1
|
Reyes B. The Locus Coeruleus: Anatomy, Physiology, and Stress-Related Neuropsychiatric Disorders. Eur J Neurosci 2025; 61:e70111. [PMID: 40219735 PMCID: PMC11992612 DOI: 10.1111/ejn.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
The locus coeruleus-norepinephrine (LC-NE) system is involved in mediating a wide array of functions, including attention, arousal, cognition, and stress response. Dysregulation of the LC-NE system is strongly linked with several stress-induced neuropsychiatric disorders, highlighting the LC's pivotal role in the development of these disorders. Located in the dorsal pontine tegmental area, the LC contains noradrenergic neurons that serve as the main source of NE in the central nervous system. Activation of the LC and subsequent release of NE at different levels of the neuroaxis is adaptive, allowing the body to adjust appropriately amid a challenging stimulus. However, prolonged and repeated LC activation leads to maladaptive responses that implicate LC-NE dysfunction in stress-induced neuropsychiatric disorders. As the primary initiator of the stress response, corticotropin-releasing factor (CRF) activates the hypothalamic-pituitary-adrenal axis. Following the discovery of CRF more than four decades ago, numerous studies established that CRF also acts as a neurotransmitter that governs the activity of other neurotransmitters in the brain neurotransmitter system. The LC-NE system receives abundant CRF afferents arising from several brain nuclei. CRF afferents to LC-NE are activated and recruited in the pathogenesis of stress-induced neuropsychiatric disorders. Presented in this review are the CRF neuroanatomical connectivity and physiological characteristics that modulate LC-NE function, which may contribute to the pathogenesis of stress-induced neuropsychiatric disorders. Additionally, this review illustrates the contribution of LC-NE to the apparent sex-dependent differences in stress-induced neuropsychiatric disorders. Hence, the LC-NE system is a promising target for the development of therapeutic strategies for stress-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Beverly A. S. Reyes
- Department of Pharmacology & PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Quach KT, Hughes GA, Chalasani SH. Interdependence between SEB-3 receptor and NLP-49 peptides shifts across predator-induced defensive behavioral modes in Caenorhabditis elegans. eLife 2025; 13:RP98262. [PMID: 40163376 PMCID: PMC11957542 DOI: 10.7554/elife.98262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence-how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat--suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.
Collapse
Affiliation(s)
- Kathleen T Quach
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Gillian A Hughes
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
3
|
Fernandes Gomes B, Kumar A, Ashton NJ, Hall S, Stomrud E, Smith R, Zetterberg H, Blennow K, Mattsson-Carlgren N, Hansson O. Corticotropin-releasing hormone as a candidate biomarker for parkinsonian disorders. Brain Commun 2024; 6:fcae414. [PMID: 39605973 PMCID: PMC11601160 DOI: 10.1093/braincomms/fcae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Disease-specific fluid biomarkers are in demand for parkinsonian syndromes (PS). Corticotropin-releasing hormone (CRH) was proposed as a biomarker for Lewy body disease. As such, this project aimed to confirm CRH as a potential biomarker for different PS. CRH and misfolded α-synuclein (αSyn) were measured in CSF. The primary cohort included Lewy body disease patients (i.e. Parkinson's disease or dementia with Lewy bodies, n = 77), atypical PS (n = 37) and non-parkinsonian neurodegenerative diseases (n = 164), as well as controls (n = 354). A replication cohort included Lewy body disease (n = 27), atypical PS (n = 58) and controls (n = 58). CRH was downregulated in αSyn positive Lewy body disease, αSyn positive controls and in all atypical PS compared with αSyn negative controls (P = 3.3e-05, P = 3.1e-10, P = 2.9e-03). CRH was also decreased in αSyn positive Lewy body disease compared with αSyn negative non-PS (P = 2e-03) and correlated with cognitive impairment and inflammation in αSyn positive Lewy body disease. We show that CRH is a promising biomarker for Lewy body disease and atypical PS and its association with inflammation and cognitive decline. Reductions in CRH in Lewy body disease and other PS suggest this decrease may relate to dopaminergic degeneration instead of αSyn pathology.
Collapse
Affiliation(s)
- Bárbara Fernandes Gomes
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Atul Kumar
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, 20213 Malmö, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- Banner Alzheimer's Institute and University of Arizona, Phoenix, AZ 85006, USA
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Sara Hall
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, 20213 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Erik Stomrud
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, 20213 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Ruben Smith
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, 20213 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43139 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- UK Dementia Research Institute at UCL, W1T 7NF London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, HKG Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43139 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
- Division of Life Sciences and Medicine, Department of Neurology, Neurodegenerative Disorder Research Center, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, 230026 Hefei, P.R. China
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, 20213 Malmö, Sweden
- Department of Neurology, Skåne University Hospital, 22185 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, 20213 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| |
Collapse
|
4
|
Tillinger A, Zvozilová A, Mach M, Horváthová Ľ, Dziewiczová L, Osacká J. Single Intranasal Administration of Ucn3 Affects the Development of PTSD Symptoms in an Animal Model. Int J Mol Sci 2024; 25:11908. [PMID: 39595978 PMCID: PMC11594197 DOI: 10.3390/ijms252211908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a multifactorial psychological disorder that affects different neurotransmitter systems, including the central CRH system. CRH acts via the CRHR1 and CRHR2 receptors, which exert opposite effects, i.e., anxiogenic or anxiolytic. The aim of this work was to investigate how intranasal administration of the CRHR2-specific agonist urocortin 2 (Ucn2) or urocortin 3 (Ucn3) affects manifestations of PTSD in a single prolonged stress (SPS) animal model of PTSD. Elevated plus maze (EPM) and open field (OF) tests were used to assess anxiety-like behavior. Changes in the gene expressions of CRH, CRHR1, CRHR2, glucocorticoid receptor (GR), and FKBP5 were measured in brain regions (BNST, amygdala, and PVN) responsible for modulating the stress response. The SPS animals spent less time in the OF central zone and were less mobile than the controls; however, the Ucn3 treatment reversed this effect. SPS decreased the GR and FKPB5 mRNA levels in the PVN. Ucn3 suppressed the effect of SPS on FKBP5 mRNA expression in the PVN and increased FKBP5 mRNA in the BNST and PVN compared to the stressed animals. We demonstrate that Ucn3 has the potential to ameliorate anxiety-like behavior in SPS animals and also to affect the neuroendocrine system in the BNST and PVN. In addition, we confirm the important role of CRHR2 signaling in mediating the stress response.
Collapse
MESH Headings
- Animals
- Urocortins/genetics
- Urocortins/metabolism
- Urocortins/administration & dosage
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/genetics
- Administration, Intranasal
- Disease Models, Animal
- Male
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/genetics
- Rats
- Tacrolimus Binding Proteins/metabolism
- Tacrolimus Binding Proteins/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Anxiety/drug therapy
- Corticotropin-Releasing Hormone/metabolism
- Corticotropin-Releasing Hormone/genetics
- Behavior, Animal/drug effects
Collapse
Affiliation(s)
- Andrej Tillinger
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| | - Alexandra Zvozilová
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, 841 04 Bratislava, Slovakia
| | - Mojmír Mach
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, 841 04 Bratislava, Slovakia
| | - Ľubica Horváthová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| | - Lila Dziewiczová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| | - Jana Osacká
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| |
Collapse
|
5
|
Lawrence S, Scofield RH. Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav Immun Health 2024; 41:100849. [PMID: 39280087 PMCID: PMC11401111 DOI: 10.1016/j.bbih.2024.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Conventional human stress responses are mediated by the sympathetic adrenal medullar (SAM) axis and the hypothalamic pituitary adrenal (HPA) axis. The SAM axis mediates the immediate response to stress through norepinephrine and epinephrine while the HPA axis mediates the slow response through corticosteroids, primarily cortisol, to effect systemic changes. Post Traumatic Stress Disorder (PTSD), a psychiatric disorder that develops in a small subset of people exposed to a traumatic event, may dysregulate these systems and result in increased risk of various clinical conditions. These conditions include but are not limited to cardiovascular disease, metabolic conditions, autoimmune diseases, neurocognitive disorders, and women's health complications such as preterm birth, polycystic ovarian syndrome, and endometriosis to name a few. This review focuses on how PTSD dysregulates the HPA axis, and further, how these alterations affect the immune system and physical health outcomes.
Collapse
Affiliation(s)
- Stephanie Lawrence
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - R Hal Scofield
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
6
|
Keady JV, Hessing MC, Songrady JC, McLaurin K, Turner JR. Sex differences in contextual fear conditioning and extinction after acute and chronic nicotine treatment. Biol Sex Differ 2024; 15:88. [PMID: 39482781 PMCID: PMC11529327 DOI: 10.1186/s13293-024-00656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Chronic cigarette smokers report withdrawal symptomology, including affective dysfunction and cognitive deficits. While there are studies demonstrating sex specific withdrawal symptomology in nicotine-dependent individuals, literature examining the underlying biological mediators of this is scant and not in complete agreement. Therefore, in this study, we evaluated the sex specific effects of nicotine and withdrawal on contextual fear memory, a hippocampally dependent aspect of cognition that is disrupted in nicotine withdrawal. METHODS Male and female B6/129F1 mice (8-13 weeks old) were used in all experiments. For the acute nicotine experiment, mice received intraperitoneal saline or nicotine (0.5 mg/kg) prior to contextual fear conditioning and test. For the chronic nicotine experiment, mice received nicotine (18 mg/kg/day) or saline for 11 days, then underwent contextual fear conditioning and test. Following the test, mice underwent minipump removal to elicit withdrawal or sham surgery, followed by the fear extinction assay. Bulk cortical tissue was used to determine nicotinic acetylcholine receptor levels via single point [3H]Epibatidine binding assay. Gene expression levels in the dorsal and ventral hippocampus were quantified via RT-PCR. RESULTS We found that female mice had a stronger expression of contextual fear memory than their male counterparts. Further, following acute nicotine treatment, male, but not female, subjects demonstrated augmented contextual fear memory expression. In contrast, no significant effects of chronic nicotine treatment on fear conditioning were observed in either sex. When examining extinction of fear learning, we observed that female mice withdrawn from nicotine displayed impaired extinction learning, but no effect was observed in males. Nicotine withdrawal caused similar suppression of fosb, cfos, and bdnf, our proxy for neuronal activation and plasticity changes, in the dorsal and ventral hippocampus of both sexes. Additionally, we found that ventral hippocampus erbb4 expression, a gene implicated in smoking cessation outcomes, was elevated in both sexes following nicotine withdrawal. CONCLUSIONS Despite the similar impacts of nicotine withdrawal on gene expression levels, fosb, cfos, bdnf and erbb4 levels in the ventral hippocampus were predictive of delays in female extinction learning alone. This suggests sex specific dysfunction in hippocampal circuitry may contribute to female specific nicotine withdrawal induced deficits in extinction learning.
