1
|
Giacomini MC, Justo AP, de Souza IF, Costa MP, Honório HM, Wang L. Bioactive varnishes as preventive and therapeutic agents for dentin under in vitro erosive challenges. J Dent 2025; 158:105803. [PMID: 40324577 DOI: 10.1016/j.jdent.2025.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/07/2025] Open
Abstract
OBJECTIVES Erosive Tooth Wear (ETW) can cause dentin hypersensitivity and tissue loss. Besides the management of patient-related lifestyle, local strategies for prevention and control become essential to alleviate discomfort and avoid its progression. The aim of this study was to assess the ability of different biotechnologies on the impact of erosive scenarios through surface properties, as the surface microhardness (SM) and wettability (W). METHODS 120 molars (n = 10) were randomized into 3 groups based on dentin conditions: S: Sound, EE (extrinsic erosion): orange juice (3x/5 min/5 days - pH 3.2), and IE (intrinsic erosion): 0.01 M hydrochloric acid (4x/20 s/5 days - pH 2.3). Specimens were further subdivided by material: D: Duraphat (fluoride), G: Gluma Desensitizer (HEMA/glutaraldehyde), and B: PRG Barrier Coat (S-PRG). SM (KHN, 10 g/10 s/5x) and W were performed at three times: initial (I), after application (AA) and final (F). Data were subjected to normality and three-way repeated measures ANOVA tests (p < 0.05). RESULTS For SM, EE determined more aggressive changes even no differences were detected at final time, while the materials performed similarly. Regarding W, B and G reached greater values respectively after EE and IE conditions. No significant differences were seen among groups at final time. CONCLUSIONS Surface properties are altered by different erosive challenges, while the varnishes were able to prevent/control the erosive effect distinctively. CLINICAL SIGNIFICANCE Resin-based varnishes consisted by bioactive agents are able to minimize the erosive alteration on dentin surface.
Collapse
Affiliation(s)
- Marina Ciccone Giacomini
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | | | - Isabelle Ferreira de Souza
- Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Mylena Proença Costa
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Heitor Marques Honório
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Linda Wang
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| |
Collapse
|
2
|
Yuan L, Liu Y, Lv K, Zhang M, Hu X. Effects of poly(amidoamine) as an extrafibrillar demineralization agent on dentin bonding durability of deciduous teeth. J Dent 2025; 154:105609. [PMID: 39909137 DOI: 10.1016/j.jdent.2025.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVES To investigate the effects of the sixth generation of poly(amidoamine) (G6-PAMAM)-based extrafibrillar demineralization on bonding durability of deciduous dentin and explore the possible mechanisms. METHODS The cytotoxicity and inhibitory effects on recombinant human matrix metalloproteinases-9 (rhMMP-9) of G6-PAMAM were investigated. The chelation demineralization capacity of G6-PAMAM with molecular weight > 40 kDa was quantitatively analyzed. Atomic force microscopy-infrared spectroscopy (AFM-IR) was used to verify selective extrafibrillar demineralization of dentin conditioned by G6-PAMAM. After dentin surfaces were conditioned with G6-PAMAM or phosphoric acid (H3PO4), G6-PAMAM- and H3PO4-conditioned dentin were applied with adhesive restoration using both wet- and dry-bonding technique. Microtensile bond strength (μTBS) was evaluated after 24 h storage or 10,000 thermocycling. Nanoleakage expression at the bonding interface was observed using field emission scanning electron microscopy. Gelatinolytic activity within the hybrid layer was examined using in situ zymography. RESULTS In addition to being nontoxic, 20 µg/mL G6-PAMAM showed inhibitory effects on rhMMP-9 and calcium-chelating capability. AFM-IR confirmed that G6-PAMAM conditioning can achieve selective demineralization of dentin extrafibrillar minerals. Deciduous dentin treated with 20 µg/mL G6-PAMAM for 60 s produced μTBS equivalent to H3PO4-based etch-and-rinse technique. Those bond strengths were maintained after thermocycling, irrespective of wet-bonding or dry-bonding. G6-PAMAM conditioning produced less nanoleakage and suppressed endogenous gelatinolytic activity compare with H3PO4 etching. CONCLUSION The G6-PAMAM-based extrafibrillar demineralization strategy under dry-bonding technique could enhance bonding durability of deciduous dentin by retaining intrafibrillar minerals, decreasing interfacial nanoleakage, and preventing endogenous protease-initiated collagen degradation. CLINICAL RELEVANCE The G6-PAMAM-based extrafibrillar demineralization strategy has the potential to improve the stability of the resin-dentin bonding interface and prolong the longevity of resin restorations in deciduous teeth.
