1
|
Mohamed DAA, Abdelwahab SA, Mahmoud RH, Taha RM. Radiographic and immuno-histochemical evaluation of root perforation repair using MTA with or without platelet-rich fibrin or concentrated growth factors as an internal matrix in dog's teeth: in vivo animal study. Clin Oral Investig 2023; 27:5103-5119. [PMID: 37500933 PMCID: PMC10492699 DOI: 10.1007/s00784-023-05131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES To comparatively evaluate the in vivo outcome of MTA repair for contaminated and non-contaminated furcation perforations (FP) with or without PRF and CGF as a matrix in dogs' teeth. METHODS Ninety dog teeth were divided into five groups based on the iatrogenic FP repair approach after doing root canal treatment: negative control (without FP), positive control (FP without repair), MTA, MTA + PRF and MTA + CGF groups, where FP were repaired promptly in subdivision 1 (n = 10; non-contaminated) and after 4 weeks of oral contamination in subdivision 2 (n = 10;contaminated). After 3 months, the perforation site was assessed radiographically (vertical bone density), histologically (inflammatory cell count, epithelial proliferation, cementum and bone deposition) and immunohistochemically (OPN and TRAP antibodies localisation). Data collected were statistically analysed using SPSS software at a 0.05 significance level. RESULTS The MTA + PRF and MTA + CGF groups demonstrated significantly more bone formation, OPN immunolocalisation and fewer inflammatory cell counts than MTA group. MTA, MTA + PRF and MTA + CGF groups showed significantly favourable radiographic, histological and immunohistochemical healing features than the positive control, especially in non-contaminated subdivisions, that significantly showed better features than the contaminated subdivisions (P < 0.001). CONCLUSION The use CGF and PRF as a matrix beneath MTA in FP repair in dog's teeth is promising as it could increase hard and soft tissue regeneration in non-contaminated and contaminated perforations. CLINICAL RELEVANCE The repair of FP is challenging especially when associated with contaminated inter-radicular bone loss. Radiographic, histological and immunohistochemical comprehensive evaluation of the root and surrounding attachment apparatus response to different perforation repair protocols could give a predictable clinical outcome.
Collapse
Affiliation(s)
- Dalia Abd-Allah Mohamed
- Endodontic Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
| | - Safinaz AbdelFatah Abdelwahab
- Dental Material Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
- Restorative Department, Faculty of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Rania Hanafi Mahmoud
- Oral Pathology Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
- Oral Pathology Department, Faculty of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Rasha Mohamed Taha
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
| |
Collapse
|
2
|
Wang M, Zhang Z, Sun H, He S, Liu S, Zhang T, Wang L, Ma G. Research progress of anthocyanin prebiotic activity: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154145. [PMID: 35567994 DOI: 10.1016/j.phymed.2022.154145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anthocyanins are a kind of flavonoids and natural water-soluble pigments, which endow fruits, vegetables, and plants with multiple colors. They are important source of new products with prebiotic activity. However, there is no systematic review documenting prebiotic activity of anthocyanins and their structural analogues. This study aims to fill this gap in literature. PURPOSE The objective of this review is to summarize and evaluate the prebiotic activity of anthocyanin's, and discuss the physical and molecular modification methods to improve their biological activities. STUDY DESIGN AND METHODS In this review, the databases (PubMed, Google Scholar, Web of Science, Researchgate and Elsevier) were searched profoundly with keywords (anthocyanin's, prebiotics, probiotics, physical embedding and molecular modification). RESULTS A total of 34 articles were considered for reviewing. These studies approved that anthocyanins play an important role in promoting the proliferation of probiotics, inhibiting the growth of harmful bacteria and improving the intestinal environment. In addition, physical embedding and molecular modification have also been proved to be effective methods to improve the prebiotic activity of anthocyanins. Anthocyanins could promote the production of short chain fatty acids, accelerate self degradation and improve microbial related enzyme activities to promote the proliferation of probiotics. They inhibited the growth of harmful bacteria by inhibiting the expression of harmful bacteria genes, interfering with the role of metabolism related enzymes and affecting respiratory metabolism. They promoted the formation of a complete intestinal barrier and regulated the intestinal environment to keep the body healthy. Physical embedding, including microencapsulation and colloidal embedding, greatly improved the stability of anthocyanins. On the other hand, molecular modification, especially enzymatic modification, significantly improved the biological activities (antioxidant, prebiotic activity and so on) of anthocyanins. CONCLUSION All these research results displayed by this review indicate that anthocyanins are a useful tool for developing prebiotic products. The better activities of the new anthocyanins formed by embedding and modification may make them become more effective raw materials. Our review provides a scientific basis for the future research and application of anthocyanins.
Collapse
Affiliation(s)
- Muwen Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Zuoyong Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shuyun Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Tao Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Gang Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
3
|
Han P, Liu T, Vaquette C, Frazer D, Anderson G, Ivanovski S. Iron accumulation is associated with periodontal destruction in a mouse model of HFE-related haemochromatosis. J Periodontal Res 2021; 57:294-304. [PMID: 34855211 DOI: 10.1111/jre.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the effect of Hfe gene mutation on the distribution of iron and periodontal bone loss in periodontal tissues. BACKGROUND DATA It remains unclear how tissue iron loading affects the periodontium architectures in a genetic animal model of hereditary haemochromatosis (HH). METHODS Male C57BL/6 Hfe-/- (8 weeks old) and wild-type (WT) mice were utilized to examine the iron distribution in periodontal tissues, as well as periodontal tissues changes using micro-computed tomography and histomorphometric analysis. Furthermore, tissue inflammatory mediators, bone markers and periodontal pathogens were carried out in PFA-fixed paraffin-embedded tissues using ELISA, RT-qPCR and genomic DNA qPCR, respectively. RESULTS Excessive iron deposition was found in the periodontal ligament, gingiva and alveolar bone in Hfe-/- mice relative to their WT counterparts. This, in turn, was associated with significant periodontal bone loss, increased cemento-enamel junction-alveolar bone crest distance and decreased expression of molecules involved in bone development and turnover. Furthermore, the pro-inflammatory cytokine - interleukin 6 and periodontal bacteria - Campylobacter rectus were significantly increased in Hfe-/- mice compared with WT controls. CONCLUSION Our results suggest that the iron loading in a mouse model of HH decreases alveolar bone formation and leads to alterations in the inflammatory state in the periodontium. Periodontal health should be assessed during the clinical assessment of HFE-HH patients.