Collapse
Affiliation(s)
- Jack V Keady
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA
| | - Marissa C Hessing
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA
| | - Judy C Songrady
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA
| | - Kristen McLaurin
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, 789 S. Limestone Street, 473 Lee T. Todd Jr. Building, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
7
|
Huang M, Wang J, Liu W, Zhou H. Advances in the role of the GADD45 family in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Front Neurosci 2024; 18:1349409. [PMID: 38332860 PMCID: PMC10850240 DOI: 10.3389/fnins.2024.1349409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The growth arrest and DNA damage inducible protein 45 (GADD45) family comprises stress-induced nuclear proteins that interact with DNA demethylases to facilitate DNA demethylation, thereby regulating diverse cellular processes including oxidative stress, DNA damage repair, apoptosis, proliferation, differentiation, inflammation, and neuroplasticity by modulating the expression patterns of specific genes. Widely expressed in the central nervous system, the GADD45 family plays a pivotal role in various neurological disorders, rendering it a potential therapeutic target for central nervous system diseases. This review presented a comprehensive overview of the expression patterns and potential mechanisms of action associated with each member of GADD45 family (GADD45α, GADD45β, and GADD45γ) in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders, while also explored strategies to harness these mechanisms for intervention and treatment. Future research should prioritize the development of effective modulators targeting the GADD45 family for clinical trials aimed at treating central nervous system diseases.
Collapse
Affiliation(s)
| | | | | | - Hongyan Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
8
|
Burback L, Brémault-Phillips S, Nijdam MJ, McFarlane A, Vermetten E. Treatment of Posttraumatic Stress Disorder: A State-of-the-art Review. Curr Neuropharmacol 2024; 22:557-635. [PMID: 37132142 PMCID: PMC10845104 DOI: 10.2174/1570159x21666230428091433] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
This narrative state-of-the-art review paper describes the progress in the understanding and treatment of Posttraumatic Stress Disorder (PTSD). Over the last four decades, the scientific landscape has matured, with many interdisciplinary contributions to understanding its diagnosis, etiology, and epidemiology. Advances in genetics, neurobiology, stress pathophysiology, and brain imaging have made it apparent that chronic PTSD is a systemic disorder with high allostatic load. The current state of PTSD treatment includes a wide variety of pharmacological and psychotherapeutic approaches, of which many are evidence-based. However, the myriad challenges inherent in the disorder, such as individual and systemic barriers to good treatment outcome, comorbidity, emotional dysregulation, suicidality, dissociation, substance use, and trauma-related guilt and shame, often render treatment response suboptimal. These challenges are discussed as drivers for emerging novel treatment approaches, including early interventions in the Golden Hours, pharmacological and psychotherapeutic interventions, medication augmentation interventions, the use of psychedelics, as well as interventions targeting the brain and nervous system. All of this aims to improve symptom relief and clinical outcomes. Finally, a phase orientation to treatment is recognized as a tool to strategize treatment of the disorder, and position interventions in step with the progression of the pathophysiology. Revisions to guidelines and systems of care will be needed to incorporate innovative treatments as evidence emerges and they become mainstream. This generation is well-positioned to address the devastating and often chronic disabling impact of traumatic stress events through holistic, cutting-edge clinical efforts and interdisciplinary research.
Collapse
Affiliation(s)
- Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | - Mirjam J. Nijdam
- ARQ National Psychotrauma Center, Diemen, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
9
|
Montgomery KR, Bridi MS, Folts LM, Marx-Rattner R, Zierden HC, Wulff AB, Kodjo EA, Thompson SM, Bale TL. Chemogenetic activation of CRF neurons as a model of chronic stress produces sex-specific physiological and behavioral effects. Neuropsychopharmacology 2024; 49:443-454. [PMID: 37833589 PMCID: PMC10724197 DOI: 10.1038/s41386-023-01739-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/15/2023]
Abstract
Trauma and chronic stress exposure are the strongest predictors of lifetime neuropsychiatric disease presentation. These disorders often have significant sex biases, with females having higher incidences of affective disorders such as major depression, anxiety, and PTSD. Understanding the mechanisms by which stress exposure heightens disease vulnerability is essential for developing novel interventions. Current rodent stress models consist of a battery of sensory, homeostatic, and psychological stressors that are ultimately integrated by corticotropin-releasing factor (CRF) neurons to trigger corticosteroid release. These stress paradigms, however, often differ between research groups in the type, timing, and duration of stressors utilized. These inconsistencies, along with the variability of individual animals' perception and response to each stressor, present challenges for reproducibility and translational relevance. Here, we hypothesized that a more direct approach using chemogenetic activation of CRF neurons would recapitulate the effects of traditional stress paradigms and provide a high-throughput method for examining stress-relevant phenotypes. Using a transgenic approach to express the Gq-coupled Designer Receptor Exclusively Activated by Designer Drugs (DREADD) receptor hM3Dq in CRF-neurons, we found that the DREADD ligand clozapine-N-oxide (CNO) produced an acute and robust activation of the hypothalamic-pituitary-adrenal (HPA) axis, as predicted. Interestingly, chronic treatment with this method of direct CRF activation uncovered a novel sex-specific dissociation of glucocorticoid levels with stress-related outcomes. Despite hM3Dq-expressing females producing greater corticosterone levels in response to CNO than males, hM3Dq-expressing males showed significant typical physiological stress sensitivity with reductions in body and thymus weights. hM3Dq-expressing females while resistant to the physiological effects of chronic CRF activation, showed significant increases in baseline and fear-conditioned freezing behaviors. These data establish a novel mouse model for interrogating stress-relevant phenotypes and highlight sex-specific stress circuitry distinct for physiological and limbic control that may underlie disease risk.
Collapse
Affiliation(s)
- Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Morgan S Bridi
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lillian M Folts
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruth Marx-Rattner
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andreas B Wulff
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Emmanuela A Kodjo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Yoo JY, McSkimming D, Rajan K, Sarkar A, Labbé N, Groer M, Menon U. A Preliminary Study Exploring the Relationship between Occupational Health Hazards and Gut Microbiota among Firefighters. Life (Basel) 2023; 13:1928. [PMID: 37763331 PMCID: PMC10533145 DOI: 10.3390/life13091928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Firefighters are exposed to occupational hazards and have a higher prevalence of health issues. The gut microbiota plays a crucial role in the immune, endocrine, and neural systems, and disruptions in its composition can impact health outcomes. This pilot study aimed to investigate the potential association between occupational factors, changes in gut microbiota, and the development of adverse health outcomes in firefighters. To test this hypothesis, we recruited 15 firefighters and age/sex-matched controls to investigate the relationship between occupational environment and gut microbiota. Firefighters exhibit lower intestinal bacterial alpha diversity and a higher presence of pathogenic bacteria than the control. Moreover, unique gut bacterial taxa were observed in firefighters with high post-traumatic stress disorder (PTSD) scores, which could contribute to immune dysregulation and higher susceptibility to pathogen colonization. These preliminary findings suggest that occupational factors, including exposure to traumatic stressors and chemicals, may influence firefighters' health by modulating their gut microbiota. The observed changes in gut microbiota composition and the potential link to occupational hazards highlight the need for further research in larger sample-size studies. Understanding the role of gut microbiota in firefighter health may have implications for preventive measures and interventions to mitigate occupational health risks and improve overall well-being.
Collapse
Affiliation(s)
- Ji Youn Yoo
- College of Nursing, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (A.S.); (M.G.)
| | - Daniel McSkimming
- Interdisciplinary Unit in Data Science & Analytics, Buffalo State University, Buffalo, NY 14222, USA;
| | - Kalavathy Rajan
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79403, USA;
| | - Anujit Sarkar
- College of Nursing, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (A.S.); (M.G.)
| | - Nicole Labbé
- Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA;
| | - Maureen Groer
- College of Nursing, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (A.S.); (M.G.)
| | - Usha Menon
- College of Nursing, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
12
|
Bremner JD, Gazi AH, Lambert TP, Nawar A, Harrison AB, Welsh JW, Vaccarino V, Walton KM, Jaquemet N, Mermin-Bunnell K, Mesfin H, Gray TA, Ross K, Saks G, Tomic N, Affadzi D, Bikson M, Shah AJ, Dunn KE, Giordano NA, Inan OT. Noninvasive Vagal Nerve Stimulation for Opioid Use Disorder. ANNALS OF DEPRESSION AND ANXIETY 2023; 10:1117. [PMID: 38074313 PMCID: PMC10699253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Background Opioid Use Disorder (OUD) is an escalating public health problem with over 100,000 drug overdose-related deaths last year most of them related to opioid overdose, yet treatment options remain limited. Non-invasive Vagal Nerve Stimulation (nVNS) can be delivered via the ear or the neck and is a non-medication alternative to treatment of opioid withdrawal and OUD with potentially widespread applications. Methods This paper reviews the neurobiology of opioid withdrawal and OUD and the emerging literature of nVNS for the application of OUD. Literature databases for Pubmed, Psychinfo, and Medline were queried for these topics for 1982-present. Results Opioid withdrawal in the context of OUD is associated with activation of peripheral sympathetic and inflammatory systems as well as alterations in central brain regions including anterior cingulate, basal ganglia, and amygdala. NVNS has the potential to reduce sympathetic and inflammatory activation and counter the effects of opioid withdrawal in initial pilot studies. Preliminary studies show that it is potentially effective at acting through sympathetic pathways to reduce the effects of opioid withdrawal, in addition to reducing pain and distress. Conclusions NVNS shows promise as a non-medication approach to OUD, both in terms of its known effect on neurobiology as well as pilot data showing a reduction in withdrawal symptoms as well as physiological manifestations of opioid withdrawal.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
- Atlanta Veterans Affairs Healthcare System, Decatur GA
| | - Asim H Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Tamara P Lambert
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Afra Nawar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anna B Harrison
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Justine W Welsh
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta GA
| | - Kevin M Walton
- Clinical Research Grants Branch, Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, Bethesda, MD
| | - Nora Jaquemet
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Kellen Mermin-Bunnell
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Hewitt Mesfin
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Trinity A Gray
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Keyatta Ross
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Georgia Saks
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Nikolina Tomic
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Danner Affadzi
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY
| | - Amit J Shah
- Atlanta Veterans Affairs Healthcare System, Decatur GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta GA
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD
| | | | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
13
|
Burning down the house: reinventing drug discovery in psychiatry for the development of targeted therapies. Mol Psychiatry 2023; 28:68-75. [PMID: 36460725 DOI: 10.1038/s41380-022-01887-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Despite advances in neuroscience, limited progress has been made in developing new and better medications for psychiatric disorders. Available treatments in psychiatry rely on a few classes of drugs that have a broad spectrum of activity across disorders with limited understanding of mechanism of action. While the added value of more targeted therapies is apparent, a dearth of pathophysiologic mechanisms exists to support targeted treatments, and where mechanisms have been identified and drugs developed, results have been disappointing. Based on serendipity and early successes that led to the current drug armamentarium, a haunting legacy endures that new drugs should align with outdated and overinclusive diagnostic categories, consistent with the idea that "one size fits all". This legacy has fostered clinical trial designs focused on heterogenous populations of patients with a single diagnosis and non-specific outcome variables. Disturbingly, this approach likely contributed to missed opportunities for drugs targeting the hypothalamic-pituitary-adrenal axis and now inflammation. Indeed, cause-and-effect data support the role of inflammatory processes in neurotransmitter alterations that disrupt specific neurocircuits and related behaviors. This pathway to pathology occurs across disorders and warrants clinical trial designs that enrich for patients with increased inflammation and use primary outcome variables associated with specific effects of inflammation on brain and behavior. Nevertheless, such trial designs have not been routinely employed, and results of anti-inflammatory treatments have been underwhelming. Thus, to accelerate development of targeted therapeutics including in the area of inflammation, regulatory agencies and the pharmaceutical industry must embrace treatments and trials focused on pathophysiologic pathways that impact specific symptom domains in subsets of patients, agnostic to diagnosis. Moreover, closer collaboration among basic and clinical investigators is needed to apply neuroscience knowledge to reveal disease mechanisms that drive psychiatric symptoms. Together, these efforts will support targeted treatments, ultimately leading to new and better therapeutics in psychiatry.
