Piwil, HIF1A, BRDT, etc.) and DE miRNA (miR-140, miR-145, miR-7, miR-26a, etc.), which play an important role in testis development and spermatogenesis. The data show that DE miRNAs could regulate testis developmental and spermatogenesis through signaling pathways, including the MAPK signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, Hippo signaling pathway, etc. miR-140 was confirmed to directly target mutant IGF1R-3'UTR by the Luciferase reporter assays. This study provides a useful resource for future studies on the role of miRNA regulation in testis development and spermatogenesis.
Collapse
Affiliation(s)
- Boyin Jia
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Linlin Zhang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Fuquan Ma
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xue Wang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Naichao Diao
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fanli Zeng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fei Liu
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Qinglong Gong
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Ruopeng Cai
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Fuhe Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rui Du
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Zhiguang Chang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
30
|
Min H, Xin XH, Gao CQ, Wang L, Du PF. XGEM: Predicting Essential miRNAs by the Ensembles of Various Sequence-Based Classifiers With XGBoost Algorithm. Front Genet 2022; 13:877409. [PMID: 35419029 PMCID: PMC8996062 DOI: 10.3389/fgene.2022.877409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in gene expression regulations. Identification of essential miRNAs is of fundamental importance in understanding their cellular functions. Experimental methods for identifying essential miRNAs are always costly and time-consuming. Therefore, computational methods are considered as alternative approaches. Currently, only a handful of studies are focused on predicting essential miRNAs. In this work, we proposed to predict essential miRNAs using the XGBoost framework with CART (Classification and Regression Trees) on various types of sequence-based features. We named this method as XGEM (XGBoost for essential miRNAs). The prediction performance of XGEM is promising. In comparison with other state-of-the-art methods, XGEM performed the best, indicating its potential in identifying essential miRNAs.
Collapse
Affiliation(s)
- Hui Min
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Xiao-Hong Xin
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Chu-Qiao Gao
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Likun Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
31
|
Bhushan R, Rani A, Gupta D, Ali A, Dubey PK. MicroRNA-7 regulates insulin signaling pathway by targeting IRS1, IRS2, and RAF1 genes in gestational diabetes mellitus. Microrna 2022; 11:57-72. [PMID: 35422233 DOI: 10.2174/2211536611666220413100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Small non-coding micro RNAs (miRNAs) are indicated in various metabolic processes and play a critical role in disease pathology, including gestational diabetes mellitus (GDM). OBJECTIVE The purpose of this study was to examine the altered expression of miRNAs and their target genes in placental tissue (PL), cord blood (CB), and maternal blood (MB) of matched non-glucose tolerant (NGT) and GDM mother. METHODS In a case-control study, micro-RNA was quantified from forty-five serum (MB n = 15, CB n = 15, and PL n = 15) and matched placental tissue using stem-loop RT-qPCR followed by target prediction, network construction and functional and pathways enrichment analysis. Further, target genes were verified in-vitro through transfection and RT-qPCR. RESULTS Five miRNAs, namely hsa-let 7a-5P, hsa-miR7-5P, hsa-miR9-5P, hsa-miR18a-5P, and hsa-miR23a-3P were significantly over-expressed (p < 0.05) in all three samples namely PL, CB, and MB of GDM patients. However, the sample-wise comparison reveals higher expression of miRNA 7 in MB while lowest in CB than control. Furthermore, a comparison of fold change expression of target genes discloses a lower expression of IRS1, IRS2, and RAF1 in MB while comparatively higher expression of NRAS in MB and CB. In-vitro validation reveals lower expression of IRS1/2 and RAF1 in response to overexpression of miR-7 and vice-versa. Thus it is evident that increased miRNA7 expression causes down-regulation of its target genes IRS1, IRS2, and RAF1 in GDM mother compared to control. Further, target prediction, pathway enrichment, and hormone analysis (significantly higher FSH & LH in MB of GDM compared to NGT) revealed the insulin signaling, inflammatory and GnRH signaling as major pathways regulated by miRNA7. CONCLUSIONS Thus, an elevated level of miRNA7 may be associated with the progression of GDM by altering the multiple pathways like insulin, GnRH, and inflammatory signaling pathways via targeting IRS1, IRS2, and RAF1, implicating a new therapeutic target for GDM.