Collapse
Affiliation(s)
- Lingling Yuan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yan Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Kunyu Lv
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Mengdan Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xiaoli Hu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| |
Collapse
|
3
|
Ebrahimi-Chaharom ME, Moeinian A, Abed-Kahnamouei M, Daneshpooy M, Bahari M. Effect of Matrix Metalloproteinase Inhibitors on the Dentin Bond Strength and Durability of a Two-Step Universal Adhesive System. J Clin Exp Dent 2025; 17:e233-e238. [PMID: 40231141 PMCID: PMC11994208 DOI: 10.4317/jced.62406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/16/2025] [Indexed: 04/16/2025] Open
Abstract
Background The aim of this study was to investigate the effects of using two types of matrix metalloproteinase inhibitors (MMPI) on the dentin bond strength and durability of a two-step universal adhesive (G2-BOND Universal Adhesive). Material and Methods This study was conducted on 24 extracted molars, resulting in 144 samples. The occlusal surface of the teeth was cut perpendicularly to the longitudinal axis to expose the dentin. The samples were divided into 6 groups: Group 1 (Control, etch-and-rinse (ER)): bonding in the ER mode without MMPI; Group 2: bonding in the ER mode with chlorhexidine (CHX); Group 3: bonding in the ER mode with benzalkonium chloride (BAC); Group 4 (Control, Self-etch (SE)): bonding in the SE mode without MMPI; Group 5: bonding in the SE mode with CHX; Group 6: bonding in the SE mode with BAC. The entire dentin surface was restored with composite resin. Each group was further divided into two subgroups and either thermocycled for 500 or 10,000 cycles. The samples were cut into cylinders with a one square millimeter cross-sectional area and tested for microtensile bond strength (µTBS). Data was analyzed using 3-Way ANOVA and Games-Howell tests (p< 0.05). Results There was a statistically significant difference in the mean µTBS based on the type of MMPI, aging method, and etching strategy. The mean µTBS in the Control group was significantly lower than in the CHX and BAC groups (P< 0.05). The mean µTBS was higher at 24 hours and in the ER group (P< 0.001). The effect of aging was consistent and decreasing (P> 0.05). Conclusions The µTBS to dentin decreases after aging. However, the use of MMPI preserves bond strength to some extent in comparison to control groups after aging. Key words:Universal adhesive, Matrix metalloproteinase, Bond strength, Chlorhexidine, Benzalkonium chloride.
Collapse
Affiliation(s)
| | - Aida Moeinian
- Post-graduate Student, Department of Operative Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Abed-Kahnamouei
- Professor, Department of Operative Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Daneshpooy
- Assistant Professor, Department of Operative Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Bahari
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Operative Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Salehi A, Atai M, Aliomrani M, Salehi N, Rahati R. Enhancing adhesive performance with N, N, N', N'-tetrakis (2-pyridyl methyl) ethylenediamine matrix metalloproteinase inhibitors: A comprehensive study of degree of conversion, microleakage, and micro-tensile bond strength in dental adhesives. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2025; 28:290-296. [PMID: 40256702 PMCID: PMC12007739 DOI: 10.4103/jcde.jcde_743_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 04/22/2025]
Abstract
Aim Matrix metalloproteinases (MMPs) play a significant role in the degradation of dentin collagen within hybrid layers, affecting the longevity of resin-bonded restorations. The incorporation of MMP inhibitors into dental adhesives has been explored to address this issue. This study aimed to assess the impact of the MMP inhibitor, N, N, N', N'-Tetrakis (2-pyridyl methyl) ethylenediamine (TPEN), on key adhesive properties, including the degree of conversion (DC), microleakage, and micro-tensile bond strength, shedding light on their potential in enhancing bond durability. Subjects and Methods Microleakage evaluations were conducted on 24 premolar specimens, while micro-tensile bond strength measurements were performed on the buccal surface of dentin samples. The DC was determined using Fourier Transform Infrared spectroscopy (FTIR) spectroscopy. Results The findings revealed no significant difference in DC between the adhesive with MMP inhibitors and the control group (P = 0.998). Remarkably, the adhesive containing the MMP inhibitor, TPEN, exhibited significantly higher micro-tensile bond strength than the control group (P = 0.008). However, there was no notable distinction between the two groups concerning microleakage (P = 0.085). Conclusion The results suggest that including TPEN can effectively enhance micro-tensile bond strength in dental adhesives without compromising DC or exacerbating microleakage. This highlights the potential of MMP inhibitors in improving bond durability in restorative dentistry.