Collapse
|
14
|
Pivac N, Vuic B, Sagud M, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Tudor L, Svob Strac D, Uzun S, Kozumplik O, Uzun S, Mimica N. PTSD, Immune System, and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:225-262. [PMID: 36949313 DOI: 10.1007/978-981-19-7376-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a severe trauma and stress-related disorder associated with different somatic comorbidities, especially cardiovascular and metabolic disorders, and with chronic low-grade inflammation. Altered balance of the hypothalamic-pituitary-adrenal (HPA) axis, cytokines and chemokines, C-reactive protein, oxidative stress markers, kynurenine pathways, and gut microbiota might be involved in the alterations of certain brain regions regulating fear conditioning and memory processes, that are all altered in PTSD. In addition to the HPA axis, the gut microbiota maintains the balance and interaction of the immune, CNS, and endocrine pathways forming the gut-brain axis. Disbalance in the HPA axis, gut-brain axis, oxidative stress pathways and kynurenine pathways, altered immune signaling and disrupted homeostasis, as well as the association of the PTSD with the inflammation and disrupted cognition support the search for novel strategies for treatment of PTSD. Besides potential anti-inflammatory treatment, dietary interventions or the use of beneficial bacteria, such as probiotics, can potentially improve the composition and the function of the bacterial community in the gut. Therefore, bacterial supplements and controlled dietary changes, with exercise, might have beneficial effects on the psychological and cognitive functions in patients with PTSD. These new treatments should be aimed to attenuate inflammatory processes and consequently to reduce PTSD symptoms but also to improve cognition and reduce cardio-metabolic disorders associated so frequently with PTSD.
Collapse
Affiliation(s)
- Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | | | - Sandra Uzun
- Department for Anesthesiology, Reanimatology, and Intensive Care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ninoslav Mimica
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| |
Collapse
|
15
|
Corticotropin-Releasing Hormone: Biology and Therapeutic Opportunities. BIOLOGY 2022; 11:biology11121785. [PMID: 36552294 PMCID: PMC9775501 DOI: 10.3390/biology11121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
In 1981, Wylie Vale, Joachim Spiess, Catherine Rivier, and Jean Rivier reported on the characterization of a 41-amino-acid peptide from ovine hypothalamic extracts with high potency and intrinsic activity stimulating the secretion of adrenocorticotropic hormone and β-endorphin by cultured anterior pituitary cells. With its sequence known, this neuropeptide was determined to be a hormone and consequently named corticotropin-releasing hormone (CRH), although the term corticotropin-releasing factor (CRF) is still used and preferred in some circumstances. Several decades have passed since this seminal contribution that opened a new research era, expanding the understanding of the coding of stress-related processes. The characterization of CRH receptors, the availability of CRH agonists and antagonists, and advanced immunocytochemical staining techniques have provided evidence that CRH plays a role in the regulation of several biological systems. The purpose of this review is to summarize the present knowledge of this 41-amino-acid peptide.
Collapse
|
16
|
Pace-Schott EF, Seo J, Bottary R. The influence of sleep on fear extinction in trauma-related disorders. Neurobiol Stress 2022; 22:100500. [PMID: 36545012 PMCID: PMC9761387 DOI: 10.1016/j.ynstr.2022.100500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
In Posttraumatic Stress Disorder (PTSD), fear and anxiety become dysregulated following psychologically traumatic events. Regulation of fear and anxiety involves both high-level cognitive processes such as cognitive reattribution and low-level, partially automatic memory processes such as fear extinction, safety learning and habituation. These latter processes are believed to be deficient in PTSD. While insomnia and nightmares are characteristic symptoms of existing PTSD, abundant recent evidence suggests that sleep disruption prior to and acute sleep disturbance following traumatic events both can predispose an individual to develop PTSD. Sleep promotes consolidation in multiple memory systems and is believed to also do so for low-level emotion-regulatory memory processes. Consequently sleep disruption may contribute to the etiology of PTSD by interfering with consolidation in low-level emotion-regulatory memory systems. During the first weeks following a traumatic event, when in the course of everyday life resilient individuals begin to acquire and consolidate these low-level emotion-regulatory memories, those who will develop PTSD symptoms may fail to do so. This deficit may, in part, result from alterations of sleep that interfere with their consolidation, such as REM fragmentation, that have also been found to presage later PTSD symptoms. Here, sleep disruption in PTSD as well as fear extinction, safety learning and habituation and their known alterations in PTSD are first briefly reviewed. Then neural processes that occur during the early post-trauma period that might impede low-level emotion regulatory processes through alterations of sleep quality and physiology will be considered. Lastly, recent neuroimaging evidence from a fear conditioning and extinction paradigm in patient groups and their controls will be considered along with one possible neural process that may contribute to a vulnerability to PTSD following trauma.
Collapse
Affiliation(s)
- Edward F. Pace-Schott
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Corresponding author. Harvard Medical School, Massachusetts General Hospital - East, CNY 149 13th Street, Charlestown, MA, 02129, USA.
| | - Jeehye Seo
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Korea University, Department of Brain & Cognitive Engineering, Seongbuk-gu, Seoul, South Korea
| | - Ryan Bottary
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
17
|
Abstract
Mental health disorders, particularly depression and anxiety, affect a significant number of the global population. Several pathophysiological pathways for these disorders have been identified, including the hypothalamic-pituitary-adrenal axis, autonomic nervous system, and the immune system. In addition, life events, environmental factors, and lifestyle affect the onset, progression, and recurrence of mental health disorders. These may all overlap with periodontal and/or peri-implant disease. Mental health disorders are associated with more severe periodontal disease and, in some cases, poorer healing outcomes to nonsurgical periodontal therapy. They can result in behavior modification, such as poor oral hygiene practices, tobacco smoking, and alcohol abuse, which are also risk factors for periodontal disease and, therefore, may have a contributory effect. Stress has immunomodulatory effects regulating immune cell numbers and function, as well as proinflammatory cytokine production. Stress markers such as cortisol and catecholamines may modulate periodontal bacterial growth and the expression of virulence factors. Stress and some mental health disorders are accompanied by a low-grade chronic inflammation that may be involved in their relationship with periodontal disease and vice versa. Although the gut microbiome interacting with the central nervous system (gut-brain axis) is thought to play a significant role in mental illness, less is understood about the role of the oral microbiome. The evidence for mental health disorders on implant outcomes is lacking, but may mainly be through behaviourial changes. Through lack of compliance withoral hygiene and maintenance visits, peri-implant health can be affected. Increased smoking and risk of periodontal disease may also affect implant outcomes. Selective serotonin reuptake inhibitors have been linked with higher implant failure. They have an anabolic effect on bone, reducing turnover, which could account for the increased loss.
Collapse
Affiliation(s)
- Jake Ball
- Centre for Rural Dentistry and Oral HealthCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Ivan Darby
- Periodontics, Melbourne Dental SchoolThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
18
|
Szafoni S, Piegza M. Progress in Personalized Psychiatric Therapy with the Example of Using Intranasal Oxytocin in PTSD Treatment. J Pers Med 2022; 12:1067. [PMID: 35887564 PMCID: PMC9317706 DOI: 10.3390/jpm12071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe mental disorder that results in the frequent coexistence of other diseases, lowers patients' quality of life, and has a high annual cost of treatment. However, despite the variety of therapeutic approaches that exist, some patients still do not achieve the desired results. In addition, we may soon face an increase in the number of new PTSD cases because of the current global situation-both the COVID-19 pandemic and the ongoing armed conflicts. Hence, in recent years, many publications have sought a new, more personalized treatment approach. One such approach is the administration of intranasal oxytocin (INOXT), which, due to its pleiotropic effects, seems to be a promising therapeutic option. However, the current findings suggest that it might only be helpful for a limited, strictly selected group of patients.
Collapse
Affiliation(s)
- Sandra Szafoni
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 42-612 Tarnowskie Góry, Poland;
| | | |
Collapse
|
19
|
Kovács LÁ, Füredi N, Ujvári B, Golgol A, Gaszner B. Age-Dependent FOSB/ΔFOSB Response to Acute and Chronic Stress in the Extended Amygdala, Hypothalamic Paraventricular, Habenular, Centrally-Projecting Edinger-Westphal, and Dorsal Raphe Nuclei in Male Rats. Front Aging Neurosci 2022; 14:862098. [PMID: 35592695 PMCID: PMC9110804 DOI: 10.3389/fnagi.2022.862098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.
Collapse
Affiliation(s)
- László Ákos Kovács
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Abolfazl Golgol
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
20
|
Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, Carlezon WA. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 2022; 18:273-288. [PMID: 35352034 PMCID: PMC9682920 DOI: 10.1038/s41582-022-00635-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a maladaptive and debilitating psychiatric disorder, characterized by re-experiencing, avoidance, negative emotions and thoughts, and hyperarousal in the months and years following exposure to severe trauma. PTSD has a prevalence of approximately 6-8% in the general population, although this can increase to 25% among groups who have experienced severe psychological trauma, such as combat veterans, refugees and victims of assault. The risk of developing PTSD in the aftermath of severe trauma is determined by multiple factors, including genetics - at least 30-40% of the risk of PTSD is heritable - and past history, for example, prior adult and childhood trauma. Many of the primary symptoms of PTSD, including hyperarousal and sleep dysregulation, are increasingly understood through translational neuroscience. In addition, a large amount of evidence suggests that PTSD can be viewed, at least in part, as a disorder that involves dysregulation of normal fear processes. The neural circuitry underlying fear and threat-related behaviour and learning in mammals, including the amygdala-hippocampus-medial prefrontal cortex circuit, is among the most well-understood in behavioural neuroscience. Furthermore, the study of threat-responding and its underlying circuitry has led to rapid progress in understanding learning and memory processes. By combining molecular-genetic approaches with a translational, mechanistic knowledge of fear circuitry, transformational advances in the conceptual framework, diagnosis and treatment of PTSD are possible. In this Review, we describe the clinical features and current treatments for PTSD, examine the neurobiology of symptom domains, highlight genomic advances and discuss translational approaches to understanding mechanisms and identifying new treatments and interventions for this devastating syndrome.