Collapse
Affiliation(s)
- Ravi Bhushan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University Varanasi 221005, Uttar Pradesh, India
| | - Anjali Rani
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Deepali Gupta
- Department of Obstetrics and Gynecology, Ashirwad Hospital, Varanasi 221005, Uttar Pradesh, India
| | - Akhtar Ali
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
32
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
33
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
34
|
Small RNA expression and miRNA modification dynamics in human oocytes and early embryos. Genome Res 2021; 31:1474-1485. [PMID: 34340992 PMCID: PMC8327922 DOI: 10.1101/gr.268193.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Small noncoding RNAs (sRNAs) play important roles during the oocyte-to-embryo transition (OET), when the maternal phenotype is reprogrammed and the embryo genome is gradually activated. The transcriptional program driving early human development has been studied with the focus mainly on protein-coding RNAs, and expression dynamics of sRNAs remain largely unexplored. We profiled sRNAs in human oocytes and early embryos using an RNA-sequencing (RNA-seq) method suitable for low inputs of material. We show that OET in humans is temporally coupled with the transition from predominant expression of oocyte short piRNAs (os-piRNAs) in oocytes, to activation of microRNA (miRNA) expression in cleavage stage embryos. Additionally, 3′ mono- and oligoadenylation of miRNAs is markedly increased in zygotes. We hypothesize that this may modulate the function or stability of maternal miRNAs, some of which are retained throughout the first cell divisions in embryos. This study is the first of its kind elucidating the dynamics of sRNA expression and miRNA modification along a continuous trajectory of early human development and provides a valuable data set for in-depth interpretative analyses.
Collapse
|
35
|
Li X, Zhou L, Peng G, Liao M, Zhang L, Hu H, Long L, Tang X, Qu H, Shao J, Zheng H, Long M. Pituitary P62 deficiency leads to female infertility by impairing luteinizing hormone production. Exp Mol Med 2021; 53:1238-1249. [PMID: 34453106 PMCID: PMC8417229 DOI: 10.1038/s12276-021-00661-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
P62 is a protein adaptor for various metabolic processes. Mice that lack p62 develop adult-onset obesity. However, investigations on p62 in reproductive dysfunction are rare. In the present study, we explored the effect of p62 on the reproductive system. P62 deficiency-induced reproductive dysfunction occurred at a young age (8 week old). Young systemic p62 knockout (p62-/-) and pituitary-specific p62 knockout (p62flox/flox αGSUcre) mice both presented a normal metabolic state, whereas they displayed infertility phenotypes (attenuated breeding success rates, impaired folliculogenesis and ovulation, etc.) with decreased luteinizing hormone (LH) expression and production. Consistently, in an infertility model of polycystic ovary syndrome (PCOS), pituitary p62 mRNA was positively correlated with LH levels. Mechanistically, p62-/- pituitary RNA sequencing showed a significant downregulation of the mitochondrial oxidative phosphorylation (OXPHOS) pathway. In vitro experiments using the pituitary gonadotroph cell line LβT2 and siRNA/shRNA/plasmid confirmed that p62 modulated LH synthesis and secretion via mitochondrial OXPHOS function, especially Ndufa2, a component molecule of mitochondrial complex I, as verified by Seahorse and rescue tests. After screening OXPHOS markers, Ndufa2 was found to positively regulate LH production in LβT2 cells. Furthermore, the gonadotropin-releasing hormone (GnRH)-stimulating test in p62flox/flox αGSUcre mice and LβT2 cells illustrated that p62 is a modulator of the GnRH-LH axis, which is dependent on intracellular calcium and ATP. These findings demonstrated that p62 deficiency in the pituitary impaired LH production via mitochondrial OXPHOS signaling and led to female infertility, thus providing the GnRH-p62-OXPHOS(Ndufa2)-Ca2+/ATP-LH pathway in gonadotropic cells as a new theoretical basis for investigating female reproductive dysfunction.