Collapse
Affiliation(s)
- Arman Salehi
- Department of Operative Dentistry, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Atai
- Department of Polymer Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Mahdi Aliomrani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Salehi
- Department of Oral Medicine, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ramin Rahati
- Department of Oral Medicine School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Breschi L, Maravic T, Mazzitelli C, Josic U, Mancuso E, Cadenaro M, Pfeifer CS, Mazzoni A. The evolution of adhesive dentistry: From etch-and-rinse to universal bonding systems. Dent Mater 2025; 41:141-158. [PMID: 39632207 DOI: 10.1016/j.dental.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES This review aimed at presenting the mechanisms and pitfalls of adhesion to enamel and dentin, advances in the materials science and in the development of strategies to improve hybrid layer (HL) longevity. METHODS Search of the literature was performed on PubMed, Scopus and Web of Science with keywords related to the structure of the dental substrate, HL degradation mechanisms and strategies to contrast them. RESULTS Albeit the advances in the dental materials' properties, HL degradation is still a relevant and current issue in adhesive dentistry. However, adhesive materials have become more resistant and less operator sensitive, and good adhesion is currently in the hands of every practitioner. Numerous novel strategies are being developed, able to improve the resistance of adhesive resins to degradation, their ability to infiltrate and chemically bond to dentin, to remove the unbound/residual water within the HL, reinforce the dentin collagen matrix, and inhibit endogenous metalloproteinases. Many of the strategies have turned to nature in search for powerful biomodifying compounds, and for the inspiration as to mimic naturally occurring regenerative processes. SIGNIFICANCE Extensive knowledge on the structure of the dental substrate and the complexity of adhesion to dentin has led to the development of improved formulations of dental adhesives and numerous valid strategies to improve the strength and longevity of the HL. Nevertheless, for many of them the road from bench to chairside still seems long. We encourage practitioners to know their materials well and use the strategies readily available to them.
Collapse
Affiliation(s)
- Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy.
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447, Trieste 34149, Italy; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Carmem S Pfeifer
- School of Dentistry, Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| |
Collapse
|
6
|
Pfeifer CS, Lucena FS, Tsuzuki FM. Preservation Strategies for Interfacial Integrity in Restorative Dentistry: A Non-Comprehensive Literature Review. J Funct Biomater 2025; 16:42. [PMID: 39997576 PMCID: PMC11856648 DOI: 10.3390/jfb16020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
The preservation of interfacial integrity in esthetic dental restorations remains a critical challenge, with hybrid layer degradation being a primary factor in restoration failure. This degradation is driven by a combination of host-derived enzymatic activity, including matrix metalloproteinases (MMPs), bacterial proteases, and hydrolytic breakdown of the polymerized adhesive due to moisture exposure. This review examines the multifactorial mechanisms underlying hybrid layer degradation and presents current advancements in restorative materials aimed at counteracting these effects. Principal strategies include collagen preservation through the inhibition of enzymatic activity, the integration of antimicrobial agents to limit biofilm formation, and the use of ester-free, hydrolysis-resistant polymeric systems. Recent research highlights acrylamide-based adhesives, which exhibit enhanced resistance to acidic and enzymatic environments, as well as dual functionality in collagen stabilization. Furthermore, innovations in bioactive resins and self-healing materials present promising future directions for developing adhesives that actively contribute to long-term restoration stability. These findings underscore the importance of continuous advancements in adhesive technology to enhance the durability and clinical performance of dental restorations.