Collapse
Affiliation(s)
- Kerry J Ressler
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sabina Berretta
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim Y Bolshakov
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward G Meloni
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - William A Carlezon
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Morice CK, Yammine L, Yoon J, Lane SD, Schmitz JM, Kosten TR, De La Garza R, Verrico CD. Comorbid alcohol use and post-traumatic stress disorders: Pharmacotherapy with aldehyde dehydrogenase 2 inhibitors versus current agents. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110506. [PMID: 34995723 DOI: 10.1016/j.pnpbp.2021.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/20/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
The increased risk of alcohol use disorder (AUD) in individuals with post-traumatic stress disorder (PTSD) is well-documented. Compared to individuals with PTSD or AUD alone, those with co-existing PTSD and AUD exhibit greater symptom severity, poorer quality of life, and poorer treatment outcomes. Although the treatment of comorbid AUD is vital for the effective management of PTSD, there is a lack of evidence on how to best treat comorbid PTSD and AUD, and currently, there are no FDA-approved treatments for the PTSD-AUD comorbidity. The objective of this manuscript is to review the evidence of a promising target for treating the AUD-PTSD comorbidity. First, we summarize the epidemiological evidence and review the completed clinical studies that have tested pharmacotherapeutic approaches for co-existing AUD and PTSD. Next, we summarize the shared pathological factors between AUD and PTSD. We conclude by providing a rationale for selectively inhibiting aldehyde dehydrogenase-2 as a potential target to treat comorbid AUD in persons with PTSD.
Collapse
Affiliation(s)
- Claire K Morice
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, 1977 Butler Blvd., Houston, TX 77030, United States of America
| | - Luba Yammine
- University of Texas Health Science Center at Houston, McGovern Medical School, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Behavioral and Biomedical Sciences Building, 1941 East Road, Houston, TX 77054, United States of America
| | - Jin Yoon
- University of Texas Health Science Center at Houston, McGovern Medical School, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Behavioral and Biomedical Sciences Building, 1941 East Road, Houston, TX 77054, United States of America
| | - Scott D Lane
- University of Texas Health Science Center at Houston, McGovern Medical School, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Behavioral and Biomedical Sciences Building, 1941 East Road, Houston, TX 77054, United States of America
| | - Joy M Schmitz
- University of Texas Health Science Center at Houston, McGovern Medical School, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Behavioral and Biomedical Sciences Building, 1941 East Road, Houston, TX 77054, United States of America
| | - Thomas R Kosten
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, 1977 Butler Blvd., Houston, TX 77030, United States of America; Baylor College of Medicine, Department of Pharmacology & Chemical Biology, One Baylor Plaza, BCM330, Houston, TX 77030, United States of America; Baylor College of Medicine, Department of Neuroscience, One Baylor Plaza, S640, Houston, TX 77030, United States of America; Baylor College of Medicine, Department of Pathology & Immunology, One Baylor Plaza, BCM315, Houston, TX 77030, United States of America
| | - Richard De La Garza
- University of California Los Angeles, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90024, United States of America
| | - Christopher D Verrico
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, 1977 Butler Blvd., Houston, TX 77030, United States of America; Baylor College of Medicine, Department of Pharmacology & Chemical Biology, One Baylor Plaza, BCM330, Houston, TX 77030, United States of America.
| |
Collapse
|
22
|
Al Yacoub ON, Awwad HO, Zhang Y, Standifer KM. Therapeutic potential of nociceptin/orphanin FQ peptide (NOP) receptor modulators for treatment of traumatic brain injury, traumatic stress, and their co-morbidities. Pharmacol Ther 2022; 231:107982. [PMID: 34480968 DOI: 10.1016/j.pharmthera.2021.107982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is a member of the opioid receptor superfamily with N/OFQ as its endogenous agonist. Wide expression of the NOP receptor and N/OFQ, both centrally and peripherally, and their ability to modulate several biological functions has led to development of NOP receptor modulators by pharmaceutical companies as therapeutics, based upon their efficacy in preclinical models of pain, anxiety, depression, Parkinson's disease, and substance abuse. Both posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are debilitating conditions that significantly affect the quality of life of millions of people around the world. PTSD is often a consequence of TBI, and, especially for those deployed to, working and/or living in a war zone or are first responders, they are comorbid. PTSD and TBI share common symptoms, and negatively influence outcomes as comorbidities of the other. Unfortunately, a lack of effective therapies or therapeutic agents limits the long term quality of life for either TBI or PTSD patients. Ours, and other groups, demonstrated that PTSD and TBI preclinical models elicit changes in the N/OFQ-NOP receptor system, and that administration of NOP receptor ligands alleviated some of the neurobiological and behavioral changes induced by brain injury and/or traumatic stress exposure. Here we review the past and most recent progress on understanding the role of the N/OFQ-NOP receptor system in PTSD and TBI neurological and behavioral sequelae. There is still more to understand about this neuropeptide system in both PTSD and TBI, but current findings warrant further examination of the potential utility of NOP modulators as therapeutics for these disorders and their co-morbidities. We advocate the development of standards for common data elements (CDE) reporting for preclinical PTSD studies, similar to current preclinical TBI CDEs. That would provide for more standardized data collection and reporting to improve reproducibility, interpretation and data sharing across studies.
Collapse
Affiliation(s)
- Omar N Al Yacoub
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Hibah O Awwad
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Yong Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America.
| |
Collapse
|
23
|
Zhu L, Li L, Li XZ, Wang L. Mind–Body Exercises for PTSD Symptoms, Depression, and Anxiety in Patients With PTSD: A Systematic Review and Meta-Analysis. Front Psychol 2022; 12:738211. [PMID: 35153889 PMCID: PMC8833099 DOI: 10.3389/fpsyg.2021.738211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives This study aims to systematically analyze the effects of mind–body exercises on post-traumatic stress disorder (PTSD) symptoms, depression, and anxiety in patients with PTSD. Furthermore, it intends to provide scientific evidence-based exercise prescriptions. Methods Chinese (i.e., China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals, and Wanfang) and English (i.e., Web of Science, PubMed, the Cochrane Library, and EMBASE) databases were used as data sources to search for studies on the effects of mind–body exercises on symptoms associated with patients with PTSD from January 1980 to November 2020. After a rigorous screening, 16 eligible randomized controlled trials (RCTs) were included in the meta-analysis. Results Mind–body exercises exerted a significant effect on PTSD symptoms [standard mean difference (SMD) = −0.41, 95% confidence interval (CI) −0.64 to −0.19, p < 0.001], depression (SMD = −0.35, 95% CI: −0.55 to −0.15, p < 0.001), and anxiety (SMD = −0.31, 95% CI: −0.74 to −0.12, p < 0.001) among patients with PTSD. Subgroup analysis demonstrated that 60–150 min per session for 8–16 weeks of mindfulness was more effective in improving symptoms in patients with PTSD under 45 years of age compared with other subgroups. For depression, 150–180 min of yoga exercises once per week was effective. For anxiety, the frequency, timing, duration, and type of mind–body exercises that are most effective in relieving anxiety in patients with PTSD cannot be determined at this time due to the limited number of eligible RCTs. Conclusions Mind–body exercises were found to be significantly effective in improving PTSD symptoms, depression, and anxiety in patients with PTSD. Therefore, they can be used as an adjunct to intervention for symptoms of patients with PTSD. However, this conclusion requires further confirmation through additional scientific and objective RCTs. Systematic Review Registration: Unique Identifier: INPLASY2020120072.
Collapse
Affiliation(s)
- Lin Zhu
- School of Wushu and Art, Nanjing Sport Institute, Nanjing, China
| | - Long Li
- School of Wushu and Art, Nanjing Sport Institute, Nanjing, China
- *Correspondence: Long Li
| | - Xiao-zhi Li
- Department of Physical Education, Southeast University, Nanjing, China
| | - Lin Wang
- Department of Physical Education, Wuhan University of Technology, Wuhan, China
- Lin Wang
| |
Collapse
|
24
|
Wu R, Li S, Huang Y, Pang J, Cai Y, Zhang X, Jiang T, Yang S, Wei W. Postpartum maternal exposure to predator odor alters offspring antipredator behavior, basal HPA axis activity and immunoglobulin levels in adult Brandt's voles. Behav Brain Res 2022; 416:113532. [PMID: 34416302 DOI: 10.1016/j.bbr.2021.113532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
Predation risk can program offspring behavior, physiology, and fitness through maternal effect, but most studies have mainly focused on this effect during pregnancy; little is known about the effect of postpartum predation risk on offspring's phenotype. Here, we compared the antipredator behaviors of adult offspring (approximately 90 days old) produced by female Brandt's voles (Lasiopodomys brandtii) exposed to one of three treatments: cat odor (CO), rabbit odor (RO), and distilled water (DW) for 60 min daily from postpartum day 1-18. Basal levels of plasma adrenocorticotropic hormone (ACTH) and corticosterone (CORT), hypothalamic corticotrophin releasing hormone (CRH), as well as spleen immunoglobulins (IgA, IgM, and IgG) were also measured. Our data showed that the offspring of CO-exposed mothers displayed less head-out behavior to acute 15-min CO exposure, and female offspring showed more freezing behavior. CO offspring showed significantly lower basal ACTH and CORT levels than the RO and DW offspring. Additionally, female but not male CO offspring had higher hypothalamic CRH expression and spleen IgG levels than controls, showing a sex-specific effect. These findings demonstrate that postpartum maternal predator risk exposure promotes a passive-avoidant response to these cues in adult offspring, showing a cross-generational maternal effect of postpartum predation risk. Further, these changes may be associated with alterations in the hypothalamic-pituitary-adrenal axis and immune function.
