1
|
Haavik J. Genomics of Attention Deficit Hyperactivity Disorder: What the Clinician Needs to Know. Psychiatr Clin North Am 2025; 48:361-376. [PMID: 40348423 DOI: 10.1016/j.psc.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
This report provides an update on current knowledge and applications of genomic research in attention deficit hyperactivity disorder (ADHD). The history, principles, and underlying assumptions for genetic studies on psychiatric disorders are reviewed. Recent DNA sequencing and genome-wide association studies have revealed common and rare genetic variants associated with ADHD. Communication of genetic knowledge in meetings with patients and their relatives and common misconceptions are addressed. The importance of recognizing genetic syndromes masquerading as ADHD or other common psychiatric disorders is emphasized and how genetic information can be used to improve diagnosis and therapy are discussed.
Collapse
Affiliation(s)
- Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
2
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Takano T, Kang G, Esparza M, Matsumura B, Stevens LJ, Hiroi YJ, Tanifuji T, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Highly demarcated structural alterations in the brain and impaired social incentive learning in Tbx1 heterozygous mice. Mol Psychiatry 2025; 30:1876-1886. [PMID: 39463450 PMCID: PMC12014486 DOI: 10.1038/s41380-024-02797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and changes in brain structures. However, because CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how each gene encoded in the 22q11.2 region contributes to structural alterations, associated mental illnesses, and their dimensions. Our previous studies identified Tbx1, a T-box family transcription factor encoded in the 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes and behavioral alterations relevant to affected structures in congenic Tbx1 heterozygous mice. Our data showed that the volumes of the anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were most robustly reduced in Tbx1 heterozygous mice. In an amygdala-dependent task, Tbx1 heterozygous mice were impaired in their ability to learn the incentive value of a social partner. The volumes of the primary and secondary auditory cortexes were increased, and acoustic, but not non-acoustic, sensorimotor gating was impaired in Tbx1 heterozygous mice. Our findings identify the brain's regional volume alterations and their relevant behavioral dimensions associated with Tbx1 heterozygosity.
Collapse
Affiliation(s)
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | | | - Takeshi Takano
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Gina Kang
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Marisa Esparza
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | | | - Yukiko J Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, UT Health, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| |
Collapse
|
3
|
Kumar K, Liao Z, Kopal J, Moreau C, Ching CRK, Modenato C, Snyder W, Kazem S, Martin CO, Bélanger AM, Fontaine VK, Jizi K, Boen R, Huguet G, Saci Z, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Dumas G, Draganski B, Almasy L, Thomopoulos SI, Jahanshad N, Sønderby IE, Andreassen OA, Glahn DC, Raznahan A, Bearden CE, Paus T, Thompson PM, Jacquemont S. Cortical differences across psychiatric disorders and associated common and rare genetic variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.16.25325971. [PMID: 40321288 PMCID: PMC12047953 DOI: 10.1101/2025.04.16.25325971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Genetic studies have identified common and rare variants increasing the risk for neurodevelopmental and psychiatric disorders (NPDs). These risk variants have also been shown to influence the structure of the cerebral cortex. However, it is unknown whether cortical differences associated with genetic variants are linked to the risk they confer for NPDs. To answer this question, we analyzed cortical thickness (CT) and surface area (SA) for common and rare variants associated with NPDs, in ~33000 individuals from the general population and clinical cohorts, as well as ENIGMA summary statistics for 8 NPDs. Rare and common genetic variants increasing risk for NPDs were preferentially associated with total SA, while NPDs were preferentially associated with mean CT. Larger effects on mean CT, but not total SA, were observed in NPD medicated subgroups. At the regional level, genetic variants were preferentially associated with effects in sensorimotor areas, while NPDs showed higher effects in association areas. We show that schizophrenia- and bipolar-disorder-associated SNPs show positive and negative effect sizes on SA suggesting that their aggregated effects cancel out in additive polygenic models. Overall, CT and SA differences associated with NPDs do not relate to those observed across individual genetic variants and may be linked with critical non-genetic factors, such as medication and the lived experience of the disorder.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Zhijie Liao
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Jakub Kopal
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara Moreau
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | - Will Snyder
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH, NIH, Bethesda, MD, USA
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sayeh Kazem
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | | | | | - Valérie K Fontaine
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Khadije Jizi
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Rune Boen
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Zohra Saci
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Ana I Silva
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - David E J Linden
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- Mental Health and Neuroscience Research Institute, Maastricht University, Netherlands
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Guillaume Dumas
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Inselspital, University of Bern, Bern, Switzerland
- University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, PA, USA
- Department of Genetics, University of Pennsylvania, PA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Ida E Sønderby
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - David C Glahn
- Harvard Medical School, Department of Psychiatry, 25 Shattuck St, Boston, MA, USA
- Boston Children's Hospital, Tommy Fuss Center for Neuropsychiatric Disease Research, 300 Longwood Avenue, Boston, MA, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH, NIH, Bethesda, MD, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Tomas Paus