Collapse
Affiliation(s)
- Pingping Han
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Epigenetics Nanodiagnostics and therapeutics Group, The University of Queensland, Herston, QLD, Australia.,School of Dentistry, The University of Queensland, Herston, QLD, Australia
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, Australia
| | - David Frazer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gregory Anderson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sašo Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Epigenetics Nanodiagnostics and therapeutics Group, The University of Queensland, Herston, QLD, Australia.,School of Dentistry, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
4
|
Abstract
In this review, the authors consider the substantial advances that have been made in recent years in stem cell-based periodontal regeneration. These advances involve identifying dental- and nondental-derived stem cells with the capacity to modulate periodontal regeneration, human clinical trials, and emerging concepts, including cell banking, good manufacturing processes, and overall clinical translation.
Collapse
|
5
|
PPARγ-Induced Global H3K27 Acetylation Maintains Osteo/Cementogenic Abilities of Periodontal Ligament Fibroblasts. Int J Mol Sci 2021; 22:ijms22168646. [PMID: 34445348 PMCID: PMC8395443 DOI: 10.3390/ijms22168646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
The periodontal ligament is a soft connective tissue embedded between the alveolar bone and cementum, the surface hard tissue of teeth. Periodontal ligament fibroblasts (PDLF) actively express osteo/cementogenic genes, which contribute to periodontal tissue homeostasis. However, the key factors maintaining the osteo/cementogenic abilities of PDLF remain unclear. We herein demonstrated that PPARγ was expressed by in vivo periodontal ligament tissue and its distribution pattern correlated with alkaline phosphate enzyme activity. The knockdown of PPARγ markedly reduced the osteo/cementogenic abilities of PDLF in vitro, whereas PPARγ agonists exerted the opposite effects. PPARγ was required to maintain the acetylation status of H3K9 and H3K27, active chromatin markers, and the supplementation of acetyl-CoA, a donor of histone acetylation, restored PPARγ knockdown-induced decreases in the osteo/cementogenic abilities of PDLF. An RNA-seq/ChIP-seq combined analysis identified four osteogenic transcripts, RUNX2, SULF2, RCAN2, and RGMA, in the PPARγ-dependent active chromatin region marked by H3K27ac. Furthermore, RUNX2-binding sites were selectively enriched in the PPARγ-dependent active chromatin region. Collectively, these results identified PPARγ as the key transcriptional factor maintaining the osteo/cementogenic abilities of PDLF and revealed that global H3K27ac modifications play a role in the comprehensive osteo/cementogenic transcriptional alterations mediated by PPARγ.
Collapse
|
6
|
Ipe DS, Kumar PTS, Love RM, Hamlet SM. Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics. Front Microbiol 2020; 11:1074. [PMID: 32670214 PMCID: PMC7326045 DOI: 10.3389/fmicb.2020.01074] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotics used to treat bacterial infections can become ineffective over time or result in the emergence of antibiotic resistant pathogens. With the advent of nanotechnology, silver nanoparticles (AgNPs) have gained significant attention as a therapeutic agent due to the well-known antimicrobial properties of silver. However, there are concerns and limited literature on the potential cytotoxicity of nanoparticles at effective antimicrobial concentrations. AgNPs prepared from silver nitrate with glucose reduction were characterized by surface plasmon resonance, dynamic light scattering, zeta potential analysis and transmission electron microscopy. The cytotoxicity of AgNPs towards human gingival fibroblasts over 7 days was determined using cell proliferation assays and confocal microscopy. AgNP MIC and antibacterial effects alone and in combination with 11 antibiotics were determined against a panel of nine microbial species including gram-positive and gram-negative bacterial species. AgNPs concentrations ≤ 1 μg/mL were non-cytotoxic but also showed no antibacterial effects. However, when combined with each of eleven antibiotics, the biocompatible concentration of AgNPs (1 μg/mL) resulted in significant inhibition of bacterial growth for multiple bacterial species that were resistant to either the antibiotics or AgNPs alone. This study presents a promising strategy with further testing in vivo, to develop novel antimicrobial agents and strategies to confront emerging antimicrobial resistance.
Collapse
Affiliation(s)
- Deepak S Ipe
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - P T Sudheesh Kumar
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia
| | - Robert M Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia
| | - Stephen M Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
7
|
Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament. Anat Sci Int 2019; 95:1-11. [DOI: 10.1007/s12565-019-00502-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
|
8
|
Cruz ACC, Cardozo FTGDS, Magini RDS, Simões CMO. Retinoic acid increases the effect of bone morphogenetic protein type 2 on osteogenic differentiation of human adipose-derived stem cells. J Appl Oral Sci 2019; 27:e20180317. [PMID: 30810639 PMCID: PMC6382324 DOI: 10.1590/1678-7757-2018-0317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein type 2 (BMP-2) and retinoic acid (RA) are osteoinductive factors that stimulate endogenous mechanisms of bone repair which can be applied on management of osseous defects in oral and maxillofacial fields. OBJECTIVE Considering the different results of RA on osteogenesis and its possible use to substitute/potency BMP-2 effects, this study evaluated the outcomes of BMP-2, RA, and BMP-2+RA treatments on in vitro osteogenic differentiation of human adipose-derived stem cells (ASCs) and the signaling pathway(s) involved. MATERIAL AND METHODS ASCs were treated every other day with basic osteogenic medium (OM) alone or supplemented with BMP-2, RA, or BMP-2+RA. Alkaline phosphatase (ALP) activity was determined using the r-nitrophenol method. Extracellular matrix mineralization was evaluated using von Kossa staining and calcium quantification. Expression of osteonectin and osteocalcin mRNA were determined using qPCR. Smad1, Smad4, phosphorylated Smad1/5/8, BMP-4, and BMP-7 proteins expressions were analyzed using western blotting. Signaling pathway was evaluated using the IPA® software. RESULTS RA promoted the highest ALP activity at days 7, 14, 21, and 28, in comparison to BMP-2 and BMP-2+RA. BMP-2+RA best stimulated phosphorylated Smad1/5/8 protein expression at day 7 and Smad4 expression at days 7, 14, 21, and 28. Osteocalcin and osteonectin mRNA expressions were best stimulated by BMP-2+RA at day 7. Matrix mineralization was most improved by BMP-2+RA at days 12 and 32. Additionally, BMP-2+RA promoted the highest BMP signaling pathway activation at days 7 and 14, and demonstrated more activation of differentiation of bone-forming cells than OM alone. CONCLUSIONS In summary, RA increased the effect of BMP-2 on osteogenic differentiation of human ASCs.