Collapse
Affiliation(s)
- Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Shan Li
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yefeng Huang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jinyue Pang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yongjian Cai
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyue Zhang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tianyi Jiang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shengmei Yang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wanhong Wei
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
25
|
Campbell KA. The neurobiology of childhood trauma, from early physical pain onwards: as relevant as ever in today's fractured world. Eur J Psychotraumatol 2022; 13:2131969. [PMID: 36276555 PMCID: PMC9586666 DOI: 10.1080/20008066.2022.2131969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The situation in the world today, encompassing multiple armed conflicts, notably in Ukraine, the Coronavirus pandemic and the effects of climate change, increases the likelihood of childhood exposure to physical injury and pain. Other effects of these worldwide hardships include poverty, malnutrition and starvation, also bringing with them other forms of trauma, including emotional harm, neglect and deliberate maltreatment. Objective: To review the neurobiology of the systems in the developing brain that are most affected by physical and emotional trauma and neglect. Method: The review begins with those that mature first, such as the somatosensory system, progressing to structures that have a more protracted development, including those involved in cognition and emotional regulation. Explored next are developing stress response systems, especially the hypothalamic-pituitary-adrenal axis and its central regulator, corticotropin-releasing hormone. Also examined are reward and anti-reward systems and genetic versus environmental influences. The behavioural consequences of interpersonal childhood trauma, focusing on self-harm and suicide, are also surveyed briefly. Finally, pointers to effective treatment are proffered. Results: The low-threshold nature of circuitry in the developing brain and lack of inhibitory connections therein result in heightened excitability, making the consequences of both physical and emotional trauma more intense. Sensitive and critical periods in the development of structures such as the amygdala render the nervous system more vulnerable to insults occurring at those points, increasing the likelihood of psychiatric disorders, culminating in self-harm and even suicide. Conclusion: In view of the greater excitability of the developing nervous system, and its vulnerability to physical and psychological injuries, the review ends with an exhortation to consider the long-term consequences of childhood trauma, often underestimated or missed altogether when faced with adults suffering mental health problems.
Collapse
|
26
|
Lehner M, Skórzewska A, Wisłowska-Stanek A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development-The Role of Neuropeptides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:314. [PMID: 35010574 PMCID: PMC8750761 DOI: 10.3390/ijerph19010314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by re-experiencing a traumatic event, avoidance, negative alterations in cognitions and mood, hyperarousal, and severe functional impairment. Women have a two times higher risk of developing PTSD than men. The neurobiological basis for the sex-specific predisposition to PTSD might be related to differences in the functions of stress-responsive systems due to the interaction between gonadal hormones and stress peptides such as corticotropin-releasing factor (CRF), orexin, oxytocin, and neuropeptide Y. Additionally, in phases where estrogens levels are low, the risk of developing or exacerbating PTSD is higher. Most studies have revealed several essential sex differences in CRF function. They include genetic factors, e.g., the CRF promoter contains estrogen response elements. Importantly, sex-related differences are responsible for different predispositions to PTSD and diverse treatment responses. Fear extinction (the process responsible for the effectiveness of behavioral therapy for PTSD) in women during periods of high endogenous estradiol levels (the primary form of estrogens) is reportedly more effective than in periods of low endogenous estradiol. In this review, we present the roles of selected neuropeptides in the sex-related predisposition to PTSD development.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Aleksandra Wisłowska-Stanek
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
27
|
Carter JS, Kearns AM, Reichel CM. Complex Interactions Between Sex and Stress on Heroin Seeking. Front Neurosci 2021; 15:784365. [PMID: 34955731 PMCID: PMC8702641 DOI: 10.3389/fnins.2021.784365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Stress plays a dual role in substance use disorders as a precursor to drug intake and a relapse precipitant. With heroin use at epidemic proportions in the United States, understanding interactions between stress disorders and opioid use disorder is vital and will aid in treatment of these frequently comorbid conditions. Objectives: Here, we combine assays of stress and contingent heroin self-administration (SA) to study behavioral adaptations in response to stress and heroin associated cues in male and female rats. Methods: Rats underwent acute restraint stress paired with an odor stimulus and heroin SA for subsequent analysis of stress and heroin cue reactivity. Lofexidine was administered during heroin SA and reinstatement testing to evaluate its therapeutic potential. Rats also underwent tests on the elevated plus maze, locomotor activity in a novel environment, and object recognition memory following stress and/or heroin. Results: A history of stress and heroin resulted in disrupted behavior on multiple levels. Stress rats avoided the stress conditioned stimulus and reinstated heroin seeking in response to it, with males reinstating to a greater extent than females. Lofexidine decreased heroin intake, reinstatement, and motor activity. Previous heroin exposure increased time spent in the closed arms of an elevated plus maze, activity in a round novel field, and resulted in object recognition memory deficits. Discussion: These studies report that a history of stress and heroin results in maladaptive coping strategies and suggests a need for future studies seeking to understand circuits recruited in this pathology and eventually help develop therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Carmela M. Reichel
- Reichel Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
28
|
Ibrahim C, Le Foll B, Hassan AN. The effect of nicotine dependence on the risk of developing post-traumatic stress disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Nicotine Tob Res 2021; 24:719-727. [PMID: 34734244 DOI: 10.1093/ntr/ntab229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND It is evident that an association between smoking and post-traumatic stress disorder (PTSD) exists, but research is lacking in establishing the directionality of the relationship. METHODS We used longitudinal data from wave I (2001-2002) and II (2004-2005) of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Individuals with nicotine dependence (ND) were matched to individuals without ND using propensity score matching to estimate the risk of developing PTSD after trauma. We also matched smokers (with or without ND) to lifetime non-smokers to estimate their risk of developing PTSD after trauma. Lastly, we conducted a mediation analysis on the effect of ND severity on PTSD symptoms. RESULTS Individuals with ND (n = 1,514) were more likely to develop PTSD (OR: 1.59; 95%CI: 1.09-2.32; p = 0.017) compared to individuals without ND (n = 6,047). Smokers (regardless of ND status) (n = 2,335) compared to non-smokers (n = 5,226) had no significant effect on risk of PTSD (p = 0.26). Withdrawal was found to be a mediator of the effect of ND severity on PTSD symptoms. CONCLUSION ND, but not smoking status, increases a smoker's risk of developing PTSD. This provides information that could aid in preventive strategies for individuals with ND who are exposed to trauma. IMPLICATIONS This study provides evidence in a national representative sample of adults in the U.S. that nicotine dependence may increase one's risk of developing PTSD after exposure to trauma. It also shows the directionality of the association between smoking and PTSD. Lastly, it demonstrates that withdrawal may be the link to the association between nicotine dependence and PTSD. We hope that with these findings, preventative strategies are put in place for smokers who are dependent and are exposed to trauma, such that they do not develop PTSD.
Collapse
Affiliation(s)
- Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Ahmed N Hassan
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci 2021; 22:674-684. [PMID: 34545241 DOI: 10.1038/s41583-021-00513-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.
Collapse
|
30
|
Ruat J, Hartmann A, Heinz DE, Nemcova P, Stoffel R, Deussing JM, Chen A, Wotjak CT. CB1 receptors in corticotropin-releasing factor neurons selectively control the acoustic startle response in male mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12775. [PMID: 34672092 DOI: 10.1111/gbb.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany.,Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paulina Nemcova
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Stoffel
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Scientific Core Unit Genetically Engineered Mouse Models, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| |
Collapse
|
31
|
Newman EL, Covington HE, Leonard MZ, Burk K, Miczek KA. Hypoactive Thalamic Crh+ Cells in a Female Mouse Model of Alcohol Drinking After Social Trauma. Biol Psychiatry 2021; 90:563-574. [PMID: 34281710 PMCID: PMC8463500 DOI: 10.1016/j.biopsych.2021.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Comorbid stress-induced mood and alcohol use disorders are increasingly prevalent among female patients. Stress exposure can disrupt salience processing and goal-directed decision making, contributing to persistent maladaptive behavioral patterns; these and other stress-sensitive cognitive and behavioral processes rely on dynamic and coordinated signaling by midline and intralaminar thalamic nuclei. Considering the role of social trauma in the trajectory of these debilitating psychopathologies, identifying vulnerable thalamic cells may provide guidance for targeting persistent stress-induced symptoms. METHODS A novel behavioral protocol traced the progression from social trauma to the development of social defensiveness and chronically escalated alcohol consumption in female mice. Recent cell activation-measured as cFos-was quantified in thalamic cells after safe social interactions, revealing stress-sensitive corticotropin-releasing hormone-expressing (Crh+) anterior central medial thalamic (aCMT) cells. These cells were optogenetically stimulated during stress-induced social defensiveness and abstinence-escalated binge drinking. RESULTS Crh+ aCMT neurons exhibited substantial activation after social interactions in stress-naïve but not in stressed female mice. Photoactivating Crh+ aCMT cells dampened stress-induced social deficits, whereas inhibiting these cells increased social defensiveness in stress-naïve mice. Optogenetically activating Crh+ aCMT cells diminished abstinence-escalated binge alcohol drinking in female mice, regardless of stress history. CONCLUSIONS This work uncovers a role for Crh+ aCMT neurons in maladaptive stress-induced social interactions and in binge drinking after forced abstinence in female mice. This molecularly defined thalamic cell population may serve as a critical stress-sensitive hub for social deficits caused by exposure to social trauma and for patterns of excessive alcohol drinking in female populations.
Collapse
Affiliation(s)
- Emily L Newman
- Department of Psychology, Tufts University, Medford, Massachusetts; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | | | | | - Kelly Burk
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, Massachusetts; Department of Neuroscience, Tufts University, Boston, Massachusetts.
| |
Collapse
|
32
|
Ploski JE, Vaidya VA. The Neurocircuitry of Posttraumatic Stress Disorder and Major Depression: Insights Into Overlapping and Distinct Circuit Dysfunction-A Tribute to Ron Duman. Biol Psychiatry 2021; 90:109-117. [PMID: 34052037 PMCID: PMC8383211 DOI: 10.1016/j.biopsych.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
The neurocircuitry that contributes to the pathophysiology of posttraumatic stress disorder and major depressive disorder, psychiatric conditions that exhibit a high degree of comorbidity, likely involves both overlapping and unique structural and functional changes within multiple limbic brain regions. In this review, we discuss neurobiological alterations that are associated with posttraumatic stress disorder and major depressive disorder and highlight both similarities and differences that may exist between these disorders to argue for the existence of a shared neurobiology. We highlight the key contributions based on preclinical studies, emerging from the late Professor Ronald Duman's research, that have shaped our understanding of the neurocircuitry that contributes to both the etiopathology and treatment of major depressive disorder and posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jonathan E. Ploski
- Department of Neuroscience and Molecular & Cell Biology, School of Behavioral and Brain Sciences, University of Texas at Dallas, GR41, 800 W Campbell Road, Richardson, TX 75080-3021, USA
| | - Vidita A. Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai, Maharashtra, 400005, India
| |
Collapse
|
33
|
Ventromedial prefrontal cortex CRF1 receptors modulate the tachycardic activity of baroreflex. Pflugers Arch 2021; 473:697-709. [PMID: 33839941 DOI: 10.1007/s00424-020-02512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 12/26/2020] [Indexed: 10/21/2022]
Abstract
Ventral medial prefrontal cortex (vMPFC) glutamatergic neurotransmission has a facilitatory role on cardiac baroreflex activity which is mediated by NMDA receptors activation. Corticotrophin releasing factor receptors type1 and 2 (CRF1 and CRF2), present in the vMPFC, are colocalized in neurons containing glutamate vesicles, suggesting that such receptors may be involved in glutamate release in this cortical area. Therefore, our hypothesis is that the CRF1 and CRF2 receptors can modulate the baroreflex bradycardic and tachycardic responses. In order to prove this assumption, male Wistar rats had bilateral stainless steel guide cannula implanted into the vMPFC, and baroreflex was activated by intravenous infusion of phenylephrine or sodium nitroprusside through a vein catheter. A second catheter was implanted into the femoral artery for cardiovascular measurements. The CRF1 receptor antagonist administration in either infralimbic cortex (IL) or prelimbic cortex (PL), vMPFC regions, was unable to change the bradycardic responses but increased the slope of the baroreflex tachycardic activity. Microinjection of the CRF2 receptor antagonist into the IL and PL did not alter ether bradycardic nor tachycardic baroreflex responses. The administration of the non-selective CRF receptors agonist, urocortin in these areas, did not modify bradycardic responses but decreased tachycardia slope of the baroreflex. CRF1 receptor antagonist administration prior to non-selective CRF agonist in vMPFC prevented the tachycardic responses reduction. However, CRF2 receptor antagonism could not prevent the effect of CRF receptors agonist. These results suggest that IL and PL CRF1 but not CRF2 receptors have an inhibitory role on the baroreflex tachycardic activity. Furthermore, they have no influence on baroreflex bradycardic activity.
