1
|
Vidotti RB, Yoshikawa AH, Sant'Ana M, Souza HR, Possebon L, Navarro da Rocha D, Ferreira JRM, Vidotti GAG, Girol AP. Reduction of inflammation and improvement of skin tissue repair using biomaterials composed of hydroxyapatite and chitosan associated to conditioned media derived from dental pulp stem cells. Int J Biol Macromol 2025; 308:142353. [PMID: 40158558 DOI: 10.1016/j.ijbiomac.2025.142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Inflammatory skin diseases, including dermatitis, are characterized by uncontrolled inflammatory responses that affect approximately 20 % of the global population. Recent therapies primarily focus on inhibition rather than regulating abnormal inflammatory response, which can induce a series of secondary side effects and drug resistance in long-term treatment. In this context, advanced therapy products based on mesenchymal stem cells are promising due to their influence on tissue regeneration. OBJECTIVES To evaluate skin healing in rats induced to manifest dermatitis and treated with biomaterial composed of hydroxyapatite and chitosan associated or not with conditioned medium from stem cells from the dental pulp. METHODS One of the primary models to investigate mechanisms of dermatitis involves the application of acetone followed by water. Skin injury was induced on the backs of the animals by rubbing acetone for 5 min for three consecutive days under sedation followed by water. The treatments started on day 3 and lasted 5 days. The experimental groups (n = 5/group) were: induced without treatment (G1), induced and treated with 10 % hydrocortisone ointment (standard treatment, 1×/day) (G2), induced and treated with biomaterial without conditioned medium (G3) and with conditioned medium (G4), applied once as a dressing. On the 8th day post-induction, the animals were euthanized to collect blood and skin fragments for histopathological and immunohistochemical studies and dosages of chemical mediators. RESULTS Groups G1 and G2 showed rupture and hyperplasia of the epidermis and inflammatory influx. Group G1 presented the highest number of mast cells, mainly degranulated ones. Groups G3 and G4 showed less thickened skin, a better tissue regeneration process, and reduced mast cells. Plasma histamine levels were also reduced in the G4 group. The expression of annexin A1 (AnxA1) and positive cells for Janus kinase (JAK)-1 and JAK-3 presented increased in groups G1 and G2 but reduced in the groups treated with biomaterials, mainly G4. Likewise, the treatments in G3 and G4 lowered levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and vascular endothelial growth factor (VEGF). CONCLUSION Treatments with biomaterials especially associated with the conditioned medium reduced the inflammatory process and promoted tissue regeneration in the dermatitis model, demonstrating potential therapeutic application.
Collapse
Affiliation(s)
- R B Vidotti
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Department of Biology, Graduate Program in Biosciences, São Paulo State University, UNESP, São José do Rio Preto Campus, SP, Brazil
| | - A H Yoshikawa
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Biochemistry and Molecular Biology Research Center, Graduate Program in Health Sciences, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, SP, Brazil
| | - M Sant'Ana
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Graduate Program in Functional and Structural Biology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - H R Souza
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil
| | - L Possebon
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil
| | - D Navarro da Rocha
- R-Crio Criogenia S.A, Campinas, SP, Brazil; Federal University of São Paulo, Department of Gynecology, Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, Brazil
| | | | - G A G Vidotti
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Military Institute of Engineering, Department of Materials Engineering-SE/8, Rio de Janeiro, Brazil
| | - A P Girol
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Department of Biology, Graduate Program in Biosciences, São Paulo State University, UNESP, São José do Rio Preto Campus, SP, Brazil; Graduate Program in Functional and Structural Biology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil..
| |
Collapse
|
2
|
Iwasaki T, Shimoda M, Kanayama H, Kawano T. Plasmodium falciparum histidine-rich protein 2 exhibits cell penetration and cytotoxicity with autophagy dysfunction. Biosci Biotechnol Biochem 2025; 89:548-561. [PMID: 39777447 DOI: 10.1093/bbb/zbae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Plasmodium falciparum is a major cause of severe malaria. This protozoan infects human red blood cells and secretes large quantities of histidine-rich protein 2 (PfHRP2) into the bloodstream, making it a well-known diagnostic marker. Here, however, we identified PfHRP2 as a pathogenic factor produced by P. falciparum. PfHRP2 showed cell penetration and cytotoxicity against various human cells. PfHRP2 also exhibited significant cytotoxicity at concentrations found in P. falciparum-infected patients' blood (90-100 n m). We also showed that PfHRP2 binds to Ca2+ ions, localizes to intracellular lysosomes, increases lysosomal Ca2+ levels, and inhibits the basal level of autophagy by preventing autolysosome formation. Furthermore, the Ca2+-dependent cytotoxicity of PfHRP2 was suppressed by the metal ion chelator ethylenediaminetetraacetic acid. In summary, our findings suggest PfHRP2 as a crucial pathogenic factor produced by P. falciparum and its mode of action. Overall, this study provides preliminary insights into P. falciparum malaria pathogenesis.
Collapse
Affiliation(s)
- Takashi Iwasaki
- Department of Bioresource Science, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Mayu Shimoda
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Haru Kanayama
- Department of Bioresource Science, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tsuyoshi Kawano
- Department of Bioresource Science, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| |
Collapse
|
3
|
Hashimoto M, Hikichi T, Honma R, Imai JI, Takasumi M, Nakamura J, Kato T, Yanagita T, Otsuka M, Nemoto D, Kobayakawa M, Watanabe S, Ohira H. A Single Center Study of Genes Involved in Synchronous and Metachronous Multiple Early-Stage Gastric Cancers in Japanese Patients with Current or Former Helicobacter pylori Infection. Cancers (Basel) 2025; 17:464. [PMID: 39941831 PMCID: PMC11815868 DOI: 10.3390/cancers17030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND This study aimed to perform a comprehensive gene expression analysis in patients with early-stage gastric cancer (EGC) to identify gene expression profiles specific to gastric cancer (GC) lesions. METHODS Biopsy specimens were collected from one EGC lesion and three background mucosal areas of patients scheduled for endoscopic submucosal dissection (ESD). Lesion-specific gene profiles in these four biopsies were analyzed using DNA microarrays. Patients with concurrent EGCs at the time of an ESD or a history of GC were classified into the multiple GC group (n = 26), while those without such histories were assigned to the single GC group (n = 74). RESULTS After excluding patients with heterogeneous factors, 55 patients were analyzed. Twenty-one differential genes exhibiting distinct mean expression profiles stratified by background gastric mucosa were extracted between the single and multiple GC groups. A scoring system constructed using these genes to calculate the weighted expression values for each patient, with an optimal cutoff value of -2.574, yielded a sensitivity and specificity of 85.7%. CONCLUSIONS This study identified the different gene expression profiles between synchronous and metachronous multiple GCs and single GCs in patients with EGC. The developed scoring system has potential to distinguish between single and multiple GCs.
Collapse
Affiliation(s)
- Minami Hashimoto
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan; (M.H.); (J.N.); (T.K.); (T.Y.); (D.N.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.T.); (M.O.); (H.O.)
| | - Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan; (M.H.); (J.N.); (T.K.); (T.Y.); (D.N.); (M.K.)
| | | | - Jun-ichi Imai
- Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan; (J.-i.I.); (S.W.)
| | - Mika Takasumi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.T.); (M.O.); (H.O.)
| | - Jun Nakamura
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan; (M.H.); (J.N.); (T.K.); (T.Y.); (D.N.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.T.); (M.O.); (H.O.)
| | - Tsunetaka Kato
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan; (M.H.); (J.N.); (T.K.); (T.Y.); (D.N.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.T.); (M.O.); (H.O.)
| | - Takumi Yanagita
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan; (M.H.); (J.N.); (T.K.); (T.Y.); (D.N.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.T.); (M.O.); (H.O.)
| | - Mitsuru Otsuka
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.T.); (M.O.); (H.O.)
| | - Daiki Nemoto
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan; (M.H.); (J.N.); (T.K.); (T.Y.); (D.N.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.T.); (M.O.); (H.O.)
| | - Masao Kobayakawa
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima 960-1295, Japan; (M.H.); (J.N.); (T.K.); (T.Y.); (D.N.); (M.K.)
- Medical Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan; (J.-i.I.); (S.W.)
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.T.); (M.O.); (H.O.)
| |
Collapse
|
4
|
Picáns-Leis R, Vázquez-Mosquera ME, Pereira-Hernández M, Vizoso-González M, López-Valverde L, Barbosa-Gouveia S, López-Suárez O, López-Sanguos C, Bravo SB, García-González MA, Couce ML. Characterization of the functional component in human milk and identification of the molecular mechanisms undergoing prematurity. Clin Nutr 2025; 44:178-192. [PMID: 39700709 DOI: 10.1016/j.clnu.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIMS Human milk (HM) is the earliest form of extrauterine communication between mother and infant, that could promote early programming. The aim of this study is to look for specific biological processes, particularly those undergoing prematurity, modulated by proteins and miRNAs of HM that could be implicated in growth and development. METHODS This is a prospective, observational, single center study in which we collected 48 human milk (HM) samples at two distinct stages of lactation: colostrum (first 72-96 h) and mature milk (at week 4 post-delivery) from mothers of very preterm newborns (<32 weeks) and term (≥37 and < 42 weeks). Qualitative and quantitative proteomic and transcriptomic analysis was done in our samples. RESULTS We performed isolation and characterization of HM extracellular vesicles (EVs) to carry out proteomic and transcriptomic analysis in colostrum (CM) and mature milk (MM). Proteomic analysis revealed a functional role of CM in immunological protection and MM in metabolic processes. TENA, TSP1 and OLF4, proteins with roles in immune response and inflammatory modulation, were upregulated in CM vs MM, particularly in preterm. HM modulation differed depending on gestational age (GA). The miRNAs identified in HM are implicated in structural functions, including growth and neurological development. miRNA-451a was differentially expressed between groups, and downregulated in preterm CM. CONCLUSIONS Because the particularities of each GA are reflected in the EVs content of HM, providing newborns with HM from their own mother is the optimal way for satisfying their specific needs. Although the role of the proteomic profile of CM and MM of different GA in relation to neurodevelopment has been previously described, this is the first study to show a complete functional characterization of HM (proteome, miRNA at the same time), unmasking the molecular mechanisms related to EVs signaling and their functional role in preterm.
