1
|
Thormählen J, Krüger B, Nogueira W. Automatic localization of cochlear implant electrodes using cone beam computed tomography images. Biomed Eng Online 2024; 23:65. [PMID: 38987764 PMCID: PMC11562364 DOI: 10.1186/s12938-024-01249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Cochlear implants (CI) are implantable medical devices that enable the perception of sounds and the understanding of speech by electrically stimulating the auditory nerve in case of inner ear damage. The stimulation takes place via an array of electrodes surgically inserted in the cochlea. After CI implantation, cone beam computed tomography (CBCT) is used to evaluate the position of the electrodes. Moreover, CBCT is used in research studies to investigate the relationship between the position of the electrodes and the hearing outcome of CI user. In clinical routine, the estimation of the position of the CI electrodes is done manually, which is very time-consuming. RESULTS The aim of this study was to optimize procedures of automatic electrode localization from CBCT data following CI implantation. For this, we analyzed the performance of automatic electrode localization for 150 CBCT data sets of 10 different types of electrode arrays. Our own implementation of the method by Noble and Dawant (Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Springer, pp 152-159, 2015. https://doi.org/10.1007/978-3-319-24571-3_19 ) for automated electrode localization served as a benchmark for evaluation. Differences in the detection rate and the localization accuracy across types of electrode arrays were evaluated and errors were classified. Based on this analysis, we developed a strategy to optimize procedures of automatic electrode localization. It was shown that particularly distantly spaced electrodes in combination with a deep insertion can lead to apical-basal confusions in the localization procedure. This confusion prevents electrodes from being detected or assigned correctly, leading to a deterioration in localization accuracy. CONCLUSIONS We propose an extended cost function for automatic electrode localization methods that prevents double detection of electrodes to avoid apical-basal confusions. This significantly increased the detection rate by 11.15 percent points and improved the overall localization accuracy by 0.53 mm (1.75 voxels). In comparison to other methods, our proposed cost function does not require any prior knowledge about the individual cochlea anatomy.
Collapse
Affiliation(s)
- Jasmin Thormählen
- Department of Otolaryngology, Hannover Medical School, Karl-Wiechert-Allee 3, 30625, Hannover, Germany
| | - Benjamin Krüger
- Department of Otolaryngology, Hannover Medical School, Karl-Wiechert-Allee 3, 30625, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Waldo Nogueira
- Department of Otolaryngology, Hannover Medical School, Karl-Wiechert-Allee 3, 30625, Hannover, Germany.
- Cluster of Excellence Hearing4all, Hannover, Germany.
| |
Collapse
|
2
|
Mewes A, Bennett C, Dambon J, Brademann G, Hey M. Evaluation of CI electrode position from imaging: comparison of an automated technique with the established manual method. BMC Med Imaging 2023; 23:143. [PMID: 37773060 PMCID: PMC10543862 DOI: 10.1186/s12880-023-01102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND A manual evaluation of the CI electrode position from CT and DVT scans may be affected by diagnostic errors due to cognitive biases. The aim of this study was to compare the CI electrode localization using an automated method (image-guided cochlear implant programming, IGCIP) with the clinically established manual method. METHODS This prospective experimental study was conducted on a dataset comprising N=50 subjects undergoing cochlear implantation with a Nucleus® CI532 or CI632 Slim Modiolar electrode. Scalar localization, electrode-to-modiolar axis distances (EMD) and angular insertion depth (aDOI) were compared between the automated IGCIP tool and the manual method. Two raters made the manual measurements, and the interrater reliability (±1.96·SD) was determined as the reference for the method comparison. The method comparison was performed using a correlation analysis and a Bland-Altman analysis. RESULTS Concerning the scalar localization, all electrodes were localized both manually and automatically in the scala tympani. The interrater differences ranged between ±0.2 mm (EMD) and ±10° (aDOI). There was a bias between the automatic and manual method in measuring both localization parameters, which on the one hand was smaller than the interrater variations. On the other hand, this bias depended on the magnitude of the EMD respectively aDOI. A post-hoc analysis revealed that the deviations between the methods were likely due to a different selection of mid-modiolar axis. CONCLUSIONS The IGCIP is a promising tool for automated processing of CT and DVT scans and has useful functionality such as being able to segment the cochlear using post-operative scans. When measuring EMD, the IGCIP tool is superior to the manual method because the smallest possible distance to the axis is determined depending on the cochlear turn, whereas the manual method selects the helicotrema as the reference point rigidly. Functionality to deal with motion artifacts and measurements of aDOI according to the consensus approach are necessary, otherwise the IGCIP is not unrestrictedly ready for clinical use.
Collapse
Affiliation(s)
- Alexander Mewes
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| | | | - Jan Dambon
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Goetz Brademann
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Matthias Hey
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| |
Collapse
|
3
|
Cleary M, Bernstein JGW, Stakhovskaya OA, Noble J, Kolberg E, Jensen KK, Hoa M, Kim HJ, Goupell MJ. The Relationship Between Interaural Insertion-Depth Differences, Scalar Location, and Interaural Time-Difference Processing in Adult Bilateral Cochlear-Implant Listeners. Trends Hear 2022; 26:23312165221129165. [PMID: 36379607 PMCID: PMC9669699 DOI: 10.1177/23312165221129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) in acoustic hearing involves comparison of interaurally frequency-matched inputs. Bilateral cochlear-implant arrays are, however, only approximately aligned in angular insertion depth and scalar location across the cochleae. Interaural place-of-stimulation mismatch therefore has the potential to impact binaural perception. ITD left-right discrimination thresholds were examined in 23 postlingually-deafened adult bilateral cochlear-implant listeners, using low-rate constant-amplitude pulse trains presented via direct stimulation to single electrodes in each ear. Angular insertion depth and scalar location measured from computed-tomography (CT) scans were used to quantify interaural mismatch, and their association with binaural performance was assessed. Number-matched electrodes displayed a median interaural insertion-depth mismatch of 18° and generally yielded best or near-best ITD discrimination thresholds. Two listeners whose discrimination thresholds did not show this pattern were confirmed via CT to have atypical array placement. Listeners with more number-matched electrode pairs located in the scala tympani displayed better thresholds than listeners with fewer such pairs. ITD tuning curves as a function of interaural electrode separation were broad; bandwidths at twice the threshold minimum averaged 10.5 electrodes (equivalent to 5.9 mm for a Cochlear-brand pre-curved array). Larger angular insertion-depth differences were associated with wider bandwidths. Wide ITD tuning curve bandwidths appear to be a product of both monopolar stimulation and angular insertion-depth mismatch. Cases of good ITD sensitivity with very wide bandwidths suggest that precise matching of insertion depth is not critical for discrimination thresholds. Further prioritizing scala tympani location at implantation should, however, benefit ITD sensitivity.
Collapse
Affiliation(s)
- Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Olga A. Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Jack Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA,Department of Hearing and Speech Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA,Department of Otolaryngology, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Elizabeth Kolberg
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Hung Jeffrey Kim
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA,Matthew J. Goupell, Department of Hearing
and Speech Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Schvartz-Leyzac KC, Zwolan TA, Pfingst BE. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Hear Res 2021; 406:108257. [PMID: 34020316 DOI: 10.1016/j.heares.2021.108257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Studies in cochlear implanted animals show that the IPG Effect for ECAP growth functions (i.e., the magnitude of the change in ECAP amplitude growth function (AGF) slope or peak amplitude when the interphase gap (IPG) is increased) can be used to estimate the densities of spiral ganglion neurons (SGNs) near the electrode stimulation and recording sites. In humans, the same ECAP IPG Effect measures correlate with speech recognition performance. The present study examined the efficacy of selecting electrode sites for stimulation based on the IPG Effect, in order to improve performance of CI users on speech recognition tasks. We measured the ECAP IPG Effect for peak amplitude in adult (>18 years old) CI users (N= 18 ears), and created experimental programs to stimulate electrodes with either the highest or lowest ECAP IPG Effect for peak amplitude. Subjects also listened to a program without any electrodes deactivated. In a subset of subject ears (11/18), we compared performance differences between the experimental programs to post-operative computerized tomography (CT) scans to examine underlying factors that might contribute to the efficacy of an electrode site-selection approach. For sentences-in-noise, average performance was better when subjects listened to the experimental program that stimulated electrodes with the highest rather than the lowest IPG Effect for ECAP peak amplitude. A similar pattern was noted for transmission and perception of consonant place cues in a consonant recognition task. However, on average, performance when listening to a program with higher IPG Effect values was equal to that when listening with all electrodes activated. Results also suggest that scalar location (scala tympani or vestibuli) should be considered when using an ECAP-based electrode site-selection procedure to optimize CI performance.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, United States; Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, United States.
| | - Teresa A Zwolan
- Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, United States
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, United States
| |
Collapse
|
5
|
O'Neill ER, Kreft HA, Oxenham AJ. Cognitive factors contribute to speech perception in cochlear-implant users and age-matched normal-hearing listeners under vocoded conditions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:195. [PMID: 31370651 PMCID: PMC6637026 DOI: 10.1121/1.5116009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study examined the contribution of perceptual and cognitive factors to speech-perception abilities in cochlear-implant (CI) users. Thirty CI users were tested on word intelligibility in sentences with and without semantic context, presented in quiet and in noise. Performance was compared with measures of spectral-ripple detection and discrimination, thought to reflect peripheral processing, as well as with cognitive measures of working memory and non-verbal intelligence. Thirty age-matched and thirty younger normal-hearing (NH) adults also participated, listening via tone-excited vocoders, adjusted to produce mean performance for speech in noise comparable to that of the CI group. Results suggest that CI users may rely more heavily on semantic context than younger or older NH listeners, and that non-auditory working memory explains significant variance in the CI and age-matched NH groups. Between-subject variability in spectral-ripple detection thresholds was similar across groups, despite the spectral resolution for all NH listeners being limited by the same vocoder, whereas speech perception scores were more variable between CI users than between NH listeners. The results highlight the potential importance of central factors in explaining individual differences in CI users and question the extent to which standard measures of spectral resolution in CIs reflect purely peripheral processing.
