1
|
Wang W, Cheng C, Xu Z, Xue L, Fu W, Zhao J. Five-year-old children with autism spectrum disorders struggle with disengaging attention. Cogn Process 2025; 26:415-422. [PMID: 39888465 DOI: 10.1007/s10339-025-01256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
It is known that individuals with autism spectrum disorders (ASD) exhibit impairments in shifting attention. However, previous studies have primarily focused on school-aged children and adults with ASD. It remains unclear whether attentional shifting impairments emerge at an early age. Additionally, it is uncertain which specific process-engagement or disengagement-is affected in individuals with ASD. This study investigated the time course of attentional shifting in preschool-aged children with ASD using a Posner cue-target paradigm. The cue-target onset asynchrony was systematically manipulated to reveal both the early facilitation effect of attentional capture (i.e., engagement) and the later inhibitory aftereffect, commonly referred to as inhibition of return (IOR). Results showed an early facilitation effect in both ASD and typically developing (TD) children, indicating that ASD children engaged attention to salient spatial locations. In contrast to TD children, no reliable IOR effect was observed in ASD children, suggesting difficulties in disengaging attention. These findings indicate a selective impairment in attentional disengagement among preschool-aged children with ASD and support the need for early intervention programs focusing on attentional shifting.
Collapse
Affiliation(s)
- Wei Wang
- Jing Hengyi School of Education, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou, Zhejiang, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chun Cheng
- College of Education, Zhejiang University, Hangzhou, China
| | - Zhiyu Xu
- School of Educational Science, Hunan Normal University, Hunan, China
| | - Licheng Xue
- School of Preschool Education, Hangzhou Polytechnic, Hangzhou, China
| | - Wanlu Fu
- Department of Psychology, University of Padua, Padua, Italy
| | - Jing Zhao
- Jing Hengyi School of Education, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou, Zhejiang, China.
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
2
|
Girault JB, Nishino T, Talović M, Nebel MB, Reynolds M, Burrows CA, Elison JT, Lee CM, Snyder AZ, Shen MD, Shen AM, Botteron KN, Estes AM, Dager SR, Gerig G, Hazlett HC, Marrus N, McKinstry RC, Pandey J, Schultz RT, John TS, Styner MA, Zwaigenbaum L, Todorov AA, Piven J, Pruett JR. Functional connectivity between the visual and salience networks and autistic social features at school-age. J Neurodev Disord 2025; 17:23. [PMID: 40295911 PMCID: PMC12036130 DOI: 10.1186/s11689-025-09613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is highly heritable and phenotypically variable. Neuroimaging markers reflecting variation in behavior will provide insights into circuitry subserving core features. We examined functional correlates of ASD symptomology at school-age, while accounting for associated behavioral and cognitive domains, in a longitudinal sample followed from infancy and enriched for those with a genetic liability for ASD. METHODS Resting state functional connectivity MRIs (fcMRI) and behavioral data were analyzed from 97 school-age children (8.1-12.0 years, 55 males, 15 ASD) with (n = 63) or without (n = 34) a family history of ASD. fcMRI enrichment analysis (EA) was used to screen for associations between network-level functional connectivity and six behaviors of interest in a data-driven manner: social affect, restricted and repetitive behavior (RRB), generalized anxiety, inattention, motor coordination, and matrix reasoning. RESULTS Functional connectivity between the visual and salience networks was significantly associated with social affect symptoms at school-age after accounting for all other behaviors. Results indicated that stronger connectivity was associated with higher social affect scores. No other behaviors were robustly associated with functional connectivity, though trends were observed between visual-salience connectivity and RRBs. CONCLUSIONS Connectivity between the visual and salience networks may play an important role in social affect symptom variability among children with ASD and those with genetic liability for ASD. These findings align with and extend earlier reports in this sample of the central role of the visual system during infancy in ASD.
Collapse
Grants
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K01-MH122779, R01-MH118362, MH118362-02S1 NIMH NIH HHS
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- K23HD112507, R01-HD055741, T32-HD040127, P30-HD003110, P50-HD103573 National Institute of Child Health and Human Development
- P30-NS098577 NINDS NIH HHS
- #140209 Simons Foundation
- National Institute of Mental Health
- National Institute of Neurological Disorders and Stroke
Collapse
Affiliation(s)
- Jessica B Girault
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box #3367, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Muhamed Talović
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Margaret Reynolds
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Chimei M Lee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box #3367, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Annette M Estes
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Guido Gerig
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box #3367, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Robert C McKinstry
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tanya St John
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Alexandre A Todorov
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box #3367, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Begum-Ali J, Mason L, Charman T, Johnson MH, Green J, Garg S, Jones EJH. Disrupted visual attention relates to cognitive development in infants with Neurofibromatosis Type 1. J Neurodev Disord 2025; 17:12. [PMID: 40087579 PMCID: PMC11907931 DOI: 10.1186/s11689-025-09599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Neurofibromatosis Type 1 is a genetic condition diagnosed in infancy that substantially increases the likelihood of a child experiencing cognitive and developmental difficulties, including Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). Children with NF1 show clear differences in attention, but whether these differences emerge in early development and how they relate to broader difficulties with cognitive and learning skills is unclear. To address this question requires longitudinal prospective studies from infancy, where the relation between domains of visual attention (including exogenous and endogenous shifting) and cognitive development can be mapped over time. METHODS We report data from 28 infants with NF1 tested longitudinally at 5, 10 and 14 months compared to cohorts of 29 typical likelihood infants (with no history of NF1 or ASD and/or ADHD), and 123 infants with a family history of ASD and/or ADHD. We used an eyetracking battery to measure both exogenous and endogenous control of visual attention. RESULTS Infants with NF1 demonstrated intact social orienting, but slower development of endogenous visual foraging. This slower development presented as prolonged engagement with a salient stimulus in a static display relative to typically developing infants. In terms of exogenous attention shifting, NF1 infants showed faster saccadic reaction times than typical likelihood infants. However, the NF1 group demonstrated a slower developmental improvement from 5 to 14 months of age. Individual differences in foraging and saccade times were concurrently related to visual reception abilities within the full infant cohort (NF1, typical likelihood and those with a family history of ASD/ADHD). CONCLUSIONS Our results provide preliminary evidence that alterations in saccadic reaction time and visual foraging may contribute to learning difficulties in infants with NF1.
Collapse
Affiliation(s)
- Jannath Begum-Ali
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK.
| | - Luke Mason
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK.
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK.
| |
Collapse
|
4
|
Girault JB. The developing visual system: A building block on the path to autism. Dev Cogn Neurosci 2025; 73:101547. [PMID: 40096794 PMCID: PMC11964655 DOI: 10.1016/j.dcn.2025.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Longitudinal neuroimaging studies conducted over the past decade provide evidence of atypical visual system development in the first years of life in autism spectrum disorder (ASD). Findings from genomic analyses, family studies, and postmortem investigations suggest that changes in the visual system in ASD are linked to genetic factors, making the visual system an important neural phenotype along the path from genes to behavior that deserves further study. This article reviews what is known about the developing visual system in ASD in the first years of life; it also explores the potential canalizing role that atypical visual system maturation may have in the emergence of ASD by placing findings in the context of developmental cascades involving brain development, attention, and social and cognitive development. Critical gaps in our understanding of human visual system development are discussed, and future research directions are proposed to improve our understanding of ASD as a complex neurodevelopmental disorder with origins in early brain development.
Collapse
Affiliation(s)
- Jessica B Girault
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Siqueiros‐Sanchez M, Bussu G, Portugal AM, Ronald A, Falck‐Ytter T. Genetic and environmental contributions to individual differences in visual attention and oculomotor control in early infancy. Child Dev 2025; 96:619-634. [PMID: 39445681 PMCID: PMC11868694 DOI: 10.1111/cdev.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infants differ in their level of eye movement control, which at the extreme could be linked to autism. We assessed eye movements in 450 twins (225 pairs, 57% monozygotic, 46% female, aged 5-6 months) using the gap-overlap eye-tracking task. Shorter latency in the gap condition was associated with having more parent-rated autistic traits at 2 years. Latency across the task's three conditions was primarily explained by one highly heritable latent factor likely representing individual differences in basic oculomotor efficiency and/or in visual information processing. Additionally, disengagement of attention was linked to unique genetic factors, suggesting that genetic factors involved in visual attention are different from those involved in basic visual information processing and oculomotor efficiency.
Collapse
Affiliation(s)
- Monica Siqueiros‐Sanchez
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry ResearchKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Giorgia Bussu
- Development and Neurodiversity Lab, Department of PsychologyUppsala UniversityUppsalaSweden
| | - Ana Maria Portugal
- Development and Neurodiversity Lab, Department of PsychologyUppsala UniversityUppsalaSweden
| | | | - Terje Falck‐Ytter
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry ResearchKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Development and Neurodiversity Lab, Department of PsychologyUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Markfeld JE, Kiemel Z, Santapuram P, Bordman SL, Pulliam G, Clark SM, Hampton LH, Keçeli-Kaysili B, Feldman JI, Woynaroski TG. Links Between Early Prelinguistic Communication and Later Expressive Language in Toddlers With Autistic and Non-Autistic Siblings. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025; 68:178-192. [PMID: 39637288 PMCID: PMC11842043 DOI: 10.1044/2024_jslhr-23-00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE The present study explored the extent to which early prelinguistic communication skills predict expressive language in toddlers with autistic siblings (Sibs-autism), who are known to be at high likelihood for autism and language disorder, and a comparison group of toddlers with non-autistic older siblings (Sibs-NA). METHOD Participants were 51 toddlers (29 Sibs-autism, 22 Sibs-NA) aged 12-18 months at the first time point in the study (Time 1). Toddlers were seen again 9 months later (Time 2). Three prelinguistic communication skills (i.e., intentional communication, vocalization complexity, and responding to joint attention) were measured at Time 1 via the Communication and Symbolic Behavior Scales Developmental Profile-Behavior Sample. An expressive language aggregate was calculated for each participant at Time 2. A series of correlation and multiple regression models was run to evaluate associations of interest between prelinguistic communication skills as measured at Time 1 and expressive language as measured at Time 2. RESULTS Vocalization complexity and intentional communication displayed significant zero-order correlations with expressive language across sibling groups. Vocal complexity and responding to joint attention did not have significant added value in predicting later expressive language, after covarying for intentional communication across groups. However, sibling group moderated the association between vocalization complexity and later expressive language, such that vocal complexity displayed incremental validity for predicting later expressive language, covarying for intentional communication, only within Sibs-NA. CONCLUSIONS Results indicate that prelinguistic communication skills, in particular intentional communication, show promise for predicting later expressive language in siblings of autistic children. These findings provide additional empirical support for the notion that early preemptive interventions targeting prelinguistic communication skills, especially intentional communication, may have the potential to scaffold language acquisition and support more optimal language outcomes in this population at high likelihood for a future diagnosis of both autism and language disorder. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.27745437.
Collapse
Affiliation(s)
- Jennifer E. Markfeld
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
| | - Zoë Kiemel
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL
| | - Pooja Santapuram
- Vanderbilt University School of Medicine, Nashville, TN
- Department of Anesthesiology, Columbia University Irving Medical Center, New York City, NY
| | - Samantha L. Bordman
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
- New York-Presbyterian Columbia University Irving Medical Center, NY
| | - Grace Pulliam
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - S. Madison Clark
- Neuroscience Undergraduate Program, Vanderbilt University, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | | | - Bahar Keçeli-Kaysili
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Jacob I. Feldman
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Tiffany G. Woynaroski
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Communication Sciences and Disorders, John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu
| |
Collapse
|
7
|
Paul LK, Turner J, Sung S, Elison JT. Social and Communication Development in Infants with Isolated Agenesis of the Corpus Callosum. JOURNAL OF PEDIATRICS. CLINICAL PRACTICE 2024; 14:200118. [PMID: 39950051 PMCID: PMC11824658 DOI: 10.1016/j.jpedcp.2024.200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 02/16/2025]
Abstract
Objective To evaluate the development of social behavior, communication, emotion regulation, and repetitive behaviors in infants with congenital malformation of the corpus callosum, specifically those with isolated agenesis of the corpus callosum (ACC), in comparison with infants who are developing typically. Study design This case-control longitudinal observation study examined parent report of social behavior, social-communication, emotion regulation, and repetitive behavior development in community-ascertained infants (n = 156) and infants with isolated ACC (n = 57) between 12 and 24 months of age. Results Infants with isolated ACC produced fewer words at 12 (P = .003) 18 (P < .001), and 24 months of age (P = .003) and fewer gestures at 12 (P < .001), 18 (P < .001), and 24 months of age (P < .001). In addition, the ACC group demonstrated delays in reciprocal social behavior at 18 months (P = .01) and social competence at 12 (P < .001) and 18 months (P = .01). No concerns were noted in emotion regulation or restricted and repetitive behavior, and social behavior appeared to normalize at 24 months. Conclusions Existing data suggest heterogeneity in developmental outcomes among individuals with isolated ACC. The current findings fill a gap in knowledge about development in the second year of life. Surveillance of social and communication ability in infants with ACC may be warranted. The role of the corpus callosum in facilitating rapid interhemispheric information processing affects skills beyond the motor system. More work is needed to identify intervention targets for infants and toddlers with ACC.