Collapse
Affiliation(s)
- Ariadne Cristiane Cabral Cruz
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Odontologia, Departamento de Odontologia, Florianópolis, Santa Catarina,Brasil
| | | | - Ricardo de Souza Magini
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Odontologia, Departamento de Odontologia, Florianópolis, Santa Catarina,Brasil
| | - Cláudia Maria Oliveira Simões
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Florianópolis, Santa Catarina,Brasil
| |
Collapse
|
9
|
Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Li X, He C, Song L, Li T, Cui S, Zhang L, Jia Y. Antimicrobial activity and mechanism of Larch bark procyanidins against Staphylococcus aureus. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1058-1066. [PMID: 29095973 DOI: 10.1093/abbs/gmx112] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 11/12/2022] Open
Abstract
Larch bark procyanidins (LBPCs) have not only antioxidant and antitumor properties, but also strong bacteriostatic effects. However, it is not clear about the antibacterial mechanisms of LBPC. In this work, the antibacterial effects and mechanisms of LBPC on Staphylococcus aureus were studied in the aspects of morphological structure, cell wall and membrane, essential proteins, and genetic material. The results showed that LBPC effectively inhibited bacterial growth at a minimum inhibitory concentration of 1.75 mg/ml. Bacterial morphology was significantly altered by LBPC treatment, with the cell walls and membranes being destroyed. Extracellular alkaline phosphatase content, bacterial fluid conductivity, and Na+/K+-ATPase and Ca2+-ATPase activities in the membrane system were all increased. In the energy metabolic systems, the activities of succinate dehydrogenase, malate dehydrogenase, and adenosine triphosphatase (ATPase) were all decreased, resulting in a slowdown of metabolism and bacterial growth inhibition. Changes of protein content and composition in the bacteria suggested that the protein expression system was affected. In addition, LBPC was found to bind to DNA grooves to form complexes. Thus, LBPC has a very strong inhibitory effect on S. aureus and can kill S. aureus by destroying the integrity and permeability of the cell wall and cell membrane, affecting protein synthesis, and binding to DNA.
Collapse
Affiliation(s)
- Xinchao Li
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Liya Song
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Ting Li
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Shumei Cui
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Liping Zhang
- MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Yang S, Ni LK, Zhao LL, Yang JW, Liu Q, Zhang JE, He Z, Peng S. Repair process and enzymatic activity associated with induction of shell regeneration in the invasive speciesPomacea canaliculata. MOLLUSCAN RESEARCH 2016. [DOI: 10.1080/13235818.2015.1128603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Alves LB, Mariguela VC, Grisi MFDM, Souza SLSD, Novaes Junior AB, Taba Junior M, Oliveira PTD, Palioto DB. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel. J Appl Oral Sci 2015; 23:206-14. [PMID: 26018313 PMCID: PMC4428466 DOI: 10.1590/1678-775720140462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/18/2015] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the influence of a three-dimensional cell culture model on the expression of osteoblastic phenotype in human periodontal ligament fibroblast (hPDLF) cultures. MATERIAL AND METHODS hPDLF were seeded on bi-dimensional (2D) and three-dimensional (3D) collagen type I (experimental groups) and and on a plastic coverslip (control) for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity were performed. Also, cell morphology and immunolabeling for alkaline phosphatase (ALP) and osteopontin (OPN) were assessed by epifluorescence and confocal microscopy. The expression of osteogenic markers, including alkaline phosphatase, osteopontin, osteocalcin (OC), collagen I (COL I) and runt-related transcription factor 2 (RUNX2), were analyzed using real-time polymerase chain reaction (RT-PCR). Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. RESULTS Experimental cultures produced an increase in cell proliferation. Immunolabeling for OPN and ALP in hPDLF were increased and ALP activity was inhibited by three-dimensional conditions. OPN and RUNX2 gene expression was significantly higher on 3D culture when compared with control surface. Moreover, ALP and COL I gene expression were significantly higher in three-dimensional collagen than in 2D cultures at 7 days. However, at 14 days, 3D cultures exhibited ALP and COL I gene expression significantly lower than the control, and the COL I gene expression was also significantly lower in 3D than in 2D cultures. Significant calcium mineralization was detected and quantified by alizarin red assay, and calcified nodule formation was not affected by tridimensionality. CONCLUSION This study suggests that the 3D cultures are able to support hPDLF proliferation and favor the differentiation and mineralized matrix formation, which may be a potential periodontal regenerative therapy.