Collapse
Affiliation(s)
- Xing Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Street No. 305, Xuanwu, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Zhongshan East Street No. 305, Xuanwu, Nanjing, China
| | - Ling Zhou
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Guiliang Peng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Mingyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Hua Hu
- Department of Gynaecology and Obstetrics, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Ling Long
- Department of Gynaecology and Obstetrics, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Xuefeng Tang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Hua Qu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Street No. 305, Xuanwu, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Zhongshan East Street No. 305, Xuanwu, Nanjing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China.
| | - Min Long
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Xinqiao Main Street No. 183, Shapingba, Chongqing, China.
| |
Collapse
|
36
|
Integration of miRNA-mRNA co-expression network reveals potential regulation of miRNAs in hypothalamus from sterile triploid crucian carp. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
37
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
38
|
Chen W, Cui Y, Ning M, Zhang H, Yin C, He Z. The mechanisms and functions of microRNAs in mediating the fate determinations of human spermatogonial stem cells and Sertoli cells. Semin Cell Dev Biol 2021; 121:32-39. [PMID: 34034987 DOI: 10.1016/j.semcdb.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 01/12/2023]
Abstract
Human spermatogonial stem cells (SSCs) and Sertoli cells might have the applications in reproduction and regenerative medicine. Abnormal spermatogenesis results in male infertility, which seriously affects human reproduction and health. Spermatogenesis depends on the epigenetic and genetic regulation of male germ cells and somatic cells. A number of microRNAs (miRNAs) have been identified in human testicular tissues, and they are closely related to male fertility. Significantly, we and peers have recently demonstrated that numerous miRNAs are essential for regulating the self-renewal and apoptosis of human SSCs and Sertoli cells through controlling their mRNA and lncRNA targets. In this review, we critically discuss these findings regarding the important functions and mechanisms of miRNAs in mediating the fate determinations of human SSCs and Sertoli cells. Meanwhile, we illustrate the regulatory networks for miRNAs by forming the upstream and downstream regulators of mRNAs and lncRNAs in human SSCs, and we address that miRNAs regulate the decisions of Sertoli cells by targeting genes and via N6-methyladenosine (m6A). We also point out the future directions for further studies on this field. This review could offer an update on novel molecular targets for treating male infertility and new insights into epigenetic regulation of human spermatogenesis.
Collapse
Affiliation(s)
- Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China
| | - Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China
| | - Minqi Ning
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China
| | - Haorui Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China
| | - Chenjun Yin
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China.
| |
Collapse
|
39
|
Khan HL, Bhatti S, Abbas S, Kaloglu C, Isa AM, Younas H, Ziders R, Khan YL, Hassan Z, Turhan BO, Yildiz A, Aydin HH, Kalyan EY. Extracellular microRNAs: key players to explore the outcomes of in vitro fertilization. Reprod Biol Endocrinol 2021; 19:72. [PMID: 33992122 PMCID: PMC8122550 DOI: 10.1186/s12958-021-00754-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small RNA molecules that modulate post-transcriptional gene regulation. They are often used as promising non-invasive biomarkers for the early diagnosis of cancer. However, their roles in assisted reproduction are still unknown. METHODS This prospective study was designed to evaluate the expression profiles of seven extracellular miRNAs (miR-7-5p, miR-202-5p, miR-378-3p, miR-224, miR-320a, miR-212-3p, and miR-21-5p) in human follicular fluid (FF) to explore the outcomes of in vitro fertilization (IVF). Of 255 women, 145 were without polycystic ovary syndrome (PCOS), and their ovarian assets were normal (NOR), while 110 were with normo-androgenic PCOS. RESULTS The combination of six FF miRNAs expression profile discriminated between PCOS and NOR women with a sensitivity of 79.2% and a specificity of 87.32% (AUC = 0.881 [0.61; 0.92], p = 0.001). MiR-202-5p significantly had a lower abundance level, and miR-378-3p had a high abundance level in pooled FF samples from patients treated with human menopausal gonadotropin (hMG) than those treated with recombinant follicle-stimulating hormone (rFSH) (p < 0.001). Our results showed that miRNA-320a was significantly different in top-quality embryos versus non-top-quality embryos on day 3 in NOR patients with a sensitivity of 80% and specificity of 71%, (AUC = [0.753 (0.651; 0.855)], p = 0.001). For clinical pregnancy outcome prediction, FF miRNA-21 exhibited high sensitivity (74.8%) and specificity (83.7%) with the AUC value of 0.774 (0.682; 0.865). CONCLUSION Conclusively, our results provide evidence that miR-7-5p, miR-378-3p, miR-224, miR-212-3p were a differentially high expression in normo-androgenic PCOS patients than NOR patients. While miRNA-320a was significantly different in top-quality embryos versus non-top-quality embryos on day 3 (p = 0.001). The expression level of FF miR-212-3p was significantly related to the probability of embryos to develop into a high-quality blastocyst in patients with normal ovarian reserve.