Collapse
Affiliation(s)
- Carmem S. Pfeifer
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA; (F.S.L.); (F.M.T.)
| | | | | |
Collapse
|
7
|
Park IS, Kim HJ, Kwon J, Kim DS. Comparative In Vitro Study of Sol-Gel-Derived Bioactive Glasses Incorporated into Dentin Adhesives: Effects on Remineralization and Mechanical Properties of Dentin. J Funct Biomater 2025; 16:29. [PMID: 39852585 PMCID: PMC11765736 DOI: 10.3390/jfb16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol-gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology. The surface area was measured by the Brunauer-Emmett-Teller method. X-ray diffraction (XRD) analysis was performed to determine the crystalline structure of the BAGs. Adhesive surface analysis was performed after approximating each experimental dentin adhesive and demineralized dentin by using FE-SEM. The elastic modulus of the treated dentin was measured after BAG-containing dentin adhesive application. The sol-gel-derived BAGs exhibited larger surface areas (by 400-600 times) than conventional BAG, with BAG87 displaying the largest surface area. XRD analysis indicated more pronounced and rapid formation of hydroxyapatite in the sol-gel BAGs. Dentin with BAG87-containing adhesive exhibited the highest elastic modulus. The incorporation of sol-gel-derived BAGs, especially BAG87, into dentin adhesives enhances the remineralization and mechanical properties of adhesive-dentin interfaces.
Collapse
Affiliation(s)
- In-Seong Park
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea; (I.-S.P.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea; (I.-S.P.); (H.-J.K.)
| | - Jiyoung Kwon
- Department of Conservative Dentistry, Kyung Hee University Dental Hospital, Seoul 02447, Republic of Korea;
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea; (I.-S.P.); (H.-J.K.)
| |
Collapse
|
8
|
Koç-Vural U, Kerimova-Köse L, Kiremitci A. Long-term clinical comparison of a resin-based composite and resin modified glass ionomer in the treatment of cervical caries lesions. Odontology 2025; 113:404-415. [PMID: 38837034 DOI: 10.1007/s10266-024-00958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
This 72-month study compared the clinical effectiveness of a resin-based composite (RBC) (Spectrum TPH3, Dentsply Sirona) with a resin-modified glass ionomer cement (RMGIC) (Riva Light Cure, SDI) in restoring cervical caries lesions (CCLs). Thirty-three patients, each with at least two CCLs, were enrolled. After caries removal, the dimensions of the cavities were recorded. In a split-mouth study design, a total of 110 restorations were randomly placed. Fifty-five restorations were placed with RBC using an etch-and-rinse adhesive system (Prime&Bond NT, Dentsply Sirona), while the remaining 55 were restored with RMGIC. The restorations were assessed at baseline, 6, 12, 18, 24, 36, 60, and 72 months according to modified USPHS criteria. Statistical analysis included Pearson Chi-square, Friedman tests, Kaplan Meier, and Logistic Regression analysis (p < 0.05). After 72 months, 47 restorations in 19 patients were evaluated (55% follow-up rate). Seventy-five percent of the RBC (n = 26) and 74% (n = 21) of the RMGIC restorations were fully retained. There were no significant differences between materials regarding retention and marginal adaptation (p > 0.05). Cavity dimensions, caries activity, and retention exhibited no correlation (p > 0.05). The increase in marginal staining in both groups over time was significant (p < 0.001). RMGIC restorations exhibited higher discoloration than RBC restorations (p = 0.014). At 72 months, three secondary caries lesions were detected in both restoration groups: two RMGIC and one RBC. There were no reports of sensitivity. After 72 months, both RBC and RMGIC restorations were clinically successful, with similar retention and marginal adaptation scores. However, it is noteworthy that RMGIC restorations tend to discoloration over time compared to RBC. The trial is registered in the database of "Clinical Trials". The registration number is NCT0372-2758, October 29, 2018.
Collapse
Affiliation(s)
- Uzay Koç-Vural
- Department of Restorative Dentistry, School of Dentistry, Hacettepe University, Ankara, Turkey
| | - Leyla Kerimova-Köse
- Department of Restorative Dentistry, School of Dentistry, Baskent University, Ankara, Turkey.