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
- Departments of Psychiatry and Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | | |
Collapse
|
4
|
Kushima I, Nakatochi M, Ozaki N. Copy Number Variations and Human Well-Being: Integrating Psychiatric, Physical, and Socioeconomic Perspectives. Biol Psychiatry 2024:S0006-3223(24)01788-8. [PMID: 39643102 DOI: 10.1016/j.biopsych.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Copy number variations (CNVs) have emerged as crucial genetic factors that influence a wide spectrum of human health outcomes, with particularly strong associations to psychiatric disorders. In this review, we present a synthesis of diverse impacts of psychiatric disorder-associated CNVs on neurodevelopment, brain function, and physical health across the lifespan. Large-scale studies have revealed that CNV carriers exhibit an increased risk for psychiatric disorders, cognitive deficits, sleep disturbances, neurological disorders, and other physical conditions, including cardiovascular diseases, diabetes, and renal disease, highlighting the wide-ranging impact of CNVs beyond the brain. Neuroimaging studies have revealed substantial CNV effects on brain structure, from cortical and subcortical alterations to white matter microstructure, with effect sizes often exceeding those observed in idiopathic psychiatric disorders. Cellular and animal models have begun to elucidate dynamic CNV effects on neurodevelopment, neuronal function, and cellular energy metabolism, while revealing complex CNV-environment interactions and cell type-specific responses, particularly in studies of 22q11.2 deletion syndrome. This review also explores the complex interplay between psychiatric and physical health conditions in CNV carriers and how these interactions contribute to adverse socioeconomic outcomes, including reduced educational attainment and income levels, creating a feedback loop that further impacts health outcomes. Finally, in this review, we also highlight research limitations and propose key priorities for clinical implementation, including the need for longitudinal studies, standardized guidelines for CNV result reporting and genetic counseling, and integrated care networks to provide a foundation for advancing the field of precision psychiatry.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Bonev B, Castelo-Branco G, Chen F, Codeluppi S, Corces MR, Fan J, Heiman M, Harris K, Inoue F, Kellis M, Levine A, Lotfollahi M, Luo C, Maynard KR, Nitzan M, Ramani V, Satijia R, Schirmer L, Shen Y, Sun N, Green GS, Theis F, Wang X, Welch JD, Gokce O, Konopka G, Liddelow S, Macosko E, Ali Bayraktar O, Habib N, Nowakowski TJ. Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery. Nat Neurosci 2024; 27:2292-2309. [PMID: 39627587 PMCID: PMC11999325 DOI: 10.1038/s41593-024-01806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/23/2024] [Indexed: 12/13/2024]
Abstract
Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells. Here, we summarize the most promising and robust technologies in these areas, discuss their strengths and limitations and discuss key computational approaches for analysis of these complex datasets. We highlight how data sharing and integration, documentation, visualization and benchmarking of results contribute to transparency, reproducibility, collaboration and democratization in neuroscience, and discuss needs and opportunities for future technology development and analysis.
Collapse
Affiliation(s)
- Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Manolis Kellis
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ariel Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mo Lotfollahi
- Institute of Computational Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vijay Ramani
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Rahul Satijia
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Lucas Schirmer
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yin Shen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Na Sun
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gilad S Green
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fabian Theis
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiao Wang
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ozgun Gokce
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Evan Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Tomasz J Nowakowski
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Schleifer CH, O'Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of gene dosage and development on subcortical nuclei volumes in individuals with 22q11.2 copy number variations. Neuropsychopharmacology 2024; 49:1024-1032. [PMID: 38431758 PMCID: PMC11039652 DOI: 10.1038/s41386-024-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Paus T. Population Neuroscience: Principles and Advances. Curr Top Behav Neurosci 2024; 68:3-34. [PMID: 38589637 DOI: 10.1007/7854_2024_474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In population neuroscience, three disciplines come together to advance our knowledge of factors that shape the human brain: neuroscience, genetics, and epidemiology (Paus, Human Brain Mapping 31:891-903, 2010). Here, I will come back to some of the background material reviewed in more detail in our previous book (Paus, Population Neuroscience, 2013), followed by a brief overview of current advances and challenges faced by this integrative approach.
Collapse
Affiliation(s)
- Tomáš Paus
- Department of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Ching CRK, Kang MJY, Thompson PM. Large-Scale Neuroimaging of Mental Illness. Curr Top Behav Neurosci 2024; 68:371-397. [PMID: 38554248 DOI: 10.1007/7854_2024_462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Neuroimaging has provided important insights into the brain variations related to mental illness. Inconsistencies in prior studies, however, call for methods that lead to more replicable and generalizable brain markers that can reliably predict illness severity, treatment course, and prognosis. A paradigm shift is underway with large-scale international research teams actively pooling data and resources to drive consensus findings and test emerging methods aimed at achieving the goals of precision psychiatry. In parallel with large-scale psychiatric genomics studies, international consortia combining neuroimaging data are mapping the transdiagnostic brain signatures of mental illness on an unprecedented scale. This chapter discusses the major challenges, recent findings, and a roadmap for developing better neuroimaging-based tools and markers for mental illness.
Collapse
Affiliation(s)
- Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Melody J Y Kang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| |
Collapse
|