Collapse
Affiliation(s)
- Luciana Bastos Alves
- Department of Oral Surgery and Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviane Casagrande Mariguela
- Department of Oral Surgery and Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Márcio Fernando de Moraes Grisi
- Department of Oral Surgery and Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sérgio Luiz Scaombatti de Souza
- Department of Oral Surgery and Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Arthur Belém Novaes Junior
- Department of Oral Surgery and Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mário Taba Junior
- Department of Oral Surgery and Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo Tambasco de Oliveira
- Department of Morphology, Stomatology and Physiology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniela Bazan Palioto
- Department of Morphology, Stomatology and Physiology, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Farag A, Vaquette C, Theodoropoulos C, Hamlet SM, Hutmacher DW, Ivanovski S. Decellularized periodontal ligament cell sheets with recellularization potential. J Dent Res 2014; 93:1313-9. [PMID: 25270757 DOI: 10.1177/0022034514547762] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The periodontal ligament is the key tissue facilitating periodontal regeneration. This study aimed to fabricate decellularized human periodontal ligament cell sheets for subsequent periodontal tissue engineering applications. The decellularization protocol involved the transfer of intact human periodontal ligament cell sheets onto melt electrospun polycaprolactone membranes and subsequent bi-directional perfusion with NH4OH/Triton X-100 and DNase solutions. The protocol was shown to remove 92% of DNA content. The structural integrity of the decellularized cell sheets was confirmed by a collagen quantification assay, immunostaining of human collagen type I and fibronectin, and scanning electron microscopy. ELISA was used to demonstrate the presence of residual basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) in the decellularized cell sheet constructs. The decellularized cell sheets were shown to have the ability to support recellularization by allogenic human periodontal ligament cells. This study describes the fabrication of decellularized periodontal ligament cell sheets that retain an intact extracellular matrix and resident growth factors and can support repopulation by allogenic cells. The decellularized hPDL cell sheet concept has the potential to be utilized in future "off-the-shelf" periodontal tissue engineering strategies.
Collapse
Affiliation(s)
- A Farag
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - C Vaquette
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - C Theodoropoulos
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - S M Hamlet
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - S Ivanovski
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| |
Collapse
|
14
|
Varanasi VG, Leong KK, Dominia LM, Jue SM, Loomer PM, Marshall GW. Si and Ca individually and combinatorially target enhanced MC3T3-E1 subclone 4 early osteogenic marker expression. J ORAL IMPLANTOL 2013; 38:325-36. [PMID: 22913306 DOI: 10.1563/aaid-joi-d-11-00108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study tests the hypothesis that silicon and calcium ions combinatorially target gene expression during osteoblast differentiation. MC3T3-E1 subclone 4 osteoblast progenitors (transformed mouse calvarial osteoblasts) were exposed to Si(4+) (from Na(2)SiO(3)) and Ca(2+) (from CaCl(2):H(2)O) ion treatments both individually (0.4 mM each + control treatment) and combinatorially (0.4 mM Si(4+) + 0.4 mM Ca(2+) + control treatment) and compared to control treated (α-minimum essential medium, 10% fetal bovine serum, and 1% penicillin-streptomycin) cells. Cell proliferation studies showed no significant increase in cell density between treatments over 5 days of culture. Cellular differentiation studies involved addition of ascorbic acid (50 mg/L) for all treatments. Relative gene expression was determined for collagen type 1 (Col(I)α1/Col(I)α2), core-binding factor a (cbfa1/Runx2), and osteocalcin (OCN), which indicated osteoblast progenitor differentiation into a mineralizing phenotype. Increased Si(4+) or Ca(2+) ion treatments enhanced Col(I)α1, Col(I)α2, Runx2, and OCN expression, while increased Si(4+) + Ca(2+) ion treatments enhanced OCN expression. Moreover, it was found that a Si(4+)/Ca(2+) ratio of unity was optimal for maximal expression of OCN. Collagen fiber bundles were dense, elongated, and thick within extracellular matrices (ECM) exposed to Si(4+) and Si(4+) + Ca(2+) treatments, while collagen fiber bundles were sparse, short, and thin within Ca(2+) and control treated ECM. These results indicated that individual ions enhance multiple osteogenic gene expression, while combined ion treatments enhance individual gene expression. In addition, these results indicated that Si(4+) enhanced osteoblast gene expression and ECM formation at higher levels than Ca(2+). These results support the larger concept that ions (possibly released from bioactive glasses) could control bone formation by targeting osteoblast marker expression.
Collapse
Affiliation(s)
- Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Cruz ACC, Silva ML, Caon T, Simões CMO. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells. J Appl Oral Sci 2013; 20:628-35. [PMID: 23329244 PMCID: PMC3881851 DOI: 10.1590/s1678-77572012000600007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/14/2012] [Indexed: 12/25/2022] Open
Abstract
Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes
bone formation and has been used as an osteogenic supplement for mesenchymal stem
cells.
Collapse
|
16
|
Adult Mesenchymal Stem Cells Explored in the Dental Field. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:89-103. [DOI: 10.1007/10_2012_151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Choi HD, Noh WC, Park JW, Lee JM, Suh JY. Analysis of gene expression during mineralization of cultured human periodontal ligament cells. J Periodontal Implant Sci 2011; 41:30-43. [PMID: 21394295 PMCID: PMC3051055 DOI: 10.5051/jpis.2011.41.1.30] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/27/2011] [Indexed: 12/30/2022] Open
Abstract
Purpose Under different culture conditions, periodontal ligament (PDL) stem cells are capable of differentiating into cementoblast-like cells, adipocytes, and collagen-forming cells. Several previous studies reported that because of the stem cells in the PDL, the PDL have a regenerative capacity which, when appropriately triggered, participates in restoring connective tissues and mineralized tissues. Therefore, this study analyzed the genes involved in mineralization during differentiation of human PDL (hPDL) cells, and searched for candidate genes possibly associated with the mineralization of hPDL cells. Methods To analyze the gene expression pattern of hPDL cells during differentiation, the hPDL cells were cultured in two conditions, with or without osteogenic cocktails (β-glycerophosphate, ascorbic acid and dexamethasone), and a DNA microarray analysis of the cells cultured on days 7 and 14 was performed. Reverse transcription-polymerase chain reaction was performed to validate the DNA microarray data. Results The up-regulated genes on day 7 by hPDL cells cultured in osteogenic medium were thought to be associated with calcium/iron/metal ion binding or homeostasis (PDE1A, HFE and PCDH9) and cell viability (PCDH9), and the down-regulated genes were thought to be associated with proliferation (PHGDH and PSAT1). Also, the up-regulated genes on day 14 by hPDL cells cultured in osteogenic medium were thought to be associated with apoptosis, angiogenesis (ANGPTL4 and FOXO1A), and adipogenesis (ANGPTL4 and SEC14L2), and the down-regulated genes were thought to be associated with cell migration (SLC16A4). Conclusions This study suggests that when appropriately triggered, the stem cells in the hPDL differentiate into osteoblasts/cementoblasts, and the genes related to calcium binding (PDE1A and PCDH9), which were strongly expressed at the stage of matrix maturation, may be associated with differentiation of the hPDL cells into osteoblasts/cementoblasts.