Collapse
Affiliation(s)
- Rosaura Picáns-Leis
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María E Vázquez-Mosquera
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María Pereira-Hernández
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - Marta Vizoso-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Laura López-Valverde
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Sofía Barbosa-Gouveia
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Olalla López-Suárez
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Carolina López-Sanguos
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Miguel A García-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - María L Couce
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| |
Collapse
|
5
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
6
|
Foglia B, Sutti S, Cannito S, Rosso C, Maggiora M, Casalino A, Bocca C, Novo E, Protopapa F, Ramavath NN, Provera A, Gambella A, Bugianesi E, Tacke F, Albano E, Parola M. Histidine-rich glycoprotein in metabolic dysfunction-associated steatohepatitis-related disease progression and liver carcinogenesis. Front Immunol 2024; 15:1342404. [PMID: 38469298 PMCID: PMC10925642 DOI: 10.3389/fimmu.2024.1342404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), previously non-alcoholic fatty liver disease (NAFLD), is a leading cause of chronic liver disease worldwide. In 20%-30% of MASLD patients, the disease progresses to metabolic dysfunction-associated steatohepatitis (MASH, previously NASH) which can lead to fibrosis/cirrhosis, liver failure as well as hepatocellular carcinoma (HCC). Here we investigated the role of histidine-rich glycoprotein (HRG), a plasma protein produced by hepatocytes, in MASLD/MASH progression and HCC development. METHODS The role of HRG was investigated by morphological, cellular, and molecular biology approaches in (a) HRG knock-out mice (HRG-/- mice) fed on a CDAA dietary protocol or a MASH related diethyl-nitrosamine/CDAA protocol of hepatocarcinogenesis, (b) THP1 monocytic cells treated with purified HRG, and (c) well-characterized cohorts of MASLD patients with or without HCC. RESULTS In non-neoplastic settings, murine and clinical data indicate that HRG increases significantly in parallel with disease progression. In particular, in MASLD/MASH patients, higher levels of HRG plasma levels were detected in subjects with extensive fibrosis/cirrhosis. When submitted to the pro-carcinogenic protocol, HRG-/- mice showed a significant decrease in the volume and number of HCC nodules in relation to decreased infiltration of macrophages producing pro-inflammatory mediators, including IL-1β, IL-6, IL-12, IL-10, and VEGF as well as impaired angiogenesis. The histopathological analysis (H-score) of MASH-related HCC indicate that the higher HRG positivity in peritumoral tissue significantly correlates with a lower overall patient survival and an increased recurrence. Moreover, a significant increase in HRG plasma levels was detected in cirrhotic (F4) patients and in patients carrying HCC vs. F0/F1 patients. CONCLUSION Murine and clinical data indicate that HRG plays a significant role in MASLD/MASH progression to HCC by supporting a specific population of tumor-associated macrophages with pro-inflammatory response and pro-angiogenetic capabilities which critically support cancer cell survival. Furthermore, our data suggest HRG as a possible prognostic predictor in HCC patients with MASLD/MASH-related HCCs.
Collapse
Affiliation(s)
- Beatrice Foglia
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Salvatore Sutti
- Department Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of Eastern Piedmont, Novara, Italy
| | - Stefania Cannito
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Chiara Rosso
- Department Medical Sciences, University of Torino, and Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Marina Maggiora
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Alice Casalino
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Claudia Bocca
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Erica Novo
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Francesca Protopapa
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Naresh Naik Ramavath
- Department of Pediatrics, School of Medicine, Washington University, St Louis, MO, United States
| | - Alessia Provera
- Department Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of Eastern Piedmont, Novara, Italy
| | - Alessandro Gambella
- Department Medical Sciences, University of Torino, and Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Elisabetta Bugianesi
- Department Medical Sciences, University of Torino, and Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Emanuele Albano
- Department Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of Eastern Piedmont, Novara, Italy
| | - Maurizio Parola
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| |
Collapse
|
7
|
Garcia-Marques F, Fuller K, Bermudez A, Shamsher N, Zhao H, Brooks JD, Flory MR, Pitteri SJ. Identification and characterization of intact glycopeptides in human urine. Sci Rep 2024; 14:3716. [PMID: 38355753 PMCID: PMC10866872 DOI: 10.1038/s41598-024-53299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Glycoproteins in urine have the potential to provide a rich class of informative molecules for studying human health and disease. Despite this promise, the urine glycoproteome has been largely uncharacterized. Here, we present the analysis of glycoproteins in human urine using LC-MS/MS-based intact glycopeptide analysis, providing both the identification of protein glycosites and characterization of the glycan composition at specific glycosites. Gene enrichment analysis reveals differences in biological processes, cellular components, and molecular functions in the urine glycoproteome versus the urine proteome, as well as differences based on the major glycan class observed on proteins. Meta-heterogeneity of glycosylation is examined on proteins to determine the variation in glycosylation across multiple sites of a given protein with specific examples of individual sites differing from the glycosylation trends in the overall protein. Taken together, this dataset represents a potentially valuable resource as a baseline characterization of glycoproteins in human urine for future urine glycoproteomics studies.
Collapse
Affiliation(s)
- Fernando Garcia-Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
| | - Keely Fuller
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
| | - Nikhiya Shamsher
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mark R Flory
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive MC5483, Palo Alto, CA, 94304, USA.
| |
Collapse
|
8
|
Muko R, Sunouchi T, Urayama S, Toishi Y, Kusano K, Sato H, Muranaka M, Shin T, Oikawa MA, Ojima Y, Ali M, Nomura Y, Matsuda H, Tanaka A. Unique insertion/deletion polymorphisms within histidine-rich region of histidine-rich glycoprotein in Thoroughbred horses. Sci Rep 2023; 13:300. [PMID: 36609619 PMCID: PMC9822902 DOI: 10.1038/s41598-023-27374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Histidine-rich glycoprotein (HRG) is abundant plasma protein with various effects on angiogenesis, coagulation, and immune responses. Previously, we identified the base and amino acid sequences of equine HRG (eHRG) and revealed that eHRG regulates neutrophil functions. In this study, we first conducted a large-scale gene analysis with DNA samples extracted from 1700 Thoroughbred horses and identified unique insertion/deletion polymorphisms in the histidine-rich region (HRR) of eHRG. Here we report two types of polymorphisms (deletion type 1 [D1] and deletion type 2 [D2]) containing either a 45 bp or 90 bp deletion in the HRR of eHRG, and five genotypes of eHRG (insertion/insertion [II], ID1, ID2, D1D1, and D1D2) in Thoroughbred horses. Allele frequency of I, D1, and D2, was 0.483, 0.480, and 0.037 and the incidence of each genotype was II: 23.4%, ID1: 46.2%, ID2: 3.6%, D1D1: 23.1%, and D1D2: 3.7%, respectively. The molecular weights of each plasma eHRG protein collected from horses with each genotype was detected as bands of different molecular size, which corresponded to the estimated amino acid sequence. The nickel-binding affinity of the D1 or D2 deletion eHRG was reduced, indicating a loss of function at the site. eHRG proteins show a variety of biological and immunological activities in vivo, and HRR is its active center, suggesting that genetic polymorphisms in eHRG may be involved in the performance in athletic ability, productivity, and susceptibility to infectious diseases in Thoroughbred horses.
Collapse
Affiliation(s)
- Ryo Muko
- grid.136594.c0000 0001 0689 5974Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoya Sunouchi
- grid.136594.c0000 0001 0689 5974Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509 Japan
| | - Shuntaro Urayama
- grid.482817.00000 0001 0710 998XRace Horse Clinic, Ritto Training Center, Japan Racing Association, Shiga, Japan
| | - Yuko Toishi
- Shadai Stallion Station, Shadai Corporation, Hokkaido, Japan
| | - Kanichi Kusano
- grid.482817.00000 0001 0710 998XRace Horse Clinic, Ritto Training Center, Japan Racing Association, Shiga, Japan
| | - Hiroaki Sato
- grid.482817.00000 0001 0710 998XRace Integrity Section, Stewards Department, Japan Racing Association, Tokyo, Japan
| | - Masanori Muranaka
- grid.482817.00000 0001 0710 998XRace Horse Clinic, Ritto Training Center, Japan Racing Association, Shiga, Japan
| | - Taekyun Shin
- grid.411277.60000 0001 0725 5207Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, South Korea
| | - Masa-aki Oikawa
- grid.507451.20000 0004 7662 6210Diagnostic Laboratory, Equine Veterinary Medical Center, Education City, Doha, Qatar
| | - Yoshinobu Ojima
- grid.136594.c0000 0001 0689 5974Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohammad Ali
- grid.507451.20000 0004 7662 6210Diagnostic Laboratory, Equine Veterinary Medical Center, Education City, Doha, Qatar
| | - Yoshihiro Nomura
- grid.136594.c0000 0001 0689 5974Scleroprotein and Leather Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Matsuda
- grid.136594.c0000 0001 0689 5974Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509 Japan
| | - Akane Tanaka
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan. .,Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan. .,Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
9
|
Sun X, Jin J, Zhang YL, Ma Y, Zhang S, Tong X. Decreased histidine-rich glycoprotein and increased complement C4-B protein levels in follicular fluid predict the IVF outcomes of recurrent spontaneous abortion. Clin Proteomics 2022; 19:47. [PMID: 36528562 PMCID: PMC9758815 DOI: 10.1186/s12014-022-09383-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is a common and complicated pregnancy-related disease that lacks a suitable biomarker to predict its recrudescence. METHODS Tandem mass tag (TMT) analysis was conducted to obtain quantitative proteomic profiles in follicular fluid from patients with a history of RSA and from control group. ELISA validation of candidate differentially expressed proteins was conducted in a larger group of patients. RESULTS A total of 836 proteins were identified by TMT analysis; 51 were upregulated and 47 were downregulated in follicular fluid from cases of RSA versus control group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed several important pathways were enriched, involving a dysregulated immunoglobulin Fc receptor signaling pathway and overactivated complement cascade pathways. ELISA validated the differential expression of two proteins, histidine-rich globulin (HRG) and complement C4-B (C4B), which were downregulated and upregulated, respectively, in follicular fluid of patients with RSA. We performed receiver operating characteristic curve analysis of the ELISA results with the outcomes of current IVF cycles as classification variables. The area under the curve results for HRG alone, C4B alone and HRG-C4B combined were 0.785, 0.710 and 0.895, respectively. CONCLUSIONS TMT analysis identified 98 differentially expressed proteins in follicular fluid from patients with RSA, indicating follicle factors that act as early warning factors for the occurrence of RSA. Among them, HRG and C4B provide candidate markers to predict the clinical outcomes of IVF/ICSI cycles, and the potential for modeling an early detection system for RSA.