Collapse
Affiliation(s)
- Erin R O'Neill
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Heather A Kreft
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
6
|
Kashikar TS, Kerwin TF, Moberly AC, Wiet GJ. A review of simulation applications in temporal bone surgery. Laryngoscope Investig Otolaryngol 2019; 4:420-424. [PMID: 31453352 PMCID: PMC6703115 DOI: 10.1002/lio2.277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 03/17/2019] [Indexed: 01/04/2023] Open
Abstract
Background Temporal bone surgery is a technically challenging and high-risk procedure in an anatomically complex area. Safe temporal bone surgery emphasizes a consummate anatomic understanding and technique development that requires the guidance of an experienced otologic surgeon and years of practice. Temporal bone simulation can augment otologic surgical training and enable rehearsal of surgical procedures. Objectives The purpose of this article is to provide an updated review of temporal bone simulation platforms and their uses. Data Sources PubMed literature search. Search terms included temporal bone, temporal bone simulation, virtual reality (VR), and presurgical planning and rehearsal. Discussion Various simulation platforms such as cadaveric bone, three-dimensional (3D) printed models, and VR simulation have been used for temporal bone surgery training. However, each simulation method has its drawbacks. There is a need to improve upon current simulation platforms to enhance surgical training and skills assessment, as well as a need to explore other clinically significant applications of simulation, such as preoperative planning and rehearsal, in otologic surgery. Conclusions There is no replacement for actual surgical experience, but high-fidelity temporal bone models such as those produced with 3D printing and computer simulation have emerged as promising tools in otolaryngologic surgery. Improvements in the fidelity of both 3D printed and VR simulators as well as integration of a standardized assessment format would allow for an expansion in the use of these simulation platforms in training and assessment. Level of Evidence 5.
Collapse
Affiliation(s)
- Tanisha S Kashikar
- Ohio University Heritage College of Osteopathic Medicine Athens Ohio U.S.A
| | - Thomas F Kerwin
- Office of Research The Ohio State University Columbus Ohio U.S.A
| | - Aaron C Moberly
- Department of Otolaryngology-Head and Neck Surgery The Ohio State University Columbus Ohio U.S.A
| | - Gregory J Wiet
- Department of Otolaryngology-Head and Neck Surgery The Ohio State University Columbus Ohio U.S.A.,Department of Pediatric Otolaryngology Nationwide Children's Hospital Columbus Ohio U.S.A
| |
Collapse
|
7
|
DeVries L, Arenberg JG. Current Focusing to Reduce Channel Interaction for Distant Electrodes in Cochlear Implant Programs. Trends Hear 2018; 22:2331216518813811. [PMID: 30488764 PMCID: PMC6277758 DOI: 10.1177/2331216518813811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
Speech understanding abilities are highly variable among cochlear implant (CI) listeners. Poor electrode-neuron interfaces (ENIs) caused by sparse neural survival or distant electrode placement may lead to increased channel interaction and reduced speech perception. Currently, it is not possible to directly measure neural survival in CI listeners; therefore, obtaining information about electrode position is an alternative approach to assessing ENIs. This information can be estimated with computerized tomography (CT) imaging; however, postoperative CT imaging is not often available. A reliable method to assess channel interaction, such as the psychophysical tuning curve (PTC), offers an alternative way to identify poor ENIs. This study aimed to determine (a) the within-subject relationship between CT-estimated electrode distance and PTC bandwidths, and (b) whether using focused stimulation on channels with suspected poor ENI improves vowel identification and sentence recognition. In 13 CI listeners, CT estimates of electrode-to-modiolus distance and PTCs bandwidths were measured for all available electrodes. Two test programs were created, wherein a subset of electrodes used focused stimulation based on (a) broad PTC bandwidth (Tuning) and (b) far electrode-to-modiolus distance (Distance). Two control programs were also created: (a) Those channels not focused in the Distance program (Inverse-Control), and (b) an all-channel monopolar program (Monopolar-Control). Across subjects, scores on the Distance and Tuning programs were significantly higher than the Inverse-Control program, and similar to the Monopolar-Control program. Subjective ratings were similar for all programs. These findings suggest that focusing channels suspected to have a high degree of channel interaction result in quite different outcomes, acutely.
Collapse
Affiliation(s)
- Lindsay DeVries
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Julie G. Arenberg
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Appachi S, Schwartz S, Ishman S, Anne S. Utility of intraoperative imaging in cochlear implantation: A systematic review. Laryngoscope 2017; 128:1914-1921. [DOI: 10.1002/lary.26973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Swathi Appachi
- Department of Otolaryngology–Head and Neck SurgeryThe Cleveland ClinicCleveland
| | - Seth Schwartz
- Department of Otolaryngology–Head and Neck SurgeryVirginia MasonSeattle Washington U.S.A
| | - Stacey Ishman
- Divisions of Pediatric Otolaryngology–Head and Neck Surgery and Pulmonary MedicineCincinnati Children's Hospital Medical Center
- Department of Otolaryngology–Head and Neck SurgeryUniversity of CincinnatiCincinnati Ohio
| | - Samantha Anne
- Department of Otolaryngology–Head and Neck SurgeryThe Cleveland ClinicCleveland
| |
Collapse
|
9
|
Elfarnawany M, Alam SR, Rohani SA, Zhu N, Agrawal SK, Ladak HM. Micro-CT versus synchrotron radiation phase contrast imaging of human cochlea. J Microsc 2016; 265:349-357. [PMID: 27935035 DOI: 10.1111/jmi.12507] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 10/30/2016] [Indexed: 11/26/2022]
Abstract
High-resolution images of the cochlea are used to develop atlases to extract anatomical features from low-resolution clinical computed tomography (CT) images. We compare visualization and contrast of conventional absorption-based micro-CT to synchrotron radiation phase contrast imaging (SR-PCI) images of whole unstained, nondecalcified human cochleae. Three cadaveric cochleae were imaged using SR-PCI and micro-CT. Images were visually compared and contrast-to-noise ratios (CNRs) were computed from n = 27 regions-of-interest (enclosing soft tissue) for quantitative comparisons. Three-dimensional (3D) models of cochlear internal structures were constructed from SR-PCI images using a semiautomatic segmentation method. SR-PCI images provided superior visualization of soft tissue microstructures over conventional micro-CT images. CNR improved from 7.5 ± 2.5 in micro-CT images to 18.0 ± 4.3 in SR-PCI images (p < 0.0001). The semiautomatic segmentations yielded accurate reconstructions of 3D models of the intracochlear anatomy. The improved visualization, contrast and modelling achieved using SR-PCI images are very promising for developing atlas-based segmentation methods for postoperative evaluation of cochlear implant surgery.
Collapse
Affiliation(s)
- M Elfarnawany
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - S Riyahi Alam
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - S A Rohani
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
| | - N Zhu
- Bio-Medical Imaging and Therapy Facility, Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S K Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada.,Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - H M Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada.,Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
O'Connell BP, Hunter JB, Wanna GB. The importance of electrode location in cochlear implantation. Laryngoscope Investig Otolaryngol 2016; 1:169-174. [PMID: 28894813 PMCID: PMC5510268 DOI: 10.1002/lio2.42] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 11/29/2022] Open
Abstract
Objectives As indications for cochlear implantation have expanded to include patients with more residual hearing, increasing emphasis has been placed on minimally traumatic electrode insertion. Histopathologic evaluation remains the gold standard for evaluation of cochlear trauma, but advances in imaging techniques have allowed clinicians to determine scalar electrode location in vivo. This review will examine the relationship between scalar location of electrode arrays and audiologic outcomes. In addition, the impact that surgical approach, electrode design, and insertion depth have on scalar location will be evaluated. Data Sources: PubMed literature review Review Methods: A review of the current literature was conducted to analyze the relationship between scalar location of cochlear implant electrode arrays and speech perception outcomes. Further, data were reviewed to determine the impact that surgical variables have on scalar electrode location. Results Electrode insertions into the scala tympani are associated with superior speech perception and higher rates of hearing preservation. Lateral wall electrodes, and round window/extended round window approaches appear to maximize the likelihood of a scala tympani insertion. It does not appear that deeper insertions are associated with higher rates of scalar translocation. Conclusion Superior audiologic outcomes are observed for electrode arrays inserted entirely within the scala tympani. The majority of clinical data demonstrate that lateral wall design and a round window approach increase the likelihood of a scala tympani insertion. Level of Evidence N/A.