Collapse
Affiliation(s)
- Hee-Dong Choi
- Department of Periodontology, Kyungpook National University School of Dentistry, Daegu, Korea
| | | | | | | | | |
Collapse
|
18
|
Wu L, Wei X, Ling J, Liu L, Liu S, Li M, Xiao Y. Early osteogenic differential protein profile detected by proteomic analysis in human periodontal ligament cells. J Periodontal Res 2009; 44:645-56. [PMID: 19453858 DOI: 10.1111/j.1600-0765.2008.01174.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Human periodontal ligament cells play a pivotal role in maintaining periodontal ligament space, contain progenitors that are able to differentiate into cementoblasts/osteoblasts and have a tremendous potential to regenerate periodontal tissue. However, the exact molecular mechanisms governing the differentiation mechanisms of progenitors in periodontal ligament cells remain largely unknown. This study was carried out to investigate the differentially expressed proteins involved in the osteogenic differentiation of progenitors presented in periodontal ligament cells. MATERIAL AND METHODS Using two-dimensional gel electrophoresis, mass spectrometry and peptide mass fingerprinting, we analyzed the differential protein profiles of periodontal ligament cells undergoing mineralization. RESULTS Compared with undifferentiated periodontal ligament cells, 61 proteins in periodontal ligament cells undergoing differentiation showed at least a 1.5-fold change in intensity, of which 29 differentially expressed proteins were successfully identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. The expression of some of the identified proteins was further confirmed by western blotting and reverse transcription-polymerase chain reaction analysis. The identified proteins were cytoskeleton proteins and cytoskeleton-associated proteins, nuclear proteins and cell membrane-bound molecules. CONCLUSION Our results suggest that the proteins identified in this study may be associated with the unique function of periodontal ligament cells in maintaining periodontal tissue homeostasis, thus providing a comprehensive reference for understanding and investigating in greater detail the molecular mechanisms of periodontal ligament cells involved in periodontal regeneration.
Collapse
Affiliation(s)
- L Wu
- Department of Orthodontics, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Hiraga T, Ninomiya T, Hosoya A, Takahashi M, Nakamura H. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats. J Bone Miner Metab 2009; 27:149-57. [PMID: 19214373 DOI: 10.1007/s00774-009-0039-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey's fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, 1780 Gobara-Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | | | | | | | | |
Collapse
|
20
|
Lima LL, Gonçalves PF, Sallum EA, Casati MZ, Nociti FH. Guided tissue regeneration may modulate gene expression in periodontal intrabony defects: a human study. J Periodontal Res 2008; 43:459-64. [PMID: 18503515 DOI: 10.1111/j.1600-0765.2008.01094.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Guided tissue regeneration has been shown to lead to periodontal regeneration, however, the mechanisms involved remain to be clarified. The present study was carried out to assess the expression of genes involved in the healing process of periodontal tissues in membrane-protected vs. nonprotected intrabony defects in humans. MATERIAL AND METHODS Thirty patients with deep intrabony defects (> or = 5 mm, two or three walls) around teeth that were scheduled for extraction were selected and randomly assigned to receive one of the following treatments: flap surgery alone (control group) or flap surgery plus guided tissue regeneration (expanded polytetrafluorethylene (e-PTFE) membrane) (test group). Twenty-one days later, the newly formed tissue was harvested and quantitatively assessed using the polymerase chain reaction assay for the expression of the following genes: alkaline phosphatase, receptor activator of nuclear factor-kappa B ligand, osteoprotegerin, osteopontin, osteocalcin, bone sialoprotein, basic fibroblast growth factor, interleukin-1, interleukin-4, interleukin-6, matrix metalloproteinase-2 and matrix metalloproteinase-9. RESULTS Data analysis demonstrated that mRNA levels for alkaline phosphatase, receptor activator of nuclear factor-kappa B ligand, osteoprotegerin, osteopontin, bone sialoprotein, basic fibroblast growth factor, interleukin-1, interleukin-6, matrix metalloproteinase-2 and matrix metalloproteinase -9 were higher in the sites where guided tissue regeneration was applied compared with the control sites (p < 0.05), whereas osteocalcin mRNA levels were lower (p < 0.05). No difference was observed in interleukin-4 mRNA levels between control and test groups. CONCLUSION Within the limits of this study, it can be concluded that genes are differentially expressed in membrane barrier-led periodontal healing when compared with flap surgery alone, and this may account for the clinical outcome achieved by guided tissue regeneration.
Collapse
Affiliation(s)
- L L Lima
- Division of Periodontics, School of Dentistry at Piracicaba, University of Campinas, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
21
|
Han MJ, Seo YK, Yoon HH, Song KY, Park JK. Effect of mechanical tension on the human dental pulp cells. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0146-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Ivanovski S, Lichanska AM, d'Aniello E, Xiao Y, Waters MJ. Gene expression profiling of cells involved in periodontal regeneration. ACTA ACUST UNITED AC 2007; 13:393-404. [PMID: 17518572 DOI: 10.1089/ten.2006.0082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the molecular mechanisms involved in periodontal regeneration is important for the development of more predictable clinical techniques. This study aimed to identify these mechanisms by comparing the gene expression profiles of cells derived from regenerating defects with patient-matched periodontal ligament cells. Gene profiling was carried out via Affymetrix U133A arrays containing probes for 22,000 genes. Robust differences in gene expression were obtained by identifying genes that consistently changed by a minimum of 2-fold. Analysis of molecular function as designated by gene ontology (GO) identified differentially regulated mechanisms including protein metabolism, tyrosine kinase activity, and skeletal development. The differentially expressed genes could be broadly divided into the categories of protein biosynthesis and turnover, structural constituents of the cytoskeleton and extracellular matrix, and signal transduction. The differential expression of 4 genes (EGR-1, elastin, osteoprotegerin, and IGFBP3) was confirmed via real-time polymerase chain reaction (PCR). Further, the expression of another 2 differentially expressed transcripts, decorin and biglycan, was immunohistochemically confirmed in a periodontal wound healing model and the protein expression was consistent with the pattern of gene expression. This study gives insight into the molecular processes involved in periodontal regeneration and identifies cell markers that are characteristic of regenerating periodontal tissues.
