1
|
Wang SK, Zhang H, Lin HC, Wang YL, Lin SC, Seymen F, Koruyucu M, Simmer JP, Hu JCC. AMELX Mutations and Genotype-Phenotype Correlation in X-Linked Amelogenesis Imperfecta. Int J Mol Sci 2024; 25:6132. [PMID: 38892321 PMCID: PMC11172428 DOI: 10.3390/ijms25116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Hua-Chieh Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Figen Seymen
- Department of Pediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey;
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey;
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| |
Collapse
|
2
|
Bloch-Zupan A, Rey T, Jimenez-Armijo A, Kawczynski M, Kharouf N, Dure-Molla MDL, Noirrit E, Hernandez M, Joseph-Beaudin C, Lopez S, Tardieu C, Thivichon-Prince B, Dostalova T, Macek M, Alloussi ME, Qebibo L, Morkmued S, Pungchanchaikul P, Orellana BU, Manière MC, Gérard B, Bugueno IM, Laugel-Haushalter V. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification. Front Physiol 2023; 14:1130175. [PMID: 37228816 PMCID: PMC10205041 DOI: 10.3389/fphys.2023.1130175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.
Collapse
Affiliation(s)
- Agnes Bloch-Zupan
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut d’études avancées (USIAS), Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Tristan Rey
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Alexandra Jimenez-Armijo
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Marzena Kawczynski
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Naji Kharouf
- Université de Strasbourg, Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Strasbourg, France
| | | | - Muriel de La Dure-Molla
- Rothschild Hospital, Public Assistance-Paris Hospitals (AP-HP), Reference Center for Rare Oral and Den-tal Diseases (O-Rares), Paris, France
| | - Emmanuelle Noirrit
- Centre Hospitalier Universitaire (CHU) Rangueil, Toulouse, Competence Center for Rare Oral and Den-tal Diseases, Toulouse, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Competence Center for Rare Oral and Dental Diseases, Nancy, France
| | - Clara Joseph-Beaudin
- Centre Hospitalier Universitaire de Nice, Competence Center for Rare Oral and Dental Diseases, Nice, France
| | - Serena Lopez
- Centre Hospitalier Universitaire de Nantes, Competence Center for Rare Oral and Dental Diseases, Nantes, France
| | - Corinne Tardieu
- APHM, Hôpitaux Universitaires de Marseille, Hôpital Timone, Competence Center for Rare Oral and Dental Diseases, Marseille, France
| | - Béatrice Thivichon-Prince
- Centre Hospitalier Universitaire de Lyon, Competence Center for Rare Oral and Dental Diseases, Lyon, France
| | | | - Tatjana Dostalova
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Milan Macek
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | | | - Mustapha El Alloussi
- Faculty of Dentistry, International University of Rabat, CReSS Centre de recherche en Sciences de la Santé, Rabat, Morocco
| | - Leila Qebibo
- Unité de génétique médicale et d’oncogénétique, CHU Hassan II, Fes, Morocco
| | | | | | - Blanca Urzúa Orellana
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Bénédicte Gérard
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| |
Collapse
|
3
|
An Intron c.103-3T>C Variant of the AMELX Gene Causes Combined Hypomineralized and Hypoplastic Type of Amelogenesis Imperfecta: Case Series and Review of the Literature. Genes (Basel) 2022; 13:genes13071272. [PMID: 35886055 PMCID: PMC9321068 DOI: 10.3390/genes13071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders of dental enamel. X-linked AI results from disease-causing variants in the AMELX gene. In this paper, we characterise the genetic aetiology and enamel histology of female AI patients from two unrelated families with similar clinical and radiographic findings. All three probands were carefully selected from 40 patients with AI. In probands from both families, scanning electron microscopy confirmed hypoplastic and hypomineralised enamel. A neonatal line separated prenatally and postnatally formed enamel of distinctly different mineralisation qualities. In both families, whole exome analysis revealed the intron variant NM_182680.1: c.103-3T>C, located three nucleotides before exon 4 of the AMELX gene. In family I, an additional variant, c.2363G>A, was found in exon 5 of the FAM83H gene. This report illustrates a variant in the AMELX gene that was not previously reported to be causative for AI as well as an additional variant in the FAM83H gene with probably limited clinical significance.
Collapse
|
4
|
Duan X, Yang S, Zhang H, Wu J, Zhang Y, Ji D, Tie L, Boerkoel C. A Novel AMELX Mutation, Its Phenotypic Features, and Skewed X Inactivation. J Dent Res 2019; 98:870-878. [DOI: 10.1177/0022034519854973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of genetic disorders of defective dental enamel. Mutation of AMELX encoding amelogenin on the X chromosome is a major cause of AI. Here we report a Chinese family with hypoplastic and hypomineralized AI. Whole exome analysis revealed a novel mutation c.185delC in exon 5 of AMELX causing the frame shift p.Pro62ArgfsTer47 (or p.Pro62Argfs*47). By sequencing of polymerase chain reaction products and T-vector clones, the mutation was confirmed as homozygous in the proband, hemizygous in her father, and heterozygous in her mother. The proband and her father had small and yellowish teeth with thin and rough enamel that was radiographically indistinguishable from the underlying dentin. Scanning electronic microscopy of 1 maternal tooth showed cracks and exposed loosely packed enamel prisms in affected areas. Consistent with a 25:75 skewing of X inactivation in the peripheral blood DNA as measured by androgen receptor allele methylation, the surface of the mother’s tooth had alternating vertical ridges of transparent normal and white chalky enamel in a 34:66 ratio. In summary, this study provides one of the few phenotypic comparisons of hemizygous and homozygous AMELX mutations and suggests that the skewing of X inactivation in AI contributes to the phenotypic variations in heterozygous carriers of X-linked AI.