Collapse
Affiliation(s)
- Haroon Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14 Abu-Bakar Block New Garden Town, 54800, Lahore, Pakistan
| | - Shahzad Bhatti
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14 Abu-Bakar Block New Garden Town, 54800, Lahore, Pakistan.
- Department of Human Genetics and Molecular biology, University of Health Sciences, Lahore, 54600, Pakistan.
- Department of Medical Education, Rashid Latif Medical College, Lahore, Pakistan.
| | - Sana Abbas
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14 Abu-Bakar Block New Garden Town, 54800, Lahore, Pakistan
| | - Celal Kaloglu
- Department of Histology and Embryology, Cumhuriyet University Faculty of Medicine, 58140, Sivas, Turkey
| | - Ahmed M Isa
- Assisted Conception Unit, Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College Lahore, Lahore, Pakistan
| | - Rachel Ziders
- Your Family Fertility, 1408 Sweet Home Road Suite 9, Amherst, NY 14228, USA
| | - Yousaf Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14 Abu-Bakar Block New Garden Town, 54800, Lahore, Pakistan
| | - Zahira Hassan
- Department of Cellular Pathology, Royal Free Hospital, London, NW3 2QG, UK
| | | | - Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Kotekli, 48000, Mugla, Turkey
| | - Hikmet Hakan Aydin
- Department of Medical Biochemistry, Ege University School of Medicine, Bornova, Izmir, Turkey
| | - Ender Yalcinkaya Kalyan
- Department of IVF unit, Private Adatip Hospital, Yenisehir mahallesi Kardelen sokak 2, Pendik, 34912, Istanbul, Turkey
| |
Collapse
|
40
|
Nielsen MM, Pedersen JS. miRNA activity inferred from single cell mRNA expression. Sci Rep 2021; 11:9170. [PMID: 33911110 PMCID: PMC8080788 DOI: 10.1038/s41598-021-88480-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/08/2021] [Indexed: 01/26/2023] Open
Abstract
High throughput single-cell RNA sequencing (scRNAseq) can provide mRNA expression profiles for thousands of cells. However, miRNAs cannot currently be studied at the same scale. By exploiting that miRNAs bind well-defined sequence motifs and typically down-regulate target genes, we show that motif enrichment analysis can be used to derive miRNA activity estimates from scRNAseq data. Motif enrichment analyses have traditionally been used to derive binding motifs for regulatory factors, such as miRNAs or transcription factors, that have an effect on gene expression. Here we reverse its use. By starting from the miRNA seed site, we derive a measure of activity for miRNAs in single cells. We first establish the approach on a comprehensive set of bulk TCGA cancer samples (n = 9679), with paired mRNA and miRNA expression profiles, where many miRNAs show a strong correlation with measured expression. By downsampling we show that the method can be used to estimate miRNA activity in sparse data comparable to scRNAseq experiments. We then analyze a human and a mouse scRNAseq data set, and show that for several miRNA candidates, including liver specific miR-122 and muscle specific miR-1 and miR-133a, we obtain activity measures supported by the literature. The methods are implemented and made available in the miReact software. Our results demonstrate that miRNA activities can be estimated at the single cell level. This allows insights into the dynamics of miRNA activity across a range of fields where scRNAseq is applied.
Collapse
Affiliation(s)
- Morten Muhlig Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Jakob Skou Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark. .,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark. .,Bioinformatics Research Centre, C.F. Møllers Allé 8, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
41
|
Post-Transcriptional Regulation of Gnrhr: A Checkpoint for Metabolic Control of Female Reproduction. Int J Mol Sci 2021; 22:ijms22073312. [PMID: 33805020 PMCID: PMC8038027 DOI: 10.3390/ijms22073312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022] Open
Abstract
The proper expression of gonadotropin-releasing hormone receptors (GnRHRs) by pituitary gonadotropes is critical for maintaining maximum reproductive capacity. GnRH receptor expression must be tightly regulated in order to maintain the normal pattern of expression through the estrous cycle in rodents, which is believed to be important for interpreting the finely tuned pulses of GnRH from the hypothalamus. Much work has shown that Gnrhr expression is heavily regulated at the level of transcription. However, researchers have also discovered that Gnrhr is regulated post-transcriptionally. This review will discuss how RNA-binding proteins and microRNAs may play critical roles in the regulation of GnRHR expression. We will also discuss how these post-transcriptional regulators may themselves be affected by metabolic cues, specifically with regards to the adipokine leptin. All together, we present evidence that Gnrhr is regulated post-transcriptionally, and that this concept must be further explored in order to fully understand the complex nature of this receptor.