Collapse
Affiliation(s)
- Brendan P O'Connell
- Department of Otolaryngology-Head and Neck Surgery Vanderbilt University Medical Center Nashville Tennessee U.S.A
| | - Jacob B Hunter
- Department of Otolaryngology-Head and Neck Surgery Vanderbilt University Medical Center Nashville Tennessee U.S.A
| | - George B Wanna
- Department of Otolaryngology-Head and Neck Surgery Vanderbilt University Medical Center Nashville Tennessee U.S.A
| |
Collapse
|
11
|
Damage to inner ear structure during cochlear implantation: Correlation between insertion force and radio-histological findings in temporal bone specimens. Hear Res 2016; 344:90-97. [PMID: 27825860 DOI: 10.1016/j.heares.2016.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022]
Abstract
Cochlear implant insertion should be as least traumatic as possible in order to reduce trauma to the cochlear sensory structures. The force applied to the cochlea during array insertion should be controlled to limit insertion-related damage. The relationship between insertion force and histological traumatism remains to be demonstrated. Twelve freshly frozen cadaveric temporal bones were implanted with a long straight electrodes array through an anterior extended round window insertion using a motorized insertion tool with real-time measurement of the insertion force. Anatomical parameters, measured on a pre-implantation cone beam CT scan, position of the array and force metrics were correlated with post-implantation scanning electron microscopy images and histological damage assessment. An atraumatic insertion occurred in six cochleae, a translocation in five cochleae and a basilar membrane rupture in one cochlea. The translocation always occurred in the 150- to 180-degree region. In the case of traumatic insertion, different force profiles were observed with a more irregular curve arising from the presence of an early peak force (30 ± 18.2 mN). This corresponded approximately to the first point of contact of the array with the lateral wall of the cochlea. Atraumatic and traumatic insertions had significantly different force values at the same depth of insertion (p < 0.001, two-way ANOVA), and significantly different regression lines (y = 1.34x + 0.7 for atraumatic and y = 3.37x + 0.84 for traumatic insertion, p < 0.001, ANCOVA). In the present study, the insertion force was correlated with the intracochlear trauma. The 150- to 180-degree region represented the area at risk for scalar translocation for this straight electrodes array. Insertion force curves with different sets of values were identified for traumatic and atraumatic insertions; these values should be considered during motorized insertion of an implant so as to be able to modify the insertion parameters (e.g axis of insertion) and facilitate preservation of endocochlear structures.
Collapse
|
12
|
Electrophysiological detection of scalar changing perimodiolar cochlear electrode arrays: a long term follow-up study. Eur Arch Otorhinolaryngol 2016; 273:4251-4256. [DOI: 10.1007/s00405-016-4175-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
|
13
|
Kalkman RK, Briaire JJ, Frijns JHM. Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature. NETWORK (BRISTOL, ENGLAND) 2016; 27:107-134. [PMID: 27135951 DOI: 10.3109/0954898x.2016.1171412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since the 1970s, computational modeling has been used to investigate the fundamental mechanisms of cochlear implant stimulation. Lumped parameter models and analytical models have been used to simulate cochlear potentials, as well as three-dimensional volume conduction models based on the Finite Difference, Finite Element, and Boundary Element methods. Additionally, in order to simulate neural responses, several of these cochlear models have been combined with nerve models, which were either simple activation functions or active nerve fiber models of the cochlear auditory neurons. This review paper will present an overview of the ways in which these computational models have been employed to study different stimulation strategies and electrode designs. Research into stimulation strategies has concentrated mainly on multipolar stimulation as a means of achieving current focussing and current steering, while modeling work on electrode design has been chiefly concerned with finding the optimal position and insertion depth of the electrode array. Finally, the present and future of computational modeling of the electrically stimulated cochlea is discussed.
Collapse
Affiliation(s)
- Randy K Kalkman
- a ENT-Department , Leiden University Medical Centre , Leiden , The Netherlands
| | - Jeroen J Briaire
- a ENT-Department , Leiden University Medical Centre , Leiden , The Netherlands
- b Leiden Institute for Brain and Cognition , Leiden , The Netherlands
| | - Johan H M Frijns
- a ENT-Department , Leiden University Medical Centre , Leiden , The Netherlands
- b Leiden Institute for Brain and Cognition , Leiden , The Netherlands
| |
Collapse
|
14
|
Mittmann P, Todt I, Wesarg T, Arndt S, Ernst A, Hassepass F. Electrophysiological Detection of Scalar-Changing Perimodiolar Cochlear Electrode Arrays: A Six-Month Follow-Up Study. Audiol Neurootol 2015; 20:400-5. [PMID: 26529610 DOI: 10.1159/000441346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022] Open
Abstract
The position of the cochlear electrode array within the scala tympani is essential for optimal hearing benefit. An intraoperative neural response telemetry ratio (NRT ratio; a threshold ratio of pairs of apical and basal electrodes) has been established, which can provide information about the intracochlear electrode array position. Out of a previous collective of 85 patients, the 6-month follow-up electrophysiological NRT data of 37 patients have been included in this study. Comparing the intraoperatively estimated NRT ratio with the 6-month follow-up NRT ratio, it remained unchanged intraindividually in 92% of cases. Within this group the NRT ratio and the intracochlear position of the electrode array matched in all cases. There were two newly occurring mismatches and one new match was observed. After a period of 6 months the NRT ratio remained unchanged in most cases and showed a good correlation with the intracochlear position of the electrode array.
Collapse
Affiliation(s)
- Philipp Mittmann
- Department of Otolaryngology, Unfallkrankenhaus Berlin (UKB), Berlin, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Vandersteen C, Demarcy T, Roger C, Fontas E, Raffaelli C, Ayache N, Delingette H, Guevara N. Impact of the surgical experience on cochleostomy location: a comparative temporal bone study between endaural and posterior tympanotomy approaches for cochlear implantation. Eur Arch Otorhinolaryngol 2015; 273:2355-61. [PMID: 26475332 DOI: 10.1007/s00405-015-3792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
Abstract
The goal of this study was to evaluate, in the hands of an inexperienced surgeon, the cochleostomy location of an endaural approach (MINV) compared to the conventional posterior tympanotomy (MPT) approach. Since 2010, we use in the ENT department of Nice a new surgical endaural approach to perform cochlear implantation. In the hands of an inexperienced surgeon, the position of the cochleostomy has not yet been studied in detail for this technique. This is a prospective study of 24 human heads. Straight electrode arrays were implanted by an inexperienced surgeon: on one side using MPT and on the other side using MINV. The cochleostomies were all antero-inferior, but they were performed through an endaural approach with the MINV or a posterior tympanotomy approach with the MPT. The positioning of the cochleostomies into the scala tympani was evaluated by microdissection. Cochleostomies performed through the endaural approach were well placed into the scala tympani more frequently than those performed through the posterior tympanotomy approach (87.5 and 16.7 %, respectively, p ≤ 0.001). This study highlights the biggest challenge for an inexperienced surgeon to achieve a reliable cochleostomy through a posterior tympanotomy, which requires years of experience. In case of an uncomfortable view through a posterior tympanotomy, an inexperienced surgeon might be able to successfully perform a cochleostomy through an endaural (combined approach) or an extended round window approach in order to avoid opening the scala vestibuli.
Collapse
Affiliation(s)
- Clair Vandersteen
- Department of Ear Nose Throat Surgery, Institut Universitaire de la Face et du Cou, Centre Hospitalo-Universitaire, 31 Avenue de Valombrose, 06100, Nice, France.
| | - Thomas Demarcy
- Asclepios Research Team, INRIA, 2004 Route des Lucioles, Valbonne, 06902, France
| | - Coralie Roger
- Department of Biostatistics, Cimiez's Hospital, Centre Hospitalo-Universitaire, 4 Avenue Reine Victoria, Nice, 06000, France
| | - Eric Fontas
- Department of Biostatistics, Cimiez's Hospital, Centre Hospitalo-Universitaire, 4 Avenue Reine Victoria, Nice, 06000, France
| | - Charles Raffaelli
- Department of Radiology, Pasteur's Hospital, Centre Hospitalo-Universitaire, 30 Voie Romaine, Nice, 06000, France
| | - Nicholas Ayache
- Asclepios Research Team, INRIA, 2004 Route des Lucioles, Valbonne, 06902, France
| | - Hervé Delingette
- Asclepios Research Team, INRIA, 2004 Route des Lucioles, Valbonne, 06902, France
| | - Nicolas Guevara
- Department of Ear Nose Throat Surgery, Institut Universitaire de la Face et du Cou, Centre Hospitalo-Universitaire, 31 Avenue de Valombrose, 06100, Nice, France
| |
Collapse
|
16
|
Poley M, Overmyer E, Craun P, Holcomb M, Reilly B, White D, Preciado D. Does pediatric cochlear implant insertion technique affect intraoperative neural response telemetry thresholds? Int J Pediatr Otorhinolaryngol 2015; 79:1404-7. [PMID: 26166451 DOI: 10.1016/j.ijporl.2015.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Recent reports of mostly adult patients suggest round window insertion is less traumatic than cochleostomy for cochlear implantation (CI), while other reports have indicated that curved electrode arrays lower the neural response telemetry (NRT) threshold and consume less power. We aimed to compare the intraoperative neural response telemetry (NRT) thresholds in children receiving cochlear implants through a cochleostomy (COCH) vs. a round window (RW) approach, as well as patients receiving a curved array vs. a straight one. DESIGN A direct case-cohort comparison of NRT in pediatric CI recipients at two large tertiary pediatric hospitals from 2008 through 2014 was done. Univariate Mann-Whitney analyses and one-wayANOVA were performed to compare average NRT in RW vs. COCH insertion, and curved vs. straight electrodes. Multivariate regression was performed to control for age and pre- vs. postlingual patient status. RESULTS Overall, 236 children were included, between January 2008 and October 2014 at two large tertiary referral medical centers. A total of 52 patients received a RW insertion and 184 received a cochleostomy. There was no statistically significant difference between RW insertion (187.9±18.7) and COCH (183.4±17.1) (p=0.125). The patients were divided into four categories: RW insertion with curved electrode (175.0±11.2), RW with straight electrode (192.1±18.8), COCH with curved electrode (182.2±16.7), and COCH with straight electrode (193.0±20.8). The lowest NRT current thresholds were achieved with curved electrode array insertions through the RW (p=0.001). Multivariate regression analysis revealed the following parameters were not independently associated with differences in NRT responses: RWI vs. COCH (p=0.12) and pre- vs. postlingual (p=0.18). The difference in NRT levels between curved electrode arrays and straight was shown to be statistically significant (p=0.00075). CONCLUSIONS When controlling for insertion technique or pre- vs. postlingual hearing loss, the curved electrode array correlates with lower NRT thresholds. Although studies to examine functional language performance of these recipients are pending, initial results of this multi-institutional trial suggest that curved electrodes indeed result in lower NRT levels, particularly when inserted through the RW.