Collapse
Affiliation(s)
- X. Duan
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - S. Yang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - H. Zhang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - J. Wu
- Department of Prosthodontic, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - Y. Zhang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - D. Ji
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - L. Tie
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - C.F. Boerkoel
- Department of Medical Genetics, Children’s and Women’s Health Centre of BC, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Bidlack FB, Xia Y, Pugach MK. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo. Front Physiol 2017; 8:932. [PMID: 29201008 PMCID: PMC5696357 DOI: 10.3389/fphys.2017.00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023] Open
Abstract
Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05). The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most abundant splice variants and cleavage product can rescue abnormal enamel properties and structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.
Collapse
Affiliation(s)
- Felicitas B Bidlack
- Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Yan Xia
- Forsyth Institute, Cambridge, MA, United States
| | - Megan K Pugach
- Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Gabe CM, Brookes SJ, Kirkham J. Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin. Front Physiol 2017; 8:424. [PMID: 28670287 PMCID: PMC5472695 DOI: 10.3389/fphys.2017.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/01/2017] [Indexed: 11/21/2022] Open
Abstract
Recombinant protein technology provides an invaluable source of proteins for use in structure-function studies, as immunogens, and in the development of therapeutics. Recombinant proteins are typically engineered with "tags" that allow the protein to be purified from crude host cell extracts using affinity based chromatography techniques. Amelogenin is the principal component of the developing enamel matrix and a frequent focus for biomineralization researchers. Several groups have reported the successful production of recombinant amelogenins but the production of recombinant amelogenin free of any tags, and at single band purity on silver stained SDS PAGE is technically challenging. This is important, as rigorous structure-function research frequently demands a high degree of protein purity and fidelity of protein sequence. Our aim was to generate His-tagged recombinant amelogenin at single band purity on silver stained SDS PAGE for use in functionality studies after His-tag cleavage. An acetic acid extraction technique (previously reported to produce recombinant amelogenin at 95% purity directly from E. coli) followed by repeated rounds of nickel column affinity chromatography, failed to generate recombinant amelogenin at single band purity. This was because following an initial round of nickel column affinity chromatography, subsequent cleavage of the His-tag was not 100% efficient. A second round of nickel column affinity chromatography, used in attempts to separate the cleaved His-tag free recombinant from uncleaved His-tagged contaminants, was still unsatisfactory as cleaved recombinant amelogenin exhibited significant affinity for the nickel column. To solve this problem, we used preparative SDS PAGE to successfully purify cleaved recombinant amelogenins to single band purity on silver stained SDS PAGE. The resolving power of preparative SDS PAGE was such that His-tag based purification of recombinant amelogenin becomes redundant. We suggest that acetic acid extraction of recombinant amelogenin and subsequent purification using preparative SDS PAGE provides a simple route to highly purified His-tag free amelogenin for use in structure-function experiments and beyond.
Collapse
Affiliation(s)
| | - Steven J. Brookes
- Division of Oral Biology, School of Dentistry, University of LeedsLeeds, United Kingdom
| | | |
Collapse
|
7
|
Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice. Front Physiol 2017; 8:307. [PMID: 28559854 PMCID: PMC5432648 DOI: 10.3389/fphys.2017.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7), which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA.,Department of Orthodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Jing Guo
- Department of Endodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Wenting Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical CenterCincinnati, OH, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
8
|
MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies. Sci Rep 2017; 7:44118. [PMID: 28287144 PMCID: PMC5347039 DOI: 10.1038/srep44118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.
Collapse
|
9
|
Bouropoulos N, Moradian-Oldak J. Induction of Apatite by the Cooperative Effect of Amelogenin and the 32-kDa Enamelin. J Dent Res 2016; 83:278-82. [PMID: 15044499 DOI: 10.1177/154405910408300402] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extracellular matrix proteins are considered to play essential roles in controlling the nucleation, growth, and organization of hydroxyapatite crystals during enamel formation. The effects of amelogenin and the 32-kDa enamelin proteins on apatite nucleation were investigated by a steady-state gel diffusion device containing 10% gelatin gels loaded with 0, 0.75%, and 1.5% (w/w) native porcine amelogenins. It was found that the induction time for hydroxyapatite precipitation was strongly increased by the presence of amelogenins, suggesting an inhibitory effect of apatite nucleation. Addition of 18 μg/mL of 32-kDa enamelin to 10% gelatin also caused inhibition of nucleation. Remarkably, addition of 18 and 80 μg/mL of 32-kDa enamelin in gels containing 1.5% amelogenin accelerated the nucleation process in a dose-dependent manner. Our observations strongly suggest that the 32-kDa enamelin and amelogenins cooperate to promote nucleation of apatite crystals and propose a possible novel mechanism of mineral nucleation during enamel biomineralization.