Collapse
|
42
|
Korać P, Antica M, Matulić M. MiR-7 in Cancer Development. Biomedicines 2021; 9:325. [PMID: 33806891 PMCID: PMC8004586 DOI: 10.3390/biomedicines9030325] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.
Collapse
Affiliation(s)
- Petra Korać
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Bosković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| |
Collapse
|
43
|
Zhu L, Jing J, Qin S, Zheng Q, Lu J, Zhu C, Liu Y, Fang F, Li Y, Ling Y. miR-130a-3p regulates steroid hormone synthesis in goat ovarian granulosa cells by targeting the PMEPA1 gene. Theriogenology 2021; 165:92-98. [PMID: 33647740 DOI: 10.1016/j.theriogenology.2021.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are key epigenomic regulators of proliferation, differentiation, and secretion in cells involved in follicular development. We here studied the functional role of one such molecule, miR-130a-3p, in goat ovarian granulosa cells (GCs). High expression of this miRNA was evident in goat GCs by fluorescence in situ hybridization and suppressed estradiol and progesterone secretion from these cells, as determined by ELISA. miR-130a-3p was predicted to have a binding site for the 3' UTR of the prostate transmembrane protein androgen induced 1 gene (PMEPA1), and this was verified by a dual-luciferase reporter assay. PMEPA1 mRNA and protein expression were both found to be regulated by miR-130a-3p in GCs. Moreover, the overexpression or knockdown of PMEPA1 enhanced or suppressed estradiol and progesterone secretion from these cells, respectively. Furthermore, the secretion of estradiol and progesterone did not change significantly after the offsetting of PMEPA1 overexpression in GCs by miR-130a-3p. In summary, our present data indicate that miR-130a-3p inhibits the secretion of estradiol and progesterone in GCs by targeting PMEPA1. Our study thus provides seminal data and important new insights into the regulation of reproductive mechanisms in the nanny goat and other female mammals.
Collapse
Affiliation(s)
- Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Shuaiqi Qin
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Jiani Lu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Cuiyun Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China.
| |
Collapse
|
44
|
LaPierre MP, Godbersen S, Torres Esteban M, Schad AN, Treier M, Ghoshdastider U, Stoffel M. MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. Endocrinology 2021; 162:6009069. [PMID: 33248443 PMCID: PMC7774778 DOI: 10.1210/endocr/bqaa220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Prolactin production is controlled by a complex and temporally dynamic network of factors. Despite this tightly coordinated system, pathological hyperprolactinemia is a common endocrine disorder that is often not understood, thereby highlighting the need to expand our molecular understanding of lactotroph cell regulation. MicroRNA-7 (miR-7) is the most highly expressed miRNA family in the pituitary gland and the loss of the miR-7 family member, miR-7a2, is sufficient to reduce prolactin gene expression in mice. Here, we used conditional loss-of-function and gain-of-function mouse models to characterize the function of miR-7a2 in lactotroph cells. We found that pituitary miR-7a2 expression undergoes developmental and sex hormone-dependent regulation. Unexpectedly, the loss of mir-7a2 induces a premature increase in prolactin expression and lactotroph abundance during embryonic development, followed by a gradual loss of prolactin into adulthood. On the other hand, lactotroph development is delayed in mice overexpressing miR-7a2. This regulation of lactotroph function by miR-7a2 involves complementary mechanisms in multiple cell populations. In mouse pituitary and rat prolactinoma cells, miR-7a2 represses its target Raf1, which promotes prolactin gene expression. These findings shed light on the complex regulation of prolactin production and may have implications for the physiological and pathological mechanisms underlying hyperprolactinemia.