Collapse
Affiliation(s)
- Lynn K. Paul
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA
- International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5), Pasadena, CA
| | - Jasmin Turner
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA
| | - Sooyeon Sung
- Department of Pediatrics, Institute of Child Development, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN
| | - Jed T. Elison
- Department of Pediatrics, Institute of Child Development, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN
| |
Collapse
|
8
|
Bonthrone AF, Kyriakopoulou V, Mason L, Chew A, Falconer S, Kelly CJ, Simpson J, Pushparajah K, Johnson MH, Edwards AD, Nosarti C, Jones EJH, Counsell SJ. Attentional development is altered in toddlers with congenital heart disease. JCPP ADVANCES 2024; 4:e12232. [PMID: 39411470 PMCID: PMC11472800 DOI: 10.1002/jcv2.12232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024] Open
Abstract
Background Congenital Heart Disease (CHD) is the most common congenital abnormality. Survival rates are over 90%, however infants with CHD remain at high risk of attention and executive function impairments. These abilities are difficult to assess in toddlers because clinical assessments rely on language abilities which are commonly delayed in CHD. Our aim was to characterise visual attention in toddlers with CHD compared to controls and identify associations with parent-rated effortful control. Methods Thirty toddlers with CHD (19 male, median (IQR) age at assessment 22.2 (22-23.1) months) and 66 controls from the developing human connectome project (36 male, age at assessment 22 (21.5-23.8) months) using eye-tracking tasks designed to assess multiple components of visual attention. Analyses of co-variance and regressions were used to identify differences between groups and relationships between gaze behaviours and parent-rated effortful control. Results Toddlers with CHD were less accurate when switching behaviours (set-shifting) [median (IQR) 79%, (28-100)] compared to controls [100% (86-100), pFDR = 0.032], with worse accuracy associated with lower parent-rated effortful control in CHD but not controls (interaction pFDR = 0.028). Reaction times were slower during selective [CHD 1243 ms (986-1786), controls 1065 ms (0851-1397), pFDR<0.001] and exogenous attention tasks [CHD 312 ms (279-358), control 289 (249-331), (pFDR = 0.032) and endogenous attention was less mature (prolonged looks at facial stimuli CHD 670 ms (518-885), control 500 ms (250-625), (pFDR = 0.006). These results were unrelated to differences in cognition or socioeconomic status. In contrast, the allocation of attentional resources was preserved in CHD. Conclusions We identified a profile of altered attention and early executive functioning development in CHD. Eye-tracking may provide clinically feasible, early objective measures of attention and executive function development in CHD.
Collapse
Affiliation(s)
- Alexandra F. Bonthrone
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Vanessa Kyriakopoulou
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Luke Mason
- Department of Forensic and Neurodevelopmental SciencesInstitute of PsychiatryPsychology & NeuroscienceKing's College LondonLondonUK
| | - Andrew Chew
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Shona Falconer
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Christopher J. Kelly
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - John Simpson
- Paediatric Cardiology DepartmentEvelina London Children's HealthcareLondonUK
| | - Kuberan Pushparajah
- Paediatric Cardiology DepartmentEvelina London Children's HealthcareLondonUK
| | - Mark H. Johnson
- Department of PsychologyUniversity of CambridgeCambridgeUK
- Department of Psychological SciencesCentre for Brain and Cognitive DevelopmentBirkbeckUniversity of LondonLondonUK
| | - A. David Edwards
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Chiara Nosarti
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of Child and Adolescent PsychiatryInstitute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonUK
| | - Emily J. H. Jones
- Department of Psychological SciencesCentre for Brain and Cognitive DevelopmentBirkbeckUniversity of LondonLondonUK
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
9
|
Hou W, Jiang Y, Yang Y, Zhu L, Li J. Evaluating the validity of eye-tracking tasks and stimuli in detecting high-risk infants later diagnosed with autism: A meta-analysis. Clin Psychol Rev 2024; 112:102466. [PMID: 39033664 DOI: 10.1016/j.cpr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Gaze abnormalities are well documented in infants at elevated risk for autism spectrum disorder (ASD). However, variations in experimental design and stimuli across studies have led to mixed results. The current meta-analysis aimed to identify which type of eye tracking task and stimulus are most effective at differentiating high-risk infants (siblings of children with ASD) who later meet diagnosis criteria from low-risk infants without familial autism. We synthesized 35 studies that used eye tracking to investigate gaze behavior in infants at high genetic risk for autism before 2 years of age. We found that stimulus features, regions of interest (ROIs) and study quality moderated effect sizes across studies. Overall, dynamic stimuli and socially-relevant regions in the social stimuli (i.e. the target and activity of characters' shared focus) reliably detected high-risk infants who later develop ASD. Attention disengagement task and stimuli depicting interactions between human and nonhuman characters could identify high-risk infants who later develop ASD and those who have autism-related symptoms but do not meet the diagnostic criteria as well. These findings provide sensitive and reliable early markers of ASD, which is helpful to develop objective and quantitative early autism screening and intervention tools.
Collapse
Affiliation(s)
- Wenwen Hou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Jiang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yunmei Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Liqi Zhu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Boulton KA, Lee D, Honan I, Phillips NL, Morgan C, Crowle C, Novak I, Badawi N, Guastella AJ. Exploring early life social and executive function development in infants and risk for autism: a prospective cohort study protocol of NICU graduates and infants at risk for cerebral palsy. BMC Psychiatry 2024; 24:359. [PMID: 38745143 PMCID: PMC11092236 DOI: 10.1186/s12888-024-05779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Delays in early social and executive function are predictive of later developmental delays and eventual neurodevelopmental diagnoses. There is limited research examining such markers in the first year of life. High-risk infant groups commonly present with a range of neurodevelopmental challenges, including social and executive function delays, and show higher rates of autism diagnoses later in life. For example, it has been estimated that up to 30% of infants diagnosed with cerebral palsy (CP) will go on to be diagnosed with autism later in life. METHODS This article presents a protocol of a prospective longitudinal study. The primary aim of this study is to identify early life markers of delay in social and executive function in high-risk infants at the earliest point in time, and to explore how these markers may relate to the increased risk for social and executive delay, and risk of autism, later in life. High-risk infants will include Neonatal Intensive Care Unit (NICU) graduates, who are most commonly admitted for premature birth and/or cardiovascular problems. In addition, we will include infants with, or at risk for, CP. This prospective study will recruit 100 high-risk infants at the age of 3-12 months old and will track social and executive function across the first 2 years of their life, when infants are 3-7, 8-12, 18 and 24 months old. A multi-modal approach will be adopted by tracking the early development of social and executive function using behavioural, neurobiological, and caregiver-reported everyday functioning markers. Data will be analysed to assess the relationship between the early markers, measured from as early as 3-7 months of age, and the social and executive function as well as the autism outcomes measured at 24 months. DISCUSSION This study has the potential to promote the earliest detection and intervention opportunities for social and executive function difficulties as well as risk for autism in NICU graduates and/or infants with, or at risk for, CP. The findings of this study will also expand our understanding of the early emergence of autism across a wider range of at-risk groups.
Collapse
Affiliation(s)
- Kelsie A Boulton
- Clinic for Autism and Neurodevelopmental (CAN) research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Dabin Lee
- Clinic for Autism and Neurodevelopmental (CAN) research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Ingrid Honan
- Cerebral Palsy Alliance Institute, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Natalie L Phillips
- Clinic for Autism and Neurodevelopmental (CAN) research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Catherine Morgan
- Cerebral Palsy Alliance Institute, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Cathryn Crowle
- Grace Centre for Newborn Intensive Care, Sydney Children's Hospital Network, Sydney, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Institute, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Nadia Badawi
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
- Cerebral Palsy Alliance Institute, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
- Grace Centre for Newborn Intensive Care, Sydney Children's Hospital Network, Sydney, Australia
| | - Adam J Guastella
- Clinic for Autism and Neurodevelopmental (CAN) research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia.
| |
Collapse
|
11
|
Liu J, Girault JB, Nishino T, Shen MD, Kim SH, Burrows CA, Elison JT, Marrus N, Wolff JJ, Botteron KN, Estes AM, Dager SR, Hazlett HC, McKinstry RC, Schultz RT, Snyder AZ, Styner M, Zwaigenbaum L, Pruett Jr JR, Piven J, Gao W. Atypical functional connectivity between the amygdala and visual, salience regions in infants with genetic liability for autism. Cereb Cortex 2024; 34:30-39. [PMID: 38696599 PMCID: PMC11065105 DOI: 10.1093/cercor/bhae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 05/04/2024] Open
Abstract
The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.
Collapse
Affiliation(s)
- Janelle Liu
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Bldv., Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | - Jessica B Girault
- Department of Psychiatry, UNC Chapel Hill, 333 S. Columbia Street, Chapel Hill, NC, 27514, USA
- Carolina Institute for Developmental Disabilities, UNC Chapel Hill , 101 Renee Lynne Court, Carrboro, NC 27510, USA
| | - Tomoyuki Nishino
- Institute for Child Development, University of Minnesota, 51 East River Rd., Minneapolis, MN 55454, USA
| | - Mark D Shen
- Department of Psychiatry, UNC Chapel Hill, 333 S. Columbia Street, Chapel Hill, NC, 27514, USA
- Carolina Institute for Developmental Disabilities, UNC Chapel Hill , 101 Renee Lynne Court, Carrboro, NC 27510, USA
| | - Sun Hyung Kim
- Department of Psychiatry, UNC Chapel Hill, 333 S. Columbia Street, Chapel Hill, NC, 27514, USA
| | - Catherine A Burrows
- Institute for Child Development, University of Minnesota, 51 East River Rd., Minneapolis, MN 55454, USA
| | - Jed T Elison
- Institute for Child Development, University of Minnesota, 51 East River Rd., Minneapolis, MN 55454, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, 56 E River Rd., Minneapolis, MN 55455, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Annette M Estes
- Department of Speech and Hearing Science, University of Washington, 1417 NE 42nd St., Seattle, WA 98105, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Heather C Hazlett
- Department of Psychiatry, UNC Chapel Hill, 333 S. Columbia Street, Chapel Hill, NC, 27514, USA
- Carolina Institute for Developmental Disabilities, UNC Chapel Hill , 101 Renee Lynne Court, Carrboro, NC 27510, USA
| | - Robert C McKinstry
- Department of Radiology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Robert T Schultz
- Center for Autism Research, Children’s Hospital of Philadelphia, 2716 South St., Philadelphia, PA 19104, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Martin Styner
- Department of Psychiatry, UNC Chapel Hill, 333 S. Columbia Street, Chapel Hill, NC, 27514, USA
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, 116 St. and 85 Ave, Edmonton, Alberta, T6G 2R3, CA
| | - John R Pruett Jr
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Joseph Piven
- Department of Psychiatry, UNC Chapel Hill, 333 S. Columbia Street, Chapel Hill, NC, 27514, USA
- Carolina Institute for Developmental Disabilities, UNC Chapel Hill , 101 Renee Lynne Court, Carrboro, NC 27510, USA
| | - Wei Gao
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Bldv., Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Keehn B, Monahan P, Enneking B, Ryan T, Swigonski N, McNally Keehn R. Eye-Tracking Biomarkers and Autism Diagnosis in Primary Care. JAMA Netw Open 2024; 7:e2411190. [PMID: 38743420 PMCID: PMC11094561 DOI: 10.1001/jamanetworkopen.2024.11190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Importance Finding effective and scalable solutions to address diagnostic delays and disparities in autism is a public health imperative. Approaches that integrate eye-tracking biomarkers into tiered community-based models of autism evaluation hold promise for addressing this problem. Objective To determine whether a battery of eye-tracking biomarkers can reliably differentiate young children with and without autism in a community-referred sample collected during clinical evaluation in the primary care setting and to evaluate whether combining eye-tracking biomarkers with primary care practitioner (PCP) diagnosis and diagnostic certainty is associated with diagnostic outcome. Design, Setting, and Participants Early Autism Evaluation (EAE) Hub system PCPs referred a consecutive sample of children to this prospective diagnostic study for blinded eye-tracking index test and follow-up expert evaluation from June 7, 2019, to September 23, 2022. Participants included 146 children (aged 14-48 months) consecutively referred by 7 EAE Hubs. Of 154 children enrolled, 146 provided usable data for at least 1 eye-tracking measure. Main Outcomes and Measures The primary outcomes were sensitivity and specificity of a composite eye-tracking (ie, index) test, which was a consolidated measure based on significant eye-tracking indices, compared with reference standard expert clinical autism diagnosis. Secondary outcome measures were sensitivity and specificity of an integrated approach using an index test and PCP diagnosis and certainty. Results Among 146 children (mean [SD] age, 2.6 [0.6] years; 104 [71%] male; 21 [14%] Hispanic or Latine and 96 [66%] non-Latine White; 102 [70%] with a reference standard autism diagnosis), 113 (77%) had concordant autism outcomes between the index (composite biomarker) and reference outcomes, with 77.5% sensitivity (95% CI, 68.4%-84.5%) and 77.3% specificity (95% CI, 63.0%-87.2%). When index diagnosis was based on the combination of a composite biomarker, PCP diagnosis, and diagnostic certainty, outcomes were concordant with reference standard for 114 of 127 cases (90%) with a sensitivity of 90.7% (95% CI, 83.3%-95.0%) and a specificity of 86.7% (95% CI, 70.3%-94.7%). Conclusions and Relevance In this prospective diagnostic study, a composite eye-tracking biomarker was associated with a best-estimate clinical diagnosis of autism, and an integrated diagnostic model including PCP diagnosis and diagnostic certainty demonstrated improved sensitivity and specificity. These findings suggest that equipping PCPs with a multimethod diagnostic approach has the potential to substantially improve access to timely, accurate diagnosis in local communities.