Collapse
Affiliation(s)
- N Bouropoulos
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | | |
Collapse
|
10
|
Hu Y, Smith CE, Cai Z, Donnelly LAJ, Yang J, Hu JCC, Simmer JP. Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx-/- mice and Amelx+/- lyonization. Mol Genet Genomic Med 2016; 4:641-661. [PMID: 27896287 PMCID: PMC5118209 DOI: 10.1002/mgg3.252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel. METHODS Amelx+/+, Amelx+/- , and Amelx-/- molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction. RESULTS No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx-/- mice. Amelx-/- incisor enamel averaged 20.3 ± 3.3 μm in thickness, or only 1/6th that of the wild type (122.3 ± 7.9 μm). Amelx-/- incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx+/- incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx-/- enamel and varied levels of amelogenin in Amelx+/- incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx+/+ and Amelx-/- enamel extending from mineralized dentin collagen to the ameloblast. The Amelx-/- enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx-/- enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx-/- ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx-/- and Amelx+/- molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage. CONCLUSION Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Charles E Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Facility for Electron Microscopy ResearchDepartment of Anatomy and Cell BiologyFaculty of DentistryMcGill UniversityMontrealQuebecH3A 2B2Canada
| | - Zhonghou Cai
- Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave Building 431-B005 Argonne Illinois 60439
| | - Lorenza A-J Donnelly
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| |
Collapse
|
11
|
Xia Y, Ren A, Pugach MK. Truncated amelogenin and LRAP transgenes improve Amelx null mouse enamel. Matrix Biol 2015; 52-54:198-206. [PMID: 26607574 DOI: 10.1016/j.matbio.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Amelogenin is the most abundant enamel protein involved in enamel mineralization. Our goal was to determine whether all three regions of amelogenin (N-terminus, C-terminus, central core) are required for enamel formation. Amelogenin RNA is alternatively spliced, resulting in at least 16 different amelogenin isoforms in mice, with M180 and LRAP expressed most abundantly. Soon after secretion by ameloblasts, M180 is cleaved by MMP20 resulting in C-terminal truncated (CTRNC) amelogenin. We aimed to determine whether the 2 transgenes (Tg), LRAP and CTRNC together, can improve LRAPTg/Amelx-/- and CTRNCTg/Amelx-/- enamel thickness and prism organization, which were not rescued in Amelx-/- enamel. We generated CTRNCTg/LRAPTg/Amelx-/- mice and analyzed developing and mature incisor and molar enamel histologically, by microCT, SEM and microhardness testing. CTRNCTg and LRAPTg overexpression together significantly improved the enamel phenotype of LRAPTg/Amelx-/- and CTRNCTg/Amelx-/- mouse enamel, however enamel microhardness was recovered only when M180Tg was expressed, alone or with LRAPTg. We determined that both LRAP and CTRNC, which together express all three regions of the amelogenin protein (N-terminus, C-terminus and hydrophobic core) contribute to the final enamel thickness and prism organization in mice.
Collapse
Affiliation(s)
- Yan Xia
- Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge, MA, USA
| | - Anna Ren
- Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge, MA, USA
| | - Megan K Pugach
- Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge, MA, USA; Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Muto T, Miyoshi K, Horiguchi T, Hagita H, Noma T. Novel genetic linkage of rat Sp6 mutation to Amelogenesis imperfecta. Orphanet J Rare Dis 2012; 7:34. [PMID: 22676574 PMCID: PMC3464675 DOI: 10.1186/1750-1172-7-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Background Amelogenesis imperfecta (AI) is an inherited disorder characterized by abnormal formation of tooth enamel. Although several genes responsible for AI have been reported, not all causative genes for human AI have been identified to date. AMI rat has been reported as an autosomal recessive mutant with hypoplastic AI isolated from a colony of stroke-prone spontaneously hypertensive rat strain, but the causative gene has not yet been clarified. Through a genetic screen, we identified the causative gene of autosomal recessive AI in AMI and analyzed its role in amelogenesis. Methods cDNA sequencing of possible AI-candidate genes so far identified using total RNA of day 6 AMI rat molars identified a novel responsible mutation in specificity protein 6 (Sp6). Genetic linkage analysis was performed between Sp6 and AI phenotype in AMI. To understand a role of SP6 in AI, we generated the transgenic rats harboring Sp6 transgene in AMI (Ami/Ami + Tg). Histological analyses were performed using the thin sections of control rats, AMI, and Ami/Ami + Tg incisors in maxillae, respectively. Results We found the novel genetic linkage between a 2-bp insertional mutation of Sp6 gene and the AI phenotype in AMI rats. The position of mutation was located in the coding region of Sp6, which caused frameshift mutation and disruption of the third zinc finger domain of SP6 with 11 cryptic amino acid residues and a stop codon. Transfection studies showed that the mutant protein can be translated and localized in the nucleus in the same manner as the wild-type SP6 protein. When we introduced the CMV promoter-driven wild-type Sp6 transgene into AMI rats, the SP6 protein was ectopically expressed in the maturation stage of ameloblasts associated with the extended maturation stage and the shortened reduced stage without any other phenotypical changes. Conclusion We propose the addition of Sp6 mutation as a new molecular diagnostic criterion for the autosomal recessive AI patients. Our findings expand the spectrum of genetic causes of autosomal recessive AI and sheds light on the molecular diagnosis for the classification of AI. Furthermore, tight regulation of the temporospatial expression of SP6 may have critical roles in completing amelogenesis.
Collapse
Affiliation(s)
- Taro Muto
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Japan
| | | | | | | | | |
Collapse
|
13
|
Lee KE, Lee SK, Jung SE, Song SJ, Cho SH, Lee ZH, Kim JW. A novel mutation in the AMELX gene and multiple crown resorptions. Eur J Oral Sci 2012; 119 Suppl 1:324-8. [DOI: 10.1111/j.1600-0722.2011.00858.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Chan HC, Estrella NMRP, Milkovich RN, Kim JW, Simmer JP, Hu JCC. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur J Oral Sci 2011; 119 Suppl 1:311-23. [PMID: 22243262 PMCID: PMC3292789 DOI: 10.1111/j.1600-0722.2011.00857.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred.