Collapse
|
34
|
Prospero-Garcia OE, Ruiz-Contreras AE, Morelos J, Herrera-Solis A, Mendez-Díaz M. Fragility of reward vs antifragility of defense brain systems in drug dependence. Soc Neurosci 2021; 16:145-152. [PMID: 33529536 DOI: 10.1080/17470919.2021.1876759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Drug dependence is a debilitating disorder, affecting 30 million people worldwide. In this short review we discuss about the plasticity changes in the reward and defense brain systems induced by early-life psychosocial stressful experiences. Such changes may render persons more vulnerable to illicit drugs use, facilitating behaviors of abuse and development of addiction. We propose that underlying plasticity changes render brain reward system as increasingly fragile because of tolerance and other physiological effects that reduce responsiveness with repeated use. In contrast, we propose that brain defense system makes maintain antifragile mechanisms that generate more robust responses with the prolonged consumption of drugs. Investigating the underlying mechanisms of these brain plasticity changes may advance the development of more efficacious pharmacologic and psychotherapeutic approaches to rehabilitate patients and more efficacious prevention policies to protect children from stressful experiences.
Collapse
Affiliation(s)
- Oscar E Prospero-Garcia
- Depto. De Fisiología, Facultad De Medicina, Laboratorio De Canabinoides, Mexico City, Mexico
| | - Alejandra E Ruiz-Contreras
- Psicobiología Y Neurociencias, Facultad De Psicología.Laboratorio De Neurogenómica Cognitiva, Coordinación De
| | | | - Andrea Herrera-Solis
- Subdirección De Investigación Biomédica, Hospital General Dr. Manuel Gea GonzálezLaboratorio Efectos Terapéuticos De Los Canabinoides
| | - Mónica Mendez-Díaz
- Depto. De Fisiología, Facultad De Medicina, Laboratorio De Canabinoides, Mexico City, Mexico
| |
Collapse
|
35
|
Cannabis use and posttraumatic stress disorder comorbidity: Epidemiology, biology and the potential for novel treatment approaches. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:143-193. [PMID: 33648669 DOI: 10.1016/bs.irn.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cannabis use is increasing among some demographics in the United States and is tightly linked to anxiety, trauma, and stress reactivity at the epidemiological and biological level. Stress-coping motives are highly cited reasons for cannabis use. However, with increased cannabis use comes the increased susceptibility for cannabis use disorder (CUD). Indeed, CUD is highly comorbid with posttraumatic stress disorder (PTSD). Importantly, endogenous cannabinoid signaling systems play a key role in the regulation of stress reactivity and anxiety regulation, and preclinical data suggest deficiencies in this signaling system could contribute to the development of stress-related psychopathology. Furthermore, endocannabinoid deficiency states, either pre-existing or induced by trauma exposure, could provide explanatory insights into the high rates of comorbid cannabis use in patients with PTSD. Here we review clinical and preclinical literature related to the cannabis use-PTSD comorbidity, the role of endocannabinoids in the regulation of stress reactivity, and potential therapeutic implications of recent work in this area.
Collapse
|
36
|
Steine IM, LeWinn KZ, Lisha N, Tylavsky F, Smith R, Bowman M, Sathyanarayana S, Karr CJ, Smith AK, Kobor M, Bush NR. Maternal exposure to childhood traumatic events, but not multi-domain psychosocial stressors, predict placental corticotrophin releasing hormone across pregnancy. Soc Sci Med 2020; 266:113461. [PMID: 33126094 PMCID: PMC9380779 DOI: 10.1016/j.socscimed.2020.113461] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/19/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Maternal psychosocial stress increases the risk of adverse birth and postnatal outcomes for the mother and child, but the role of maternal exposure to childhood traumatic events (CTE) and multi-domain psychosocial stressors for the level and rise of placental Corticotrophin-Releasing Hormone (pCRH) across pregnancy has been understudied. In a sociodemographically and racially diverse sample of 1303 women (64% Black, 36% White/others) with low-medical risk pregnancies at enrollment from Shelby County, Tennessee, USA, blood samples were drawn twice, corresponding roughly to second and third trimester, and extracted prior to conducting radioimmune assays for pCRH. Mothers reported CTE (physical abuse, sexual abuse, or family violence, in childhood), adulthood traumatic events, and interpersonal violence during pregnancy. Neighborhood crime/deprivation was derived using geospatially-linked objective databases. General linear and mixed models tested associations between stress exposure variables and pCRH levels and rate of rise, adjusting for obstetric/clinical/health related factors. Maternal CTE did not predict pCRH levels at time 1, but positively predicted levels at time 2, and the rate of rise in pCRH across pregnancy. Race did not moderate this association. No additional maternal stress exposures across adulthood or during pregnancy predicted pCRH outcomes. Findings indicate that childhood violence or abuse exposure can become biologically embedded in a manner predicting later prenatal physiology relevant for maternal and offspring health, and that such embedding may be specific to childhood, but not adulthood, stress. Findings also highlight the placental-fetal unit as a mechanistic pathway through which intergenerational transmission of the adverse effects of childhood adversities may occur.
Collapse
Affiliation(s)
- Iris M Steine
- Visiting Scholar, UC Berkeley, Department of Psychology, 2121 Berkeley Way, Berkeley, CA, 94704, USA; Department of Psychosocial Science, University of Bergen, Christiesgate 12, 5015 Bergen, Norway.
| | - Kaja Z LeWinn
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Nadra Lisha
- Department of General Internal Medicine, University of California San Francisco, USA
| | - Frances Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, USA
| | - Roger Smith
- Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Maria Bowman
- Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Sheela Sathyanarayana
- University of Washington Department of Pediatrics, Seattle, USA; Seattle Children's Research Institute, Seattle, USA; University of Washington Department of Environmental and Occupational Health Sciences, Seattle, USA
| | - Catherine J Karr
- University of Washington Department of Environmental and Occupational Health Sciences, Seattle, USA; University of Washington Departments of Pediatrics, Seattle, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Michael Kobor
- Department of Medical Genetics, University of British Columbia, Canada
| | - Nicole R Bush
- Departments of Psychiatry and Pediatrics, University of California San Francisco, USA
| |
Collapse
|
37
|
Gurel NZ, Wittbrodt MT, Jung H, Shandhi MMH, Driggers EG, Ladd SL, Huang M, Ko YA, Shallenberger L, Beckwith J, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Inan OT, Bremner JD. Transcutaneous cervical vagal nerve stimulation reduces sympathetic responses to stress in posttraumatic stress disorder: A double-blind, randomized, sham controlled trial. Neurobiol Stress 2020; 13:100264. [PMID: 33344717 PMCID: PMC7739181 DOI: 10.1016/j.ynstr.2020.100264] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Exacerbated autonomic responses to acute stress are prevalent in posttraumatic stress disorder (PTSD). The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to acute stress in patients with PTSD. The authors hypothesized tcVNS would reduce the sympathetic response to stress compared to a sham device. METHODS Using a randomized double-blind approach, we studied the effects of tcVNS on physiological responses to stress in patients with PTSD (n = 25) using noninvasive sensing modalities. Participants received either sham (n = 12) or active tcVNS (n = 13) after exposure to acute personalized traumatic script stress and mental stress (public speech, mental arithmetic) over a three-day protocol. Physiological parameters related to sympathetic responses to stress were investigated. RESULTS Relative to sham, tcVNS paired to traumatic script stress decreased sympathetic function as measured by: decreased heart rate (adjusted β = -5.7%; 95% CI: ±3.6%, effect size d = 0.43, p < 0.01), increased photoplethysmogram amplitude (peripheral vasodilation) (30.8%; ±28%, 0.29, p < 0.05), and increased pulse arrival time (vascular function) (6.3%; ±1.9%, 0.57, p < 0.0001). Similar (p < 0.05) autonomic, cardiovascular, and vascular effects were observed when tcVNS was applied after mental stress or without acute stress. CONCLUSION tcVNS attenuates sympathetic arousal associated with stress related to traumatic memories as well as mental stress in patients with PTSD, with effects persisting throughout multiple traumatic stress and stimulation testing days. These findings show that tcVNS has beneficial effects on the underlying neurophysiology of PTSD. Such autonomic metrics may also be evaluated in daily life settings in tandem with tcVNS therapy to provide closed-loop delivery and measure efficacy.ClinicalTrials.gov Registration # NCT02992899.