Collapse
Affiliation(s)
- Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Patrick Monahan
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis
| | - Brett Enneking
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis
| | - Tybytha Ryan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis
| | - Nancy Swigonski
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis
| | | |
Collapse
|
13
|
Sacrey LAR, Zwaigenbaum L, Brian JA, Smith IM, Armstrong V, Vaillancourt T, Schmidt LA. Behavioral and physiological differences during an emotion-evoking task in children at increased likelihood for autism spectrum disorder. Dev Psychopathol 2024; 36:404-414. [PMID: 36573373 DOI: 10.1017/s0954579422001286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Literature examining emotional regulation in infants with autism spectrum disorder (ASD) has focused on parent report. We examined behavioral and physiological responses during an emotion-evoking task designed to elicit emotional states in infants. Infants at an increased likelihood for ASD (IL; have an older sibling with ASD; 96 not classified; 29 classified with ASD at age two) and low likelihood (LL; no family history of ASD; n = 61) completed the task at 6, 12, and 18 months. The main findings were (1) the IL-ASD group displayed higher levels of negative affect during toy removal and negative tasks compared to the IL non-ASD and LL groups, respectively, (2) the IL-ASD group spent more time looking at the baseline task compared to the other two groups, and (3) the IL-ASD group showed a greater increase in heart rate from baseline during the toy removal and negative tasks compared to the LL group. These results suggest that IL children who are classified as ASD at 24 months show differences in affect, gaze, and heart rate during an emotion-evoking task, with potential implications for understanding mechanisms related to emerging ASD.
Collapse
Affiliation(s)
- Lori-Ann R Sacrey
- Department of Pediatrics, University of Alberta/Autism Research Centre, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta/Autism Research Centre, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Jessica A Brian
- Bloorview Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Isabel M Smith
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Autism Research Centre, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Vickie Armstrong
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Autism Research Centre, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Tracy Vaillancourt
- Department of Education and Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Louis A Schmidt
- Department of Psychology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Sacrey LAR, Zwaigenbaum L, Elshamy Y, Smith IM, Brian JA, Wass S. Comparative strengths and challenges on face-to-face and computer-based attention tasks in autistic and neurotypical toddlers. Autism Res 2023; 16:1501-1511. [PMID: 37448306 DOI: 10.1002/aur.2983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The objectives were to compare patterns of visual attention in toddlers diagnosed with autism spectrum disorder (ASD) as compared to their sex- and age-matched neurotypical (NT) peers. Participants included 23 toddlers with ASD and 19 NT toddlers (mean age: 25.52 versus 25.21 months, respectively) assessed using computerized tasks to measure sustained attention, disengaging attention, and cognitive control, as well as an in-person task to assess joint attention. Toddlers in the ASD group showed increased looking durations on the sustained attention task, as well as reduced frequencies of responding to and initiating joint attention compared to NT peers, but showed no differences on tasks of disengaging attention and cognitive control. The results suggest that toddlers with ASD have attentional strengths that may provide a foundation for building attention, communicative, and ultimately, academic skills.
Collapse
Affiliation(s)
- Lori-Ann R Sacrey
- Autism Research Centre, Glenrose Rehabilitation Hospital and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Lonnie Zwaigenbaum
- Autism Research Centre, Glenrose Rehabilitation Hospital and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Yomna Elshamy
- Autism Research Centre, Glenrose Rehabilitation Hospital and Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Isabel M Smith
- IWK Health Centre and Departments of Pediatrics and Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jessica A Brian
- Bloorview Research Institute and Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sam Wass
- Department of Psychological Sciences, University of East London, London, UK
| |
Collapse
|
15
|
Use of Oculomotor Behavior to Classify Children with Autism and Typical Development: A Novel Implementation of the Machine Learning Approach. J Autism Dev Disord 2023; 53:934-946. [PMID: 35913654 DOI: 10.1007/s10803-022-05685-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
This study segmented the time series of gaze behavior from nineteen children with autism spectrum disorder (ASD) and 20 children with typical development in a face-to-face conversation. A machine learning approach showed that behavior segments produced by these two groups of participants could be classified with the highest accuracy of 74.15%. These results were further used to classify children using a threshold classifier. A maximum classification accuracy of 87.18% was achieved, under the condition that a participant was considered as 'ASD' if over 46% of the child's 7-s behavior segments were classified as ASD-like behaviors. The idea of combining the behavior segmentation technique and the threshold classifier could maximally preserve participants' data, and promote the automatic screening of ASD.
Collapse
|
16
|
Markfeld JE, Feldman JI, Bordman SL, Daly C, Santapuram P, Humphreys KL, Keçeli-Kaysılı B, Woynaroski TG. Associations Between Caregiver Stress and Language Outcomes in Infants With Autistic and Non-Autistic Siblings: An Exploratory Study. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:190-205. [PMID: 36525624 PMCID: PMC10023184 DOI: 10.1044/2022_jslhr-22-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
PURPOSE Caregivers of autistic children present with high stress levels, which have been associated with poorer child outcomes in several domains, including language development. However, prior to this study, it was unknown whether elevated caregiver stress was associated with language development in infant siblings of autistic children (Sibs-autism), who are at increased likelihood of receiving a future diagnosis of autism and/or language impairment compared to infant siblings of non-autistic children. This study explored the degree to which, as well as the mechanisms by which, caregiver stress was linked with later language outcomes of Sibs-autism and infant siblings of non-autistic children (Sibs-NA). METHOD Participants were 50 infants (28 Sibs-autism; 22 Sibs-NA) aged 12-18 months at the first time point in this study (Time 1). Infants were seen again 9 months later, at 21-27 months of age (Time 2). Caregiver stress was measured via a validated self-report measure at Time 1. Caregiver language input, the putative mechanism by which caregiver stress may influence later language outcomes, was collected via two daylong recordings from digital recording (Language ENvironment Analysis) devices worn by the child at this same time point. Child language outcomes were measured via standardized and caregiver report measures at Time 2. RESULTS Several models testing hypothesized indirect effects of caregiver stress on later child language outcomes through caregiver language input were statistically significant. Specifically, significant indirect effects suggest that (a) caregivers with increased stress tend to speak less to their infants, and (b) this reduced language input tends to covary with reduced child language outcomes later in life for Sibs-autism and Sibs-NA. CONCLUSIONS This study provides new insights into links between caregiver stress, caregiver language input, and language outcomes in Sibs-autism and Sibs-NA. Further work is necessary to understand how to best support caregivers and optimize the language learning environments for infants. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21714368.
Collapse
Affiliation(s)
| | - Jacob I. Feldman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
| | - Samantha L. Bordman
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | - Claire Daly
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | - Pooja Santapuram
- Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN
| | - Kathryn L. Humphreys
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN
| | - Bahar Keçeli-Kaysılı
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Tiffany G. Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
17
|
Hawks ZW, Todorov A, Marrus N, Nishino T, Talovic M, Nebel MB, Girault JB, Davis S, Marek S, Seitzman BA, Eggebrecht AT, Elison J, Dager S, Mosconi MW, Tychsen L, Snyder AZ, Botteron K, Estes A, Evans A, Gerig G, Hazlett HC, McKinstry RC, Pandey J, Schultz RT, Styner M, Wolff JJ, Zwaigenbaum L, Markson L, Petersen SE, Constantino JN, White DA, Piven J, Pruett JR. A Prospective Evaluation of Infant Cerebellar-Cerebral Functional Connectivity in Relation to Behavioral Development in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:149-161. [PMID: 36712571 PMCID: PMC9874081 DOI: 10.1016/j.bpsgos.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the first test of this theory in a prospective infant sample, with potential implications for ASD detection. Methods Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors and outcomes. Hypothesis-driven univariate analyses and machine learning-based predictive tests examined cerebellar-frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar-default mode network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc tests of cerebellar connections. Results Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections. Conclusions We failed to identify cerebellar functional connectivity-based contributions to ASD. However, we observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior associations at different developmental stages and/or using different neuroimaging modalities.
Collapse
Affiliation(s)
- Zoë W. Hawks
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Alexandre Todorov
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mary Beth Nebel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica B. Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Savannah Davis
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Benjamin A. Seitzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jed Elison
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Stephen Dager
- Departments of Radiology, University of Washington, Seattle, Washington
| | - Matthew W. Mosconi
- Life Span Institute and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kelly Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Annette Estes
- Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Guido Gerig
- Department of Computer Science and Engineering, Tandon School of Engineering, New York University, New York, New York
| | - Heather C. Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert C. McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Juhi Pandey
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T. Schultz
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason J. Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Lonnie Zwaigenbaum
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Lori Markson
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Steven E. Petersen
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Desirée A. White
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John R. Pruett
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
18
|
Sung S, Fenoglio A, Wolff JJ, Schultz RT, Botteron KN, Dager SR, Estes AM, Hazlett HC, Zwaigenbaum L, Piven J, Elison JT. Examining the factor structure and discriminative utility of the Infant Behavior Questionnaire-Revised in infant siblings of autistic children. Child Dev 2022; 93:1398-1413. [PMID: 35485579 PMCID: PMC9544485 DOI: 10.1111/cdev.13781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the Infant Behavior Questionnaire-Revised in a longitudinal sample of infant siblings of autistic children (HR; n = 427, 171 female, 83.4% White) and a comparison group of low-risk controls (LR, n = 200, 86 female, 81.5% White), collected between 2007 and 2017, this study identified an invariant factor structure of temperament traits across groups at 6 and 12 months. Second, after partitioning the groups by familial risk and diagnostic outcome at 24 months, results reveal an endophenotypic pattern of Positive Emotionality at both 6 and 12 months, (HR-autism spectrum disorder [ASD] < HR-no-ASD < LR). Third, increased 'Duration of Orienting' at 12 months was associated with lower scores on the 24-month developmental outcomes in HR infants. These findings may augment efforts for early identification of ASD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Joseph Piven
- University of North Carolina—Chapel HillChapel HillNorth CarolinaUSA
| | | |
Collapse
|
19
|
Supervised Approach to Identify Autism Spectrum Neurological Disorder via Label Distribution Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4464603. [PMID: 36065371 PMCID: PMC9440771 DOI: 10.1155/2022/4464603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Autism Spectrum Disorder (ASD) is a complicated collection of neurodevelopmental illnesses characterized by a variety of developmental defects. It is a binary classification system that cannot cope with reality. Furthermore, ASD, data label noise, high dimension, and data distribution imbalance have all hampered the existing classification algorithms. As a result, a new ASD was proposed. This strategy employs label distribution learning (LDL) to deal with label noise and uses support vector regression (SVR) to deal with sample imbalance. The experimental results show that the proposed method balances the effects of majority and minority classes on outcomes. It can effectively deal with imbalanced data in ASD diagnosis, and it can help with ASD diagnosis. This study presents a cost-sensitive approach to correct sample imbalance and uses a support vector regression (SVR)-based method to remove label noise. The label distribution learning approach overcomes high-dimensional feature classification issues by mapping samples to the feature space and then diagnosing multiclass ASD. This technique outperforms previous methods in terms of classification performance and accuracy, as well as resolving the issue of unbalanced data in ASD diagnosis.