Collapse
Affiliation(s)
- Hui-Chen Chan
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ninna M. R. P. Estrella
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rachel N. Milkovich
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Chaudhary M, Dixit S, Singh A, Kunte S. Amelogenesis imperfecta: Report of a case and review of literature. J Oral Maxillofac Pathol 2011; 13:70-7. [PMID: 21887005 PMCID: PMC3162864 DOI: 10.4103/0973-029x.57673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a diverse collection of inherited diseases that exhibit quantitative or qualitative tooth enamel defects in the absence of systemic manifestations. Also known by varied names such as Hereditary enamel dysplasia, Hereditary brown enamel, Hereditary brown opalescent teeth, this defect is entirely ectodermal, since mesodermal components of the teeth are basically normal. The AI trait can be transmitted by either autosomal dominant, autosomal recessive, or X-linked modes of inheritance. Genes implicated in autosomal forms are genes encoding enamel matrix proteins, namely: enamelin and ameloblastin, tuftelin, MMP-20 and kallikrein - 4. This article presents a case reported to Dr. D. Y. Patil, Dental College and Hospital, Pune, India, along with a review of this often seen clinical entity.
Collapse
Affiliation(s)
- Mayur Chaudhary
- Department of Oral Pathology, New Horizon Dental College and Research Institute, Sakri, Bilaspur, India
| | | | | | | |
Collapse
|
16
|
Urzúa B, Ortega-Pinto A, Morales-Bozo I, Rojas-Alcayaga G, Cifuentes V. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry. Biochem Genet 2010; 49:104-21. [PMID: 21127961 DOI: 10.1007/s10528-010-9392-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/23/2010] [Indexed: 10/18/2022]
Abstract
Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.
Collapse
Affiliation(s)
- Blanca Urzúa
- Department of Physical and Chemical Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
17
|
Pugach MK, Li Y, Suggs C, Wright JT, Aragon MA, Yuan ZA, Simmons D, Kulkarni AB, Gibson CW. The amelogenin C-terminus is required for enamel development. J Dent Res 2009; 89:165-9. [PMID: 20042744 DOI: 10.1177/0022034509358392] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The abundant amelogenin proteins are responsible for generating proper enamel thickness and structure, and most amelogenins include a conserved hydrophilic C-terminus. To evaluate the importance of the C-terminus, we generated transgenic mice that express an amelogenin lacking the C-terminal 13 amino acids (CTRNC). MicroCT analysis of TgCTRNC29 teeth (low transgene number) indicated that molar enamel density was similar to that of wild-type mice, but TgCTRNC18 molar enamel (high transgene number) was deficient, indicating that extra transgene copies were associated with a more severe phenotype. When amelogenin-null (KO) and TgCTRNC transgenic mice were mated, density and volume of molar enamel from TgCTRNCKO offspring were not different from those of KO mice, indicating that neither TgCTRNC18 nor TgCTRNC29 rescued enamel's physical characteristics. Because transgenic full-length amelogenin partially rescues both density and volume of KO molar enamel, it was concluded that the amelogenin C-terminus is essential for proper enamel density, volume, and organization.
Collapse
Affiliation(s)
- M K Pugach
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, 19104-6030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Moradian-Oldak J, Iijima M, Bouropoulos N, Wen HB. Assembly of Amelogenin Proteolytic Products and Control of Octacalcium Phosphate Crystal Morphology. Connect Tissue Res 2009. [DOI: 10.1080/03008200390152106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
19
|
Wright JT, Hart PS, Aldred MJ, Seow K, Crawford PJM, Hong SP, Gibson CW, Hart TC. Relationship of Phenotype and Genotype in X-Linked Amelogenesis Imperfecta. Connect Tissue Res 2009. [DOI: 10.1080/03008200390152124] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
20
|
Hu JCC, Chun YHP, Al Hazzazzi T, Simmer JP. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 2007; 186:78-85. [PMID: 17627121 DOI: 10.1159/000102683] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel.
Collapse
Affiliation(s)
- Jan C-C Hu
- University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA
| | | | | | | |
Collapse
|
21
|
Osawa M, Kenmotsu S, Masuyama T, Taniguchi K, Uchida T, Saito C, Ohshima H. Rat wct mutation prevents differentiation of maturation-stage ameloblasts resulting in hypo-mineralization in incisor teeth. Histochem Cell Biol 2007; 128:183-93. [PMID: 17636316 DOI: 10.1007/s00418-007-0297-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
A recent study provided genetic and morphological evidence that rat autosomal-recessive mutation, whitish chalk-like teeth (wct), induced tooth enamel defects resembling those of human amelogenesis imperfecta (AI). The wct locus maps to a specific interval of rat chromosome 14 corresponding to human chromosome 4q21 where the ameloblastin and enamelin genes exist, although these genes are not included in the wct locus. The effect of the wct gene mutation on the enamel matrix synthesis and calcification remains to be elucidated. This study clarifies how the wct gene mutation influences the synthesis of enamel matrix and its calcification by immunocytochemistry for amelogenin, ameloblastin and enamelin, and by electron probe micro-analysis (EPMA). The immunoreactivity for enamel proteins such as amelogenin, ameloblastin, and enamelin in the ameloblasts in the homozygous teeth was the same as that in the heterozygous teeth from secretory to transitional stages, although the homozygous ameloblasts became detached from the enamel matrix in the transitional stage. The flattened ameloblasts in the maturation stage of the homozygous samples contained enamel proteins in their cytoplasm. Thus, the wct mutation was found to prevent the morphological transition of ameloblasts from secretory to maturation stages without disturbing the synthesis of enamel matrix proteins, resulting in the hypo-mineralization of incisor enamel and cyst formation between the enamel organ and matrix. This mutation also prevents the transfer of iron into the enamel.