Collapse
Affiliation(s)
- Marian Poley
- Divisions of Pediatric Otolaryngology and Hearing and Speech, Children's National Medical Center, Washington, DC, United States
| | - Emma Overmyer
- Divisions of Pediatric Otolaryngology and Hearing and Speech, Children's National Medical Center, Washington, DC, United States
| | - Patricia Craun
- Divisions of Pediatric Otolaryngology and Hearing and Speech, Children's National Medical Center, Washington, DC, United States
| | - Meredith Holcomb
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Brian Reilly
- Divisions of Pediatric Otolaryngology and Hearing and Speech, Children's National Medical Center, Washington, DC, United States
| | - David White
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Diego Preciado
- Divisions of Pediatric Otolaryngology and Hearing and Speech, Children's National Medical Center, Washington, DC, United States.
| |
Collapse
|
17
|
van der Marel KS, Briaire JJ, Verbist BM, Muurling TJ, Frijns JH. The Influence of Cochlear Implant Electrode Position on Performance. Audiol Neurootol 2015; 20:202-11. [DOI: 10.1159/000377616] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/01/2015] [Indexed: 11/19/2022] Open
Abstract
Objectives: To study the relation between variables related to cochlear implant electrode position and speech perception performance scores in a large patient population. Design: The study sample consisted of 203 patients implanted with a CII or HiRes90K implant with a HiFocus 1 or 1J electrode of Advanced Bionics. Phoneme and word score averages for the 1- and 2-year follow-up were calculated for 41 prelingually deaf and 162 postlingually deaf patients. Analyses to reveal correlations between these performance outcomes and 6 position-related variables (angle of most basal electrode contact, surgical insertion angle, surgical insertion, wrapping factor, angular insertion depth, linear insertion depth) were executed. The scalar location, as an indication for the presence of intracochlear trauma, and modiolus proximity beyond the basal turn were not evaluated in this study. In addition, different patient-specific variables (age at implantation, age at onset of hearing loss, duration of deafness, preoperative phoneme and word scores) were tested for correlation with performance. Results: The performance scores of prelingual patients were correlated with age at onset of hearing loss, duration of deafness and preoperative scores. For the postlingual patients, performance showed correlations with all 5 patient-specific variables. None of the 6 position-related variables influenced speech perception in cochlear implant patients. Conclusions: Although several patient-specific variables showed correlations with speech perception outcomes, not one of the studied angular and linear position-related variables turned out to have a demonstrable influence on performance.
Collapse
|
18
|
Nogueira W, Litvak LM, Saoji AA, Büchner A. Design and evaluation of a cochlear implant strategy based on a "Phantom" channel. PLoS One 2015; 10:e0120148. [PMID: 25806818 PMCID: PMC4373925 DOI: 10.1371/journal.pone.0120148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/19/2015] [Indexed: 11/30/2022] Open
Abstract
Unbalanced bipolar stimulation, delivered using charge balanced pulses, was used to produce "Phantom stimulation", stimulation beyond the most apical contact of a cochlear implant's electrode array. The Phantom channel was allocated audio frequencies below 300 Hz in a speech coding strategy, conveying energy some two octaves lower than the clinical strategy and hence delivering the fundamental frequency of speech and of many musical tones. A group of 12 Advanced Bionics cochlear implant recipients took part in a chronic study investigating the fitting of the Phantom strategy and speech and music perception when using Phantom. The evaluation of speech in noise was performed immediately after fitting Phantom for the first time (Session 1) and after one month of take-home experience (Session 2). A repeated measures of analysis of variance (ANOVA) within factors strategy (Clinical, Phantom) and interaction time (Session 1, Session 2) revealed a significant effect for the interaction time and strategy. Phantom obtained a significant improvement in speech intelligibility after one month of use. Furthermore, a trend towards a better performance with Phantom (48%) with respect to F120 (37%) after 1 month of use failed to reach significance after type 1 error correction. Questionnaire results show a preference for Phantom when listening to music, likely driven by an improved balance between high and low frequencies.
Collapse
Affiliation(s)
- Waldo Nogueira
- Department of Otolaryngology, Medical University Hannover, Cluster of Excellence “Hearing4all”, Hannover, Germany
| | - Leonid M. Litvak
- Research and Technology Group, Advanced Bionics LLC, Valencia CA, USA
| | - Aniket A. Saoji
- Research and Technology Group, Advanced Bionics LLC, Valencia CA, USA
| | - Andreas Büchner
- Department of Otolaryngology, Medical University Hannover, Cluster of Excellence “Hearing4all”, Hannover, Germany
| |
Collapse
|
19
|
Grasmeder ML, Verschuur CA, Batty VB. Optimizing frequency-to-electrode allocation for individual cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:3313. [PMID: 25480076 DOI: 10.1121/1.4900831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Individual adjustment of frequency-to-electrode assignment in cochlear implants (CIs) may potentially improve speech perception outcomes. Twelve adult CI users were recruited for an experiment, in which frequency maps were adjusted using insertion angles estimated from post-operative x rays; results were analyzed for ten participants with good quality x rays. The allocations were a mapping to the Greenwood function, a compressed map limited to the area containing spiral ganglion (SG) cells, a reduced frequency range map (RFR), and participants' clinical maps. A trial period of at least six weeks was given for the clinical, Greenwood, and SG maps although participants could return to their clinical map if they wished. Performance with the Greenwood map was poor for both sentence and vowel perception and correlated with insertion angle; performance with the SG map was poorer than for the clinical map. The RFR map was significantly better than the clinical map for three participants, for sentence perception, but worse for three others. Those with improved performance had relatively deep insertions and poor electrode discrimination ability for apical electrodes. The results suggest that CI performance could be improved by adjustment of the frequency allocation, based on a measure of insertion angle and/or electrode discrimination ability.
Collapse
Affiliation(s)
- Mary L Grasmeder
- Auditory Implant Service, Faculty of Engineering and the Environment, Building 19, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Carl A Verschuur
- Auditory Implant Service, Faculty of Engineering and the Environment, Building 19, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Vincent B Batty
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
20
|
Zhou L, Friedmann DR, Treaba C, Peng R, Roland JT. Does cochleostomy location influence electrode trajectory and intracochlear trauma? Laryngoscope 2014; 125:966-71. [DOI: 10.1002/lary.24986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Zhou
- Department of Otolaryngology; New York University School of Medicine; New York New York
| | - David R. Friedmann
- Department of Otolaryngology; New York University School of Medicine; New York New York
| | - Claudiu Treaba
- Research & Technology Labs, Cochlear Americas Corporation; Centennial Colorado U.S.A
| | - Robert Peng
- Department of Otolaryngology; New York University School of Medicine; New York New York
| | - J. Thomas Roland
- Department of Otolaryngology; New York University School of Medicine; New York New York
| |
Collapse
|
21
|
Zeng FG, Rebscher SJ, Fu QJ, Chen H, Sun X, Yin L, Ping L, Feng H, Yang S, Gong S, Yang B, Kang HY, Gao N, Chi F. Development and evaluation of the Nurotron 26-electrode cochlear implant system. Hear Res 2014; 322:188-99. [PMID: 25281795 DOI: 10.1016/j.heares.2014.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/18/2014] [Accepted: 09/03/2014] [Indexed: 11/29/2022]
Abstract
Although the cochlear implant has been widely acknowledged as the most successful neural prosthesis, only a fraction of hearing-impaired people who can potentially benefit from a cochlear implant have actually received one due to its limited awareness, accessibility, and affordability. To help overcome these limitations, a 26-electrode cochlear implant has been developed to receive China's Food and Drug Administration (CFDA) approval in 2011 and Conformité Européenne (CE) Marking in 2012. The present article describes design philosophy, system specification, and technical verification of the Nurotron device, which includes advanced digital signal processing and 4 current sources with multiple amplitude resolutions that not only are compatible with perceptual capability but also allow interleaved or simultaneous stimulation. The article also presents 3-year longitudinal evaluation data from 60 human subjects who have received the Nurotron device. The objective measures show that electrode impedance decreased within the first month of device use, but was stable until a slight increase at the end of two years. The subjective loudness measures show that electric stimulation threshold was stable while the maximal comfort level increased over the 3 years. Mandarin sentence recognition increased from the pre-surgical 0%-correct score to a plateau of about 80% correct with 6-month use of the device. Both indirect and direct comparisons indicate indistinguishable performance differences between the Nurotron system and other commercially available devices. The present 26-electrode cochlear implant has already helped to lower the price of cochlear implantation in China and will likely contribute to increased cochlear implant access and success in the rest of the world. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Fan-Gang Zeng
- Center for Hearing Research, University of California, Irvine, CA 92697, USA.