Collapse
|
20
|
Girault JB, Donovan K, Hawks Z, Talovic M, Forsen E, Elison JT, Shen MD, Swanson MR, Wolff JJ, Kim SH, Nishino T, Davis S, Snyder AZ, Botteron KN, Estes AM, Dager SR, Hazlett HC, Gerig G, McKinstry R, Pandey J, Schultz RT, St John T, Zwaigenbaum L, Todorov A, Truong Y, Styner M, Pruett JR, Constantino JN, Piven J. Infant Visual Brain Development and Inherited Genetic Liability in Autism. Am J Psychiatry 2022; 179:573-585. [PMID: 35615814 PMCID: PMC9356977 DOI: 10.1176/appi.ajp.21101002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is heritable, and younger siblings of ASD probands are at higher likelihood of developing ASD themselves. Prospective MRI studies of siblings report that atypical brain development precedes ASD diagnosis, although the link between brain maturation and genetic factors is unclear. Given that familial recurrence of ASD is predicted by higher levels of ASD traits in the proband, the authors investigated associations between proband ASD traits and brain development among younger siblings. METHODS In a sample of 384 proband-sibling pairs (89 pairs concordant for ASD), the authors examined associations between proband ASD traits and sibling brain development at 6, 12, and 24 months in key MRI phenotypes: total cerebral volume, cortical surface area, extra-axial cerebrospinal fluid, occipital cortical surface area, and splenium white matter microstructure. Results from primary analyses led the authors to implement a data-driven approach using functional connectivity MRI at 6 months. RESULTS Greater levels of proband ASD traits were associated with larger total cerebral volume and surface area and larger surface area and reduced white matter integrity in components of the visual system in siblings who developed ASD. This aligned with weaker functional connectivity between several networks and the visual system among all siblings during infancy. CONCLUSIONS The findings provide evidence that specific early brain MRI phenotypes of ASD reflect quantitative variation in familial ASD traits. Multimodal anatomical and functional convergence on cortical regions, fiber pathways, and functional networks involved in visual processing suggest that inherited liability has a role in shaping the prodromal development of visual circuitry in ASD.
Collapse
Affiliation(s)
- Jessica B Girault
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Educational Psychology (Wolff), University of Minnesota, Minneapolis;Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Kevin Donovan
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Zoë Hawks
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Muhamed Talovic
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Elizabeth Forsen
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Jed T Elison
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Meghan R Swanson
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Jason J Wolff
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Sun Hyung Kim
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Tomoyuki Nishino
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Savannah Davis
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Abraham Z Snyder
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Kelly N Botteron
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Annette M Estes
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Stephen R Dager
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Guido Gerig
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Robert McKinstry
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Juhi Pandey
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Robert T Schultz
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Tanya St John
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Lonnie Zwaigenbaum
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Alexandre Todorov
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Young Truong
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Martin Styner
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - John R Pruett
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - John N Constantino
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities (Girault, Forsen, Shen, Hazlett, Piven), Department of Psychiatry (Girault, Shen, Kim, Hazlett, Styner, Piven), Department of Biostatistics (Donovan, Truong), and ; Department of Psychological and Brain Sciences (Hawks) and Department of Psychiatry (Talovic, Nishino, Davis, Botteron, Todorov, Pruett, Constantino), Washington University School of Medicine in St. Louis; Institute of Child Development (Elison) and Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Tex. (Swanson); Department of Radiology, Washington University in St. Louis (Snyder, McKinstry); Department of Speech and Hearing Science, University of Washington, Seattle (Estes, St. John); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Tandon School of Engineering, New York University, New York (Gerig); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum)
| |
Collapse
|
21
|
Shen MD, Swanson MR, Wolff JJ, Elison JT, Girault JB, Kim SH, Smith RG, Graves MM, Weisenfeld LAH, Flake L, MacIntyre L, Gross JL, Burrows CA, Fonov VS, Collins DL, Evans AC, Gerig G, McKinstry RC, Pandey J, St John T, Zwaigenbaum L, Estes AM, Dager SR, Schultz RT, Styner MA, Botteron KN, Hazlett HC, Piven J. Subcortical Brain Development in Autism and Fragile X Syndrome: Evidence for Dynamic, Age- and Disorder-Specific Trajectories in Infancy. Am J Psychiatry 2022; 179:562-572. [PMID: 35331012 PMCID: PMC9762548 DOI: 10.1176/appi.ajp.21090896] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Previous research has demonstrated that the amygdala is enlarged in children with autism spectrum disorder (ASD). However, the precise onset of this enlargement during infancy, how it relates to later diagnostic behaviors, whether the timing of enlargement in infancy is specific to the amygdala, and whether it is specific to ASD (or present in other neurodevelopmental disorders, such as fragile X syndrome) are all unknown. METHODS Longitudinal MRIs were acquired at 6-24 months of age in 29 infants with fragile X syndrome, 58 infants at high likelihood for ASD who were later diagnosed with ASD, 212 high-likelihood infants not diagnosed with ASD, and 109 control infants (1,099 total scans). RESULTS Infants who developed ASD had typically sized amygdala volumes at 6 months, but exhibited significantly faster amygdala growth between 6 and 24 months, such that by 12 months the ASD group had significantly larger amygdala volume (Cohen's d=0.56) compared with all other groups. Amygdala growth rate between 6 and 12 months was significantly associated with greater social deficits at 24 months when the infants were diagnosed with ASD. Infants with fragile X syndrome had a persistent and significantly enlarged caudate volume at all ages between 6 and 24 months (d=2.12), compared with all other groups, which was significantly associated with greater repetitive behaviors. CONCLUSIONS This is the first MRI study comparing fragile X syndrome and ASD in infancy, demonstrating strikingly different patterns of brain and behavior development. Fragile X syndrome-related changes were present from 6 months of age, whereas ASD-related changes unfolded over the first 2 years of life, starting with no detectable group differences at 6 months. Increased amygdala growth rate between 6 and 12 months occurs prior to social deficits and well before diagnosis. This gradual onset of brain and behavior changes in ASD, but not fragile X syndrome, suggests an age- and disorder-specific pattern of cascading brain changes preceding autism diagnosis.
Collapse
Affiliation(s)
- Mark D Shen
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Meghan R Swanson
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Jason J Wolff
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Jed T Elison
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Jessica B Girault
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Sun Hyung Kim
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Rachel G Smith
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Michael M Graves
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Leigh Anne H Weisenfeld
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Lisa Flake
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Leigh MacIntyre
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Julia L Gross
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Catherine A Burrows
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Vladimir S Fonov
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - D Louis Collins
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Alan C Evans
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Guido Gerig
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Robert C McKinstry
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Juhi Pandey
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Tanya St John
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Lonnie Zwaigenbaum
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Annette M Estes
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Stephen R Dager
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Robert T Schultz
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Martin A Styner
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Kelly N Botteron
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities and Department of Psychiatry (Shen, Girault, Kim, Smith, Graves, Weisenfeld, Gross, Styner, Hazlett, Piven) and UNC Neuroscience Center (Shen), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; Department of Educational Psychology (Wolff), Institute of Child Development (Elison), and Department of Pediatrics (Elison, Burrows), University of Minnesota, Minneapolis; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis (Flake, McKinstry, Botteron); Department of Radiology, University of Washington Medical Center, Seattle (Dager); Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia (Pandey, Schultz); Computer Science and Engineering, NYU Tandon School of Engineering, New York (Gerig); Montreal Neurological Institute, McGill University, Montreal (MacIntyre, Fonov, Collins, Evans); Department of Pediatrics, University of Alberta, Edmonton, Canada (Zwaigenbaum); Department of Speech and Hearing Science, University of Washington, Seattle (St. John, Estes); School of Behavioral and Brain Sciences, University of Texas at Dallas (Swanson)
| |
Collapse
|
22
|
Jure R. The “Primitive Brain Dysfunction” Theory of Autism: The Superior Colliculus Role. Front Integr Neurosci 2022; 16:797391. [PMID: 35712344 PMCID: PMC9194533 DOI: 10.3389/fnint.2022.797391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
A better understanding of the pathogenesis of autism will help clarify our conception of the complexity of normal brain development. The crucial deficit may lie in the postnatal changes that vision produces in the brainstem nuclei during early life. The superior colliculus is the primary brainstem visual center. Although difficult to examine in humans with present techniques, it is known to support behaviors essential for every vertebrate to survive, such as the ability to pay attention to relevant stimuli and to produce automatic motor responses based on sensory input. From birth to death, it acts as a brain sentinel that influences basic aspects of our behavior. It is the main brainstem hub that lies between the environment and the rest of the higher neural system, making continuous, implicit decisions about where to direct our attention. The conserved cortex-like organization of the superior colliculus in all vertebrates allows the early appearance of primitive emotionally-related behaviors essential for survival. It contains first-line specialized neurons enabling the detection and tracking of faces and movements from birth. During development, it also sends the appropriate impulses to help shape brain areas necessary for social-communicative abilities. These abilities require the analysis of numerous variables, such as the simultaneous evaluation of incoming information sustained by separate brain networks (visual, auditory and sensory-motor, social, emotional, etc.), and predictive capabilities which compare present events to previous experiences and possible responses. These critical aspects of decision-making allow us to evaluate the impact that our response or behavior may provoke in others. The purpose of this review is to show that several enigmas about the complexity of autism might be explained by disruptions of collicular and brainstem functions. The results of two separate lines of investigation: 1. the cognitive, etiologic, and pathogenic aspects of autism on one hand, and two. the functional anatomy of the colliculus on the other, are considered in order to bridge the gap between basic brain science and clinical studies and to promote future research in this unexplored area.
Collapse
|
23
|
Segmentation of Infant Brain Using Nonnegative Matrix Factorization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study develops an atlas-based automated framework for segmenting infants’ brains from magnetic resonance imaging (MRI). For the accurate segmentation of different structures of an infant’s brain at the isointense age (6–12 months), our framework integrates features of diffusion tensor imaging (DTI) (e.g., the fractional anisotropy (FA)). A brain diffusion tensor (DT) image and its region map are considered samples of a Markov–Gibbs random field (MGRF) that jointly models visual appearance, shape, and spatial homogeneity of a goal structure. The visual appearance is modeled with an empirical distribution of the probability of the DTI features, fused by their nonnegative matrix factorization (NMF) and allocation to data clusters. Projecting an initial high-dimensional feature space onto a low-dimensional space of the significant fused features with the NMF allows for better separation of the goal structure and its background. The cluster centers in the latter space are determined at the training stage by the K-means clustering. In order to adapt to large infant brain inhomogeneities and segment the brain images more accurately, appearance descriptors of both the first-order and second-order are taken into account in the fused NMF feature space. Additionally, a second-order MGRF model is used to describe the appearance based on the voxel intensities and their pairwise spatial dependencies. An adaptive shape prior that is spatially variant is constructed from a training set of co-aligned images, forming an atlas database. Moreover, the spatial homogeneity of the shape is described with a spatially uniform 3D MGRF of the second-order for region labels. In vivo experiments on nine infant datasets showed promising results in terms of the accuracy, which was computed using three metrics: the 95-percentile modified Hausdorff distance (MHD), the Dice similarity coefficient (DSC), and the absolute volume difference (AVD). Both the quantitative and visual assessments confirm that integrating the proposed NMF-fused DTI feature and intensity MGRF models of visual appearance, the adaptive shape prior, and the shape homogeneity MGRF model is promising in segmenting the infant brain DTI.
Collapse
|
24
|
Ayoub MJ, Keegan L, Tager-Flusberg H, Gill SV. Neuroimaging Techniques as Descriptive and Diagnostic Tools for Infants at Risk for Autism Spectrum Disorder: A Systematic Review. Brain Sci 2022; 12:602. [PMID: 35624989 PMCID: PMC9139416 DOI: 10.3390/brainsci12050602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Autism Spectrum Disorder (ASD) has traditionally been evaluated and diagnosed via behavioral assessments. However, increasing research suggests that neuroimaging as early as infancy can reliably identify structural and functional differences between autistic and non-autistic brains. The current review provides a systematic overview of imaging approaches used to identify differences between infants at familial risk and without risk and predictive biomarkers. Two primary themes emerged after reviewing the literature: (1) neuroimaging methods can be used to describe structural and functional differences between infants at risk and infants not at risk for ASD (descriptive), and (2) neuroimaging approaches can be used to predict ASD diagnosis among high-risk infants and developmental outcomes beyond infancy (predicting later diagnosis). Combined, the articles highlighted that several neuroimaging studies have identified a variety of neuroanatomical and neurological differences between infants at high and low risk for ASD, and among those who later receive an ASD diagnosis. Incorporating neuroimaging into ASD evaluations alongside traditional behavioral assessments can provide individuals with earlier diagnosis and earlier access to supportive resources.