Collapse
Affiliation(s)
- Masaru Osawa
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The synthesis of tooth development biology with human studies focusing on inherited conditions that specifically interfere with tooth development is improving our understanding of normal and pathological tooth formation. The type of inherited dental malformations observed in a given kindred relate to when, during odontogenesis, the defective gene is critically expressed. Information about the protein encoded by the defective gene and the resulting dental phenotype helps us understand the major processes underway at different stages during tooth development. Genes affecting early tooth development (PAX9, MSX1, and AXIN2) are associated with familial tooth agenesis or oligodontia. Genes expressed by odontoblasts (COL1A1, COL1A2, and DSPP), and ameloblasts (AMELX, ENAM, MMP20, and KLK4) during the crown formation stage, are associated with dentinogenesis imperfecta, dentin dysplasia, and amelogenesis imperfecta. Late genes expressed during root formation (ALPL and DLX3) are associated with cementum agenesis (hypophosphatasia) and taurodontism. Understanding the relationships between normal tooth development and the dental pathologies associated with inherited diseases improves our ability to diagnose and treat patients suffering the manifestations of inherited dental disorders.
Collapse
Affiliation(s)
- Jan C-C Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | |
Collapse
|
23
|
Gutierrez SJ, Chaves M, Torres DM, Briceño I. Identification of a novel mutation in the enamalin gene in a family with autosomal-dominant amelogenesis imperfecta. Arch Oral Biol 2007; 52:503-6. [PMID: 17316551 DOI: 10.1016/j.archoralbio.2006.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/15/2006] [Accepted: 09/22/2006] [Indexed: 10/23/2022]
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous genetic disorder that affects the formation of the dental enamel matrix. Mutations in the enamelin (ENAM) gene have been found in patients with this disorder. The objective of this research was to identify the mutations reported in exons 4, 7 and 9 of the ENAM gene in a single Colombian family with autosomal-dominant AI and to establish the phenotype. The fragments of exons 4, 7 and 9 of the ENAM gene were amplified by polymerase chain reaction and direct sequencing was performed. A mutation was found in exon 9 where guanine was substituted by thymine in one of the alleles in position 817, generating a change of arginine to methionine in codon 179 of the protein. The mutation was only found in affected members of this family who presented with the severe, generalised hypoplastic phenotype in all teeth. The genotype/phenotype correlation for different AI subtypes has not been established. These results support a possible correlation between hypoplastic AI and mutations in the ENAM gene; however, identification of additional mutations could be helpful in establishing phenotype/genotype relationships.
Collapse
|
24
|
Santos MCLG, Hart PS, Ramaswami M, Kanno CM, Hart TC, Line SRP. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta. Head Face Med 2007; 3:8. [PMID: 17266769 PMCID: PMC1800839 DOI: 10.1186/1746-160x-3-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.
Collapse
Affiliation(s)
- Maria CLG Santos
- PHD student, Department of Morphology, Dental School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - P Suzanne Hart
- PHD, National Human Genome Research Institute, NIH Bethesda MD, USA
| | - Mukundhan Ramaswami
- student, National Institute for Dental and Craniofacial Research, Bethesda, MD, USA
| | - Cláudia M Kanno
- School of Dentistry of Aracatuba, University of the State of Sao Paulo, UNESP, Brazil
| | - Thomas C Hart
- PHD, National Institute for Dental and Craniofacial Research, Bethesda, MD, USA
| | - Sergio RP Line
- PHD, Department of Morphology, Dental School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
25
|
Abstract
The amelogenesis imperfectas (AIs) are a clinically and genetically diverse group of conditions that are caused by mutations in a variety of genes that are critical for normal enamel formation. To date, mutations have been identified in four genes (AMELX, ENAM, KLK4, MMP20) known to be involved in enamel formation. Additional yet to be identified genes also are implicated in the etiology of AI based on linkage studies. The diverse and often unique phenotypes resulting from the different allelic and non-allelic mutations in these genes provide an opportunity to better understand the role of these genes and their related proteins in enamel formation. Understanding the AI phenotypes also provides an aid to clinicians in directing molecular studies aimed at delineating the genetic basis underlying these diverse clinical conditions. Our current knowledge of the known mutations and associated phenotypes of the different AI subtypes are reviewed.
Collapse
Affiliation(s)
- J Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, The University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
26
|
Hu JCC, Yamakoshi Y, Yamakoshi F, Krebsbach PH, Simmer JP. Proteomics and genetics of dental enamel. Cells Tissues Organs 2006; 181:219-31. [PMID: 16612087 DOI: 10.1159/000091383] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The initiation of enamel crystals at the dentino-enamel junction is associated with the expression of dentin sialophosphoprotein (DSPP, a gene normally linked with dentin formation), three 'structural' enamel proteins--amelogenin (AMELX), enamelin (ENAM), and ameloblastin (AMBN)--and a matrix metalloproteinase, enamelysin (MMP20). Enamel formation proceeds with the steady elongation of the enamel crystals at a mineralization front just beneath the ameloblast distal membrane, where these proteins are secreted. As the crystal ribbons lengthen, enamelysin processes the secreted proteins. Some of the cleavage products accumulate in the matrix, others are reabsorbed back into the ameloblast. Once crystal elongation is complete and the enamel layer reaches its final thickness, kallikrein 4 (KLK4) facilitates the breakdown and reabsorption of accumulated enamel matrix proteins. The importance of the extracellular matrix proteins to proper tooth development is best illustrated by the dramatic dental phenotypes observed in the targeted knockouts of enamel matrix genes in mice (Dspp, Amelx, Ambn, Mmp20) and in human kindreds with defined mutations in the genes (DSPP, AMELX, ENAM, MMP20, KLK4) encoding these matrix proteins. However, ablation studies alone cannot give specific mechanistic information on how enamel matrix proteins combine to catalyze the formation of enamel crystals. The best approach for determining the molecular mechanism of dental enamel formation is to reconstitute the matrix and synthesize enamel crystals in vitro. Here, we report refinements to the procedures used to isolate porcine enamel and dentin proteins, recent advances in the characterization of enamel matrix protein posttranslational modifications, and summarize the results of human genetic studies that associate specific mutations in the genes encoding matrix proteins with a range of dental phenotypes.