| | - Stephen J Rebscher
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Qian-Jie Fu
- Department of Otolaryngology - Head and Neck Surgery, University of California, Los Angeles, CA 90095, USA
| | - Hongbin Chen
- Nurotron Biotechnology Inc., Hangzhou, Zhejiang 310011, China
| | - Xiaoan Sun
- Nurotron Biotechnology Inc., Hangzhou, Zhejiang 310011, China
| | - Li Yin
- Nurotron Biotechnology Inc., Hangzhou, Zhejiang 310011, China
| | - Lichuan Ping
- Nurotron Biotechnology Inc., Hangzhou, Zhejiang 310011, China
| | - Haihong Feng
- Shanghai Acoustics Laboratory, Institute of Acoustics, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shiming Yang
- Department of Otolaryngology - Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Shusheng Gong
- Department of Otolaryngology - Head and Neck Surgery, Beijing Tongren Hospital of Capital Medical University, Beijing 100730, China
| | - Beibei Yang
- Department of Otolaryngology - Head and Neck Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310000, China
| | - Hou-Yong Kang
- Department of Otolaryngology - Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Na Gao
- Department of Otolaryngology - Head and Neck Surgery, The Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Fanglu Chi
- Department of Otolaryngology - Head and Neck Surgery, The Eye and ENT Hospital of Fudan University, Shanghai 200031, China.
| |
Collapse
|
22
|
Leon L, Cavilla MS, Doran MB, Warren FM, Abbott JJ. Scala-Tympani Phantom With Cochleostomy and Round-Window Openings for Cochlear-Implant Insertion Experiments. J Med Device 2014. [DOI: 10.1115/1.4027617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Experiments with scala-tympani (ST) phantoms are used to evaluate new electrode arrays and cochlear-implant insertion techniques. To date, phantoms have not accounted for clinical orientations and geometric differences between round-window (RW) insertions and anteroinferior cochleostomy insertions. For improved assessments of insertion experiments, we present a scala-tympani phantom that offers three distinct benefits over previous phantoms: it mimics the standard otologic position, it accommodates for both round-window and anteroinferior cochleostomy insertions, and it incorporates a visual coordinate system based on industry consensus making standardized angular measurements possible.
Collapse
Affiliation(s)
- Lisandro Leon
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 e-mail:
| | - Matt S. Cavilla
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 e-mail:
| | - Michael B. Doran
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 e-mail:
| | - Frank M. Warren
- Department of Otolaryngology, Division of Otology and Skull Base Surgery, Oregon Health & Science University, Portland, OR 97239 e-mail:
| | - Jake J. Abbott
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 e-mail:
| |
Collapse
|
23
|
Place pitch versus electrode location in a realistic computational model of the implanted human cochlea. Hear Res 2014; 315:10-24. [PMID: 24975087 DOI: 10.1016/j.heares.2014.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/06/2014] [Accepted: 06/15/2014] [Indexed: 11/23/2022]
Abstract
Place pitch was investigated in a computational model of the implanted human cochlea containing nerve fibres with realistic trajectories that take the variable distance between the organ of Corti and spiral ganglion into account. The model was further updated from previous studies by including fluid compartments in the modiolus and updating the electrical conductivity values of (temporal) bone and the modiolus, based on clinical data. Four different cochlear geometries are used, modelled with both lateral and perimodiolar implants, and their neural excitation patterns were examined for nerve fibres modelled with and without peripheral processes. Additionally, equations were derived from the model geometries that describe Greenwood's frequency map as a function of cochlear angle at the basilar membrane as well as at the spiral ganglion. The main findings are: (I) in the first (basal) turn of the cochlea, cochlear implant induced pitch can be predicted fairly well using the Greenwood function. (II) Beyond the first turn this pitch becomes increasingly unpredictable, greatly dependent on stimulus level, state of the cochlear neurons and the electrode's distance from the modiolus. (III) After the first turn cochlear implant induced pitch decreases as stimulus level increases, but the pitch does not reach values expected from direct spiral ganglion stimulation unless the peripheral processes are missing. (IV) Electrode contacts near the end of the spiral ganglion or deeper elicit very unpredictable pitch, with broad frequency ranges that strongly overlap with those of neighbouring contacts. (V) The characteristic place pitch for stimulation at either the organ of Corti or the spiral ganglion can be described as a function of cochlear angle by the equations presented in this paper.
Collapse
|
24
|
Wanna GB, Noble JH, Carlson ML, Gifford RH, Dietrich MS, Haynes DS, Dawant BM, Labadie RF. Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope 2014; 124 Suppl 6:S1-7. [PMID: 24764083 DOI: 10.1002/lary.24728] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Three surgical approaches: cochleostomy (C), round window (RW), and extended round window (ERW); and two electrodes types: lateral wall (LW) and perimodiolar (PM), account for the vast majority of cochlear implantations. The goal of this study was to analyze the relationship between surgical approach and electrode type with final intracochlear position of the electrode array and subsequent hearing outcomes. STUDY DESIGN Comparative longitudinal study. METHODS One hundred postlingually implanted adult patients were enrolled in the study. From the postoperative scan, intracochlear electrode location was determined and using rigid registration, transformed back to the preoperative computed tomography which had intracochlear anatomy (scala tympani and scala vestibuli) specified using a statistical shape model based on 10 microCT scans of human cadaveric cochleae. Likelihood ratio chi-square statistics were used to evaluate for differences in electrode placement with respect to surgical approach (C, RW, ERW) and type of electrode (LW, PM). RESULTS Electrode placement completely within the scala tympani (ST) was more common for LW than were PM designs (89% vs. 58%; P < 0.001). RW and ERW approaches were associated with lower rates of electrode placement outside the ST than was the cochleostomy approach (9%, 16%, and 63%, respectively; P < 0.001). This pattern held true regardless of whether the implant was LW or PM. When examining electrode placement and hearing outcome, those with electrode residing completely within the ST had better consonant-nucleus-consonant word scores than did patients with any number of electrodes located outside the ST (P = 0.045). CONCLUSION These data suggest that RW and ERW approaches and LW electrodes are associated with an increased likelihood of successful ST placement. Furthermore, electrode position entirely within the ST confers superior audiological outcomes. LEVEL OF EVIDENCE 2b.
Collapse
Affiliation(s)
- George B Wanna
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University, Nashville, Tennessee, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Long CJ, Holden TA, McClelland GH, Parkinson WS, Shelton C, Kelsall DC, Smith ZM. Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J Assoc Res Otolaryngol 2014; 15:293-304. [PMID: 24477546 DOI: 10.1007/s10162-013-0437-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/20/2013] [Indexed: 01/04/2023] Open
Abstract
This study examines the relationship between focused-stimulation thresholds, electrode positions, and speech understanding in deaf subjects treated with a cochlear implant (CI). Focused stimulation is more selective than monopolar stimulation, which excites broad regions of the cochlea, so may be more sensitive as a probe of neural survival patterns. Focused thresholds are on average higher and more variable across electrodes than monopolar thresholds. We presume that relatively high focused thresholds are the result of larger distances between the electrodes and the neurons. Two factors are likely to contribute to this distance: (1) the physical position of electrodes relative to the modiolus, where the excitable auditory neurons are normally located, and (2) the pattern of neural survival along the length of the cochlea, since local holes in the neural population will increase the distance between an electrode and the nearest neurons. Electrode-to-modiolus distance was measured from high-resolution CT scans of the cochleae of CI users whose focused-stimulation thresholds were also measured. A hierarchical set of linear models of electrode-to-modiolus distance versus threshold showed a significant increase in threshold with electrode-to-modiolus distance (average slope = 11 dB/mm). The residual of these models was hypothesized to reflect neural survival in each subject. Consonant-Nucleus-Consonant (CNC) word scores were significantly correlated with the within-subject variance of threshold (r(2) = 0.82), but not with within-subject variance of electrode distance (r(2) = 0.03). Speech understanding also significantly correlated with how well distance explained each subject's threshold data (r(2) = 0.63). That is, subjects with focused thresholds that were well described by electrode position had better speech scores. Our results suggest that speech understanding is highly impacted by individual patterns of neural survival and that these patterns manifest themselves in how well (or poorly) electrode position predicts focused thresholds.