Collapse
Affiliation(s)
- Maria J. Ayoub
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA; (M.J.A.); (L.K.)
| | - Laura Keegan
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA; (M.J.A.); (L.K.)
| | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA;
| | - Simone V. Gill
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA; (M.J.A.); (L.K.)
| |
Collapse
|
25
|
Clairmont C, Wang J, Tariq S, Sherman HT, Zhao M, Kong XJ. The Value of Brain Imaging and Electrophysiological Testing for Early Screening of Autism Spectrum Disorder: A Systematic Review. Front Neurosci 2022; 15:812946. [PMID: 35185452 PMCID: PMC8851356 DOI: 10.3389/fnins.2021.812946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Given the significance of validating reliable tests for the early detection of autism spectrum disorder (ASD), this systematic review aims to summarize available evidence of neuroimaging and neurophysiological changes in high-risk infants to improve ASD early diagnosis. We included peer-reviewed, primary research in English published before May 21, 2021, involving the use of magnetic resonance imaging (MRI), electroencephalogram (EEG), or functional near-infrared spectroscopy (fNIRS) in children with high risk for ASD under 24 months of age. The main exclusion criteria includes diagnosis of a genetic disorder and gestation age of less the 36 weeks. Online research was performed on PubMed, Web of Science, PsycINFO, and CINAHL. Article selection was conducted by two reviewers to minimize bias. This research was funded by Massachusetts General Hospital Sundry funding. IRB approval was not submitted as it was deemed unnecessary. We included 75 primary research articles. Studies showed that high-risk infants had divergent developmental trajectories for fractional anisotropy and regional brain volumes, increased CSF volume, and global connectivity abnormalities on MRI, decreased sensitivity for familiar faces, atypical lateralization during facial and auditory processing, and different spectral powers across multiple band frequencies on EEG, and distinct developmental trajectories in functional connectivity and regional oxyhemoglobin concentrations in fNIRS. These findings in infants were found to be correlated with the core ASD symptoms and diagnosis at toddler age. Despite the lack of quantitative analysis of the research database, neuroimaging and electrophysiological biomarkers have promising value for the screening of ASD as early as infancy with high accuracy, which warrants further investigation.
Collapse
Affiliation(s)
- Cullen Clairmont
- Synapse Lab, Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA, United States
| | - Jiuju Wang
- Synapse Lab, Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA, United States
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Samia Tariq
- Synapse Lab, Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA, United States
| | - Hannah Tayla Sherman
- Synapse Lab, Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA, United States
| | - Mingxuan Zhao
- Department of Business Analytics, Bentley University, Waltham, MA, United States
| | - Xue-Jun Kong
- Synapse Lab, Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
26
|
Siddiqui S, Gunaseelan L, Shaikh R, Khan A, Mankad D, Hamid MA. Food for Thought: Machine Learning in Autism Spectrum Disorder Screening of Infants. Cureus 2021; 13:e18721. [PMID: 34790476 PMCID: PMC8584605 DOI: 10.7759/cureus.18721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/05/2022] Open
Abstract
Diagnoses of autism spectrum disorders (ASD) are typically made after toddlerhood by examining behavioural patterns. Earlier identification of ASD enables earlier intervention and better outcomes. Machine learning provides a data-driven approach of diagnosing autism at an earlier age. This review aims to summarize recent studies and technologies utilizing machine learning based strategies to screen infants and children under the age of 18 months for ASD, and identify gaps that can be addressed in the future. We reviewed nine studies based on our search criteria, which includes primary studies and technologies conducted within the last 10 years that examine children with ASD or at high risk of ASD with a mean age of less than 18 months old. The studies must use machine learning analysis of behavioural features of ASD as major methodology. A total of nine studies were reviewed, of which the sensitivity ranges from 60.7% to 95.6%, the specificity ranges from 50% to 100%, and the accuracy ranges from 60.9% to 97.7%. Factors that contribute to the inconsistent findings include the varied presentation of ASD among patients and study design differences. Previous studies have shown moderate accuracy, sensitivity and specificity in the differentiation of ASD and non-ASD individuals under the age of 18 months. The application of machine learning and artificial intelligence in the screening of ASD in infants is still in its infancy, as observed by the granularity of data available for review. As such, much work needs to be done before the aforementioned technologies can be applied into clinical practice to facilitate early screening of ASD.
Collapse
Affiliation(s)
- Sohaib Siddiqui
- Department of Obstetrics and Gynaecology, Women's College Hospital, Toronto, CAN
| | - Luxhman Gunaseelan
- Department of Pediatrics, Saba University School of Medicine, The Bottom, BES
| | - Roohab Shaikh
- Department of Family Medicine, University of British Columbia, Vancouver, CAN
| | - Ahmed Khan
- Department of Pediatrics, Southern Health & Social Care NHS Trust, London, GBR
| | - Deepali Mankad
- Department of Developmental Pediatrics, University of Toronto, Toronto, CAN
| | | |
Collapse
|
27
|
Zammarchi G, Conversano C. Application of Eye Tracking Technology in Medicine: A Bibliometric Analysis. Vision (Basel) 2021; 5:56. [PMID: 34842855 PMCID: PMC8628933 DOI: 10.3390/vision5040056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Eye tracking provides a quantitative measure of eye movements during different activities. We report the results from a bibliometric analysis to investigate trends in eye tracking research applied to the study of different medical conditions. We conducted a search on the Web of Science Core Collection (WoS) database and analyzed the dataset of 2456 retrieved articles using VOSviewer and the Bibliometrix R package. The most represented area was psychiatry (503, 20.5%) followed by neuroscience (465, 18.9%) and psychology developmental (337, 13.7%). The annual scientific production growth was 11.14% and showed exponential growth with three main peaks in 2011, 2015 and 2017. Extensive collaboration networks were identified between the three countries with the highest scientific production, the USA (35.3%), the UK (9.5%) and Germany (7.3%). Based on term co-occurrence maps and analyses of sources of articles, we identified autism spectrum disorders as the most investigated condition and conducted specific analyses on 638 articles related to this topic which showed an annual scientific production growth of 16.52%. The majority of studies focused on autism used eye tracking to investigate gaze patterns with regards to stimuli related to social interaction. Our analysis highlights the widespread and increasing use of eye tracking in the study of different neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Gianpaolo Zammarchi
- Department of Economics and Business Sciences, University of Cagliari, 09123 Cagliari, Italy;
| | | |
Collapse
|
28
|
Chaddad A, Li J, Lu Q, Li Y, Okuwobi IP, Tanougast C, Desrosiers C, Niazi T. Can Autism Be Diagnosed with Artificial Intelligence? A Narrative Review. Diagnostics (Basel) 2021; 11:2032. [PMID: 34829379 PMCID: PMC8618159 DOI: 10.3390/diagnostics11112032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Radiomics with deep learning models have become popular in computer-aided diagnosis and have outperformed human experts on many clinical tasks. Specifically, radiomic models based on artificial intelligence (AI) are using medical data (i.e., images, molecular data, clinical variables, etc.) for predicting clinical tasks such as autism spectrum disorder (ASD). In this review, we summarized and discussed the radiomic techniques used for ASD analysis. Currently, the limited radiomic work of ASD is related to the variation of morphological features of brain thickness that is different from texture analysis. These techniques are based on imaging shape features that can be used with predictive models for predicting ASD. This review explores the progress of ASD-based radiomics with a brief description of ASD and the current non-invasive technique used to classify between ASD and healthy control (HC) subjects. With AI, new radiomic models using the deep learning techniques will be also described. To consider the texture analysis with deep CNNs, more investigations are suggested to be integrated with additional validation steps on various MRI sites.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada;
| | - Jiali Li
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Qizong Lu
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Yujie Li
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Idowu Paul Okuwobi
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Camel Tanougast
- Laboratoire de Conception, Optimisation et Modélisation des Systèmes, University of Lorraine, 57070 Metz, France;
| | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada;
| | - Tamim Niazi
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada;
| |
Collapse
|
29
|
Fish LA, Nyström P, Gliga T, Gui A, Begum Ali J, Mason L, Garg S, Green J, Johnson MH, Charman T, Harrison R, Meaburn E, Falck-Ytter T, Jones EJH. Development of the pupillary light reflex from 9 to 24 months: association with common autism spectrum disorder (ASD) genetic liability and 3-year ASD diagnosis. J Child Psychol Psychiatry 2021; 62:1308-1319. [PMID: 34492739 DOI: 10.1111/jcpp.13518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although autism spectrum disorder (ASD) is heritable, the mechanisms through which genes contribute to symptom emergence remain unclear. Investigating candidate intermediate phenotypes such as the pupillary light reflex (PLR) prospectively from early in development could bridge genotype and behavioural phenotype. METHODS Using eye tracking, we longitudinally measured the PLR at 9, 14 and 24 months in a sample of infants (N = 264) enriched for a family history of ASD; 27 infants received an ASD diagnosis at 3 years. We examined the 9- to 24-month developmental trajectories of PLR constriction latency (onset; ms) and amplitude (%) and explored their relation to categorical 3-year ASD outcome, polygenic liability for ASD and dimensional 3-year social affect (SA) and repetitive/restrictive behaviour (RRB) traits. Polygenic scores for ASD (PGSASD ) were calculated for 190 infants. RESULTS While infants showed a decrease in latency between 9 and 14 months, higher PGSASD was associated with a smaller decrease in latency in the first year (β = -.16, 95% CI = -0.31, -0.002); infants with later ASD showed a significantly steeper decrease in latency (a putative 'catch-up') between 14 and 24 months relative to those with other outcomes (typical: β = .54, 95% CI = 0.08, 0.99; other: β = .53, 95% CI = 0.02, 1.04). Latency development did not associate with later dimensional variation in ASD-related traits. In contrast, change in amplitude was not related to categorical ASD or genetics, but decreasing 9- to 14-month amplitude was associated with higher SA (β = .08, 95% CI = 0.01, 0.14) and RRB (β = .05, 95% CI = 0.004, 0.11) traits. CONCLUSIONS These findings corroborate PLR development as possible intermediate phenotypes being linked to both genetic liability and phenotypic outcomes. Future work should incorporate alternative measures (e.g. functionally informed structural and genetic measures) to test whether distinct neural mechanisms underpin PLR alterations.
Collapse
Affiliation(s)
- Laurel A Fish
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Pär Nyström
- Uppsala Child & Babylab, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Teodora Gliga
- School of Psychology, University of East Anglia, Norwich, UK
| | - Anna Gui
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Jannath Begum Ali
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Luke Mason
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Shruti Garg
- Neuroscience & Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan Green
- Neuroscience & Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Mark H Johnson
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK.,Department of Psychology, Cambridge University, Cambridge, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Harrison
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Emma Meaburn
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Terje Falck-Ytter
- Development and Neurodiversity Lab (DIVE), Department of Psychology, Uppsala University, Uppsala, Sweden.,Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Emily J H Jones
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | | |
Collapse
|
30
|
Grzadzinski R, Amso D, Landa R, Watson L, Guralnick M, Zwaigenbaum L, Deák G, Estes A, Brian J, Bath K, Elison J, Abbeduto L, Wolff J, Piven J. Pre-symptomatic intervention for autism spectrum disorder (ASD): defining a research agenda. J Neurodev Disord 2021; 13:49. [PMID: 34654371 PMCID: PMC8520312 DOI: 10.1186/s11689-021-09393-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) impacts an individual's ability to socialize, communicate, and interact with, and adapt to, the environment. Over the last two decades, research has focused on early identification of ASD with significant progress being made in understanding the early behavioral and biological markers that precede a diagnosis, providing a catalyst for pre-symptomatic identification and intervention. Evidence from preclinical trials suggest that intervention prior to the onset of ASD symptoms may yield more improved developmental outcomes, and clinical studies suggest that the earlier intervention is administered, the better the outcomes. This article brings together a multidisciplinary group of experts to develop a conceptual framework for behavioral intervention, during the pre-symptomatic period prior to the consolidation of symptoms into diagnosis, in infants at very-high-likelihood for developing ASD (VHL-ASD). The overarching goals of this paper are to promote the development of new intervention approaches, empirical research, and policy efforts aimed at VHL-ASD infants during the pre-symptomatic period (i.e., prior to the consolidation of the defining features of ASD).