Collapse
Affiliation(s)
- Jan C-C Hu
- University of Michigan Dental Research Lab, Ann Arbor, Mich. 48108, USA
| | | | | | | | | |
Collapse
|
27
|
Brook AH, Smith JM. Hypoplastic enamel defects and environmental stress in a homogeneous Romano-British population. Eur J Oral Sci 2006; 114 Suppl 1:370-4; discussion 375-6, 382-3. [PMID: 16674715 DOI: 10.1111/j.1600-0722.2006.00306.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated hypoplastic enamel defects in a well-defined sample of Romano-Britons from the 3rd to the 5th century AD and compared the findings with a modern British sample investigated by the same authors. All 178 excavated skulls with intact dentitions were examined for hypoplastic defects using the Federation Dentaire International (FDI) Developmental Defects of Enamel Index criteria. Histopathological and microradiographic sections were prepared of 5 teeth. Hypoplastic defects were found in the teeth of 37% of skulls, with 25% having 4 or more teeth affected. The teeth most frequently involved were canines. Of the defects, 75% were horizontal grooves, 12.7% were pitting, and 7.1% were areas of missing enamel. The location of defects was 82% buccal, 16.5% lingual, and 1.2% occlusal. The reproducibility of diagnosis was 84%. Microscopic and microradiographic investigations showed areas of hypomineralization of enamel and wide zones of interglobular dentine related to the hypoplastic grooves. There was higher frequency, different morphology, and greater severity of hypoplastic enamel defects compared with the modern British sample. The defects may be related to repeated environmental stresses between the ages of 2 and 6 yr. Identified environmental stresses in these Romano-Britons, including high lead ingestion, poor nutrition, and recurrent infections, may be important etiological factors for the enamel defects.
Collapse
|
28
|
Kim JW, Simmer JP, Lin BPL, Seymen F, Bartlett JD, Hu JCC. Mutational analysis of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci 2006; 114 Suppl 1:3-12; discussion 39-41, 379. [PMID: 16674655 DOI: 10.1111/j.1600-0722.2006.00278.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of inherited defects in dental enamel formation. The malformed enamel can be unusually thin, soft, rough and stained. The strict definition of AI includes only those cases where enamel defects occur in the absence of other symptoms. Currently, there are seven candidate genes for AI: amelogenin, enamelin, ameloblastin, tuftelin, distal-less homeobox 3, enamelysin, and kallikrein 4. To identify sequence variations in AI candidate genes in patients with isolated enamel defects, and to deduce the likely effect of each sequence variation on protein expression and structure, families with isolated enamel defects were recruited. The coding exons and nearby intron sequences were amplified for each of the AI candidate genes by using genomic DNA from the proband as template. The amplification products for the proband were sequenced. Then, other family members were tested to determine their genotype with respect to each sequence variation. All subjects received an oral examination, and intraoral photographs and dental radiographs were obtained. Out of 24 families with isolated enamel defects, only six disease-causing mutations were identified in the AI candidate genes. This finding suggests that many additional genes potentially contribute to the etiology of AI.
Collapse
Affiliation(s)
- Jung-Wook Kim
- University of Michigan School of Dentistry, University of Michigan Dental Research Laboratory, Ann Arbor, MI 48108, USA, and Department of Pediatric Dentistry & Dental Research Institute, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Stephanopoulos G, Garefalaki ME, Lyroudia K. Genes and related proteins involved in amelogenesis imperfecta. J Dent Res 2006; 84:1117-26. [PMID: 16304440 DOI: 10.1177/154405910508401206] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dental enamel formation is a remarkable example of a biomineralization process. The exact mechanisms involved in this process remain partly obscure. Some of the genes encoding specific enamel proteins have been indicated as candidate genes for amelogenesis imperfecta. Mutational analyses within studied families have supported this hypothesis. Mutations in the amelogenin gene (AMELX) cause X-linked amelogenesis imperfecta, while mutations in the enamelin gene (ENAM) cause autosomal-inherited forms of amelogenesis imperfecta. Recent reports involve kallikrein-4 (KLK4), MMP-20, and DLX3 genes in the etiologies of some cases. This paper focuses mainly on the candidate genes involved in amelogenesis imperfecta and the proteins derived from them, and reviews current knowledge on their structure, localization within the tissue, and correlation with the various types of this disorder.
Collapse
Affiliation(s)
- G Stephanopoulos
- Diploma in Dental Science, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|
30
|
Santos MCLGD, Line SRP. The genetics of amelogenesis imperfecta: a review of the literature. J Appl Oral Sci 2005; 13:212-7. [DOI: 10.1590/s1678-77572005000300002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/06/2005] [Indexed: 11/22/2022] Open
Abstract
A melogenesis imperfecta (AI) is a group of inherited defects of dental enamel formation that show both clinical and genetic heterogeneity. Enamel findings in AI are highly variable, ranging from deficient enamel formation to defects in the mineral and protein content. Enamel formation requires the expression of multiple genes that transcribes matrix proteins and proteinases needed to control the complex process of crystal growth and mineralization. The AI phenotypes depend on the specific gene involved, the location and type of mutation, and the corresponding putative change at the protein level. Different inheritance patterns such as X-linked, autosomal dominant and autosomal recessive types have been reported. Mutations in the amelogenin, enamelin, and kallikrein-4 genes have been demonstrated to result in different types of AI and a number of other genes critical to enamel formation have been identified and proposed as candidates for AI. The aim of this article was to present an evaluation of the literature regarding role of proteins and proteinases important to enamel formation and mutation associated with AI.