Collapse
Affiliation(s)
- S Ivanovski
- School of Dentistry and Oral Health, The University of Queensland; Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
23
|
Pi SH, Lee SK, Hwang YS, Choi MG, Lee SK, Kim EC. Differential expression of periodontal ligament-specific markers and osteogenic differentiation in human papilloma virus 16-immortalized human gingival fibroblasts and periodontal ligament cells. J Periodontal Res 2007; 42:104-13. [PMID: 17305867 DOI: 10.1111/j.1600-0765.2006.00921.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament cells and gingival fibroblasts are important in the remodeling of periodontal tissue, but human papilloma virus (HPV)16-immortalized cell lines derived from human periodontal ligament cells and gingival fibroblasts has not been characterized. The purpose of this study was to establish and differentially characterize the immortalized cell lines from gingival fibroblasts and periodontal ligament by HPV16 transfection. MATERIAL AND METHODS Cell growth, cell cycle analysis, western blot for cell cycle regulatory proteins and osteogenic differentiation markers, and reverse transcription-polymerase chain reaction for periodontal ligament-specific markers were performed. RESULTS Both immortalized cell lines (immortalized gingival fibroblasts and immortalized periodontal ligament cells) grew faster than primary cultured gingival fibroblasts or periodontal ligament cells. Immortalized gingival fibroblasts and immortalized periodontal ligament cells overexpressed proteins p16 and p21, and exhibited degradation of proteins pRb and p53, which normally cause cell cycle arrest in G2/M-phase. Western blotting and reverse transcription-polymerase chain reaction for periodontal ligament-specific and osteogenic differentiation marker studies demonstrated that a cell line, designated IPDL, mimicked periodontal ligament gene expression for alkaline phosphatase, osteonectin, osteopontin, bone sialoprotein, bone morphogenic protein-2, periostin, S-100A4 and PDLs17. CONCLUSION These results indicate that IPDL and immortalized gingival fibroblast cell lines consistently retain normal periodontal ligament and gingival fibroblast phenotypes, respectively, and periodontal ligament markers and osteogenic differentiation in IPDL are distinct from immortalized gingival fibroblast cells.
Collapse
Affiliation(s)
- S-H Pi
- Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Gronthos S, Mrozik K, Shi S, Bartold PM. Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 2006; 79:310-7. [PMID: 17033723 DOI: 10.1007/s00223-006-0040-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 05/28/2006] [Indexed: 01/09/2023]
Abstract
Periodontal disease leads to destruction of the connective tissues responsible for restraining teeth within the jaw. To date, various conventional therapies for periodontal regeneration have shown limited and variable clinical outcomes. Recent studies have suggested that newly identified human periodontal ligament stem cells (PDLSCs) may offer an alternate and more reliable strategy for the treatment of periodontal disease using a cell-based tissue engineering approach. In the present study, we generated enriched preparations of PDLSCs derived from ovine periodontal ligament using immunomagnetic bead selection, based on expression of the mesenchymal stem cell-associated antigen CD106 (vascular cell adhesion molecule 1). These CD106+ ovine PDLSCs demonstrated the capacity to form adherent clonogenic clusters of fibroblast-like cells when plated at low densities in vitro. Ex vivo-expanded ovine PDLSCs exhibited a high proliferation rate in vitro and expressed a phenotype (CD44+, CD166+, CBFA-1+, collagen-I+, bone sialoprotein+) consistent with human-derived PDLSCs. Furthermore, cultured ovine PDLSCs expressed high transcript levels of the ligament/tendon-specific early transcription factor scleraxis. Importantly, ex vivo-expanded ovine PDLSCs demonstrated the capacity to regenerate both cementum-like mineral and periodontal ligament when transplanted into NOD/SCID mice. The results from the present study suggest that ovine PDLSCs may potentially be used as a novel cellular therapy to facilitate successful and more predictable regeneration of periodontal tissue using an ovine preclinical model of periodontal disease as a prelude to human clinical studies.
Collapse
Affiliation(s)
- S Gronthos
- Division of Haematology, Mesenchymal Stem Cell Group, Frome Road, Adelaide 5000, SA, Australia
| | | | | | | |
Collapse
|
25
|
Bartold PM, Xiao Y, Lyngstaadas SP, Paine ML, Snead ML. Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000 2006; 41:123-35. [PMID: 16686930 DOI: 10.1111/j.1600-0757.2006.00156.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- P Mark Bartold
- Colgate Australian Clinical Dental Research Centre, Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- P Mark Bartold
- Colgate Australian Clinical Dental Resource Centre, University of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
27
|
Murano Y, Ota M, Katayama A, Sugito H, Shibukawa Y, Yamada S. Periodontal regeneration following transplantation of proliferating tissue derived from periodontal ligament into class III furcation defects in dogs. Biomed Res 2006; 27:139-47. [PMID: 16847360 DOI: 10.2220/biomedres.27.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the healing of class III furcation defects following transplantation of proliferating tissue derived from periodontal ligament (pPDL). Two weeks after removing alveolar bone, pPDL was excised. Class III furcation defects were created in the mandibular premolars. pPDL was transplanted into the furcation defects in the experimental group, while no treatment was performed on the furcation defects in the controls. Two, four and eight weeks after surgery, histologic examination, quantitative RT-PCR, and immunohistochemistry were carried out. bFGF and VEGF mRNA showed a significant increase in pPDL. In the pPDL treatment group, new cementum regenerated around almost the entire circumference of the furcation, with new bone filling most of the defect, while the control group presented epithelial downgrowth and defects filled with connective tissue. These results provide histological evidence that pPDL plays an important role in wound healing by promoting periodontal regeneration in class III furcation defects.