Collapse
Affiliation(s)
- Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hewon Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Md. Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily G. Driggers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Stacy L. Ladd
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
| | - Joy Beckwith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J. Shah
- Department of Epidemiology, Rollins School of Pu;blic Health, Atlanta, GA, USA
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
38
|
Deslauriers J, Toth M, Scadeng M, McKenna BS, Bussell R, Gresack J, Rissman R, Risbrough VB, Brown GG. DTI-identified microstructural changes in the gray matter of mice overexpressing CRF in the forebrain. Psychiatry Res Neuroimaging 2020; 304:111137. [PMID: 32731113 PMCID: PMC7508966 DOI: 10.1016/j.pscychresns.2020.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022]
Abstract
Increased corticotroping releasing factor (CRF) contributes to brain circuit abnormalities associated with stress-related disorders including posttraumatic stress disorder. However, the causal relationship between CRF hypersignaling and circuit abnormalities associated with stress disorders is unclear. We hypothesized that increased CRF exposure induces changes in limbic circuit morphology and functions. An inducible, forebrain-specific overexpression of CRF (CRFOE) transgenic mouse line was used to longitudinally investigate its chronic effects on behaviors and microstructural integrity of several brain regions. Behavioral and diffusion tensor imaging studies were performed before treatment, after 3-4 wks of treatment, and again 3 mo after treatment ended to assess recovery. CRFOE was associated with increased perseverative movements only after 3 wks of treatment, as well as reduced fractional anisotropy at 3 wks in the medial prefrontal cortex and increased fractional anisotropy in the ventral hippocampus at 3 mo compared to the control group. In the dorsal hippocampus, mean diffusivity was lower in CRFOE mice both during and after treatment ended. Our data suggest differential response and recovery patterns of cortical and hippocampal subregions in response to CRFOE. Overall these findings support a causal relationship between CRF hypersignaling and microstructural changes in brain regions relevant to stress disorders.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Mate Toth
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA; Department of Translational Behavioral Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Miriam Scadeng
- Department of Radiology, University of California San Diego, La Jolla, CA; Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
| | - Benjamin S McKenna
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA
| | - Robert Bussell
- Department of Translational Behavioral Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Robert Rissman
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA; Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA
| | - Gregory G Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| |
Collapse
|
39
|
Castro-Vale I, Carvalho D. The Pathways between Cortisol-Related Regulation Genes and PTSD Psychotherapy. Healthcare (Basel) 2020; 8:healthcare8040376. [PMID: 33019527 PMCID: PMC7712185 DOI: 10.3390/healthcare8040376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 01/30/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) only develops after exposure to a traumatic event in some individuals. PTSD can be chronic and debilitating, and is associated with co-morbidities such as depression, substance use, and cardiometabolic disorders. One of the most important pathophysiological mechanisms underlying the development of PTSD and its subsequent maintenance is a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis. The corticotrophin-releasing hormone, cortisol, glucocorticoid receptor (GR), and their respective genes are some of the mediators of PTSD's pathophysiology. Several treatments are available, including medication and psychotherapies, although their success rate is limited. Some pharmacological therapies based on the HPA axis are currently being tested in clinical trials and changes in HPA axis biomarkers have been found to occur in response not only to pharmacological treatments, but also to psychotherapy-including the epigenetic modification of the GR gene. Psychotherapies are considered to be the first line treatments for PTSD in some guidelines, even though they are effective for some, but not for all patients with PTSD. This review aims to address how knowledge of the HPA axis-related genetic makeup can inform and predict the outcomes of psychotherapeutic treatments.
Collapse
Affiliation(s)
- Ivone Castro-Vale
- Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Correspondence:
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and Metabolism, São João Hospital University Centre, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| |
Collapse
|
40
|
Diet, Stress and Mental Health. Nutrients 2020; 12:nu12082428. [PMID: 32823562 PMCID: PMC7468813 DOI: 10.3390/nu12082428] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: There has long been an interest in the effects of diet on mental health, and the interaction of the two with stress; however, the nature of these relationships is not well understood. Although associations between diet, obesity and the related metabolic syndrome (MetS), stress, and mental disorders exist, causal pathways have not been established. Methods: We reviewed the literature on the relationship between diet, stress, obesity and psychiatric disorders related to stress. Results: Diet and obesity can affect mood through direct effects, or stress-related mental disorders could lead to changes in diet habits that affect weight. Alternatively, common factors such as stress or predisposition could lead to both obesity and stress-related mental disorders, such as depression and posttraumatic stress disorder (PTSD). Specific aspects of diet can lead to acute changes in mood as well as stimulate inflammation, which has led to efforts to assess polyunsaturated fats (PUFA) as a treatment for depression. Bidirectional relationships between these different factors are also likely. Finally, there has been increased attention recently on the relationship between the gut and the brain, with the realization that the gut microbiome has an influence on brain function and probably also mood and behavior, introducing another way diet can influence mental health and disorders. Brain areas and neurotransmitters and neuropeptides that are involved in both mood and appetite likely play a role in mediating this relationship. Conclusions: Understanding the relationship between diet, stress and mood and behavior could have important implications for the treatment of both stress-related mental disorders and obesity.
Collapse
|
41
|
Rajbhandari AK, Bakshi VP. Repeated norepinephrine receptor stimulation in the BNST induces sensorimotor gating deficits via corticotropin releasing factor. Neuropharmacology 2020; 172:108090. [PMID: 32360378 DOI: 10.1016/j.neuropharm.2020.108090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
Intense stress precipitates symptoms in disorders such as post-traumatic stress (PTSD) and schizophrenia. Patients with these disorders have dysfunctional sensorimotor gating as indexed by disrupted prepulse inhibition of the startle response (PPI), which refers to decreased startle response when a weak pre-stimulus precedes a startling stimulus. Stress promotes release of norepinephrine (NE) and corticotrophin releasing factor (CRF) within the brain, neurotransmitters that also modulate PPI. We have shown that repeated stress causes sensitization of NE receptors within the basolateral amygdala (BLA) via CRF receptors and promotes long-lasting PPI disruptions and startle abnormalities. The bed nucleus of the stria terminalis (BNST) is another crucial brain region that could be involved in stress-induced alterations in NE and CRF functions to promote PPI changes as this anatomical structure is enriched in CRF and NE receptors that have been shown to regulate each other. We hypothesized that repeated infusions of NE into the BNST would cross-sensitize CRF receptors or vice versa to alter PPI. Separate groups of male Sprague Dawley rats received, CRF (200ng/0.5 μl), NE (20μg/0.5 μl), or vehicle into the BNST, once/day for 3 days and PPI was tested after each infusion. Repeated CRF-or vehicle-treated rats were then challenged with a subthreshold dose of NE (0.3μg/0.5 μl) while repeated NE-treated rats were challenged with CRF (200ng/0.5 μl), and PPI was measured. Surprisingly, initial/repeated CRF or vehicle in the BNST had no effects on PPI. In contrast, initial and repeated NE disrupted PPI. Sub-threshold NE challenge in rats that previously received repeated CRF had no effect on PPI. Interestingly though, intra-BNST challenge dose of CRF significantly disrupted PPI in rats that previously had received repeated NE infusions. Taken together, these results indicate that repeated stress-induced NE release could alter the activity of CRF receptors in the BNST to modulate sensorimotor gating as measured through PPI.
Collapse
Affiliation(s)
- Abha Karki Rajbhandari
- Dept. of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA; AKR Is Now at Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| | - Vaishali P Bakshi
- Dept. of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA; AKR Is Now at Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| |
Collapse
|
42
|
Ishiwata S, Hattori K, Hidese S, Sasayama D, Miyakawa T, Matsumura R, Yokota Y, Yoshida S, Kunugi H. Lower cerebrospinal fluid CRH concentration in chronic schizophrenia with negative symptoms. J Psychiatr Res 2020; 127:13-19. [PMID: 32339962 DOI: 10.1016/j.jpsychires.2020.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 11/24/2022]
Abstract
Some patients with schizophrenia have impaired hypothalamic-pituitary-adrenal axis function. However, there is a dearth of studies focusing on corticotropin-releasing hormone (CRH) levels in the brains of schizophrenia patients, which motivated us to examine whether cerebrospinal fluid (CSF) CRH concentrations are altered in these patients. We also examined the possible correlation of CSF CRH level with clinical variables such as schizophrenia symptoms and antipsychotic medication. The study population comprised 20 patients with a diagnosis of schizophrenia according to DSM-5 criteria and 25 healthy controls, who underwent lumbar puncture. Most of the patients were treated with antipsychotic drugs and their doses were converted to chlorpromazine (CP) equivalent values. CSF CRH concentrations were measured by an enzyme immunoassay. Symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS). There was a significantly lower CSF CRH concentration in the patients than in the controls (Mann-Whitney U test: p = 0.014). A significantly negative correlation of CSF CRH levels with PANSS negative scores was found in the patients (Spearman's: ρ = -0.58, p = 0.007). However, CSF CRH concentrations were not significantly correlated with the PANSS total (ρ = -0.035, p = 0.89), positive (ρ = 0.25, p = 0.30), or general psychopathology (ρ = 0.13, p = 0.59) scores. No significant correlation was found with CP equivalent values (ρ = 0.00, p = 1.00). In conclusion, we found that the patients with schizophrenia had lower CSF CRH concentrations compared to the controls and that the lower CSF CRH was associated with negative symptoms of the illness. Further studies in a larger sample and in drug-free patients are warranted.
Collapse
Affiliation(s)
- Sayuri Ishiwata
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Tomoko Miyakawa
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Ryo Matsumura
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Yuuki Yokota
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
43
|
Vega-Torres JD, Azadian M, Rios-Orsini RA, Reyes-Rivera AL, Ontiveros-Angel P, Figueroa JD. Adolescent Vulnerability to Heightened Emotional Reactivity and Anxiety After Brief Exposure to an Obesogenic Diet. Front Neurosci 2020; 14:562. [PMID: 32694970 PMCID: PMC7338851 DOI: 10.3389/fnins.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that diet-induced obesity disrupts corticolimbic circuits underlying emotional regulation. Studies directed at understanding how obesity alters brain and behavior are easily confounded by a myriad of complications related to obesity. This study investigated the early neurobiological stress response triggered by an obesogenic diet. Furthermore, this study directly determined the combined impact of a short-term obesogenic diet and adolescence on critical behavioral and molecular substrates implicated in emotion regulation and stress. METHODS Adolescent (postnatal day 31) or adult (postnatal day 81) Lewis rats were fed for 1 week with an experimental Western-like high-saturated fat diet (WD, 41% kcal from fat) or a matched control diet (CD, 13% kcal from fat). We used the acoustic fear-potentiated startle (FPS) paradigm to determine the effects of the WD on cued fear conditioning and fear extinction. We used c-Fos mapping to determine the functional influence of the diet and stress on corticolimbic circuits. RESULTS We report that 1-week WD consumption was sufficient to induce fear extinction deficits in adolescent rats, but not in adult rats. We identify fear-induced alterations in corticolimbic neuronal activation and demonstrate increased prefrontal cortex CRHR1 messenger RNA (mRNA) levels in the rats that consumed the WD. CONCLUSION Our findings demonstrate that short-term consumption of an obesogenic diet during adolescence heightens behavioral and molecular vulnerabilities associated with risk for anxiety and stress-related disorders. Given that fear extinction promotes resilience and that fear extinction principles are the foundation of psychological treatments for posttraumatic stress disorder (PTSD), understanding how obesogenic environments interact with the adolescent period to affect the acquisition and expression of fear extinction memories is of tremendous clinical relevance.