Collapse
Affiliation(s)
- Rebecca Grzadzinski
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
- Program for Early Autism Research Leadership and Service (PEARLS), University of North Carolina, Chapel Hill, NC, USA.
| | - Dima Amso
- Department of Psychology, Columbia University, New York, NY, USA
| | - Rebecca Landa
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Watson
- Program for Early Autism Research Leadership and Service (PEARLS), University of North Carolina, Chapel Hill, NC, USA
- Division of Speech and Hearing Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Guralnick
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | | | - Gedeon Deák
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, USA
| | - Annette Estes
- Department of Speech and Hearing Sciences, University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Jessica Brian
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Kevin Bath
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Jed Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Leonard Abbeduto
- University of California, Davis, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Jason Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Keehn B, Kadlaskar G, Bergmann S, McNally Keehn R, Francis A. Attentional Disengagement and the Locus Coeruleus - Norepinephrine System in Children With Autism Spectrum Disorder. Front Integr Neurosci 2021; 15:716447. [PMID: 34531729 PMCID: PMC8438302 DOI: 10.3389/fnint.2021.716447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Background Differences in non-social attentional functions have been identified as among the earliest features that distinguish infants later diagnosed with autism spectrum disorder (ASD), and may contribute to the emergence of core ASD symptoms. Specifically, slowed attentional disengagement and difficulty reorienting attention have been found across the lifespan in those at risk for, or diagnosed with, ASD. Additionally, the locus coeruleus-norepinephrine (LC-NE) system, which plays a critical role in arousal regulation and selective attention, has been shown to function atypically in ASD. While activity of the LC-NE system is associated with attentional disengagement and reorienting in typically developing (TD) individuals, it has not been determined whether atypical LC-NE activity relates to attentional disengagement impairments observed in ASD. Objective To examine the relationship between resting pupil diameter (an indirect measure of tonic LC-NE activation) and attentional disengagement in children with ASD. Methods Participants were 21 school-aged children with ASD and 20 age- and IQ-matched TD children. The study consisted of three separate experiments: a resting eye-tracking task and visual and auditory gap-overlap paradigms. For the resting eye-tracking task, pupil diameter was monitored while participants fixated a central crosshair. In the gap-overlap paradigms, participants were instructed to fixate on a central stimulus and then move their eyes to peripherally presented visual or auditory targets. Saccadic reaction times (SRT), percentage of no-shift trials, and disengagement efficiency were measured. Results Children with ASD had significantly larger resting pupil size compared to their TD peers. The groups did not differ for overall SRT, nor were there differences in SRT for overlap and gap conditions between groups. However, the ASD group did evidence impairments in disengagement (larger step/gap effects, higher percentage of no-shift trials, and reduced disengagement efficiency) compared to their TD peers. Correlational analyses showed that slower, less efficient disengagement was associated with increased pupil diameter. Conclusion Consistent with prior reports, children with ASD show significantly larger resting pupil diameter, indicative of atypically elevated tonic LC-NE activity. Associations between pupil size and measures of attentional disengagement suggest that atypically increased tonic activation of the LC-NE system may be associated with poorer attentional disengagement in children with ASD.
Collapse
Affiliation(s)
- Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States.,Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Sophia Bergmann
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Rebecca McNally Keehn
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Alexander Francis
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
32
|
A white paper on a neurodevelopmental framework for drug discovery in autism and other neurodevelopmental disorders. Eur Neuropsychopharmacol 2021; 48:49-88. [PMID: 33781629 DOI: 10.1016/j.euroneuro.2021.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
In the last decade there has been a revolution in terms of genetic findings in neurodevelopmental disorders (NDDs), with many discoveries critical for understanding their aetiology and pathophysiology. Clinical trials in single-gene disorders such as fragile X syndrome highlight the challenges of investigating new drug targets in NDDs. Incorporating a developmental perspective into the process of drug development for NDDs could help to overcome some of the current difficulties in identifying and testing new treatments. This paper provides a summary of the proceedings of the 'New Frontiers Meeting' on neurodevelopmental disorders organised by the European College of Neuropsychopharmacology in conjunction with the Innovative Medicines Initiative-sponsored AIMS-2-TRIALS consortium. It brought together experts in developmental genetics, autism, NDDs, and clinical trials from academia and industry, regulators, patient and family associations, and other stakeholders. The meeting sought to provide a platform for focused communication on scientific insights, challenges, and methodologies that might be applicable to the development of CNS treatments from a neurodevelopmental perspective. Multidisciplinary translational consortia to develop basic and clinical research in parallel could be pivotal to advance knowledge in the field. Although implementation of clinical trials for NDDs in paediatric populations is widely acknowledged as essential, safety concerns should guide each aspect of their design. Industry and academia should join forces to improve knowledge of the biology of brain development, identify the optimal timing of interventions, and translate these findings into new drugs, allowing for the needs of users and families, with support from regulatory agencies.
Collapse
|
33
|
Wang J, Wang Z, Zhang H, Feng S, Lu Y, Wang S, Wang H, Sun YE, Chen Y. White Matter Structural and Network Topological Changes Underlying the Behavioral Phenotype of MECP2 Mutant Monkeys. Cereb Cortex 2021; 31:5396-5410. [PMID: 34117744 DOI: 10.1093/cercor/bhab166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
To explore the brain structural basis underlying the behavioral abnormalities associated with Rett syndrome (RTT), we carried out detailed longitudinal noninvasive magnetic resonance imaging analyses of RTT monkey models created by gene-editing, from weaning, through adolescence, till sexual maturation. Here, we report abnormal developmental dynamics of brain white matter (WM) microstructures and network topological organizations via diffusion tensor imaging. Specifically, disrupted WM microstructural integrity was observed at 9 months, but recovered thereafter, whereas WM network topological properties showed persistent abnormal dynamics from 9 to 37 months. Changes in the WM microstructure and WM network topology were correlated well with RTT-associated behavioral abnormalities including sleep latency, environmental exploration, and conflict encounters. Deleterious and protracted early WM myelination process likely lead to abnormal synaptic pruning, resulting in poor functional segregations. Together, this study provides initial evidence for changes in WM microstructure and network topological organization, which may underlie the neuro-patho-etilogy of RTT.
Collapse
Affiliation(s)
- Jiaojian Wang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongjiang Zhang
- Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Shufei Feng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yi Lu
- The Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Shuang Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yi Eve Sun
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
34
|
Liu Q, Wang Q, Li X, Gong X, Luo X, Yin T, Liu J, Yi L. Social synchronization during joint attention in children with autism spectrum disorder. Autism Res 2021; 14:2120-2130. [PMID: 34105871 DOI: 10.1002/aur.2553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022]
Abstract
We explored the social synchronization of gaze-shift behaviors when responding to joint attention in children with autism spectrum disorder (ASD). Forty-one children aged 5 to 8 with ASD and 43 typically developing (TD) children watched a video to complete the response to joint attention (RJA) tasks, during which their gaze data were collected. The synchronization of gaze-shift behaviors between children and the female model in the video was measured with the cross-recurrence quantification analysis (CRQA). Ultimately, we discovered that children with ASD had the ability to synchronize their gaze shifts with the female model in the video during RJA tasks. Compared to the TD children, they displayed lower levels of synchronization and longer latency in this synchronized behavior. These findings provide a new avenue to deepen our understanding of the impairments of social interaction in children with ASD. Notably, the analytic method can be further applied to explore the social synchronization of numerous other social interactive behaviors in ASD. LAY SUMMARY: This study explored how autistic children synchronized their gazed shifts with others' gaze cues during joint attention. We found that compared to typical children, autistic children synchronized their gazed shifts less and needed more time to follow others' gaze. These findings provide a new avenue to deepen our understanding of the impairments of social interaction in children with ASD.
Collapse
Affiliation(s)
- Qinyi Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qiandong Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoyun Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuerong Luo
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, National Clinical Research Center for Mental Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, Hunan, China
| | - Tingni Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Yi
- School of Psychological and Cognitive Sciences & Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research at PKU, Peking University, Beijing, China
| |
Collapse
|
35
|
Zhang S, Chen D, Tang Y, Zhang L. Children ASD Evaluation Through Joint Analysis of EEG and Eye-Tracking Recordings With Graph Convolution Network. Front Hum Neurosci 2021; 15:651349. [PMID: 34113244 PMCID: PMC8185139 DOI: 10.3389/fnhum.2021.651349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in neuroscience indicate that analysis of bio-signals such as rest state electroencephalogram (EEG) and eye-tracking data can provide more reliable evaluation of children autism spectrum disorder (ASD) than traditional methods of behavior measurement relying on scales do. However, the effectiveness of the new approaches still lags behind the increasing requirement in clinical or educational practices as the “bio-marker” information carried by the bio-signal of a single-modality is likely insufficient or distorted. This study proposes an approach to joint analysis of EEG and eye-tracking for children ASD evaluation. The approach focuses on deep fusion of the features in two modalities as no explicit correlations between the original bio-signals are available, which also limits the performance of existing methods along this direction. First, the synchronization measures, information entropy, and time-frequency features of the multi-channel EEG are derived. Then a random forest applies to the eye-tracking recordings of the same subjects to single out the most significant features. A graph convolutional network (GCN) model then naturally fuses the two group of features to differentiate the children with ASD from the typically developed (TD) subjects. Experiments have been carried out on the two types of the bio-signals collected from 42 children (21 ASD and 21 TD subjects, 3–6 years old). The results indicate that (1) the proposed approach can achieve an accuracy of 95% in ASD detection, and (2) strong correlations exist between the two bio-signals collected even asynchronously, in particular the EEG synchronization against the face related/joint attentions in terms of covariance.
Collapse
Affiliation(s)
- Shasha Zhang
- School of Computer Science, Wuhan University, Wuhan, China
| | - Dan Chen
- School of Computer Science, Wuhan University, Wuhan, China
| | - Yunbo Tang
- School of Computer Science, Wuhan University, Wuhan, China
| | - Lei Zhang
- School of Computer Science, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Constantino JN, Charman T, Jones EJH. Clinical and Translational Implications of an Emerging Developmental Substructure for Autism. Annu Rev Clin Psychol 2021; 17:365-389. [PMID: 33577349 PMCID: PMC9014692 DOI: 10.1146/annurev-clinpsy-081219-110503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A vast share of the population-attributable risk for autism relates to inherited polygenic risk. A growing number of studies in the past five years have indicated that inherited susceptibility may operate through a finite number of early developmental liabilities that, in various permutations and combinations, jointly predict familial recurrence of the convergent syndrome of social communication disability that defines the condition. Here, we synthesize this body of research to derive evidence for a novel developmental substructure for autism, which has profound implications for ongoing discovery efforts to elucidate its neurobiological causes, and to inform future clinical and biomarker studies, early interventions, and personalized approaches to therapy.
Collapse
Affiliation(s)
- John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Tony Charman
- Department of Psychology, King's College London Institute of Psychiatry, Psychology & Neuroscience, London SE5 8AF, United Kingdom
| | - Emily J H Jones
- Centre for Brain & Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
37
|
Johnson MH, Charman T, Pickles A, Jones EJH. Annual Research Review: Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND)-a systems neuroscience approach to common developmental disorders. J Child Psychol Psychiatry 2021; 62:610-630. [PMID: 33432656 PMCID: PMC8609429 DOI: 10.1111/jcpp.13372] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
We present the Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND) framework, designed to reframe the field of prospective studies of neurodevelopmental disorders. In AMEND we propose conceptual, statistical and methodological approaches to separating markers of early-stage perturbations from later developmental modifiers. We describe the evidence for, and features of, these interacting components before outlining analytical approaches to studying how different profiles of early perturbations and later modifiers interact to produce phenotypic outcomes. We suggest this approach could both advance our theoretical understanding and clinical approach to the emergence of developmental psychopathology in early childhood.