Collapse
Affiliation(s)
- Yoshinori Murano
- Department of Periodontology, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
ADRF Research Grant Abstracts. Aust Dent J 2005. [DOI: 10.1111/j.1834-7819.2005.tb00377.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005; 8:191-9. [PMID: 16022721 DOI: 10.1111/j.1601-6343.2005.00331.x] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Identification, characterization, and potential application of mesenchymal stem cells (MSC) derived from human dental tissues. METHODS Dental pulp and periodontal ligament were obtained from normal human impacted third molars. The tissues were digested in collagenase/dispase to generate single cell suspensions. Cells were cultured in alpha-MEM supplemented with 20% fetal bovine serum, 2 mM l-glutamine, 100 microM l-ascorbate-2-phosphate. Magnetic and fluorescence activated cell sorting were employed to characterize the phenotype of freshly isolated and ex vivo expanded cell populations. The developmental potential of cultured cells was assessed following co-transplantation with hydroxyapetite/tricalcium phosphate (HA/TCP) particles into immunocompromised mice for 8 weeks. RESULTS MSC were identified in adult human dental pulp (dental pulp stem cells, DPSC), human primary teeth (stem cells from human exfoliated deciduous teeth, SHED), and periodontal ligament (periodontal ligament stem cells, PDLSC) by their capacity to generate clongenic cell clusters in culture. Ex vivo expanded DPSC, SHED, and PDLSC populations expressed a heterogeneous assortment of makers associated with MSC, dentin, bone, smooth muscle, neural tissue, and endothelium. PDLSC were also found to express the tendon specific marker, Scleraxis. Xenogeneic transplants containing HA/TCP with either DPSC or SHED generated donor-derived dentin-pulp-like tissues with distinct odontoblast layers lining the mineralized dentin-matrix. In parallel studies, PDLSC generated cementum-like structures associated with PDL-like connective tissue when transplanted with HA/TCP into immunocompromised mice. CONCLUSION Collectively, these data revealed the presence of distinct MSC populations associated with dental structures with the potential of stem cells to regenerate living human dental tissues in vivo.
Collapse
Affiliation(s)
- S Shi
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, MD, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I. Human Periodontal Ligament Cell Sheets Can Regenerate Periodontal Ligament Tissue in an Athymic Rat Model. ACTA ACUST UNITED AC 2005; 11:469-78. [PMID: 15869425 DOI: 10.1089/ten.2005.11.469] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Conventional periodontal regeneration methods remain insufficient to attain complete and reliable clinical regeneration of periodontal tissues. We have developed a new method of cell transplantation using cell sheet engineering and have applied it to this problem. The purpose of this study was to investigate the characteristics of human periodontal ligament (HPDL) cell sheets retrieved from culture on unique temperature-responsive culture dishes, and to examine whether these cell sheets can regenerate periodontal tissues. The HPDL cell sheets were examined histologically and biochemically, and also were transplanted into a mesial dehiscence model in athymic rats. HPDL cells were harvested from culture dishes as a contiguous cell sheet with abundant extracellular matrix and retained intact integrins that are susceptible to trypsin-EDTA treatment. In the animal study, periodontal ligament-like tissues that include an acellular cementum-like layer and fibrils anchoring into this layer were identified in all the athymic rats transplanted with HPDL cell sheets. This fibril anchoring highly resembles native periodontal ligament fibers; such regeneration was not observed in nontransplanted controls. These results suggest that this technique, based on the concept of cell sheet engineering, can be useful for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Masateru Hasegawa
- Section of Periodontology, Department of Hard Tissue Engineering, Graduate School, Tokyo Medical and Dental University, Japan.
| | | | | | | | | |
Collapse
|
31
|
Fujita T, Otsuka-Tanaka Y, Tahara H, Ide T, Abiko Y, Mega JI. Establishment of immortalized clonal cells derived from periodontal ligament cells by induction of the hTERT gene. J Oral Sci 2005; 47:177-84. [PMID: 16415561 DOI: 10.2334/josnusd.47.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Since the periodontal ligament (PDL) contains a heterogeneous cell population, it is challenging to identify all cell types within the tissue and to determine whether they function alone to produce tissue components or interact with other cell types. Further, it is difficult to isolate and expand single cell clones from PDL cells, as normal cells have a limited life span and are phenotypically unstable. In the present study, we inserted the human telomerase reverse transcriptase (hTERT) gene, which encodes the catalytic subunit of the telomerase holoenzyme, into normal human periodontal ligament (HPL) cells and successfully obtained single cell clones. Expression of the inserted gene and telomerase activity in each of the clones was confirmed. Unlike the original HPL cells, at the end of the study (day 120), clone populations continued to actively double without phenotypic alteration. Osteogenic characteristics were present in some but not all clones. In conclusion, immortalization of HPL cells was successfully accomplished by transduction with the hTERT gene. This is the first report of immortalization of different cell types derived from PDL.