Collapse
Affiliation(s)
- Xiaohe Sun
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Hangzhou, 310000 China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jiamin Jin
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Hangzhou, 310000 China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yin-Li Zhang
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Hangzhou, 310000 China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yerong Ma
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Hangzhou, 310000 China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Hangzhou, 310000 China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- grid.13402.340000 0004 1759 700XAssisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Hangzhou, 310000 China ,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Chen H, Aneman I, Nikolic V, Karadzov Orlic N, Mikovic Z, Stefanovic M, Cakic Z, Jovanovic H, Town SEL, Padula MP, McClements L. Maternal plasma proteome profiling of biomarkers and pathogenic mechanisms of early-onset and late-onset preeclampsia. Sci Rep 2022; 12:19099. [PMID: 36351970 PMCID: PMC9646706 DOI: 10.1038/s41598-022-20658-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Preeclampsia is still the leading cause of morbidity and mortality in pregnancy without a cure. There are two phenotypes of preeclampsia, early-onset (EOPE) and late-onset (LOPE) with poorly defined pathogenic differences. This study aimed to facilitate better understanding of the mechanisms of pathophysiology of EOPE and LOPE, and identify specific biomarkers or therapeutic targets. In this study, we conducted an untargeted, label-free quantitative proteomic analyses of plasma samples from pregnant women with EOPE (n = 17) and LOPE (n = 11), and age, BMI-matched normotensive controls (n = 18). Targeted proteomics approach was also employed to validate a subset of proteins (n = 17). In total, there were 26 and 20 differentially abundant proteins between EOPE or LOPE, and normotensive controls, respectively. A series of angiogenic and inflammatory proteins, including insulin-like growth factor-binding protein 4 (IGFBP4; EOPE: FDR = 0.0030 and LOPE: FDR = 0.00396) and inter-alpha-trypsin inhibitor heavy chain H2-4 (ITIH2-4), were significantly altered in abundance in both phenotypes. Through validation we confirmed that ITIH2 was perturbed only in LOPE (p = 0.005) whereas ITIH3 and ITIH4 were perturbed in both phenotypes (p < 0.05). Overall, lipid metabolism/transport proteins associated with atherosclerosis were highly abundant in LOPE, however, ECM proteins had a more pronounced role in EOPE. The complement cascade and binding and uptake of ligands by scavenger receptors, pathways, were associated with both EOPE and LOPE.
Collapse
Affiliation(s)
- Hao Chen
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| | - Ingrid Aneman
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| | - Valentina Nikolic
- grid.11374.300000 0001 0942 1176Department of Pharmacology and Toxicology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Natasa Karadzov Orlic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia ,grid.7149.b0000 0001 2166 9385Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljko Mikovic
- Department of Gynaecology and Obstetrics, Narodni Front, Belgrade, Serbia ,grid.7149.b0000 0001 2166 9385Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Stefanovic
- grid.11374.300000 0001 0942 1176Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Nis, Nis, Serbia ,grid.418653.d0000 0004 0517 2741Gynaecology and Obstetrics Clinic, Clinical Centre Nis, Nis, Serbia
| | - Zoran Cakic
- Department of Gynaecology and Obstetrics, General Hospital of Leskovac, Leskovac, Serbia
| | - Hristina Jovanovic
- grid.11374.300000 0001 0942 1176Department of Pharmacology and Toxicology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Stephanie E. L. Town
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| | - Matthew P. Padula
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| | - Lana McClements
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia ,grid.117476.20000 0004 1936 7611Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Ultimo, NSW Australia
| |
Collapse
|
11
|
Tomonobu N, Kinoshita R, Wake H, Inoue Y, Ruma IMW, Suzawa K, Gohara Y, Komalasari NLGY, Jiang F, Murata H, Yamamoto KI, Sumardika IW, Chen Y, Futami J, Yamauchi A, Kuribayashi F, Kondo E, Toyooka S, Nishibori M, Sakaguchi M. Histidine-Rich Glycoprotein Suppresses the S100A8/A9-Mediated Organotropic Metastasis of Melanoma Cells. Int J Mol Sci 2022; 23:ijms231810300. [PMID: 36142212 PMCID: PMC9499646 DOI: 10.3390/ijms231810300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis.
Collapse
Affiliation(s)
- Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hidenori Wake
- Department of Pharmacology, Kindai University Faculty of Medicine, Osaka 589-0014, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu 376-8515, Japan
| | | | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yuma Gohara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Indonesia
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ken-ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | - Youyi Chen
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Division of Tumor Pathology, Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Osaka 573-1010, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7395; Fax: +81-86-235-7400
| |
Collapse
|
12
|
Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19. J Pharmacol Sci 2022; 150:9-20. [PMID: 35926948 PMCID: PMC9197787 DOI: 10.1016/j.jphs.2022.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.
Collapse
Affiliation(s)
- M Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
13
|
Pan Y, Deng L, Wang H, He K, Xia Q. Histidine-rich glycoprotein (HRGP): Pleiotropic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Genes Dis 2022; 9:381-392. [PMID: 35224154 PMCID: PMC8843877 DOI: 10.1016/j.gendis.2020.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Histidine-rich glycoprotein (HRGP) is a relatively less known glycoprotein, but it is abundant in plasma with a multidomain structure, which allows it to interact with many ligands and regulate various biological processes. HRGP ligands includes heme, Zn2+, thrombospondin, plasmin/plasminogen, heparin/heparan sulfate, fibrinogen, tropomyosin, IgG, FcγR, C1q. In many conditions, the histidine-rich region of HRGP strengthens ligand binding following interaction with Zn2+ or exposure to low pH, such as sites of tissue injury or tumor growth. The multidomain structure and diverse ligand binding attributes of HRGP indicates that it can act as an extracellular adaptor protein, connecting with different ligands, especially on cell surfaces. Also, HRGP can selectively target IgG, which blocks the production of soluble immune complexes. The most common cell surface ligand of HRGP is heparan sulfate proteoglycan, and the interaction is also potentiated by elevated Zn2+ concentration and low pH. Recent reports have shown that HRGP can modulate macrophage polarization and possibly regulate other physiological processes such as angiogenesis, anti-tumor immune response, fibrinolysis and coagulation, soluble immune complex clearance and phagocytosis of apoptotic/necrosis cells. In addition, it has also been reported that HRGP has antibacterial and anti-HIV infection effects and may be used as a novel clinical biomarker accordingly. This review outlines the molecular, structural and biological properties of HRGP as well as presenting an update on the function of HRGP in various physiological processes.
Collapse
|
14
|
Luo W, Wang J, Zhou Y, Pang M, Yu X, Tong J. Dynamic mRNA and miRNA expression of the head during early development in bighead carp (Hypophthalmichthys nobilis). BMC Genomics 2022; 23:168. [PMID: 35232381 PMCID: PMC8887032 DOI: 10.1186/s12864-022-08387-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Head of fish species, an exquisitely complex anatomical system, is important not only for studying fish evolution and development, but also for economic values. Currently, although some studies have been made on fish growth and body shapes, very limited information is available on the molecular mechanism of head development. Results In this study, RNA sequencing (RNA–Seq) and small RNA sequencing (sRNA–Seq) technologies were used to conduct integrated analysis for the head of bighead carp at different development stages, including 1, 3, 5, 15 and 30 Dph (days post hatch). By RNA-Seq data, 26 pathways related to growth and bone formation were identified as the main physiological processes during early development. Coupling this to sRNA–Seq data, we picked out six key pathways that may be responsible for head development, namely ECM receptor interaction, TNF signaling pathway, osteoclast differentiation, PI3K–Akt signaling pathway, Neuroactive ligand–receptor interaction and Jak–STAT signaling pathway. Totally, 114 important candidate genes from the six pathways were obtained. Then we found the top 20 key genes according to the degree value by cytohubba, which regulated cell growth, skeletal formation and blood homeostasis, such as pik3ca, pik3r1, egfr, vegfa, igf1 and itga2b. Finally, we also acquired 19 key miRNAs playing multiple roles in the perfection of various tissues in the head (such as brain, eye and mouth) and mineralization of head bone system, such as let–7e, miR–142a–5p, miR–144–3p, miR–23a–3p and miR–223. Conclusions Results of this study will be informative for genetic mechanisms of head development and also provide potential candidate targets for the interaction regulation during early growth in bighead carp. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08387-x.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
15
|
López-Cortés A, Abarca E, Silva L, Velastegui E, León-Sosa A, Karolys G, Cabrera F, Caicedo A. Identification of key proteins in the signaling crossroads between wound healing and cancer hallmark phenotypes. Sci Rep 2021; 11:17245. [PMID: 34446793 PMCID: PMC8390472 DOI: 10.1038/s41598-021-96750-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Wound healing (WH) and cancer seem to share common cellular and molecular processes that could work in a tight balance to maintain tissue homeostasis or, when unregulated, drive tumor progression. The "Cancer Hallmarks" comprise crucial biological properties that mediate the advancement of the disease and affect patient prognosis. These hallmarks have been proposed to overlap with essential features of the WH process. However, common hallmarks and proteins actively participating in both processes have yet to be described. In this work we identify 21 WH proteins strongly linked with solid tumors by integrated TCGA Pan-Cancer and multi-omics analyses. These proteins were associated with eight of the ten described cancer hallmarks, especially avoiding immune destruction. These results show that WH and cancer's common proteins are involved in the microenvironment modification of solid tissues and immune system regulation. This set of proteins, between WH and cancer, could represent key targets for developing therapies.