Collapse
Affiliation(s)
- Mark H. Johnson
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Tony Charman
- Department of PsychologyInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Andrew Pickles
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Emily J. H. Jones
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
| |
Collapse
|
38
|
Dean B, Ginnell L, Ledsham V, Tsanas A, Telford E, Sparrow S, Fletcher-Watson S, Boardman JP. Eye-tracking for longitudinal assessment of social cognition in children born preterm. J Child Psychol Psychiatry 2021; 62:470-480. [PMID: 32729133 DOI: 10.1111/jcpp.13304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Preterm birth is associated with atypical social cognition in infancy, and cognitive impairment and social difficulties in childhood. Little is known about the stability of social cognition through childhood, and its relationship with neurodevelopment. We used eye-tracking in preterm and term-born infants to investigate social attentional preference in infancy and at 5 years, its relationship with neurodevelopment and the influence of socioeconomic deprivation. METHODS A cohort of 81 preterm and 66 term infants with mean (range) gestational age at birth 28+5 (23+2 -33+0 ) and 40+0 (37+0 -42+1 ) respectively, completed eye-tracking at 7-9 months, with a subset re-assessed at 5 years. Three free-viewing social tasks of increasing stimulus complexity were presented, and a social preference score was derived from looking time to socially informative areas. Socioeconomic data and the Mullen Scales of Early Learning at 5 years were collected. RESULTS Preterm children had lower social preference scores at 7-9 months compared with term-born controls. Term-born children's scores were stable between time points, whereas preterm children showed a significant increase, reaching equivalent scores by 5 years. Low gestational age and socioeconomic deprivation were associated with reduced social preference scores at 7-9 months. At 5 years, preterm infants had lower Early Learning Composite scores than controls, but this was not associated with social attentional preference in infancy or at 5 years. CONCLUSIONS Preterm children have reduced social attentional preference at 7-9 months compared with term-born controls, but catch up by 5 years. Infant social cognition is influenced by socioeconomic deprivation and gestational age. Social cognition and neurodevelopment have different trajectories following preterm birth.
Collapse
Affiliation(s)
- Bethan Dean
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Lorna Ginnell
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Victoria Ledsham
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | | | - Emma Telford
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Sarah Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Sue Fletcher-Watson
- Salvesen Mindroom Research Centre for Learning Difficulties, University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Siqueiros Sanchez M, Ronald A, Mason L, Jones EJH, Bölte S, Falck-Ytter T. Visual disengagement in young infants in relation to age, sex, SES, developmental level and adaptive functioning. Infant Behav Dev 2021; 63:101555. [PMID: 33799012 DOI: 10.1016/j.infbeh.2021.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/25/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Visual attention plays a key role in infants' interaction with the environment, and shapes their behavioral and brain development. As such, early problems with flexibly switching gaze from one stimulus to another (visual disengagement) have been hypothesized to lead to developmental difficulties (e.g. joint attention and social skills) over time. This study aimed to identify cross-sectional associations between performance in the Gap task (gaze shift latencies and visual attention disengagement) and measures of development and adaptive behavior in conjunction to any sex or socioeconomic status effects in infancy. We measured visual attention disengagement in 436 5-month-old infants and calculated its association with cognitive developmental level, adaptive behaviours, socioeconomic status (SES) and biological sex. In the Gap task, participants must redirect their gaze from a central stimulus to an appearing peripheral stimulus. The three experimental conditions of the task (Gap, Baseline and Overlap) differ on the timepoint when the central stimuli disappears in relation to the appearance of the peripheral stimulus: 200 ms before the peripheral stimulus appears (Gap), simultaneously to its appearance (Baseline), or with peripheral stimulus offset (Overlap). The data from the experimental conditions showed the expected pattern, with average latencies being the shortest in the Gap and longest in the Overlap condition. Females were faster (p = .004) than males in the Gap condition, which could indicate that arousal-related effects differ as a function of biological sex. Infants from higher SES were slower (p = .031) in the Overlap condition compared to lower SES infants. This suggests that basic visual attention may differ by socio-cultural background, and should be considered when studying visual attention and its developmental correlates. We observed no significant association to concurrent developmental level or adaptive function. Given its large sample size, this study provides a useful reference for future studies of visual disengagement in early infancy.
Collapse
Affiliation(s)
- Monica Siqueiros Sanchez
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Department of Women's and Children's Health, Karolinska Institutet, Sweden; Center of Psychiatry Research, Stockholm County Council, Stockholm, Sweden; Centre for Brain and Cognitive Development, Department of Psychological Science, Birkbeck, University of London, London, United Kingdom.
| | - Angelica Ronald
- Centre for Brain and Cognitive Development, Department of Psychological Science, Birkbeck, University of London, London, United Kingdom
| | - Luke Mason
- Centre for Brain and Cognitive Development, Department of Psychological Science, Birkbeck, University of London, London, United Kingdom
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Department of Psychological Science, Birkbeck, University of London, London, United Kingdom
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Department of Women's and Children's Health, Karolinska Institutet, Sweden; Center of Psychiatry Research, Stockholm County Council, Stockholm, Sweden; Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia, Australia; Child and Adolescent Psychiatry, Stockholm County Council, Stockholm, Sweden
| | - Terje Falck-Ytter
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Department of Women's and Children's Health, Karolinska Institutet, Sweden; Center of Psychiatry Research, Stockholm County Council, Stockholm, Sweden; Department of Psychology, Uppsala University, Uppsala, Sweden; Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| |
Collapse
|
40
|
Yurkovic JR, Lisandrelli G, Shaffer RC, Dominick KC, Pedapati EV, Erickson CA, Kennedy DP, Yu C. Using head-mounted eye tracking to examine visual and manual exploration during naturalistic toy play in children with and without autism spectrum disorder. Sci Rep 2021; 11:3578. [PMID: 33574367 PMCID: PMC7878779 DOI: 10.1038/s41598-021-81102-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Multimodal exploration of objects during toy play is important for a child's development and is suggested to be abnormal in children with autism spectrum disorder (ASD) due to either atypical attention or atypical action. However, little is known about how children with ASD coordinate their visual attention and manual actions during toy play. The current study aims to understand if and in what ways children with ASD generate exploratory behaviors to toys in natural, unconstrained contexts by utilizing head-mounted eye tracking to quantify moment-by-moment attention. We found no differences in how 24- to 48-mo children with and without ASD distribute their visual attention, generate manual action, or coordinate their visual and manual behaviors during toy play with a parent. Our findings suggest an intact ability and willingness of children with ASD to explore toys and suggest that context is important when studying child behavior.
Collapse
Affiliation(s)
- Julia R Yurkovic
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47401, USA.
| | - Grace Lisandrelli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47401, USA
| | - Rebecca C Shaffer
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
- School of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
- School of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Ernest V Pedapati
- Department of Psychiatry and Behavioral Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
- School of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
- School of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel P Kennedy
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47401, USA.
| | - Chen Yu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47401, USA.
- Department of Psychological and Brain Sciences, University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
41
|
Russo S, Calignano G, Dispaldro M, Valenza E. An Integrated Perspective on Spatio-Temporal Attention and Infant Language Acquisition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1592. [PMID: 33567567 PMCID: PMC7915013 DOI: 10.3390/ijerph18041592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/21/2022]
Abstract
Efficiency in the early ability to switch attention toward competing visual stimuli (spatial attention) may be linked to future ability to detect rapid acoustic changes in linguistic stimuli (temporal attention). To test this hypothesis, we compared individual performances in the same cohort of Italian-learning infants in two separate tasks: (i) an overlap task, measuring disengagement efficiency for visual stimuli at 4 months (Experiment 1), and (ii) an auditory discrimination task for trochaic syllabic sequences at 7 months (Experiment 2). Our results indicate that an infant's efficiency in processing competing information in the visual field (i.e., visuospatial attention; Exp. 1) correlates with the subsequent ability to orient temporal attention toward relevant acoustic changes in the speech signal (i.e., temporal attention; Exp. 2). These results point out the involvement of domain-general attentional processes (not specific to language or the sensorial domain) playing a pivotal role in the development of early language skills in infancy.
Collapse
Affiliation(s)
- Sofia Russo
- Department of Developmental Psychology and Socialization, University of Padua, 35131 Padua, Italy; (G.C.); (E.V.)
| | - Giulia Calignano
- Department of Developmental Psychology and Socialization, University of Padua, 35131 Padua, Italy; (G.C.); (E.V.)
| | - Marco Dispaldro
- Regionale Beratungs- und Unterstützungszentren (ReBUZ), 28213 Bremen, Germany;
| | - Eloisa Valenza
- Department of Developmental Psychology and Socialization, University of Padua, 35131 Padua, Italy; (G.C.); (E.V.)
| |
Collapse
|
42
|
Aberrant auditory system and its developmental implications for autism. SCIENCE CHINA-LIFE SCIENCES 2021; 64:861-878. [DOI: 10.1007/s11427-020-1863-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
|
43
|
Bussu G, Llera A, Jones EJH, Tye C, Charman T, Johnson MH, Beckmann CF, Buitelaar JK. Uncovering neurodevelopmental paths to autism spectrum disorder through an integrated analysis of developmental measures and neural sensitivity to faces. J Psychiatry Neurosci 2021; 46:E34-E43. [PMID: 33009904 PMCID: PMC7955837 DOI: 10.1503/jpn.190148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/19/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is highly heterogeneous in its etiology and manifestation. The neurobiological processes underlying ASD development are reflected in multiple features, from behaviour and cognition to brain functioning. An integrated analysis of these features may optimize the identification of these processes. METHODS We examined cognitive and adaptive functioning and ASD symptoms between 8 and 36 months in 161 infants at familial high risk for ASD and 71 low-risk controls; we also examined neural sensitivity to eye gaze at 8 months in a subsample of 140 high-risk and 61 low-risk infants. We used linked independent component analysis to extract patterns of variation across domains and development, and we selected the patterns significantly associated with clinical classification at 36 months. RESULTS An early process at 8 months, indicating high levels of functioning and low levels of symptoms linked to higher attention to gaze shifts, was reduced in infants who developed ASD. A longitudinal process of increasing functioning and low levels of symptoms was reduced in infants who developed ASD, and another process suggesting a stagnation in cognitive functioning at 24 months was increased in infants who developed ASD. LIMITATIONS Although the results showed a clear significant trend relating to clinical classification, we found substantial overlap between groups. CONCLUSION We uncovered underlying processes that acted together early in development and were associated with clinical outcomes. Our results highlighted the complexity of emerging ASD, which goes beyond the borders of clinical categories. Future work should integrate genetic data to investigate the specific genetic risks linked to these processes.
Collapse
Affiliation(s)
- Giorgia Bussu
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Bussu, Llera, Buitelaar, Beckmann); the Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK (Jones, Johnson); the Department of Child & Adolescent Psychiatry and MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK (Tye); and the Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust (SLaM), London, UK (Charman)
| | - Alberto Llera
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Bussu, Llera, Buitelaar, Beckmann); the Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK (Jones, Johnson); the Department of Child & Adolescent Psychiatry and MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK (Tye); and the Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust (SLaM), London, UK (Charman)
| | - Emily J H Jones
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Bussu, Llera, Buitelaar, Beckmann); the Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK (Jones, Johnson); the Department of Child & Adolescent Psychiatry and MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK (Tye); and the Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust (SLaM), London, UK (Charman)
| | - Charlotte Tye
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Bussu, Llera, Buitelaar, Beckmann); the Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK (Jones, Johnson); the Department of Child & Adolescent Psychiatry and MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK (Tye); and the Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust (SLaM), London, UK (Charman)
| | - Tony Charman
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Bussu, Llera, Buitelaar, Beckmann); the Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK (Jones, Johnson); the Department of Child & Adolescent Psychiatry and MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK (Tye); and the Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust (SLaM), London, UK (Charman)
| | - Mark H Johnson
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Bussu, Llera, Buitelaar, Beckmann); the Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK (Jones, Johnson); the Department of Child & Adolescent Psychiatry and MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK (Tye); and the Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust (SLaM), London, UK (Charman)
| | - Christian F Beckmann
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Bussu, Llera, Buitelaar, Beckmann); the Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK (Jones, Johnson); the Department of Child & Adolescent Psychiatry and MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK (Tye); and the Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust (SLaM), London, UK (Charman)
| | - Jan K Buitelaar
- From the Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Bussu, Llera, Buitelaar, Beckmann); the Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK (Jones, Johnson); the Department of Child & Adolescent Psychiatry and MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK (Tye); and the Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust (SLaM), London, UK (Charman)
| |
Collapse
|
44
|
Macari S, Milgramm A, Reed J, Shic F, Powell KK, Macris D, Chawarska K. Context-Specific Dyadic Attention Vulnerabilities During the First Year in Infants Later Developing Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2021; 60:166-175. [PMID: 32061926 PMCID: PMC9524139 DOI: 10.1016/j.jaac.2019.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 02/07/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Although some eye-tracking studies demonstrate atypical attention to faces by 6 months of age in autism spectrum disorder (ASD), behavioral studies in early infancy return largely negative results. We examined the effects of context and diagnosis on attention to faces during face-to-face live interactions in infants at high familial risk (HR) and low familial risk (LR) for ASD. METHOD Participants were 6-, 9-, and 12-month-old siblings of children with ASD who were later determined to have ASD (n = 21), other developmental challenges (HR-C; n = 74), or typical development (TD) (HR-TD; n = 32), and low-risk, typically developing controls (LR-TD; n = 49). Infants were administered the social orienting probes task, consisting of five conditions: dyadic bid, song, peek-a-boo, tickle, and toy play. Attention to an unfamiliar examiner's face was coded by blinded raters from video recordings. RESULTS At all ages, the ASD group spent less time looking at the examiner's face than the HR-C, HR-TD, and LR-TD groups during the Dyadic Bid and Tickle conditions (all p <.05), but not during the Song, Peek-a-Boo, or Toy Play conditions (all p >.23). Lower attention to faces during Dyadic Bid and Tickle conditions was significantly correlated with higher severity of autism symptoms at 18 months. CONCLUSION During the prodromal stages of the disorder, infants with ASD exhibited subtle impairments in attention to faces of interactive partners during interactions involving eye contact and child-directed speech (with and without physical contact), but not in contexts involving singing, familiar anticipatory games, or toy play. Considering the convergence with eye-tracking findings on limited attention to faces in infants later diagnosed with ASD, reduced attention to faces of interactive partners in specific contexts may constitute a promising candidate behavioral marker of ASD in infancy.