Collapse
Affiliation(s)
- Julio D. Vega-Torres
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Matine Azadian
- Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Perla Ontiveros-Angel
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Johnny D. Figueroa
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
44
|
Nillni YI, Shayani DR, Finley E, Copeland LA, Perkins DF, Vogt D. The Impact of Posttraumatic Stress Disorder and Moral Injury on Women Veterans' Perinatal Outcomes Following Separation From Military Service. J Trauma Stress 2020; 33:248-256. [PMID: 32291816 PMCID: PMC7864116 DOI: 10.1002/jts.22509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 01/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) has been found to lead to several adverse perinatal outcomes in the general population. Preliminary research has found that women veterans with PTSD have an increased prevalence of preterm birth, gestational diabetes, and preeclampsia. Less research has examined the role of moral injury (MI) in perinatal outcomes. This longitudinal survey study examined the impact of PTSD symptoms and MI on prospectively assessed adverse perinatal outcomes among women who became pregnant in the first 3 years after separating from U.S. military service (N = 318). The Moral Injury Events Scale was used to assess the degree to which individuals experienced distress related to transgressions of deeply held moral beliefs, and the Primary Care PTSD Screen for DSM-5 (PC-PTSD) was used to assess PTSD symptoms. Perinatal outcomes included experiencing an adverse pregnancy outcome (e.g., preterm birth, gestational diabetes), postpartum depression and/or anxiety, and perceived difficult pregnancy. Although both PTSD symptoms, adjusted odds ratio (aOR) = 1.16, 95% CI [1.00, 1.35]; and MI, aOR = 1.27, 95% CI [1.06, 1.41], emerged as significant predictors of adverse pregnancy outcomes, only PTSD symptoms were a significant predictor of postpartum depression and/or anxiety, aOR = 1.43, 95% CI [1.22, 1.68], and perception of a difficult pregnancy, β = .31, when controlling for lifetime trauma exposure, age, socioeconomic status, and ethnic/racial minority status. The results indicate that both PTSD symptoms and MI are associated with adverse perinatal outcomes, supporting the potential need to screen for both PTSD and MI during the perinatal period.
Collapse
Affiliation(s)
- Yael I. Nillni
- National Center for PTSD, Women’s Health Sciences Division at VA Boston Healthcare System,Department of Psychiatry, Boston University School of Medicine
| | - Danielle R. Shayani
- Department of Psychiatry, Boston University School of Medicine,Northeastern University
| | - Erin Finley
- Veterans Evidence-based Research Dissemination and Implementation Center, South Texas Veterans Health Care System,Departments of Medicine and Psychiatry, UT Health San Antonio
| | - Laurel A. Copeland
- VA Central Western Massachusetts Healthcare System,Department of Population and Quantitative Health Science, University of Massachusetts Medical School
| | - Daniel F. Perkins
- Clearinghouse for Military Family Readiness, and Department of Agricultural Economics, Sociology, and Education, The Pennsylvania State University
| | - Dawne Vogt
- National Center for PTSD, Women’s Health Sciences Division at VA Boston Healthcare System,Department of Psychiatry, Boston University School of Medicine
| |
Collapse
|
45
|
Jin SX, Dickson D, Maguire J, Feig LA. RASGRF1 in CRF cells controls the early adolescent female response to repeated stress. J Endocrinol 2020; 245:397-410. [PMID: 32240981 PMCID: PMC7297040 DOI: 10.1530/joe-19-0375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/08/2022]
Abstract
RASGRF1 (GRF1) is a calcium-stimulated guanine-nucleotide exchange factor that activates RAS and RAC GTPases. In hippocampus neurons, it mediates the action of NMDA and calcium-permeable AMPA glutamate receptors on specific forms of synaptic plasticity, learning, and memory in both male and female mice. Recently, we showed GRF1 also regulates the HPA axis response to restraint stress, but only in female mice before puberty. In particular, we found that after 7 days of restraint stress (7DRS) (30 min/day) both elevated serum CORT levels and induction of an anxiolytic phenotype normally observed in early adolescent (EA) female mice are blocked in GRF1-knockout mice. In contrast, no effects were observed in EA male or adult females. Here, we show this phenotype is due, at least in part, to GRF1 loss in CRF cells of the paraventricular nucleus of the hypothalamus, as GRF1 knockout specifically in these cells suppressed 7DRS-induced elevation of serum CORT levels specifically in EA females, but only down to levels found in comparably stressed EA males. Nevertheless, it still completely blocked the 7DRS-induced anxiolytic phenotype observed in EA females. Interestingly, loss of GRF1 in CRF cells had no effect after only three restraint stress exposures, implying a role for GRF1 in 7DRS stress-induced plasticity of CRF cells that appears to be specific to EA female mice. Overall, these findings indicate that GRF1 in CRF cells makes a key contribution to the distinct response EA females display to repeated stress.
Collapse
Affiliation(s)
- Shan-xue Jin
- Department of Developmental, Molecular, and Chemical Biology
| | - David Dickson
- Department of Developmental, Molecular, and Chemical Biology
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - Larry A. Feig
- Department of Developmental, Molecular, and Chemical Biology
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
- communicating author P- 617-636-6956,
| |
Collapse
|
46
|
Sbarski B, Akirav I. Cannabinoids as therapeutics for PTSD. Pharmacol Ther 2020; 211:107551. [PMID: 32311373 DOI: 10.1016/j.pharmthera.2020.107551] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/08/2020] [Indexed: 02/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex disorder that involves dysregulation of multiple neurobiological systems. The traumatic stressor plays a causal role in producing psychological dysfunction and the pattern of findings suggests that the hypothalamic-pituitary-adrenal (HPA) axis, which is instrumental for stress adaptation, is critically dysfunctional in PTSD. Given the lack of understanding of the basic mechanisms and underlying pathways that cause the disorder and its heterogeneity, PTSD poses challenges for treatment. Targeting the endocannabinoid (ECB) system to treat mental disorders, and PTSD in particular, has been the focus of research and interest in recent years. The ECB system modulates multiple functions, and drugs enhancing ECB signaling have shown promise as potential therapeutic agents in stress effects and other psychiatric and medical conditions. In this review, we focus on the interaction between the ECB-HPA systems in animal models for PTSD and in patients with PTSD. We summarize evidence supporting the use of cannabinoids in preventing and treating PTSD in preclinical and clinical studies. As the HPA system plays a key role in the mediation of the stress response and the pathophysiology of PTSD, we describe preclinical studies suggesting that enhancing ECB signaling is consistent with decreasing PTSD symptoms and dysfunction of the HPA axis. Overall, we suggest that a pharmacological treatment targeted at one system (e.g., HPA) may not be very effective because of the heterogeneity of the disorder. There are abnormalities across different neurotransmitter systems in the pathophysiology of PTSD and none of these systems function uniformly among all patients with PTSD. Hence, conceptually, enhancing ECB signaling may be a more effective avenue for pharmacological treatment.
Collapse
Affiliation(s)
- Brenda Sbarski
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
47
|
Wiersielis KR, Samuels BA, Roepke TA. Perinatal exposure to bisphenol A at the intersection of stress, anxiety, and depression. Neurotoxicol Teratol 2020; 79:106884. [PMID: 32289443 DOI: 10.1016/j.ntt.2020.106884] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with typical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dysregulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints. Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to stress and endocrine disruption.
Collapse
Affiliation(s)
- Kimberly R Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA.
| | - Benjamin A Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
48
|
Early Life Stress and Pediatric Posttraumatic Stress Disorder. Brain Sci 2020; 10:brainsci10030169. [PMID: 32183256 PMCID: PMC7139542 DOI: 10.3390/brainsci10030169] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Traumatic stress exposure during critical periods of development may have essential and long-lasting effects on the physical and mental health of individuals. Two thirds of youth are exposed to potentially traumatic experiences by the age of 17, and approximately 5% of adolescents meet lifetime criteria for posttraumatic stress disorder (PTSD). The role of the stress system is the maintenance of homeostasis in the presence of real/perceived and acute/chronic stressors. Early-life stress (ELS) has an impact on neuronal brain networks involved in stress reactions, and could exert a programming effect on glucocorticoid signaling. Studies on pediatric PTSD reveal diverse neuroendocrine responses to adverse events and related long-term neuroendocrine and epigenetic alterations. Neuroendocrine, neuroimaging, and genetic studies in children with PTSD and ELS experiences are crucial in understanding risk and resilience factors, and also the natural history of PTSD.
Collapse
|
49
|
Bremner JD, Wittbrodt MT, Shah AJ, Pearce BD, Gurel NZ, Inan OT, Raggi P, Lewis TT, Quyyumi AA, Vaccarino V. Confederates in the Attic: Posttraumatic Stress Disorder, Cardiovascular Disease, and the Return of Soldier's Heart. J Nerv Ment Dis 2020; 208:171-180. [PMID: 32091470 PMCID: PMC8214871 DOI: 10.1097/nmd.0000000000001100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Da Costa originally described Soldier's Heart in the 19th Century as a syndrome that occurred on the battlefield in soldiers of the American Civil War. Soldier's Heart involved symptoms similar to modern day posttraumatic stress disorder (PTSD) as well as exaggerated cardiovascular reactivity felt to be related to an abnormality of the heart. Interventions were appropriately focused on the cardiovascular system. With the advent of modern psychoanalysis, psychiatric symptoms became divorced from the body and were relegated to the unconscious. Later, the physiology of PTSD and other psychiatric disorders was conceived as solely residing in the brain. More recently, advances in psychosomatic medicine led to the recognition of mind-body relationships and the involvement of multiple physiological systems in the etiology of disorders, including stress, depression PTSD, and cardiovascular disease, has moved to the fore, and has renewed interest in the validity of the original model of the Soldier's Heart syndrome.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta
- Department of Radiology, Emory University School of Medicine, Emory University, Atlanta
- Atlanta VA Medical Center, Decatur
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tené T. Lewis
- Department of Epidemiology, Rollins School of Public Health, Emory University
| | - Arshed A. Quyyumi
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
| | - Viola Vaccarino
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
- Department of Epidemiology, Rollins School of Public Health, Emory University
| |
Collapse
|
50
|
Bremner JD, Wittbrodt MT. Stress, the brain, and trauma spectrum disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 152:1-22. [PMID: 32450992 PMCID: PMC8214870 DOI: 10.1016/bs.irn.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This chapter reviews the relationship between stress and brain function in patients with neuropsychiatric disorders, with an emphasis on disorders that have most clearly been linked to traumatic stress exposure. These disorders, which have been described as trauma spectrum disorders, include posttraumatic stress disorder (PTSD), a subgroup of major depression, borderline personality disorder (BPD) and dissociative disorders; they share in common a neurobiological footprint, including smaller hippocampal volume, and are distinguished from other disorders that may share symptom similarities, like some of the anxiety disorders, but are not as clearly linked to stress. The relationship between environmental events such as stressors, especially in early childhood, and their effects on brain and neurobiology is important to understand in approaching these disorders as well as the development of therapeutic interventions. Addressing patients with stress-related disorders from multiple developmental (age at onset of trauma) as well as levels of analysis (cognitive, cultural, neurobiological) approaches will provide the most complete picture and result in the most successful treatment outcomes.
Collapse
Affiliation(s)
- J Douglas Bremner
- Emory University School of Medicine, Atlanta, GA, United States; Atlanta Veterans Administration Medical Center, Decatur, GA, United States.
| | | |
Collapse
|