Collapse
Affiliation(s)
- Andrés López-Cortés
- grid.412257.70000 0004 0485 6316Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador ,Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain ,grid.8073.c0000 0001 2176 8535RNASA-IMEDIR, Computer Science Faculty, Universidad of A Coruna, A Coruña, Spain
| | - Estefanía Abarca
- grid.442129.8Carrera de Biotecnología, Universidad Politécnica Salesiana UPS, Quito, Ecuador
| | - Leonardo Silva
- grid.442129.8Carrera de Biotecnología, Universidad Politécnica Salesiana UPS, Quito, Ecuador
| | - Erick Velastegui
- grid.442129.8Carrera de Biotecnología, Universidad Politécnica Salesiana UPS, Quito, Ecuador
| | - Ariana León-Sosa
- grid.412251.10000 0000 9008 4711Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Germania Karolys
- grid.442129.8Carrera de Biotecnología, Universidad Politécnica Salesiana UPS, Quito, Ecuador ,grid.442129.8Grupo de Investigación y Desarrollo en Ciencias Aplicadas a los Recursos Biológicos, Universidad Politécnica Salesiana, Quito, Ecuador
| | - Francisco Cabrera
- grid.412251.10000 0000 9008 4711Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador ,grid.412251.10000 0000 9008 4711Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- grid.412251.10000 0000 9008 4711Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador ,grid.412251.10000 0000 9008 4711Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador ,Mito-Act Research Consortium, Quito, Ecuador ,grid.412251.10000 0000 9008 4711Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
16
|
Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci 2021; 22:ijms22158353. [PMID: 34361119 PMCID: PMC8347543 DOI: 10.3390/ijms22158353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos’ arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.
Collapse
|
17
|
Spreen H, Behrens M, Mulac D, Humpf HU, Langer K. Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles. Eur J Pharm Biopharm 2021; 163:212-222. [PMID: 33862242 DOI: 10.1016/j.ejpb.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Poly(DL-lactic-co-glycolic acid) and poly(DL-lactic acid) are widely used for the preparation of nanoparticles due to favorable characteristics for medical use like biodegradability and controllable degradation behavior. The contact with different media like human plasma or serum leads to the formation of a protein corona that determines the NP's in vivo processing. In this study, the impact of surface end group identity, matrix polymer hydrophobicity, molecular weight, and incubation medium on the protein corona composition was evaluated. Corona proteins were quantified using Bradford assay, separated by SDS-PAGE, and identified via LC-MS/MS. The acquired data revealed that surface end group identity had the most profound effect on corona composition in both quantitative and qualitative terms. Regarding matrix polymer hydrophobicity, adsorption profiles on NP systems with similar physicochemical characteristics resembled each other. The molecular weight of the matrix polymers proved to impact quantity, but not quality of corona bound proteins. The corona of plasma incubated NP showed adsorption of incubation medium-specific proteins but resembled those of serum incubated NP in terms of protein function, average mass and isoelectric point. Overall, the NP physicochemical properties proved to be easily adjustable determining factors of protein corona formation in physiological environments.
Collapse
Affiliation(s)
- Hendrik Spreen
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstr, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr, 48149 Muenster, Germany.
| |
Collapse
|
18
|
Benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers: a case study of pancreatic cancer. Glycoconj J 2021; 38:213-231. [PMID: 33835347 DOI: 10.1007/s10719-021-09994-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a highly malignant tumor of the digestive tract that is difficult to diagnose and treat. It is more common in developed countries and has become one of the main causes of death in some countries and regions. Currently, pancreatic cancer generally has a poor prognosis, partly due to the lack of symptoms in the early stages of pancreatic cancer. Therefore, most cases are diagnosed at advanced stage. With the continuous in-depth research of glycoproteomics in precision medical diagnosis, there have been some reports on quantitative analysis of cancer-related cells, plasma or tissues to find specific biomarkers for targeted therapy. This research is based on the developed complete N-linked glycopeptide database search engine GPSeeker, combined with liquid-mass spectrometry and stable diethyl isotope labeling, providing a benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers. With spectrum-level FDR ≤1%, 20,038 intact N-Glycopeptides corresponding to 4518 peptide backbones, 228 N-glycan monosaccharide compositions 1026 N-glycan putative structures, 4460 N-glycosites and 3437 intact N-glycoproteins were identified. With the criteria of ≥1.5-fold change and p value<0.05, 52 differentially expressed intact N-glycopeptides (DEGPs) were found in pancreatic cancer tussues relative to control, where 38 up-regulated and 14 down-regulated, respectively.
Collapse
|
19
|
Abstract
Human lifespan has increased significantly in the last 200 years, emphasizing our need to age healthily. Insights into molecular mechanisms of aging might allow us to slow down its rate or even revert it. Similar to aging, glycosylation is regulated by an intricate interplay of genetic and environmental factors. The dynamics of glycopattern variation during aging has been mostly explored for plasma/serum and immunoglobulin G (IgG) N-glycome, as we describe thoroughly in this chapter. In addition, we discuss the potential functional role of agalactosylated IgG glycans in aging, through modulation of inflammation level, as proposed by the concept of inflammaging. We also comment on the potential to use the plasma/serum and IgG N-glycome as a biomarker of healthy aging and on the interventions that modulate the IgG glycopattern. Finally, we discuss the current knowledge about animal models for human plasma/serum and IgG glycosylation and mention other, less explored, instances of glycopattern changes during organismal aging and cellular senescence.
Collapse
|
20
|
Kaihola H, Yaldir FG, Bohlin T, Samir R, Hreinsson J, Åkerud H. Levels of caspase-3 and histidine-rich glycoprotein in the embryo secretome as biomarkers of good-quality day-2 embryos and high-quality blastocysts. PLoS One 2019; 14:e0226419. [PMID: 31856190 PMCID: PMC6922338 DOI: 10.1371/journal.pone.0226419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022] Open
Abstract
Morphological assessment at defined developmental stages is the most important method to select viable embryos for transfer and cryopreservation. Timing of different developmental stages in embryo development has been shown to correlate with its potential to develop into a blastocyst. However, improvements in pregnancy rates by using time-lapse techniques have been difficult to validate scientifically. Therefore, there is a need for new methods, preferably non-invasive methods based on metabolomics, genomics and proteomics, to improve the evaluation of embryo quality even further. The aim of this study was to investigate if different levels of caspase-3 and histidine-rich glycoprotein (HRG), secreted by the embryo into the culture media, can be used as biomarkers of embryo quality. In this study, a total of 334 samples of culture media were collected from in vitro fertilization (IVF) treatments at three different clinics. Protein analysis of the culture media was performed using multiplex proximity extension protein analysis to detect levels of caspase-3 and HRG in the embryo secretome. Protein levels were compared in secretome samples from high- and low-quality blastocysts and embryos that became arrested during development. Correlation between protein levels and time to morula formation was also analyzed. Furthermore, protein levels in secretomes from day-2 cultured embryos were compared on the basis of whether or not pregnancy was achieved. The results showed that caspase-3 levels were lower in secretomes from high-quality vs. low-quality blastocysts and those that became arrested (p ≤ 0.05 for both). In addition, higher HRG levels correlated with a shorter time to morula formation (p ≤ 0.001). Caspase-3 levels were also lower in secretomes from day-2 cultured embryos resulting in a pregnancy vs. those that did not (p ≤ 0.05). Furthermore, it was shown that caspase-3 might be used as a marker for predicting potential success rate after transfer of day-2 cultured embryos, where a caspase-3 cutoff level of 0.02 gave a prediction probability of 68% (p = 0.038). In conclusion, in future prediction models, levels of caspase-3 and HRG might be used as potential markers of embryo quality, and secreted caspase-3 levels could to some extent predict the outcome after transfer of day-2 cultured embryos.
Collapse
Affiliation(s)
- Helena Kaihola
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Fatma Gülen Yaldir
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Therese Bohlin
- Fertility Unit, Örebro University Hospital, Örebro, Sweden
| | | | - Julius Hreinsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- GynHälsan Fertility Clinic, Minerva Fertility, Uppsala, Sweden
| | - Helena Åkerud
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- GynHälsan Fertility Clinic, Minerva Fertility, Uppsala, Sweden
| |
Collapse
|
21
|
Albonici L, Giganti MG, Modesti A, Manzari V, Bei R. Multifaceted Role of the Placental Growth Factor (PlGF) in the Antitumor Immune Response and Cancer Progression. Int J Mol Sci 2019; 20:ijms20122970. [PMID: 31216652 PMCID: PMC6627047 DOI: 10.3390/ijms20122970] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The sharing of molecules function that affects both tumor growth and neoangiogenesis with cells of the immune system creates a mutual interplay that impairs the host’s immune response against tumor progression. Increasing evidence shows that tumors are able to create an immunosuppressive microenvironment by recruiting specific immune cells. Moreover, molecules produced by tumor and inflammatory cells in the tumor microenvironment create an immunosuppressive milieu able to inhibit the development of an efficient immune response against cancer cells and thus fostering tumor growth and progression. In addition, the immunoediting could select cancer cells that are less immunogenic or more resistant to lysis. In this review, we summarize recent findings regarding the immunomodulatory effects and cancer progression of the angiogenic growth factor namely placental growth factor (PlGF) and address the biological complex effects of this cytokine. Different pathways of the innate and adaptive immune response in which, directly or indirectly, PlGF is involved in promoting tumor immune escape and metastasis will be described. PlGF is important for building up vascular structures and functions. Although PlGF effects on vascular and tumor growth have been widely summarized, its functions in modulating the immune intra-tumoral microenvironment have been less highlighted. In agreement with PlGF functions, different antitumor strategies can be envisioned.