Collapse
Affiliation(s)
- Christopher J Long
- Research and Technology Labs, Cochlear Ltd., 13059 E. Peakview Avenue, Centennial, CO, 80111, USA,
| | | | | | | | | | | | | |
Collapse
|
26
|
Automatic localization of cochlear implant electrodes in CT. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2014; 17:331-8. [PMID: 25333135 DOI: 10.1007/978-3-319-10404-1_42] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cochlear Implants (CI) are surgically implanted neural prosthetic devices used to treat severe-to-profound hearing loss. Recent studies have suggested that hearing outcomes with CIs are correlated with the location where individual electrodes in the implanted electrode array are placed, but techniques proposed for determining electrode location have been too coarse and labor intensive to permit detailed analysis on large numbers of datasets. In this paper, we present a fully automatic snake-based method for accurately localizing CI electrodes in clinical post-implantation CTs. Our results show that average electrode localization errors with the method are 0.21 millimeters. These results indicate that our method could be used in future large scale studies to analyze the relationship between electrode position and hearing outcome, which potentially could lead to technological advances that improve hearing outcomes with CIs.
Collapse
|
27
|
Saoji AA, Landsberger DM, Padilla M, Litvak LM. Masking patterns for monopolar and phantom electrode stimulation in cochlear implants. Hear Res 2013; 298:109-16. [PMID: 23299125 PMCID: PMC3755121 DOI: 10.1016/j.heares.2012.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/05/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022]
Abstract
Phantom electrode (PE) stimulation consists of out-of-phase stimulation of two electrodes. When presented at the apex of the electrode array, phantom stimulation is known to produce a lower pitch sensation than monopolar (MP) stimulation on the most apical electrode. The ratio of the current between the primary electrode (PEL) and the compensating electrode (CEL) is represented by the coefficient σ, which ranges from 0 (monopolar) to 1 (full bipolar). The exact mechanism by which PE stimulation produces a lower pitch sensation is unclear. In the present study, unmasked and masked thresholds were obtained using a forward masking paradigm to estimate the spread of current for MP and PE stimulation. Masked thresholds were measured for two phantom electrode configurations (1) PEL = 4, CEL = 5 (lower pitch phantom) and (2) PEL = 4, CEL = 3 (higher pitch phantom). The unmasked thresholds were subtracted from the masked thresholds to obtain masking patterns which were normalized to their peak. The masking patterns reveal (1) differences in the spread of excitation that are consistent with the direction of pitch shift produced by PE stimulation, and (2) narrower spread of electrical excitation for PE stimulation relative to MP stimulation.
Collapse
Affiliation(s)
- Aniket A. Saoji
- Research and Technology group, Advanced Bionics, LLC, 28515 Westinghouse Place, Valencia CA 91355, USA
| | | | - Monica Padilla
- House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | - Leonid M. Litvak
- Research and Technology group, Advanced Bionics, LLC, 28515 Westinghouse Place, Valencia CA 91355, USA
| |
Collapse
|
28
|
Lazard DS, Vincent C, Venail F, Van de Heyning P, Truy E, Sterkers O, Skarzynski PH, Skarzynski H, Schauwers K, O'Leary S, Mawman D, Maat B, Kleine-Punte A, Huber AM, Green K, Govaerts PJ, Fraysse B, Dowell R, Dillier N, Burke E, Beynon A, Bergeron F, Başkent D, Artières F, Blamey PJ. Pre-, per- and postoperative factors affecting performance of postlinguistically deaf adults using cochlear implants: a new conceptual model over time. PLoS One 2012; 7:e48739. [PMID: 23152797 PMCID: PMC3494723 DOI: 10.1371/journal.pone.0048739] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To test the influence of multiple factors on cochlear implant (CI) speech performance in quiet and in noise for postlinguistically deaf adults, and to design a model of predicted auditory performance with a CI as a function of the significant factors. STUDY DESIGN Retrospective multi-centre study. METHODS Data from 2251 patients implanted since 2003 in 15 international centres were collected. Speech scores in quiet and in noise were converted into percentile ranks to remove differences between centres. The influence of 15 pre-, per- and postoperative factors, such as the duration of moderate hearing loss (mHL), the surgical approach (cochleostomy or round window approach), the angle of insertion, the percentage of active electrodes, and the brand of device were tested. The usual factors, duration of profound HL (pHL), age, etiology, duration of CI experience, that are already known to have an influence, were included in the statistical analyses. RESULTS The significant factors were: the pure tone average threshold of the better ear, the brand of device, the percentage of active electrodes, the use of hearing aids (HAs) during the period of pHL, and the duration of mHL. CONCLUSIONS A new model was designed showing a decrease of performance that started during the period of mHL, and became faster during the period of pHL. The use of bilateral HAs slowed down the related central reorganization that is the likely cause of the decreased performance.
Collapse
|
29
|
Erixon E, Köbler S, Rask-Andersen H. Cochlear implantation and hearing preservation: Results in 21 consecutively operated patients using the round window approach. Acta Otolaryngol 2012; 132:923-31. [PMID: 22667762 DOI: 10.3109/00016489.2012.680198] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Prevalent hearing conservation may be achieved after round window (RW) cochlear implantation using soft and flexible electrode arrays if variations of RW anatomy, topography, and facial nerve position are considered. The most favorable electrode insertion depth remains to be established. OBJECTIVES We assessed the incidence of cochlear function after cochlear implant (CI) electrode insertion through the RW in our first 21 consecutively operated patients aimed at hearing conservation. METHODS Eleven patients had a preoperative low frequency hearing suitable for electro-acoustic stimulation. Hearing was preserved in an additional nine patients at their request with the intention to use full frequency CI stimulation. Anatomic variations of the RW were carefully considered using our temporal bone collection of micro-dissected ears. Electrode extension was assessed on X-ray by measuring the insertion angle of the first electrode and intra-cochlear length and correlated with audiometric data. RESULTS There was no incidence of total loss of residual hearing in any of the patients. A slight deterioration of low frequency thresholds occurred in some patients. Mean hearing loss at 125-500 Hz was 14.4 dB at 1 month following surgery and 15.6 dB after 1 year. Insertion angle (300-540°) and depth (17.5-28.5 mm) were not statistically correlated to hearing loss.
Collapse
Affiliation(s)
- Elsa Erixon
- Department of Otorhinolaryngology, Uppsala University Hospital and Department of Surgical Sciences, Section of ORL Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
Connor SEJ, Holland NJ, Agger A, Leong AC, Varghese RA, Jiang D, Fitzgerald O'Connor A. Round window electrode insertion potentiates retention in the scala tympani. Acta Otolaryngol 2012; 132:932-7. [PMID: 22667826 DOI: 10.3109/00016489.2012.680493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS The round window membrane (RWM)-intentioned approach is superior to the traditional bony cochleostomy (BC) approach in obtaining electrode placement within the scala tympani (ST). OBJECTIVE Cochlear implant outcome is influenced by several factors, including optimal placement and retention of the electrode array within the ST. The present study aimed to assess whether the RWM route is superior to a traditional BC for placement and retention of the electrode array in the ST. METHODS This was a prospective consecutive non-randomized comparison study. All patients were implanted with the Advanced Bionics 1J electrode array. The RWM approach (n = 32) was compared with a traditional BC group (n = 33). The outcome measure was the electrode position as judged within the scalar chambers at four points along the basal turn using postoperative computed tomography (CT). RESULTS When the mean position scores were compared, the RWM-intentioned group had significantly more electrodes directed towards the ST compartment than the BC group (p < 0.001). The RWM electrodes achieved 94% ST retention compared with 64% for the BC group (p < 0.05). All electrodes stayed in the ST in the RWM group, whereas in the BC group 9% crossed from the ST to the scala vestibuli.
Collapse
|
31
|
Kratchman LB, Schurzig D, McRackan TR, Balachandran R, Noble JH, Webster RJ, Labadie RF. A manually operated, advance off-stylet insertion tool for minimally invasive cochlear implantation surgery. IEEE Trans Biomed Eng 2012; 59:2792-800. [PMID: 22851233 DOI: 10.1109/tbme.2012.2210220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current technique for cochlear implantation (CI) surgery requires a mastoidectomy to gain access to the cochlea for electrode array insertion. It has been shown that microstereotactic frames can enable an image-guided, minimally invasive approach to CI surgery called percutaneous cochlear implantation (PCI) that uses a single drill hole for electrode array insertion, avoiding a more invasive mastoidectomy. Current clinical methods for electrode array insertion are not compatible with PCI surgery because they require a mastoidectomy to access the cochlea; thus, we have developed a manually operated electrode array insertion tool that can be deployed through a PCI drill hole. The tool can be adjusted using a preoperative CT scan for accurate execution of the advance off-stylet (AOS) insertion technique and requires less skill to operate than is currently required to implant electrode arrays. We performed three cadaver insertion experiments using the AOS technique and determined that all insertions were successful using CT and microdissection.
Collapse
Affiliation(s)
- Louis B Kratchman
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Schurzig D, Labadie RF, Hussong A, Rau TS, Webster RJ. Design of a Tool Integrating Force Sensing With Automated Insertion in Cochlear Implantation. IEEE/ASME TRANSACTIONS ON MECHATRONICS : A JOINT PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY AND THE ASME DYNAMIC SYSTEMS AND CONTROL DIVISION 2012; 17:381-389. [PMID: 23482414 PMCID: PMC3591473 DOI: 10.1109/tmech.2011.2106795] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The quality of hearing restored to a deaf patient by a cochlear implant in hearing preservation cochlear implant surgery (and possibly also in routine cochlear implant surgery) is believed to depend on preserving delicate cochlear membranes while accurately inserting an electrode array deep into the spiral cochlea. Membrane rupture forces, and possibly, other indicators of suboptimal placement, are below the threshold detectable by human hands, motivating a force sensing insertion tool. Furthermore, recent studies have shown significant variability in manual insertion forces and velocities that may explain some instances of imperfect placement. Toward addressing this, an automated insertion tool was recently developed by Hussong et al. By following the same insertion tool concept, in this paper, we present mechanical enhancements that improve the surgeon's interface with the device and make it smaller and lighter. We also present electomechanical design of new components enabling integrated force sensing. The tool is designed to be sufficiently compact and light that it can be mounted to a microstereotactic frame for accurate image-guided preinsertion positioning. The new integrated force sensing system is capable of resolving forces as small as 0.005 N, and we provide experimental illustration of using forces to detect errors in electrode insertion.