Collapse
Affiliation(s)
- Suzanne Macari
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cárdenas-de-la-Parra A, Lewis JD, Fonov VS, Botteron KN, McKinstry RC, Gerig G, Pruett JR, Dager SR, Elison JT, Styner MA, Evans AC, Piven J, Collins DL. A voxel-wise assessment of growth differences in infants developing autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 29:102551. [PMID: 33421871 PMCID: PMC7806791 DOI: 10.1016/j.nicl.2020.102551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Pediatric neuroimaging study of Autism Spectrum Disorder. Longitudinal Tensor Based Morphometry of the presymptomatic period of ASD. Differences in voxelwise growth trajectories of children with ASD. Regions with differences have been implicated in the core symptoms of ASD.
Autism Spectrum Disorder (ASD) is a phenotypically and etiologically heterogeneous developmental disorder typically diagnosed around 4 years of age. The development of biomarkers to help in earlier, presymptomatic diagnosis could facilitate earlier identification and therefore earlier intervention and may lead to better outcomes, as well as providing information to help better understand the underlying mechanisms of ASD. In this study, magnetic resonance imaging (MRI) scans of infants at high familial risk, from the Infant Brain Imaging Study (IBIS), at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth trajectories. Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. Several regions, including the posterior cingulate gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect for the interaction of group and age associated with ASD, either as an increased or a decreased growth rate of the cerebrum. In general, our results showed increased growth rate within white matter with decreased growth rate found mostly in grey matter. Overall, the regions showing increased growth rate were larger and more numerous than those with decreased growth rate. These results detail, at the voxel level, differences in brain growth trajectories in ASD during the first years of life, previously reported in terms of overall brain volume and surface area.
Collapse
Affiliation(s)
| | - J D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - V S Fonov
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - K N Botteron
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - R C McKinstry
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - G Gerig
- Tandon School of Engineering, New York University, New York, New York 10003, USA
| | - J R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - S R Dager
- Department of Radiology, University of Washington, Seattle, WA 98105, USA
| | - J T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - M A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - J Piven
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - D L Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
46
|
Eye-Tracking in Infants and Young Children at Risk for Autism Spectrum Disorder: A Systematic Review of Visual Stimuli in Experimental Paradigms. J Autism Dev Disord 2020; 51:2578-2599. [DOI: 10.1007/s10803-020-04731-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Early behavioral profiles elucidating vulnerability and resiliency to later ASD outcomes. Dev Psychopathol 2020; 32:1217-1229. [PMID: 32928316 DOI: 10.1017/s0954579420000814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Infant siblings of children with autism spectrum disorder (ASD) exhibit greater heterogeneity in behavioral presentation and outcomes relative to infants at low familial risk (LR), yet there is limited understanding of the diverse developmental profiles that characterize these infants. We applied a hierarchical agglomerative cluster analysis approach to parse developmental heterogeneity in 420 toddlers with heightened (HR) and low (LR) familial risk for ASD using measures of four dimensions of development: language, social, play, and restricted and repetitive behaviors (RRB). Results revealed a two-cluster solution. Comparisons of clusters revealed significantly lower language, social, and play performance, and higher levels of restricted and repetitive behaviors in Cluster 1 relative to Cluster 2. In Cluster 1, 25% of children were later diagnosed with ASD compared to 8% in Cluster 2. Comparisons within Cluster 1 between subgroups of toddlers having ASD+ versus ASD- 36-month outcomes revealed significantly lower functioning in the ASD+ subgroup across cognitive, motor, social, language, symbolic, and speech dimensions. Findings suggest profiles of early development associated with resiliency and vulnerability to later ASD diagnosis, with multidimensional developmental lags signaling vulnerability to ASD diagnosis.
Collapse
|
48
|
D’Souza H, Mason L, Mok KY, Startin CM, Hamburg S, Hithersay R, Baksh RA, Hardy J, Strydom A, Thomas MSC. Differential Associations of Apolipoprotein E ε4 Genotype With Attentional Abilities Across the Life Span of Individuals With Down Syndrome. JAMA Netw Open 2020; 3:e2018221. [PMID: 32986108 PMCID: PMC7522696 DOI: 10.1001/jamanetworkopen.2020.18221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPORTANCE Risk of Alzheimer disease (AD) is particularly high for individuals with Down syndrome (DS). The ε4 allele of the apolipoprotein E gene (APOE ε4) is associated with an additional risk for AD. In typical development, there is evidence that the APOE ε4 genotype is associated with an early cognitive advantage. Here we investigate associations of APOE ε4 with attention across the life span of individuals with DS. OBJECTIVE To investigate associations between APOE ε4 and attentional abilities in young children and in adults with DS. DESIGN, SETTINGS, AND PARTICIPANTS In this cross-sectional study, data were collected from 80 young children with DS (8-62 months of age) and 240 adults with DS (16-71 years of age) during the period from 2013 to 2018 at a research center to examine the association between APOE status (ε4 carrier vs ε4 noncarrier) and attentional abilities. EXPOSURE APOE status (ε4 carrier vs ε4 noncarrier). MAIN OUTCOMES AND MEASURES For the children, attentional ability was assessed using an eye-tracking paradigm, the gap-overlap task; the size of the gap effect was the primary outcome. For the adults, attentional ability was assessed using the CANTAB simple reaction time task; the standard deviation of response time latencies was the primary outcome. Cross-sectional developmental trajectories were constructed linking attentional ability with age in ε4 carriers and ε4 noncarriers for children and adults separately. RESULTS The child sample comprised 23 ε4 carriers and 57 ε4 noncarriers. The adult sample comprised 61 ε4 carriers and 179 ε4 noncarriers. For the children, a significant difference between trajectory intercepts (ηp2 = 0.14) indicated that ε4 carriers (B = 100.24 [95% CI, 18.52-181.96]) exhibited an attentional advantage over ε4 noncarriers (B = 314.78 [95% CI, 252.17-377.39]). There was an interaction between APOE status and age (ηp2 = 0.10); while the gap effect decreased with age for ε4 noncarriers (B = -4.58 [95% CI, -6.67 to -2.48]), reflecting the development of the attention system, there was no change across age in ε4 carriers (B = 0.77 [95% CI, -1.57 to 3.12]). For the adults, there was no main effect of ε4 carrier status, but there was an interaction between APOE status and age (B = 0.02 [95% CI, 0.004-0.07]), so that ε4 carriers had poorer attentional ability than ε4 noncarriers at older ages. CONCLUSIONS AND RELEVANCE APOE ε4 is associated with an attentional advantage early in development and a disadvantage later in life for individuals with DS, similar to the pattern reported in typical development. Understanding the differential role of APOE across the life span is an important step toward future interventions.
Collapse
Affiliation(s)
- Hana D’Souza
- Department of Psychology and Newnham College, University of Cambridge, Cambridge, United Kingdom
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - Kin Y. Mok
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Queen Square Institute of Neurology, Department of Neurodegenerative Disease, University College London, London, United Kingdom
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, People’s Republic of China
| | - Carla M. Startin
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
| | - Sarah Hamburg
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
| | - Rosalyn Hithersay
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom
| | - R. Asaad Baksh
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom
| | - John Hardy
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Queen Square Institute of Neurology, Department of Neurodegenerative Disease, University College London, London, United Kingdom
- UK Dementia Research Institute at University College London, University College London Institute of Neurology, Department of Neurodegenerative Disease, University College London, London, United Kingdom
- Reta Lila Weston Institute, Queen Square Institute of Neurology, University College London, London, United Kingdom
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
- Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong SAR, People’s Republic of China
| | - Andre Strydom
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom
- South London and the Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Michael S. C. Thomas
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
| |
Collapse
|
49
|
Ciarrusta J, Dimitrova R, McAlonan G. Early maturation of the social brain: How brain development provides a platform for the acquisition of social-cognitive competence. PROGRESS IN BRAIN RESEARCH 2020; 254:49-70. [PMID: 32859293 DOI: 10.1016/bs.pbr.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Across the last century psychology has provided a lot of insight about social-cognitive competence. Recognizing facial expressions, joint attention, discrimination of cues and experiencing empathy are just a few examples of the social skills humans acquire from birth to adolescence. However, how very early brain maturation provides a platform to support the attainment of highly complex social behavior later in development remains poorly understood. Magnetic Resonance Imaging provides a safe means to investigate the typical and atypical maturation of regions of the brain responsible for social cognition in as early as the perinatal period. Here, we first review some technical challenges and advances of using functional magnetic resonance imaging on developing infants to then describe current knowledge on the development of diverse systems associated with social function. We will then explain how these characteristics might differ in infants with genetic or environmental risk factors, who are vulnerable to atypical neurodevelopment. Finally, given the rapid early development of systems necessary for social skills, we propose a new framework to investigate sensitive time windows of development when neural substrates might be more vulnerable to impairment due to a genetic or environmental insult.
Collapse
Affiliation(s)
- Judit Ciarrusta
- Centre for the Developing Brain, School Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom; Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom; Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
50
|
Tenenbaum EJ, Carpenter KLH, Sabatos-DeVito M, Hashemi J, Vermeer S, Sapiro G, Dawson G. A Six-Minute Measure of Vocalizations in Toddlers with Autism Spectrum Disorder. Autism Res 2020; 13:1373-1382. [PMID: 32212384 PMCID: PMC7881362 DOI: 10.1002/aur.2293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/24/2019] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
To improve early identification of autism spectrum disorder (ASD), we need objective, reliable, and accessible measures. To that end, a previous study demonstrated that a tablet-based application (app) that assessed several autism risk behaviors distinguished between toddlers with ASD and non-ASD toddlers. Using vocal data collected during this study, we investigated whether vocalizations uttered during administration of this app can distinguish among toddlers aged 16-31 months with typical development (TD), language or developmental delay (DLD), and ASD. Participant's visual and vocal responses were recorded using the camera and microphone in a tablet while toddlers watched movies designed to elicit behaviors associated with risk for ASD. Vocalizations were then coded offline. Results showed that (a) children with ASD and DLD were less likely to produce words during app administration than TD participants; (b) the ratio of syllabic vocalizations to all vocalizations was higher among TD than ASD or DLD participants; and (c) the rates of nonsyllabic vocalizations were higher in the ASD group than in either the TD or DLD groups. Those producing more nonsyllabic vocalizations were 24 times more likely to be diagnosed with ASD. These results lend support to previous findings that early vocalizations might be useful in identifying risk for ASD in toddlers and demonstrate the feasibility of using a scalable tablet-based app for assessing vocalizations in the context of a routine pediatric visit. LAY SUMMARY: Although parents often report symptoms of autism spectrum disorder (ASD) in infancy, we are not yet reliably diagnosing ASD until much later in development. A previous study tested a tablet-based application (app) that recorded behaviors we know are associated with ASD to help identify children at risk for the disorder. Here we measured how children vocalize while they watched the movies presented on the tablet. Children with ASD were less likely to produce words, less likely to produce speechlike sounds, and more likely to produce atypical sounds while watching these movies. These measures, combined with other behaviors measured by the app, might help identify which children should be evaluated for ASD. Autism Res 2020, 13: 1373-1382. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elena J Tenenbaum
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Kimberly L H Carpenter
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Maura Sabatos-DeVito
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Jordan Hashemi
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Saritha Vermeer
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Guillermo Sapiro
- Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Computer Science, Duke University, Durham, North Carolina, USA
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| | - Geraldine Dawson
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|