Collapse
Affiliation(s)
- Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
22
|
Binsker U, Kohler TP, Hammerschmidt S. Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. J Innate Immun 2019; 11:303-315. [PMID: 30814475 PMCID: PMC6738282 DOI: 10.1159/000496033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
A successful colonization of different compartments of the human host requires multifactorial contacts between bacterial surface proteins and host factors. Extracellular matrix proteins and matricellular proteins such as thrombospondin-1 play a pivotal role as adhesive substrates to ensure a strong interaction with pathobionts like the Gram-positive Streptococcus pneumoniae and Staphylococcus aureus. The human glycoprotein thrombospondin-1 is a component of the extracellular matrix and is highly abundant in the bloodstream during bacteremia. Human platelets secrete thrombospondin-1, which is then acquired by invading pathogens to facilitate colonization and immune evasion. Gram-positive bacteria express a broad spectrum of surface-exposed proteins, some of which also recognize thrombospondin-1. This review highlights the importance of thrombospondin-1 as an adhesion substrate to facilitate colonization, and we summarize the variety of thrombospondin-1-binding proteins of S. pneumoniae and S. aureus.
Collapse
Affiliation(s)
- Ulrike Binsker
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
- Department of Microbiology, NYU Langone Health, Alexandria Center for the Life Sciences, New York City, New York, USA
| | - Thomas P Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany,
| |
Collapse
|
23
|
Abstract
Preeclampsia is a multifactorial disorder defined by hypertension and increased urinary protein excretion during pregnancy. It is a significant cause of maternal and neonatal deaths worldwide. Despite various research efforts to clarify pathogenies of preeclampsia and predict this disease before beginning of symptoms, the pathogenesis of preeclampsia is unclear. Early prediction and diagnosis of women at risk of preeclampsia has not markedly improved. Therefore, the objective of this study was to perform a review on metabolomic articles assessing predictive and diagnostic biomarkers of preeclampsia. Four electronic databases including PubMed/Medline, Web of Science, Sciencedirect, and Scopus were searched to identify studies of preeclampsia in humans using metabolomics from inception to March 2018. Twenty-one articles in a variety of biological specimens and analytical platforms were included in the present review. Metabolite profiles may assist in the diagnosis of preeclampsia and discrimination of its subtypes. Lipids and their related metabolites were the most generally detected metabolites. Although metabolomic biomarkers of preeclampsia are not routinely used, this review suggests that metabolomics has the potential to be developed into a clinical tool for preeclampsia diagnosis and could contribute to an improved understanding of disease mechanisms. ABBREVIATIONS PE: preeclampsia; sFlt-1: soluble FMS-like tyrosine kinase-1; PlGF: placental growth factor; GC-MS: gas chromatography-mass spectrometry; LC-MS: liquid chromatography-mass spectrometry; NMR: nuclear magnetic resonance spectroscopy; HMDB: human metabolome database; RCT: randomized control trial; e-PE: early-onset PE; l-PE: late-onset PE; PLS-DA: partial least-squares-discriminant analysis; CRL: crown-rump length; UtPI: uterine artery Doppler pulsatility index; BMI: body mass index; MAP: mean arterial pressure; OS: oxidative stress; PAPPA: plasma protein A; FTIR: Fourier transform infrared; BCAA: branched chain amino acids; Arg: arginine; NO: nitric oxide.
Collapse
Affiliation(s)
- B Fatemeh Nobakht M Gh
- a Department of Basic Medical Sciences , Neyshabur University of Medical Sciences , Neyshabur , Iran
| |
Collapse
|
24
|
Weyrauch AK, Jakob M, Schierhorn A, Klösgen RB, Hinderberger D. Purification of rabbit serum histidine-proline-rich glycoprotein via preparative gel electrophoresis and characterization of its glycosylation patterns. PLoS One 2017; 12:e0184968. [PMID: 28934288 PMCID: PMC5608300 DOI: 10.1371/journal.pone.0184968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Histidine-Proline-rich Glycoprotein (HPRG) is a plasma protein of vertebrates and several marine bivalves. Due to its multidomain structure consisting of several regions HPRG can interact with a variety of ligands, however the exact physiological role has not been discovered yet. Past purification approaches out of plasma or serum often led to co-purification of other proteins so that for a profound understanding of the function it is important to obtain a protein of high purity. Recent purification strategies were based upon metale chelate affinity chromatography followed by anion exchange chromatography or size exclusion chromatography, respectively. A large amount of serum albumin, the major plasma protein, also elutes from metale chelate affinity chromatography columns. Separation of rabbit HPRG from rabbit serum albumin could not be achieved via the above named methods by us. We present a method of purification of rabbit serum HPRG by means of metal affinity chromatography and preparative gel electrophoresis, which makes it possible to obtain HPRG practically devoid of impurities as assessed by mass spectrometry analysis. Moreover, we characterize the amount of glycosylation of HPRG and–to the best of our knowledge for the first time–the glycosylation pattern of rabbit HPRG.
Collapse
Affiliation(s)
- Anna Katharina Weyrauch
- Institute of Chemistry, Division of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
| | - Mario Jakob
- Institute of Biology, Division of Plant Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
| | - Angelika Schierhorn
- Institute of Biochemistry and Biotechnology, Service Unit for Mass Spectrometry, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology, Division of Plant Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Division of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn 2+ in Settings of Tissue Injury. Biomolecules 2017; 7:biom7010022. [PMID: 28257077 PMCID: PMC5372734 DOI: 10.3390/biom7010022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/05/2023] Open
Abstract
Divalent metal ions are essential nutrients for all living organisms and are commonly protein-bound where they perform important roles in protein structure and function. This regulatory control from metals is observed in the relatively abundant plasma protein histidine-rich glycoprotein (HRG), which displays preferential binding to the second most abundant transition element in human systems, Zinc (Zn2+). HRG has been proposed to interact with a large number of protein ligands and has been implicated in the regulation of various physiological and pathological processes including the formation of immune complexes, apoptotic/necrotic and pathogen clearance, cell adhesion, antimicrobial activity, angiogenesis, coagulation and fibrinolysis. Interestingly, these processes are often associated with sites of tissue injury or tumour growth, where the concentration and distribution of Zn2+ is known to vary. Changes in Zn2+ levels have been shown to modify HRG function by altering its affinity for certain ligands and/or providing protection against proteolytic disassembly by serine proteases. This review focuses on the molecular interplay between HRG and Zn2+, and how Zn2+ binding modifies HRG-ligand interactions to regulate function in different settings of tissue injury.
Collapse
|
27
|
Li G, Wu H, Cui L, Gao Y, Chen L, Li X, Liang T, Yang X, Cheng J, Luo J. CD47-retargeted oncolytic adenovirus armed with melanoma differentiation-associated gene-7/interleukin-24 suppresses in vivo leukemia cell growth. Oncotarget 2016; 6:43496-507. [PMID: 26554307 PMCID: PMC4791246 DOI: 10.18632/oncotarget.6292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 02/04/2023] Open
Abstract
Our previous studies have suggested that harboring a soluble coxsackie-adenovirus receptor-ligand (sCAR-ligand) fusion protein expression cassette in the viral genome may provide a universal method to redirect oncolytic adenoviruses to various membrane receptors on cancer cells resisting to serotype 5 adenovirus infection. We report here a novel oncolytic adenovirus vector redirected to CD47+ leukemia cells though carrying a sCAR-4N1 expression cassette in the viral genome, forming Ad.4N1, in which 4N1 represents the C-terminal CD47-binding domain of thrombospondin-1. The infection and cytotoxicity of Ad.4N1 in leukemia cells were determined to be mediated by the 4N1-CD47 interaction. Ad.4N1 was further engineered to harbor a gene encoding melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), forming Ad.4N1-IL24, which replicated dramatically faster than Ad.4N1, and elicited significantly enhanced antileukemia effect in vitro and in a HL60/Luc xenograft mouse model. Our data suggest that Ad.4N1 could act as a novel oncolytic adenovirus vector for CD47+ leukemia targeting gene transfer, and Ad.4N1 harboring anticancer genes may provide novel antileukemia agents.
Collapse
Affiliation(s)
- Gongchu Li
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Hu Wu
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Lianzhen Cui
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yajun Gao
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Lei Chen
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xin Li
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Tianxiang Liang
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xinyan Yang
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jianhong Cheng
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jingjing Luo
- College of life sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Lindgren KE, Nordqvist S, Kårehed K, Sundström-Poromaa I, Åkerud H. The effect of a specific histidine-rich glycoprotein polymorphism on male infertility and semen parameters. Reprod Biomed Online 2016; 33:180-8. [DOI: 10.1016/j.rbmo.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022]
|
29
|
Lindgren KE, Hreinsson J, Helmestam M, Wånggren K, Poromaa IS, Kårehed K, Åkerud H. Histidine-rich glycoprotein derived peptides affect endometrial angiogenesisin vitrobut has no effect on embryo development. Syst Biol Reprod Med 2016; 62:192-200. [DOI: 10.3109/19396368.2016.1156785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Ronca F, Raggi A. Structure-function relationships in mammalian histidine-proline-rich glycoprotein. Biochimie 2015; 118:207-20. [PMID: 26409900 DOI: 10.1016/j.biochi.2015.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023]
Abstract
Histidine-proline-rich glycoprotein (HPRG), or histidine-rich glycoprotein (HRG), is a serum protein that is synthesized in the liver and is actively internalised by different cells, including skeletal muscle. The multidomain arrangement of HPRG comprises two modules at the N-terminus that are homologous to cystatin but void of cysteine proteinase inhibitor function, and a second half consisting of a histidine-proline-rich region (HPRR) located between two proline-rich regions (PRR1 and PRR2), and a C-terminus domain. HPRG has been reported to bind various ligands and to modulate angiogenesis via the histidine residues of the HPRR. However, the secondary structure prediction of the HPRR reveals that more than 98% is disordered and the structural basis of the hypothesized functions remains unclear. Comparison of the PRR1 of several mammalian species indicates the presence of a conserved binding site that might coordinate the Zn(2+) ion with an amino acid arrangement compatible with the cysteine-containing site that has been identified experimentally for rabbit HPRG. This observation provides a structural basis to the function of HPRG as an intracellular zinc chaperone which has been suggested by the involvement of the protein in the maintenance of the quaternary structure of skeletal muscle AMP deaminase (AMPD). During Anthropoidea evolution, a change of the primary structure of the PRR1 Zn(2+) binding site took place, giving rise to the sequence M-S-C-S/L-S/R-C that resembles the MxCxxC motif characteristic of metal transporters and metallochaperones.