Collapse
Affiliation(s)
- Daniel Schurzig
- Vanderbilt University, Nashville, TN 37235 USA. He is now with Leibniz University Hannover, 30167 Hannover, Germany
| | - Robert F. Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 USA, and also with Vanderbilt University, Nashville, TN 37235 USA
| | | | | | | |
Collapse
|
33
|
Hoy CL, Everett WN, Yildirim M, Kobler J, Zeitels SM, Ben-Yakar A. Towards endoscopic ultrafast laser microsurgery of vocal folds. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:038002. [PMID: 22502583 DOI: 10.1117/1.jbo.17.3.038002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Vocal fold scarring is a predominant cause of voice disorders yet lacks a reliable treatment method. The injection of soft biomaterials to improve mechanical compliance of the vocal folds has emerged as a promising treatment. Here, we study the use of precise femtosecond laser microsurgery to ablate subsurface voids, with a goal of eventually creating a plane in dense subepithelial scar tissue into which biomaterials can be injected for their improved localization. Specifically, we demonstrate the ablation of small subepithelial voids in porcine vocal fold tissue up to 120 [micro sign]m below the surface such that larger voids in the active area of vocal fold mucosa (~3×10 mm(2)) can eventually be ablated in about 3 min. We use sub-μJ, 776-nm pulses from a compact femtosecond fiber laser system operating at a 500-kHz repetition rate. The use of relatively high repetition rates, with a small number of overlapping pulses, is critical to achieving ablation in a very short time while still avoiding significant heat deposition. Additionally, we use the same laser for nonlinear optical imaging to provide visual feedback of tissue structure and to confirm successful ablation. The ablation parameters, including pulse duration, pulse energy, spot size, and scanning speed, are comparable to the specifications in our recently developed miniaturized femtosecond laser surgery probes, illustrating the feasibility of developing an ultrafast laser surgical instrument.
Collapse
Affiliation(s)
- Christopher L Hoy
- The University of Texas at Austin, Department of Mechanical Engineering, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
34
|
Macherey O, Carlyon RP. Place-pitch manipulations with cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:2225-36. [PMID: 22423718 PMCID: PMC3383798 DOI: 10.1121/1.3677260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pitch can be conveyed to cochlear implant listeners via both place of excitation and temporal cues. The transmission of place cues may be hampered by several factors, including limitations on the insertion depth and number of implanted electrodes, and the broad current spread produced by monopolar stimulation. The following series of experiments investigate several methods to partially overcome these limitations. Experiment 1 compares two recently published techniques that aim to activate more apical fibers than produced by monopolar or bipolar stimulation of the most apical contacts. The first technique (phantom stimulation) manipulates the current spread by simultaneously stimulating two electrodes with opposite-polarity pulses of different amplitudes. The second technique manipulates the neural spread of excitation by using asymmetric pulses and exploiting the polarity-sensitive properties of auditory nerve fibers. The two techniques yielded similar results and were shown to produce lower place-pitch percepts than stimulation of monopolar and bipolar symmetric pulses. Furthermore, combining these two techniques may be advantageous in a clinical setting. Experiment 2 proposes a method to create place pitches intermediate to those produced by physical electrodes by using charge-balanced asymmetric pulses in bipolar mode with different degrees of asymmetry.
Collapse
Affiliation(s)
- Olivier Macherey
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom.
| | | |
Collapse
|
35
|
Ahmad FI, Choudhury B, De Mason CE, Adunka OF, Finley CC, Fitzpatrick DC. Detection of intracochlear damage during cochlear implant electrode insertion using extracochlear measurements in the gerbil. Laryngoscope 2012; 122:636-44. [PMID: 22252968 DOI: 10.1002/lary.22488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS An intraoperative monitoring algorithm during cochlear implant electrode insertion could be used to detect trauma and guide electrode placement relative to surviving hair cells. The aim of this report was to assess the feasibility of using extracochlear recording sites to monitor acoustically evoked responses from surviving hair cells and neural elements during implantation in an animal model. STUDY DESIGN Animal experiments. METHODS The normal-hearing gerbil was used. Two recording methods, one using a lock-in amplifier and another using Fourier analysis of recorded signals, were used to obtain frequency-specific information about the responses to tones. Amplitude and threshold determinations were made at the round window and at three extracochlear sites. To induce intracochlear damage, a platinum-iridium wire was inserted through the round window. The wire was advanced, and changes in the potentials were correlated with cochlear contact. Anatomic integrity was assessed using cochlea whole mount preparations. RESULTS In general, the lock-in amplifier showed greater sensitivity and lower thresholds at higher frequencies relative to the Fourier method. Also, the lock-in amplifier was more resistant to masking effects. Both systems were able to detect loss of cochlear potentials secondary to intracochlear trauma. Histologic damage was seen in all cases and corresponded to electrophysiologic changes. CONCLUSIONS Impact of electrodes on cochlear structures affecting cochlear performance could be detected from several extracochlear sites. The lock-in amplifier demonstrated greater sensitivity and resistance to noise when compared to the fast Fourier transform recording paradigm. The latter showed greater flexibility of detecting and separating hair cell and neural potentials.
Collapse
Affiliation(s)
- Faisal I Ahmad
- Department of Otolargynology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7070, USA
| | | | | | | | | | | |
Collapse
|
36
|
Briggs RJS, Tykocinski M, Lazsig R, Aschendorff A, Lenarz T, Stöver T, Fraysse B, Marx M, Roland JT, Roland PS, Wright CG, Gantz BJ, Patrick JF, Risi F. Development and evaluation of the modiolar research array--multi-centre collaborative study in human temporal bones. Cochlear Implants Int 2012; 12:129-39. [PMID: 21917200 PMCID: PMC3159433 DOI: 10.1179/1754762811y0000000007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Multi-centre collaborative study to develop and refine the design of a prototype thin perimodiolar cochlear implant electrode array and to assess feasibility for use in human subjects. STUDY DESIGN Multi-centre temporal bone insertion studies. MATERIALS AND METHODS The modiolar research array (MRA) is a thin pre-curved electrode that is held straight for initial insertion with an external sheath rather than an internal stylet. Between November 2006 and February 2009, six iterations of electrode design were studied in 21 separate insertion studies in which 140 electrode insertions were performed in 85 human temporal bones by 12 surgeons. These studies aimed at addressing four fundamental questions related to the electrode concept, being: (1) Could a sheath result in additional intra-cochlear trauma? (2) Could a sheath accommodate variations in cochlea size and anatomies? (3) Could a sheath be inserted via the round window? and (4) Could a sheath be safely removed once the electrode had been inserted? These questions were investigated within these studies using a number of evaluation techniques, including X-ray and microfluoroscopy, acrylic fixation and temporal bone histologic sectioning, temporal bone microdissection of cochlear structures with electrode visualization, rotational tomography, and insertion force analysis. RESULTS Frequent examples of electrode rotation and tip fold-over were demonstrated with the initial designs. This was typically caused by excessive curvature of the electrode tip, and also difficulty in handling of the electrode and sheath. The degree of tip curvature was progressively relaxed in subsequent versions with a corresponding reduction in the frequency of tip fold-over. Modifications to the sheath facilitated electrode insertion and sheath removal. Insertion studies with the final MRA design demonstrated minimal trauma, excellent perimodiolar placement, and very small electrode dimensions within scala tympani. Force measurements in temporal bones demonstrated negligible force on cochlear structures with angular insertion depths of between 390 and 450°. CONCLUSION The MRA is a novel, very thin perimodiolar prototype electrode array that has been developed using a systematic collaborative approach. The different evaluation techniques employed by the investigators contributed to the early identification of issues and generation of solutions. Regarding the four fundamental questions related to the electrode concept, the studies demonstrated that (1) the sheath did not result in additional intra-cochlear trauma; (2) the sheath could accommodate variations in cochlea size and anatomies; (3) the sheath was more successfully inserted via a cochleostomy than via the round window; and (4) the sheath could be safely removed once the electrode had been inserted.
Collapse
|
37
|
[Insertion results for Contour™ and Contour Advance™ electrodes: are there individual learning curves?]. HNO 2011; 59:448-52. [PMID: 21505922 DOI: 10.1007/s00106-011-2319-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of our study was to evaluate results of insertion following cochlear implantation with Contour™ and Contour Advance™ electrode arrays in adult patients and to analyze individual insertion results for three experienced surgeons. We performed a retrospective analysis of postoperative 3D volume tomography results in 223 adult patients. The intracochlear electrode position was evaluated to be in scala tympani, scala vestibuli or with a dislocation from one scala to the other. Surgical methods were analyzed and assigned to the different surgeons. We observed a significant increase for scala tympani insertions from initially 33% to 84% and a reduction in dislocations from scala tympani to scala vestibuli from 71% with the Contour™ electrode to 22% with the Contour Advance™ electrode. Results for the different surgeons varied individually with regard to scala tympani insertion rates and dislocation rates over time. 3D Volume tomography offers an important method for postoperative quality control following cochlear implant surgery. The intracochlear electrode position could be determined in all cases. We were able to identify individual learning curves for insertion results. Controlling the insertion quality serves as a feedback of surgical results and may be helpful for improving surgical quality and thus rehabilitation results.