Collapse
|
31
|
Masuya H, Shimizu K, Sezutsu H, Sakuraba Y, Nagano J, Shimizu A, Fujimoto N, Kawai A, Miura I, Kaneda H, Kobayashi K, Ishijima J, Maeda T, Gondo Y, Noda T, Wakana S, Shiroishi T. Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI). Hum Mol Genet 2005; 14:575-83. [PMID: 15649948 DOI: 10.1093/hmg/ddi054] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of commonly inherited defects of dental enamel formation, which exhibits marked genetic and clinical heterogeneity. The genetic basis of this heterogeneity is still poorly understood. Enamelin, the affected gene product in one form of AI (AIH2), is an extracellular matrix protein that is one of the components of enamel. We isolated three ENU-induced dominant mouse mutations, M100395, M100514 and M100521, which caused AI-like phenotypes in the incisors and molars of the affected individuals. Linkage analyses mapped each of the three mutations to a region of chromosome 5 that contained the genes encoding enamelin (Enam) and ameloblastin (Ambn). Sequence analysis revealed that each mutation was a single-base substitution in Enam. M100395 (Enam(Rgsc395)) and M100514 (Enam(Rgsc514)) were putative missense mutations that caused S to I and E to G substitutions at positions 55 and 57 of the translated protein, respectively. Enam(Rgsc395) and Enam(Rgsc514) heterozygotes showed severe breakage of the enamel surface, a phenotype that resembled local hypoplastic AI. The M100521 mutation (Enam(Rgsc521)) was a T to A substitution at the splicing donor site in intron 4. This mutation resulted in a frameshift that gave rise to a premature stop codon. The transcript of the Enam(Rgsc521) mutant allele was degraded, indicating that Enam(Rgsc521) is a loss-of-function mutation. Enam(Rgsc521) heterozygotes showed a hypomaturation-type AI phenotype in the incisors, possibly due to haploinsufficiency of Enam. Enam(Rgsc521) homozygotes showed complete loss of enamel on the incisors and the molars. Thus, we report here that the Enam gene is essential for amelogenesis, and that mice with different point mutations at Enam may provide good animal models to study the different clinical subtypes of AI.
Collapse
Affiliation(s)
- Hiroshi Masuya
- Mouse Functional Genomics Research Group, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen E, Yuan ZA, Wright JT, Hong SP, Li Y, Collier PM, Hall B, D'Angelo M, Decker S, Piddington R, Abrams WR, Kulkarni AB, Gibson CW. The small bovine amelogenin LRAP fails to rescue the amelogenin null phenotype. Calcif Tissue Int 2003; 73:487-95. [PMID: 12958690 DOI: 10.1007/s00223-002-0036-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2002] [Accepted: 03/17/2003] [Indexed: 11/25/2022]
Abstract
Amelogenins are the most abundant secreted proteins in developing dental enamel. These evolutionarily-conserved proteins have important roles in enamel mineral formation, as mutations within the amelogenin gene coding region lead to defects in enamel thickness or mineral structure. Because of extensive alternative splicing of the primary RNA transcript and proteolytic processing of the secreted proteins, it has been difficult to assign functions to individual amelogenins. To address the function of one of the amelogenins, we have created a transgenic mouse that expresses bovine leucine-rich amelogenin peptide (LRAP) in the enamel-secreting ameloblast cells of the dental organ. Our strategy was to breed this transgenic mouse with the recently generated amelogenin knockout mouse, which makes none of the amelogenin proteins and has a severe hypoplastic and disorganized enamel phenotype. It was found that LRAP does not rescue the enamel defect in amelogenin null mice, and enamel remains hypoplastic and disorganized in the presence of this small amelogenin. In addition, LRAP overexpression in the transgenic mouse (wildtype background) leads to pitting in the enamel surface, which may result from excess protein production or altered protein processing due to minor differences between the amino acid compositions of murine and bovine LRAP. Since introduction of bovine LRAP into the amelogenin null mouse does not restore normal enamel structure, it is concluded that other amelogenin proteins are essential for normal appearance and function.
Collapse
Affiliation(s)
- E Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, 240 S. 40th St., Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This paper describes a female with X-linked amelogenesis imperfecta (XAI). This case is unusual in having taurodontism, pulpal calcifications, coronal defects prior to tooth eruption and unerupted teeth. These findings have been reported in some cases of autosomal dominant and autosomal recessive AI but have not previously been documented in XAI.
Collapse
Affiliation(s)
- T Lykogeorgos
- Division of Child Dental Health, Department of Oral and Dental Science, University of Bristol, UK
| | | | | | | |
Collapse
|
34
|
Katsuta O, Hoshino N, Takeda M, Ono A, Tsuchitani M. A spontaneous mutation: amelogenesis imperfecta with cysts in rats. Toxicol Pathol 2003; 31:411-6. [PMID: 12851106 DOI: 10.1080/01926230390202344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Amelogenesis imperfecta (AI) is an inherited dental disease of enamel formation in humans, and there are various phenotypes due to the combination of enamel quality and quantity. We encountered four female IGS rats with spontaneous AI including odontogenic cysts in the incisor teeth. Histopathologically, in the incisors of the rats, the enamel organ was disorganized with the remaining enamel matrix residing within the enamel space. The expanding cysts derived from the enamel organ were formed in the periosteal connective tissue on the labial side. At the bottom of the tooth germs, the precursor cells of the epithelial root sheath were arranged regularly and the enamel organs were preserved to the same degree as those of normal rats. In the molar teeth of the affected rats an enamel matrix remained on the neck and crown of the erupted teeth; however, no abnormality was observed at the tooth root. Although an animal model of AI has been developed from mutants of the SHR-SP rat strain, the present cases represent another potential model of the disease because of the differences in the way the enamel matured and the odontogenic cyst formation in the incisors.