Collapse
Affiliation(s)
- Francesca Ronca
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Antonio Raggi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
31
|
Jin C, Wang S, Zhao Y, Jin S, Li H. [Inhibitory effect of von Willebrand factor-cleaving protease on angiogenesis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:602-6. [PMID: 26304087 PMCID: PMC7342644 DOI: 10.3760/cma.j.issn.0253-2727.2015.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
目的 观察血管性血友病因子裂解酶(ADAMTS13)对血管内皮细胞生长因子(VEGF)介导的血管新生的抑制作用。 方法 以不同浓度的ADAMTS13(1、5、25、50、100 nmol/L)处理脐带静脉内皮细胞(HUVEC),采用MTT法检测ADAMTS13对HUVEC增殖的影响,通过管腔形成实验观察ADAMTS13对HUVEC分化的影响,通过刮伤愈合实验观察ADAMTS13对HUVEC迁移的影响,利用鸡胚绒毛尿囊膜实验和基质胶塞实验观察ADAMTS13在体内对血管新生的影响。 结果 与对照组相比,25、50、100 nmol/L ADAMTS13对HUVEC增殖均有明显的抑制作用(P值均<0.01)。在刮伤愈合实验中,制造损伤8 h后,对照组HUVEC的迁移距离为(79±22)µm, VEGF处理组为(250±8)µm,VEGF+ADAMTS13处理组为(170±23)µm,组间差异均有统计学意义(P值均<0.05)。在管腔形成试验中,VEGF处理组、VEGF+ADAMTS13处理组HUVEC培养16 h后形成的管状结构长度分别是对照组的(450.6±16.6)%、(235.3±19.0)%,VEGF+ADAMTS13处理组管状结构少于VEGF处理组(P< 0.001)。鸡胚绒毛尿囊膜实验中,VEGF(20 ng/ml)、ADAMTS13(100 nmol/L)、ADAMTS13(100 nmol/L)+VEGF(20 ng/ml)处理组的血管形成数量分别为对照组的(228.2±10.8)%、(69.2±21.1)%、(184.6±15.2)%。基质胶塞实验结果显示VEGF+ADAMTS13处理组小鼠体内的血管数量为VEGF组的43.5%。 结论 体外实验结果表明ADAMTS13对HUVEC增殖、分化、迁移能力均有抑制作用;体内实验结果提示ADAMTS13对血管新生有抑制作用。
Collapse
Affiliation(s)
- Chunhai Jin
- Medical Research Center, Yanbian University Hospital, Yanji 133000, China
| | - Shuang Wang
- Medical Research Center, Yanbian University Hospital, Yanji 133000, China
| | - Yanhong Zhao
- Medical Research Center, Yanbian University Hospital, Yanji 133000, China
| | - Shengyu Jin
- Medical Research Center, Yanbian University Hospital, Yanji 133000, China
| | - Hua Li
- Medical Research Center, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
32
|
Zamah AM, Hassis ME, Albertolle ME, Williams KE. Proteomic analysis of human follicular fluid from fertile women. Clin Proteomics 2015; 12:5. [PMID: 25838815 PMCID: PMC4357057 DOI: 10.1186/s12014-015-9077-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/09/2015] [Indexed: 01/08/2023] Open
Abstract
Background Follicular fluid is a unique biological fluid in which the critical events of oocyte and follicular maturation and somatic cell-germ cell communication occur. Because of the intimate proximity of follicular fluid to the maturing oocyte, this fluid provides a unique window into the processes occurring during follicular maturation. A thorough identification of the specific components within follicular fluid may provide a better understanding of intrafollicular signaling, as well as reveal potential biomarkers of oocyte health for women undergoing assisted reproductive treatment. In this study, we used high and low pH HPLC peptide separations followed by mass spectrometry to perform a comprehensive proteomic analysis of human follicular fluid from healthy ovum donors. Next, using samples from a second set of patients, an isobaric mass tagging strategy for quantitative analysis was used to identify proteins with altered abundances after hCG treatment. Results A total of 742 follicular fluid proteins were identified in healthy ovum donors, including 413 that have not been previously reported. The proteins belong to diverse functional groups including insulin growth factor and insulin growth factor binding protein families, growth factor and related proteins, receptor signaling, defense/immunity, anti-apoptotic proteins, matrix metalloprotease related proteins, and complement activity. In a quantitative analysis, follicular fluid samples from age-matched women undergoing in vitro fertilization oocyte retrieval were compared and 17 follicular fluid proteins were found at significantly altered levels (p < 0.05) between pre-hCG and post-hCG samples. These proteins belong to a variety of functional processes, including protease inhibition, inflammation, and cell adhesion. Conclusions This database of FF proteins significantly extends the known protein components present during the peri-ovulatory period and provides a useful basis for future studies comparing follicular fluid proteomes in various fertility, disease, and environmental exposure conditions. We identified 17 differentially expressed proteins after hCG treatment and together these data showed the feasibility for defining biomarkers that illuminate how the ovarian follicle microenvironment is altered in various infertility-related conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9077-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberuni M Zamah
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Illinois at Chicago College of Medicine, Chicago, IL 60612 USA
| | - Maria E Hassis
- Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, CA 94143 USA
| | - Matthew E Albertolle
- Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, CA 94143 USA
| | - Katherine E Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, CA 94143 USA ; Center for Reproductive Sciences and the Department of Obstetrics and Gynecology, University of California at San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
33
|
Li Y, Lian H, Jia Q, Wan Y. Proteome screening of pleural effusions identifies IL1A as a diagnostic biomarker for non-small cell lung cancer. Biochem Biophys Res Commun 2015; 457:177-82. [DOI: 10.1016/j.bbrc.2014.12.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 01/07/2023]
|
34
|
Sun S, Zhao F, Wang Q, Zhong Y, Cai T, Wu P, Yang F, Li Z. Analysis of age and gender associated N-glycoproteome in human whole saliva. Clin Proteomics 2014; 11:25. [PMID: 24994967 PMCID: PMC4070402 DOI: 10.1186/1559-0275-11-25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/09/2014] [Indexed: 01/11/2023] Open
Abstract
Background Glycoproteins comprise a large portion of the salivary proteome and have great potential for biomarker discovery and disease diagnosis. However, the rate of production and the concentration of whole saliva change with age, gender and physiological states of the human body. Therefore, a thorough understanding of the salivary glycoproteome of healthy individuals of different ages and genders is a prerequisite for saliva to have clinical utility. Methods Formerly N-linked glycopeptides were isolated from the pooled whole saliva of six age and gender groups by hydrazide chemistry and hydrophilic affinity methods followed by mass spectrometry identification. Selected physiochemical characteristics of salivary glycoproteins were analyzed, and the salivary glycoproteomes of different age and gender groups were compared based on their glycoprotein components and gene ontology. Results and discussion Among 85 N-glycoproteins identified in healthy human saliva, the majority were acidic proteins with low molecular weight. The numbers of salivary N-glycoproteins increased with age. Fifteen salivary glycoproteins were identified as potential age- or gender-associated glycoproteins, and many of them have functions related to innate immunity against microorganisms and oral cavity protection. Moreover, many salivary glycoproteins have been previously reported as disease related glycoproteins. This study reveals the important role of salivary glycoproteins in the maintenance of oral health and homeostasis and the great potential of saliva for biomarker discovery and disease diagnosis.
Collapse
Affiliation(s)
- Shisheng Sun
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, P.R. China
| | - Fei Zhao
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, P.R. China
| | - Qinzhe Wang
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, P.R. China
| | - Yaogang Zhong
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, P.R. China
| | - Tanxi Cai
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Peng Wu
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Fuquan Yang
- Laborotary of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zheng Li
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, P.R. China
| |
Collapse
|
35
|
Ranieri-Raggi M, Moir AJG, Raggi A. The role of histidine-proline-rich glycoprotein as zinc chaperone for skeletal muscle AMP deaminase. Biomolecules 2014; 4:474-97. [PMID: 24970226 PMCID: PMC4101493 DOI: 10.3390/biom4020474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/19/2022] Open
Abstract
Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD) and the metal binding protein histidine-proline-rich glycoprotein (HPRG) acts in this manner. HPRG is a major plasma protein. Recent investigations have reported that skeletal muscle cells do not synthesize HPRG but instead actively internalize plasma HPRG. X-ray absorption spectroscopy (XAS) performed on fresh preparations of rabbit skeletal muscle AMPD provided evidence for a dinuclear zinc site in the enzyme compatible with a (μ-aqua)(μ-carboxylato)dizinc(II) core with two histidine residues at each metal site. XAS on HPRG isolated from the AMPD complex showed that zinc is bound to the protein in a dinuclear cluster where each Zn2+ ion is coordinated by three histidine and one heavier ligand, likely sulfur from cysteine. We describe the existence in mammalian HPRG of a specific zinc binding site distinct from the His-Pro-rich region. The participation of HPRG in the assembly and maintenance of skeletal muscle AMPD by acting as a zinc chaperone is also demonstrated.