Collapse
|
38
|
Noble JH, Labadie RF, Majdani O, Dawant BM. Automatic segmentation of intracochlear anatomy in conventional CT. IEEE Trans Biomed Eng 2011; 58:2625-32. [PMID: 21708495 DOI: 10.1109/tbme.2011.2160262] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cochlear implant surgery is a procedure performed to treat profound hearing loss. Clinical results suggest that implanting the electrode in the scala tympani, one of the two principal cavities inside the cochlea, may result in better hearing restoration. Segmentation of intracochlear cavities could thus aid the surgeon to choose the point of entry and angle of approach that maximize the likelihood of successful implant insertion, which may lead to more substantial hearing restoration. However, because the membrane that separates the intracochlear cavities is too thin to be seen in conventional in vivo imaging, traditional segmentation techniques are inadequate. In this paper, we circumvent this problem by creating an active shape model with micro CT (μCT) scans of the cochlea acquired ex vivo. We then use this model to segment conventional CT scans. The model is fitted to the partial information available in the conventional scans and used to estimate the position of structures not visible in these images. Quantitative evaluation of our method, made possible by the set of μCTs, results in Dice similarity coefficients averaging 0.75. Mean and maximum surface errors average 0.21 and 0.80 mm.
Collapse
Affiliation(s)
- Jack H Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
39
|
Holden LK, Reeder RM, Firszt JB, Finley CC. Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system. Int J Audiol 2011; 50:255-69. [PMID: 21275500 PMCID: PMC3434686 DOI: 10.3109/14992027.2010.533200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aimed to provide guidelines to optimize perception of soft speech and speech in noise for Advanced Bionics cochlear implant (CI) users. DESIGN Three programs differing in T-levels were created for ten subjects. Using the T-level setting that provided the lowest FM-tone, sound-field threshold levels for each subject, three additional programs were created with input dynamic range (IDR) settings of 50, 65 and 80 dB. STUDY SAMPLE Subjects were postlinguistically deaf adults implanted with either the Clarion CII or 90K CI devices. RESULTS Sound-field threshold levels were lowest with T-levels set higher than 10% of M-levels and with the two widest IDRs. Group data revealed significantly higher scores for CNC words presented at a soft level with an IDR of 80 dB and 65 dB compared to 50 dB. Although no significant group differences were seen between the three IDRs for sentences in noise, significant individual differences were present. CONCLUSIONS Setting Ts higher than the manufacturer's recommendation of 10% of M-levels and providing IDR options can improve overall speech perception; however, for some users, higher Ts and wider IDRs may not be appropriate. Based on the results of the study, clinical programming recommendations are provided.
Collapse
Affiliation(s)
- Laura K Holden
- Washington University School of Medicine, Department of Otolaryngology, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
40
|
Johnson SB, Schmitz HM, Santi PA. TSLIM imaging and a morphometric analysis of the mouse spiral ganglion. Hear Res 2011; 278:34-42. [PMID: 21420476 DOI: 10.1016/j.heares.2011.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 11/16/2022]
Abstract
Thin-sheet laser imaging microscopy (TSLIM) was used to serially section five whole cochleas from 4-wk-old CBA/JCr mice. Three-dimensional reconstructions of Rosenthal's canal (RC) were produced in order to measure canal length and volume, to generate orthogonal cross sections for area measurements, and to determine spiral ganglion neuron (SGN) number. RC length averaged 2.0 mm ± 0.04 (SEM) as measured along the centroid of the canal compared to an average basilar membrane (BM) length of 5.9 ± 0.05 (SEM). RC volume averaged 0.036 mm(3) ± 0.009 (SEM). Significant increases in the radial area of RC were observed at the base (13%), middle (62%), and apex (90%) of its length. The total number of spiral ganglion neurons (SGNs) in RC in each of the five animals averaged 8626 ± 96 (SEM). SGN number increased at the expanded regions of RC. Increased area and cell number at the base and apex are likely related to extensions of the organ of Corti past the length of RC in these areas. The increase in area and cell number in the middle of the RC appears to be related to the most sensitive frequency region of the organ of Corti. Volume imaging or tomography of the cochlea as provided by TSLIM has the potential to be an efficient and accurate semi-automated method for the quantitative assessment of the number of SGNs and hair cells of the organ of Corti.
Collapse
Affiliation(s)
- Shane B Johnson
- Department of Otolaryngology, University of Minnesota, 2001 Sixth St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
41
|
Basura GJ, Adunka OF, Buchman CA. Scala tympani cochleostomy for cochlear implantation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.otot.2010.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Bierer JA, Bierer SM, Middlebrooks JC. Partial tripolar cochlear implant stimulation: Spread of excitation and forward masking in the inferior colliculus. Hear Res 2010; 270:134-42. [PMID: 20727397 DOI: 10.1016/j.heares.2010.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 07/15/2010] [Accepted: 08/12/2010] [Indexed: 12/01/2022]
Abstract
This study examines patterns of neural activity in response to single biphasic electrical pulses, presented alone or following a forward masking pulse train, delivered by a cochlear implant. Recordings were made along the tonotopic axis of the central nucleus of the inferior colliculus (ICC) in ketamine/xylazine anesthetized guinea pigs. The partial tripolar electrode configuration was used, which provided a systematic way to vary the tonotopic extent of ICC activation between monopolar (broad) and tripolar (narrow) extremes while maintaining the same peak of activation. The forward masking paradigm consisted of a 200 ms masker pulse train (1017 pulses per second) followed 10 ms later by a single-pulse probe stimulus; the current fraction of the probe was set to 0 (monopolar), 1 (tripolar), or 0.5 (hybrid), and the fraction of the masker was fixed at 0.5. Forward masking tuning profiles were derived from the amount of masking current required to just suppress the activity produced by a fixed-level probe. These profiles were sharper for more focused probe configurations, approximating the pattern of neural activity elicited by single (non-masked) pulses. The result helps to bridge the gap between previous findings in animals and recent psychophysical data.
Collapse
|
43
|
Todt I, Rademacher G, Wagner J, Göpel F, Basta D, Haider E, Ernst A. Evaluation of cochlear implant electrode position after a modified round window insertion by means of a 64-multislice CT. Acta Otolaryngol 2009; 129:966-70. [PMID: 18979288 DOI: 10.1080/00016480802495388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION The modified round window insertion enables reproducible insertion into the scala tympani as demonstrated by comparing the 64-CT scanning data and the surgeon's reports. OBJECTIVE To estimate the postoperative cochlear implant electrode position using a modified round window approach. PATIENTS AND METHODS In a prospective study, 82 patients were operated via a modified round window approach to insert primarily into the scala tympani. Surgery had been performed from 2005 to 2008, implanting a Nucleus Freedom RECA device (Cochlear Corp.) (n = 43) or 90 k Helix device (Advanced Bionics Corp.) (n = 39). The array localization within the cochlea was determined by axial scanning overview, digital reconstruction of a 64-slice CT and by evaluation of the surgeon's report. RESULTS In 78 (95.1%) patients, the array could be located in the scala tympani. In four cases, the position of the electrode was changed intracochlearly from the scala tympani to the scala vestibuli. In three additional cases, the scala vestibuli was inserted intentionally because the tympanic scale was found to be obstructed intraoperatively due to ossification. There were no significant differences between the intraoperative positioning and postoperative localization of the electrode arrays of the two manufacturers.
Collapse
|
44
|
Wagner JH, Rademacher G, Ernst A, Todt I. [Cochlear implants in isolated temporal bones: evaluation of electrode position with 64-slice computed tomography]. HNO 2009; 57:575-9. [PMID: 19455290 DOI: 10.1007/s00106-008-1810-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND For the functional outcome after cochlear implant surgery, the electrode position is of essential importance. Therefore, radiological techniques to localize the electrode within the cochlea are becoming increasingly important. In our study, we used multi-slice computed tomography (CT) to find radiological criteria to allocate the electrode within the cochlea. METHODS Ten Nucleus 24 RCA electrodes were implanted into isolated human temporal bones using an extended cochleostomy and the Advance Off-Stylet technique. Five electrodes were implanted into the scala tympani and five into the scala vestibuli. After implantation, the temporal bones were blinded to the radiologist, and 64-slice CT scans were performed and analysed. RESULTS AND CONCLUSIONS In all 10 cases, the surgical positioning of the electrode was equal to the radiological analysis of the CT scans. Radiological criteria were found that permit correct identification of the electrode within the cochlea. We think that this technique is sufficient for most questions concerning quality control and is widely available.
Collapse
Affiliation(s)
- J H Wagner
- HNO- Klinik am Unfallkrankenhaus Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
45
|
Zeng FG, Rebscher S, Harrison W, Sun X, Feng H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 2008; 1:115-42. [PMID: 19946565 PMCID: PMC2782849 DOI: 10.1109/rbme.2008.2008250] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues in cochlear implant research and development. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants.
Collapse
Affiliation(s)
- Fan-Gang Zeng
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
46
|
|