Collapse
Affiliation(s)
- Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Anaïs Nura Schad
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Mathias Treier
- Max Delbrück Zentrum für molekulare Medizin (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Germany
| | | | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
- Correspondence: Markus Stoffel, Swiss Federal Institute of Technology, ETH Zürich, Institute for Molecular Health Science, HPL H36, Otto-Stern Weg 7, CH 8093 Zürich, Switzerland.
| |
Collapse
|
45
|
Wang YY, Duan SH, Wang GL, Li JL. Integrated mRNA and miRNA expression profile analysis of female and male gonads in Hyriopsis cumingii. Sci Rep 2021; 11:665. [PMID: 33436779 PMCID: PMC7804246 DOI: 10.1038/s41598-020-80264-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Hyriopsis cumingii is an important species for freshwater pearl cultivation in China. In terms of pearl production, males have larger pearls and better glossiness than females, but there are few reports focusing on the sex of H. cumingii. In this study, six mRNA and six microRNA (miRNA) libraries were prepared from ovaries and testes. Additionally, 28,502 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Compared with testis, 14,360 mRNAs and 20 miRNAs were up-regulated in ovary, 14,142 mRNAs and 12 miRNAs were down-regulated. In DEGs, the known genes related to sex determinism and/or differentiation were also identified, such as DMRT1, SOX9, SF1 for males, FOXL2 for females, and other potentially significant candidate genes. Three sex-related pathways have also been identified, which are Wnt, Notch, and TGF-beta. In 32 DEMs, the three miRNAs (miR-9-5p, miR-92, miR-184) were paid more attention, they predicted 28 target genes, which may also be candidates for sex-related miRNAs and genes. Differential miRNAs target genes analysis reveals the pathway associated with oocyte meiosis and spermatogenesis. Overall, the findings of the study provide significant insights to enhance our understanding of sex differentiation and/or sex determination mechanisms for H. cumingii.
Collapse
Affiliation(s)
- Ya-Yu Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Sheng-Hua Duan
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Gui-Ling Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Jia-Le Li
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| |
Collapse
|
46
|
Tanycytes in the infundibular nucleus and median eminence and their role in the blood-brain barrier. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:253-273. [PMID: 34225934 DOI: 10.1016/b978-0-12-820107-7.00016-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier is generally attributed to endothelial cells. However, in circumventricular organs, such as the median eminence, tanycytes take over the barrier function. These ependymoglial cells form the wall of the third ventricle and send long extensions into the parenchyma to contact blood vessels and hypothalamic neurons. The shape and location of tanycytes put them in an ideal position to connect the periphery with central nervous compartments. In line with this, tanycytes control the transport of hormones and key metabolites in and out of the hypothalamus. They function as sensors of peripheral homeostasis for central regulatory networks. This chapter discusses current evidence that tanycytes play a key role in regulating glucose balance, food intake, endocrine axes, seasonal changes, reproductive function, and aging. The understanding of how tanycytes perform these diverse tasks is only just beginning to emerge and will probably lead to a more differentiated view of how the brain and the periphery interact.
Collapse
|
47
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
48
|
He J, Xu S, Ji Z, Sun Y, Cai B, Zhang S, Wang P. The role of miR-7 as a potential switch in the mouse hypothalamus-pituitary-ovary axis through regulation of gonadotropins. Mol Cell Endocrinol 2020; 518:110969. [PMID: 32781248 DOI: 10.1016/j.mce.2020.110969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
The hypothalamus-pituitary-ovary (HPO) axis plays fundamental roles in female neuroendocrinology and reproduction. Pituitary gonadotropins are located in the center of this axis. Previous investigation suggested that miR-7 is closely linked with gonadotropins. However, the interaction between miR-7 and the HPO axis remains unclear. This study aims to determine whether and how miR-7 functions in this axis. A mouse ovariectomy model and mouse primary pituitary cells were used in this study. The results showed that miR-7 is localized to gonadotrophs and somatotrophs. miR-7 can inhibit the expression, synthesis and secretion of gonadotropins, but not growth hormones. Gonadotropin-releasing hormone (GnRH) has inhibitory effects on miR-7, while estrogen enhances miR-7 expression. miR-7 is vital for the pathway by which GnRH and estrogen regulate gonadotropins by targeting v-raf-leukemia viral oncogene 1 (Raf1). Together, these results indicate that miR-7 acts as a potential switch in the feedback loop of the HPO axis by regulating gonadotropins.