Collapse
Affiliation(s)
- Maria Ranieri-Raggi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, via Roma 55, Pisa 56126, Italy.
| | - Arthur J G Moir
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2UH, UK.
| | - Antonio Raggi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, via Roma 55, Pisa 56126, Italy.
| |
Collapse
|
36
|
Kassaar O, McMahon SA, Thompson R, Botting CH, Naismith JH, Stewart AJ. Crystal structure of histidine-rich glycoprotein N2 domain reveals redox activity at an interdomain disulfide bridge: implications for angiogenic regulation. Blood 2014; 123:1948-55. [PMID: 24501222 PMCID: PMC3962167 DOI: 10.1182/blood-2013-11-535963] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/02/2014] [Indexed: 11/20/2022] Open
Abstract
Histidine-rich glycoprotein (HRG) is a plasma protein consisting of 6 distinct functional domains and is an important regulator of key cardiovascular processes, including angiogenesis and coagulation. The protein is composed of 2 N-terminal domains (N1 and N2), 2 proline-rich regions (PRR1 and PRR2) that flank a histidine-rich region (HRR), and a C-terminal domain. To date, structural information of HRG has largely come from sequence analysis and spectroscopic studies. It is thought that an HRG fragment containing the HRR, released via plasmin-mediated cleavage, acts as a negative regulator of angiogenesis in vivo. However, its release also requires cleavage of a disulphide bond suggesting that its activity is mediated by a redox process. Here, we present a 1.93 Å resolution crystal structure of the N2 domain of serum-purified rabbit HRG. The structure confirms that the N2 domain, which along with the N1 domain, forms an important molecular interaction site on HRG, possesses a cystatin-like fold composed of a 5-stranded antiparallel β-sheet wrapped around a 5-turn α-helix. A native N-linked glycosylation site was identified at Asn184. Moreover, the structure reveals the presence of an S-glutathionyl adduct at Cys185, which has implications for the redox-mediated release of the antiangiogenic cleavage product from HRG.
Collapse
|
37
|
Resovi A, Pinessi D, Chiorino G, Taraboletti G. Current understanding of the thrombospondin-1 interactome. Matrix Biol 2014; 37:83-91. [PMID: 24476925 DOI: 10.1016/j.matbio.2014.01.012] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 12/24/2022]
Abstract
The multifaceted action of thrombospondin-1 (TSP-1) depends on its ability to physically interact with different ligands, including structural components of the extracellular matrix, other matricellular proteins, cell receptors, growth factors, cytokines and proteases. Through this network, TSP-1 regulates the ligand activity, availability and structure, ultimately tuning the cell response to environmental stimuli in a context-dependent manner, contributing to physiological and pathological processes. Complete mapping of the TSP-1 interactome is needed to understand its diverse functions and to lay the basis for the rational design of TSP-1-based therapeutic approaches. So far, large-scale approaches to identify TSP-1 ligands have been rarely used, but many interactions have been identified in small-scale studies in defined biological systems. This review, based on information from protein interaction databases and the literature, illustrates current knowledge of the TSP-1 interactome map.
Collapse
Affiliation(s)
- Andrea Resovi
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy
| | - Denise Pinessi
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy
| | - Giovanna Chiorino
- Fondo Edo ed Elvo Tempia Valenta, Laboratory of Cancer Genomics, 13900 Biella, Italy
| | - Giulia Taraboletti
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 24126 Bergamo, Italy.
| |
Collapse
|
38
|
Rogers NM, Sharifi-Sanjani M, Csányi G, Pagano PJ, Isenberg JS. Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biol 2014; 37:92-101. [PMID: 24418252 DOI: 10.1016/j.matbio.2014.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 01/10/2023]
Abstract
Cardiovascular homeostasis and health is maintained through the balanced interactions of cardiac generated blood flow and cross-talk between the cellular components that comprise blood vessels. Central to this cross-talk is endothelial generated nitric oxide (NO) that stimulates relaxation of the contractile vascular smooth muscle (VSMC) layer of blood vessels. In cardiovascular disease this balanced interaction is disrupted and NO signaling is lost. Work over the last several years indicates that regulation of NO is much more complex than previously believed. It is now apparent that the secreted protein thrombospondin-1 (TSP1), that is upregulated in cardiovascular disease and animal models of the same, on activating cell surface receptor CD47, redundantly inhibits NO production and NO signaling. This inhibitory event has implications for baseline and disease-related responses mediated by NO. Further work has identified that TSP1-CD47 signaling stimulates enzymatic reactive oxygen species (ROS) production to further limit blood flow and promote vascular disease. Herein consideration is given to the most recent discoveries in this regard which identify the TSP1-CD47 axis as a major proximate governor of cardiovascular health.
Collapse
Affiliation(s)
- Natasha M Rogers
- Vascular Medicine Institute, University of Pittsburgh School of Medicine; Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | | | - Gábor Csányi
- Vascular Medicine Institute, University of Pittsburgh School of Medicine; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine
| | - Patrick J Pagano
- Vascular Medicine Institute, University of Pittsburgh School of Medicine; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine
| | - Jeffrey S Isenberg
- Vascular Medicine Institute, University of Pittsburgh School of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine; Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
39
|
New Insights into the Functions of Histidine-Rich Glycoprotein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:467-93. [DOI: 10.1016/b978-0-12-407696-9.00009-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Bolin M, Wikström AK, Wiberg-Itzel E, Olsson AK, Ringvall M, Sundström-Poromaa I, Axelsson O, Thilaganathan B, Åkerud H. Prediction of preeclampsia by combining serum histidine-rich glycoprotein and uterine artery Doppler. Am J Hypertens 2012; 25:1305-10. [PMID: 22895448 DOI: 10.1038/ajh.2012.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Preeclampsia is associated with both maternal and perinatal morbidity and mortality. Histidine-rich glycoprotein (HRG) is a protein interacting with angiogenesis, coagulation, and inflammatory responses, processes known to be altered in preeclamptic pregnancies. Significantly lower levels of HRG have been demonstrated as early as in the first trimester in women later developing preeclampsia compared with normal pregnancies. The aim of this study was to investigate whether the combination of HRG and uterine artery Doppler ultrasonography can be used as a predictor of preeclampsia. METHODS A total of 175 women were randomly selected from a case-control study; 86 women had an uncomplicated pregnancy and 89 women later developed preeclampsia. Blood samples and pulsatility index (PI) were obtained from both cases and controls in gestational week 14. RESULTS HRG levels were significantly lower in women who developed preterm preeclampsia compared with controls, but not for women developing preeclampsia in general. PI was significantly higher in the preeclampsia group compared with controls, especially in preterm preeclampsia. The combination of HRG and PI revealed a sensitivity of 91% and a specificity of 62% for preterm preeclampsia. CONCLUSIONS The combination of HRG and uterine artery Doppler may predict preterm preeclampsia in early pregnancy.
Collapse
|
41
|
Hale JS, Li M, Sinyuk M, Jahnen-Dechent W, Lathia JD, Silverstein RL. Context dependent role of the CD36--thrombospondin--histidine-rich glycoprotein axis in tumor angiogenesis and growth. PLoS One 2012; 7:e40033. [PMID: 22808089 PMCID: PMC3393734 DOI: 10.1371/journal.pone.0040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/03/2012] [Indexed: 11/19/2022] Open
Abstract
The angiogenic switch is a promising therapeutic target in cancer. Work by our laboratory and others has described an important endogenous anti-angiogenic pathway mediated by interactions of CD36, a receptor on microvascular endothelial cells, with proteins containing thrombospondin (TSP) type I repeat domains (TSR). Recent studies revealed that circulating Histidine Rich Glycoprotein (HRG) inhibits the anti-angiogenic potential of the CD36-TSR pathway by functioning as a decoy receptor that binds and sequesters TSR proteins. As tumors of different origin display variable expression profiles of numerous targets, we hypothesized that the TSP-CD36-HRG axis regulates vascularization and growth in the tumor microenvironment in a context, or tumor type, dependent manner. Growth of Lewis Lung Carcinoma (LL2) and B16F1 Melanoma tumor cell implants in syngeneic wild type (WT), hrg, or cd36 null mice were used as a model to interrogate this signaling axis. LL2 tumor volumes were greater in cd36 null mice and smaller in hrg null mice compared to WT. Immunofluorescent staining showed increased vascularity in cd36 null vs. WT and WT vs. hrg null mice. No differences in tumor growth or vascularity were observed with B16F1 implants, consistent with lack of expression of TSP-1 in B16F1 cells. When TSR expression was induced in B16F1 cells by cDNA transfection, tumor growth and vascularity were similar to that seen with LL2 cells. These data show a role for CD36-mediated anti-angiogenic activity in the tumor microenvironment when TSR proteins are available and demonstrate that HRG modulates this activity. Further, they suggest a mechanism by which tumor microenvironments may regulate sensitivity to TSR containing proteins.
Collapse
MESH Headings
- Animals
- CD36 Antigens/deficiency
- CD36 Antigens/genetics
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Cell Line, Tumor
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation, Neoplastic
- Male
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Knockout
- Neovascularization, Pathologic
- Organ Specificity
- Protein Binding
- Proteins/genetics
- Proteins/metabolism
- RNA, Small Interfering/genetics
- Signal Transduction
- Skin Neoplasms/blood supply
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Tumor Burden/genetics
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- James Scott Hale
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Meizhang Li
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Maksim Sinyuk
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
| | - Justin Durla Lathia
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Roy Lee Silverstein
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
42
|
La Mendola D, Magrì A, Santoro AM, Nicoletti VG, Rizzarelli E. Copper(II) interaction with peptide fragments of histidine–proline-rich glycoprotein: Speciation, stability and binding details. J Inorg Biochem 2012; 111:59-69. [DOI: 10.1016/j.jinorgbio.2012.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
|
43
|
Edward DP, Bouhenni R. Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis). TRANSACTIONS OF THE AMERICAN OPHTHALMOLOGICAL SOCIETY 2011; 109:66-114. [PMID: 22253484 PMCID: PMC3259673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PURPOSE To use an integrated proteohistologic approach to gain insight into the anterior segment alterations in the buphthalmic rabbit. METHODS Eyes from 2- and 5-year-old buphthalmic and normal rabbits (n=20) were studied histologically. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of aqueous humor (AH) was used to determine differential protein expression between animal groups. Western blot and immunohistochemistry were performed on selected differentially expressed proteins identified by LC-MS/MS. RESULTS The buphthalmic rabbits manifested a mild clinical phenotype with typical angle anomalies that appeared progressive by histology. Significantly thickened Descemet's membrane (DM) and anterior lens capsule in all buphthalmic rabbits showed increased fibronectin and collagen-IV immunolabeling. LC-MS/MS applying stringent filtering criteria revealed significant differential expression of several AH proteins in these rabbits. The protein of interest in the 2-year-old group was histidine-rich glycoprotein, and those in the 5-year-old group included alpha-2-HS-glycoprotein, clusterin, apolipoprotein E, interphotoreceptor retinoid-binding protein, transthyretin, cochlin, gelsolin, haptoglobin, hemopexin, and beta-2 microglobulin. The proteomic data for selected proteins was validated by Western blot and immunohistochemistry. A wide range of functional groups were affected by the altered AH proteins. These included extracellular matrix modulation, regulation of apoptosis, oxidative stress, and protein transport. CONCLUSIONS Multiple anterior segment alterations were histologically identified in the buphthalmic rabbits that showed progressive changes with age. The differentially expressed AH proteins in these rabbits suggest a multifunctional role for AH in modulating pathologic changes in DM, anterior lens capsule, and the angular meshwork in these animals.