Collapse
Affiliation(s)
- Osamu Katsuta
- Mitsubishi Chemical Safety Institute Ltd., Ibaraki-ken, Japan.
| | | | | | | | | |
Collapse
|
35
|
Aldred MJ, Hall RK, Kilpatrick N, Bankier A, Savarirayan R, Lamandé SR, Lench NJ, Crawford PJM. Molecular analysis for genetic counselling in amelogenesis imperfecta. Oral Dis 2002; 8:249-53. [PMID: 12363109 DOI: 10.1034/j.1601-0825.2002.02835.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To use molecular genetics to establish the mode of inheritance in a family with amelogenesis imperfecta. MATERIALS AND METHODS The polymerase chain reaction was used to amplify exons of the amelogenin gene on the short arm of the X chromosome. RESULTS A single base deletion mutation in exon 6 of the amelogenin gene was identified. This mutation was a single base deletion of a cytosine residue - 431delC - in codon 96 of exon 6, introducing a stop codon 30 codons downstream of the mutation in codon 126 of the exon. CONCLUSION The firm establishment of an X-linked mode of inheritance affects the genetic counselling for this family.
Collapse
Affiliation(s)
- M J Aldred
- Department of Dentistry, Royal Children's Hospital, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hart PS, Aldred MJ, Crawford PJM, Wright NJ, Hart TC, Wright JT. Amelogenesis imperfecta phenotype-genotype correlations with two amelogenin gene mutations. Arch Oral Biol 2002; 47:261-5. [PMID: 11922869 DOI: 10.1016/s0003-9969(02)00003-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amelogenin, the predominant matrix protein in developing dental enamel, is considered essential for normal enamel formation, but its exact functions are undefined. Mutations in the AMELX gene that encodes for amelogenin protein cause X-linked amelogenesis imperfecta (AI), with phenotypes characterized by hypoplastic and/or poorly mineralized enamel. Eight different AMELX deletion and substitution mutations have been reported to date. The purpose here was to evaluate the genotype and phenotype of two large kindreds segregating for X-linked AI. Phenotypically affected males in family 1 had yellowish-brown, poorly mineralized enamel; those in family 2 had thin, smooth, hypoplastic enamel. Heterozygous females in both kindreds had vertical hypoplastic grooves in their enamel. DNA was obtained from family members; exons 1-7 of AMELX were amplified and sequenced. Mutational analysis of family 1 revealed a single-base-pair change of A-->T at nucleotide 256, resulting in a His-->Leu change. Analysis of family 2 revealed deletion of a C-nucleotide in codon 119 causing a frameshift alteration of the next six codons, and a premature stop codon resulting in truncation of the protein 18 amino acids shorter than the wild-type. To date, all mutations that alter the C-terminus of amelogenin after the 157th amino acid have resulted in a hypoplastic phenotype. In contrast, other AMELX mutations appear to cause predominantly mineralization defects (e.g. the mutation seen in family 1). This difference suggests that the C-terminus of the normal amelogenin protein is important for controlling enamel thickness.
Collapse
Affiliation(s)
- P S Hart
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Mutations of the X-chromosome amelogenin gene (AMELX) are associated with amelogenesis imperfecta (AI) phenotypes (OMIM no. 301200). Currently, 12 different AMELX mutations have been identified in individuals with abnormal enamel characteristic of AI. A notable feature of AI is the variable clinical phenotype, spurring interest in genotype-phenotype correlations. It is important that researchers and clinicians have an informative and reliable means of reporting and communicating these molecular defects. Therefore, the purpose here was to present a systematic nosology for reporting the genomic, cDNA and protein consequences of AMELX mutations associated with AI. The proposed nomenclature adheres to conventions proposed for other conditions and can be adopted for the autosomal forms of AI as the molecular basis of these conditions becomes known.
Collapse
Affiliation(s)
- P S Hart
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
38
|
Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N. Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal. Matrix Biol 2002; 21:197-205. [PMID: 11852235 DOI: 10.1016/s0945-053x(01)00190-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amelogenins, the major protein component of the mineralizing enamel extracellular matrix, are critical for normal enamel formation as documented in the linkage studies of a group of inherited disorders, with defective enamel formation, called Amelogenesis imperfecta. Recent cases of Amelogenesis imperfecta include mutations that resulted in truncated amelogenin protein lacking the hydrophilic C-terminal amino acids. Current advances in knowledge on amelogenin structure, nanospheres assembly and their effects on crystal growth have supported the hypothesis that amelogenin nanospheres provide the organized microstructure for the initiation and modulated growth of enamel apatite crystals. In order to evaluate the function of the conserved hydrophilic C-terminal telopeptide during enamel biomineralization, the present study was designed to analyze the self-assembly and apatite binding behavior of amelogenin proteins and their isoforms lacking the hydrophilic C-terminal. We applied dynamic light scattering to investigate the size distribution of amelogenin nanospheres formed by a series of native and recombinant proteins. In addition, the apatite binding properties of these amelogenins were examined using commercially available hydroxyapatite crystals. Amelogenins lacking the carboxy-terminal (native P161 and recombinant rM166) formed larger nanospheres than those formed by their full-length precursors: native P173 and recombinant rM179. These data suggest that after removal of the hydrophilic carboxy-terminal segment further association of the nanospheres takes place through hydrophobic interactions. The affinity of amelogenins lacking the carboxy-terminal regions to apatite crystals was significantly lower than their parent amelogenins. These structure-functional analyses suggest that the hydrophilic carboxy-terminal plays critical functional roles in mineralization of enamel and that the lack of this segment causes abnormal mineralization.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|