Collapse
Affiliation(s)
- Jing He
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Shirong Xu
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Zengjun Ji
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Youhong Sun
- Department of Gynecology, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Bingyan Cai
- School of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, People's Republic of China
| | - Shanhui Zhang
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China.
| | - Pingping Wang
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China.
| |
Collapse
|
49
|
Li X, Xiao J, Li K, Zhou Y. MiR-199-3p modulates the onset of puberty in rodents probably by regulating the expression of Kiss1 via the p38 MAPK pathway. Mol Cell Endocrinol 2020; 518:110994. [PMID: 32818586 DOI: 10.1016/j.mce.2020.110994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
The Kiss1 gene plays an indispensable role in modulating the onset of puberty and fertility in mammals. Although an increasing number of genetic and environmental factors that influence reproduction through Kiss1 have been identified, the function of microRNAs, a class of posttranscriptional regulators, in regulating Kiss1 expression remains poorly understood. This study aimed at investigating the mechanism by which Kiss1 expression is regulated by microRNAs. A simplified miRNome screen by a dual-fluorescence reporter system based on Kiss1 was performed to identify microRNAs that affect the expression of Kiss1. The expression patterns of the identified microRNAs during the period of murine sexual development were investigated, and only miR-199-3p was studied further. Aided by bioinformatics algorithms, miR-199-3p was demonstrated to be a repressor of Kiss1 expression, as it blocked the expression of Kiss1 through the p38 MAPK pathway by simultaneously inhibiting several targets in both GT1-7 cells and primary hypothalamic neurons. Both the inhibition of the p38 MAPK pathway by the intracerebroventricular administration of chemical agents in rats and the ectopic expression of miR-199-3p by lentivirus injection in the hypothalamus in mice delayed puberty onset and gonad development. Our results presented a novel regulatory mechanism of puberty onset which the sustained downregulation of miR-199-3p might gradually release the inhibition of the p38 MAPK/Fos/CREB/Kiss1 pathway during puberty development.
Collapse
Affiliation(s)
- Xiaoning Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Kai Li
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Yuxun Zhou
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China.
| |
Collapse
|
50
|
Papadaki M, Kaitetzidou E, Mylonas CC, Sarropoulou E. Non-coding RNA Expression Patterns of Two Different Teleost Gonad Maturation Stages. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:683-695. [PMID: 32876760 DOI: 10.1007/s10126-020-09991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Non-coding RNAs (ncRNAs) are involved in several different regulatory pathways including reproduction. In teleost fish, efficacious reproduction is heavily dependent on the completion of the reproductive cycle. The presence of ncRNA, however, and their expression dynamics and putative regulatory role in mature and immature gonads have not yet been extensively explored. Therefore, the abundance of ncRNAs in mature and immature female sharpsnout seabream (Diplodus puntazzo) was investigated. The sharpsnout seabream is a rudimentary hermaphrodite which, in captivity, displays dysfunctions in the gonad maturation process. Our analyses revealed a gonad specific read length distribution with two main peaks representing miRNAs (21-26 nt) and PIWI RNA (27-34 nt). Besides, distinct expression patterns for several ncRNA biotypes including microRNAs (miRNAs), PIWI RNAs (piRNAs), and ribosomal RNAs (rRNAs) were detected. Identified miRNA accounted to 938, corresponding to ~ 13% of obtained transcripts. Among the differential expressed ncRNAs, 10 (~ 7%) were annotated as miRNA, out of which 2 were found in higher abundance in immature gonads (miR-125c and miR-24) and 8 (miR-451, miR-7a, miR-122-1, miR190a, miR129, ENSGACT00000029608, ENSGACT00000029489, and ENSGACT00000029667) were found to be higher expressed in mature gonads. Putative miRNA targets, including long non-coding RNAs (lncRNAs) and genes, are proposed. Target genes are involved in several processes of fish oocyte development, such as steroidogenesis, proteolysis, and apoptosis, and may explain hormone regulation. This study demonstrates a gonad maturation biased ncRNA profile which in turn may support the role of ncRNAs in ovarian physiology and reproductive performance of fish, stressing the specific function of each RNA biotype in oocyte development.
Collapse
Affiliation(s)
- Maria Papadaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
- Department of Biology, University of Crete, P.O. Box 2208, 71409, Iraklion, Crete, Greece
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece.
| |
Collapse
|