Collapse
Affiliation(s)
- Tomohisa Fujita
- Department of Dentistry for the Disabled, Nihon University School of Dentistry at Matsudo, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Silva TA, Rosa AL, Lara VS. Dentin matrix proteins and soluble factors: intrinsic regulatory signals for healing and resorption of dental and periodontal tissues? Oral Dis 2004; 10:63-74. [PMID: 14996275 DOI: 10.1111/j.1601-0825.2004.00992.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dentin contains numerous polypeptides and signaling molecules sequestered in a mineralized matrix. The exposure and release of these molecules occur as a consequence of injury to the pulp and periodontal ligament, which may result from luxation, orthodontic movement or infections of tooth and periodontal structures. When released at these sites, dentin constituents have the potential to act on different surrounding cells, including periodontal cells, osteoblasts, osteoclasts and inflammatory cells, and to affect the course of dental disease. Experimental studies have highlighted the interactions between dentin and cells from tooth and periodontal tissues and reveal dentin to be a cell adhesive, signaling and migratory stimulus for various mesenchymal and inflammatory cells. These results support the hypothesis that dentin molecules might function as regulatory signals for the healing and resorption of dental and periodontal tissues. Data from recent and classical investigations are summarized, many open questions are discussed, and current hypotheses concerning the mechanisms of tooth resorption and periodontal healing are outlined. Many questions regarding the importance of dentin as a source of multifunctional molecules remain unanswered and provide important directions for future studies.
Collapse
Affiliation(s)
- T A Silva
- Department of Stomatology, Faculty of Dentistry of Bauru, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
33
|
Rincon JC, Haase HR, Bartold PM. Effect of Emdogain on human periodontal fibroblasts in an in vitro wound-healing model. J Periodontal Res 2003; 38:290-5. [PMID: 12753367 DOI: 10.1034/j.1600-0765.2003.00610.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the influence of Emdogain (EMD) on cultured gingival fibroblasts, periodontal ligament fibroblasts and dermal fibroblasts, using an in vitro model of wound healing. BACKGROUND Enamel matrix derivative has been demonstrated to promote periodontal regeneration. However, the precise mechanisms by which this agent acts are still unclear. METHODS The effect of EMD on proliferation of the cells was studied using subconfluent cultures of gingival fibroblasts and periodontal ligament fibroblasts. The cells were made quiescent overnight and then stimulated with various concentrations of EMD (10, 50, 100 and 150 microg/ml) for 24 h. Negative and positive controls were cells cultured in media containing 0.2% and 10% fetal calf serum (FCS). The DNA synthesis was measured by the cellular uptake of [3H]thymidine. For in vitro wounding the cells were cultured, wounded and stimulated with 0.2% FCS, 10% FCS and EMD at a concentration of 20 microg/ml. The percentage of wound fill after treatment was measured after d 1, 4, 6, 12 and 16. The proliferation of cells was also calculated by the extent of incorporation of crystal violet. RESULTS The results demonstrated that cells in vitro fill an empty space by a combination of proliferation and cell migration. The most rapid closure of a wound area occurred where both proliferation and migration can occur as was seen when wounded cultures were maintained in 10% FCS or at a concentration of 20 microg/ml EMD which promoted proliferation. CONCLUSIONS Therefore, EMD appears to exert an influence on cells that is compatible with improved wound healing.
Collapse
Affiliation(s)
- J C Rincon
- Department of Dentistry, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
34
|
Reuther T, Kohl A, Komposch G, Tomakidi P. Morphogenesis and proliferation in mono- and organotypic co-cultures of primary human periodontal ligament fibroblasts and alveolar bone cells. Cell Tissue Res 2003; 312:189-96. [PMID: 12690441 DOI: 10.1007/s00441-003-0717-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Accepted: 03/11/2003] [Indexed: 12/18/2022]
Abstract
Cells of the periodontal ligament and the alveolar bone lie in close vicinity in the periodontium. The goal of this study was to create an in vitro model to facilitate the study of the morphogenesis and proliferation of these two cell types under more in-vivo-like conditions. This was accomplished by the generation of organotypic co-cultures of primary human periodontal ligament fibroblasts (PDL) and alveolar bone cells (BC) and matched mono-cultures after 1, 2 and 3 weeks. Indirect immunofluorescence (IIF) for vimentin indicated that PDL cells exhibited sustained stratification only in the presence of BC cells, suggesting an important role for BCs in maintaining the stratification of PDL cells. In mono-cultures, only BC cells showed progressing stratification. They also displayed the most pronounced contraction of the cell culture matrix. Moreover, Ki-67 antigen detection by IIF revealed that these features coincided with cell proliferation localized on the matrix surface at the onset of cell stratification. These findings suggest that, in addition to proliferation, a further prerequisite for stratification may be cell migration. Furthermore, the maintained cell stratification, proliferation, and compartmentalization noted for PDL cells in organotypic co-cultures and BCs in mono-cultures can only be observed in a three-dimensional culture system. Thus, our system represents a novel experimental tool to further elucidate the underlying mechanisms of the growth and differentiation of PDL and bone tissue.
Collapse
Affiliation(s)
- T Reuther
- Department of Orthodontics and Dentofacial Orthopedics, Dental School, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
35
|
Shimono M, Ishikawa T, Ishikawa H, Matsuzaki H, Hashimoto S, Muramatsu T, Shima K, Matsuzaka KI, Inoue T. Regulatory mechanisms of periodontal regeneration. Microsc Res Tech 2003; 60:491-502. [PMID: 12619125 DOI: 10.1002/jemt.10290] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The periodontal ligament, located between the cementum and the alveolar bone, has a width ranging from 0.15 to 0.38 mm. Regeneration and homeostasis of the periodontal ligament are highly significant functions in relation to periodontal therapy, tooth transplantation or replantation, and orthodontic tooth movement. The purpose of this review is to discuss the regulatory mechanisms of regenerative and homeostatic functions in the periodontal ligament based on currently published studies and also on our own experimental data. We consider the capability of the ligament tissue to promote or to suppress calcification in connection with bone and cementum formation and the maintenance of the periodontal ligament space. Also discussed are the involvement of the periodontal ligament tissue in the regenerative ability, cell proliferation, growth and differentiation factors, extracellular matrix proteins, homeostatic phenomena, function of Malassez epithelial rests, tooth movement, or occlusal loading. Regulatory mechanisms for regeneration and homeostasis of the periodontal ligament are hypothetically proposed.
Collapse
Affiliation(s)
- Masaki Shimono
- Oral Health Science Center, Tokyo Dental College, Chiba, 261-8502 Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|