Collapse
Affiliation(s)
- Deepak P Edward
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
44
|
Nordqvist S, Kårehed K, Stavreus-Evers A, Åkerud H. Histidine-rich glycoprotein polymorphism and pregnancy outcome: a pilot study. Reprod Biomed Online 2011; 23:213-9. [DOI: 10.1016/j.rbmo.2011.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/09/2011] [Accepted: 04/13/2011] [Indexed: 11/27/2022]
|
45
|
Klenotic PA, Page RC, Misra S, Silverstein RL. Expression, purification and structural characterization of functionally replete thrombospondin-1 type 1 repeats in a bacterial expression system. Protein Expr Purif 2011; 80:253-9. [PMID: 21821127 DOI: 10.1016/j.pep.2011.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 11/30/2022]
Abstract
The matrix glycoprotein thrombospondin-1 (TSP-1) is a prominent regulator of endothelial cells and angiogenesis. The anti-angiogenic and anti-tumorigenic properties of TSP-1 are in part mediated by the TSP-1 type 1 repeat domains 2 and 3, TSR(2,3). Here, we describe the expression and purification of human TSR(2,3) in milligram quantities from an Escherichia coli expression system. Microvascular endothelial cell migration assays and binding assays with a canonical TSP-1 ligand, histidine-rich glycoprotein (HRGP), indicate that recombinant TSR(2,3) exhibits anti-chemotactic and ligand binding properties similar to full length TSP-1. Furthermore, we determined the structure of E. coli expressed TSR(2,3) by X-ray crystallography at 2.4Å and found the structure to be identical to the existing TSR(2,3) crystal structure determined from a Drosophila expression system. The TSR(2,3) expression and purification protocol developed in this study allows for facile expression of TSR(2,3) for biochemical and biophysical studies, and will aid in the elucidation of the molecular mechanisms of TSP-1 anti-angiogenic and anti-tumorigenic activities.
Collapse
Affiliation(s)
- Philip A Klenotic
- Department of Cell Biology, NC10, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
46
|
Cursiefen C, Maruyama K, Bock F, Saban D, Sadrai Z, Lawler J, Dana R, Masli S. Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. ACTA ACUST UNITED AC 2011; 208:1083-92. [PMID: 21536744 PMCID: PMC3092349 DOI: 10.1084/jem.20092277] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lymphangiogenesis plays an important role in tumor metastasis and transplant outcome. Here, we show that thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein and naturally occurring inhibitor of angiogenesis inhibits lymphangiogenesis in mice. Compared with wild-type mice, 6-mo-old TSP-1-deficient mice develop increased spontaneous corneal lymphangiogenesis. Similarly, in a model of inflammation-induced corneal neovascularization, young TSP-1-deficient mice develop exacerbated lymphangiogenesis, which can be reversed by topical application of recombinant human TSP-1. Such increased corneal lymphangiogenesis is also detected in mice lacking CD36, a receptor for TSP-1. In these mice, repopulation of corneal macrophages with predominantly WT mice via bone marrow reconstitution ameliorates their prolymphangiogenic phenotype. In vitro, exposure of WT macrophages to TSP-1 suppresses expression of lymphangiogenic factors vascular endothelial growth factor (VEGF)-C and VEGF-D, but not of a primarily hemangiogenic factor VEGF-A. Inhibition of VEGF-C is not detected in the absence or blockade of CD36. These findings suggest that TSP-1, by ligating CD36 on monocytic cells, acts as an endogenous inhibitor of lymphangiogenesis.
Collapse
Affiliation(s)
- Claus Cursiefen
- Department of Ophthalmology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bolin M, Akerud P, Hansson A, Akerud H. Histidine-rich glycoprotein as an early biomarker of preeclampsia. Am J Hypertens 2011; 24:496-501. [PMID: 21252863 DOI: 10.1038/ajh.2010.264] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Prediction of preeclampsia is of great interest and the coagulation system as well as the angiogenic pathway is known to be dysfunctional in preeclampsia. Histidine-rich glycoprotein (HRG) is a protein interacting with both these biological systems and the purpose of this prospective, longitudinal cohort study was to analyze whether there is a difference in circulating levels of HRG during pregnancy in women developing preeclampsia compared to normal healthy pregnancies. We furthermore wanted to evaluate whether HRG has the potential of being an early biomarker of preeclampsia. METHODS A cohort of healthy pregnant women (n = 469) was enrolled at gestational weeks 8-12. Plasma samples were collected at gestational weeks 10, 25, 28, 33, and 37 and analyzed with an enzyme-linked immunosorbent assay. RESULTS The levels of HRG decreased during pregnancy in all women, but the levels were significantly lower at gestational weeks 10, 25, and 28 in women who later developed preeclampsia than in normal pregnant women (P < 0.05, P < 0.05, and P < 0.05). CONCLUSION Our data indicates that HRG levels in plasma might be a possible biomarker already in gestational week 10 for prediction of later onset of preeclampsia in a low risk population.
Collapse
|
48
|
Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent signaling pathway. Blood 2011; 117:6036-45. [PMID: 21441463 DOI: 10.1182/blood-2010-12-326017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In pathologic settings including retinal ischemia and malignant tumors, robust angiogenesis occurs despite the presence in the microenvironment of antiangiogenic proteins containing thrombospondin structural homology (TSR) domains. We hypothesized that antiangiogenesis mediated by TSR-containing proteins could be blunted by localized down-regulation of their cognate receptor on microvascular endothelial cells (MVECs), CD36. Through screening a panel of endothelial cell agonists, we found that lysophosphatidic acid (LPA) dramatically down-regulated CD36 surface expression on primary MVECs. LPA is a lipid-signaling mediator known to have proangiogenic activity, but the mechanisms are largely unknown. We observed that LPA caused CD36 down-regulation in a dose- and time-dependent manner and was long lasting. Down-regulation occurred at the transcriptional level via a signaling pathway involving specific LPA receptors and protein kinase D. LPA-induced MVEC CD36 repression significantly attenuated in vitro antiangiogenic responses to thrombospondin-1, including blockade of migration, tube formation, and VEGFR-2 signaling in response to fibroblast growth factor-2. In vivo relevance was demonstrated by showing that LPA abrogated thrombospondin-1-mediated inhibition of neovascularization of Matrigel plugs implanted in mice. Our data thus indicate that the proangiogenic mechanism of LPA may in part be via switching off the antiangiogenic switch mediated by TSR proteins and CD36.
Collapse
|
49
|
Abstract
AbstractHistidine-rich glycoprotein (HRG), also known as histidine-proline-rich glyco-protein, is an abundant and well-characterized protein of vertebrate plasma. HRG has a multidomain structure that allows the molecule to interact with many ligands, including heparin, phospholipids, plasminogen, fibrinogen, immunoglobulin G, C1q, heme, and Zn2+. The ability of HRG to interact with various ligands simultaneously has suggested that HRG can function as an adaptor molecule and regulate numerous important biologic processes, such as immune complex/necrotic cell/pathogen clearance, cell adhesion, angiogenesis, coagulation, and fibrinolysis. The present review covers the proposed multifunctional roles of HRG with a focus on recent findings that have led to its emergence as a key regulator of immunity and vascular biology. Also included is a discussion of the striking functional similarities between HRG and other important multifunctional proteins found in plasma, such as C-reactive protein, C1q, β2 glycoprotein I, and thrombospondin-1.
Collapse
|
50
|
Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Åkerud P, De Mol M, Salomäki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011; 19:31-44. [PMID: 21215706 DOI: 10.1016/j.ccr.2010.11.009] [Citation(s) in RCA: 557] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 08/12/2010] [Accepted: 10/25/2010] [Indexed: 11/15/2022]
Abstract
Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like) phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG) inhibits tumor growth and metastasis, while improving chemotherapy. By skewing TAM polarization away from the M2- to a tumor-inhibiting M1-like phenotype, HRG promotes antitumor immune responses and vessel normalization, effects known to decrease tumor growth and metastasis and to enhance chemotherapy. Skewing of TAM polarization by HRG relies substantially on downregulation of placental growth factor (PlGF). Besides unveiling an important role for TAM polarization in tumor vessel abnormalization, and its regulation by HRG/PlGF, these findings offer therapeutic opportunities for anticancer and antiangiogenic treatment.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chemotactic Factors/metabolism
- Clodronic Acid/pharmacology
- Culture Media, Conditioned/pharmacology
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Down-Regulation/genetics
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Gene Expression/drug effects
- Gene Expression/genetics
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Microvessels/drug effects
- Microvessels/pathology
- Microvessels/ultrastructure
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/immunology
- Neoplasm Metastasis/pathology
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Placenta Growth Factor
- Pregnancy Proteins/genetics
- Pregnancy Proteins/immunology
- Pregnancy Proteins/metabolism
- Proteins/genetics
- Proteins/metabolism
- Proteins/pharmacology
- Regional Blood Flow/drug effects
- Regional Blood Flow/genetics
- Transfection
Collapse
Affiliation(s)
- Charlotte Rolny
- Uppsala University, Department of Genetics and Pathology, Rudbeck Laboratory, 75185 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|