| | - Arlin Kiremitci
- Department of Restorative Dentistry, School of Dentistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Pfeifer CS, Lucena FS, Logan MG, Nair D, Lewis SH. Current approaches to produce durable biomaterials: Trends in polymeric materials for restorative dentistry applications. Dent Mater 2024; 40:2122-2134. [PMID: 39424526 PMCID: PMC11637916 DOI: 10.1016/j.dental.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries continues to be a public health issue, especially more evident in underserved populations throughout the U.S. Unfortunately, especially with an aging population, hundreds of thousands of resin composite restorations are replaced each year due to recurring decay and fracture. According to several cohort studies, the average life span of this type of restoration is 10 years or less, depending on the caries risk level of the patient and the complexity of the restorative procedure. Any new material development must depart from the simple restoration of form paradigm, in which the filling is simply inert/biocompatible. This review will discuss novel antibiofilm structures, based on a targeted approach specifically against dysbiotic bacteria. Biofilm coalescence can be prevented by using glycosyl transferase - GTF inhibitors, in a non-bactericidal approach. On the tooth substrate side, MMP-inhibiting molecules can improve the stability of the collagen in the hybrid layer. This review will also discuss the importance of testing the materials in a physiologically relevant environment, mimicking the conditions in the mouth in terms of mechanical loading, bacterial challenge, and the presence of saliva. Ultimately, the goal of materials development is to achieve durable restorations, capable of adapting to the oral environment and resisting challenges that go beyond mechanical demands. That way, we can prevent the unnecessary loss of additional tooth structure that comes with every re-treatment. CLINICAL SIGNIFICANCE: While proper restorative technique and patient education in terms of diet and oral hygiene are crucial factors in increasing the longevity of esthetic direct restorations, materials better able to resist and interact with the conditions of the oral environment are still needed. Reproducing the success of dental amalgams with esthetic materials continues to be the Holy Grail of materials development.
Collapse
Affiliation(s)
- Carmem S Pfeifer
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA.
| | - Fernanda S Lucena
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Matthew G Logan
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Devatha Nair
- University of Colorado Anschutz Medical Campus, School of Dental Medicine, Department of Craniofacial Biology, 17500 E 19th Ave, Aurora, CO 80014, USA
| | - Steven H Lewis
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| |
Collapse
|
10
|
Perarivalan I, Karunakaran J, Anbalagan N, Harishma S, Prasad V. Matrix metalloproteinase inhibitors in restorative dentistry. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:566-571. [PMID: 38989495 PMCID: PMC11232771 DOI: 10.4103/jcde.jcde_199_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
Matrix metalloproteinases (MMPs) have been identified as agents that disintegrate the collagen structures of dental hybrid layers, resulting in reduced restorative bond strength. Multiple MMP inhibitors (MMPIs) are known to counteract this degenerative mechanism, thereby preserving bond strength and promoting the longevity of resin-based restorations. Additionally, literature suggests that certain MMPI materials possess antimicrobial/anticariogenic properties, potentially reducing the risk of secondary caries development. Therefore, this review article aims to narrate on the integration of matrix metalloproteinase inhibitors into adhesive systems and their impact on bond strength.
Collapse
Affiliation(s)
- I Perarivalan
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - Janani Karunakaran
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - Nathashri Anbalagan
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - S Harishma
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - Vishnu Prasad
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
11
|
Afkhami F, Chen Y, Walsh LJ, Peters OA, Xu C. Application of Nanomaterials in Endodontics. BME FRONTIERS 2024; 5:0043. [PMID: 38711803 PMCID: PMC11070857 DOI: 10.34133/bmef.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
Recent advancements in nanotechnology have introduced a myriad of potential applications in dentistry, with nanomaterials playing an increasing role in endodontics. These nanomaterials exhibit distinctive mechanical and chemical properties, rendering them suitable for various dental applications in endodontics, including obturating materials, sealers, retro-filling agents, and root-repair materials. Certain nanomaterials demonstrate versatile functionalities in endodontics, such as antimicrobial properties that bolster the eradication of bacteria within root canals during endodontic procedures. Moreover, they offer promise in drug delivery, facilitating targeted and controlled release of therapeutic agents to enhance tissue regeneration and repair, which can be used for endodontic tissue repair or regeneration. This review outlines the diverse applications of nanomaterials in endodontics, encompassing endodontic medicaments, irrigants, obturating materials, sealers, retro-filling agents, root-repair materials, as well as pulpal repair and regeneration. The integration of nanomaterials into endodontics stands poised to revolutionize treatment methodologies, presenting substantial potential advancements in the field. Our review aims to provide guidance for the effective translation of nanotechnologies into endodontic practice, serving as an invaluable resource for researchers, clinicians, and professionals in the fields of materials science and dentistry.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Yuan Chen
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Laurence J. Walsh
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Ove A. Peters
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Chun Xu
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre,
The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
12
|
Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, Daood U. Newly discovered clouting interplay between matrix metalloproteinases structures and novel quaternary Ammonium K21: computational and in-vivo testing. BMC Oral Health 2024; 24:382. [PMID: 38528501 DOI: 10.1186/s12903-024-04069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
AIMS AND OBJECTIVES To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation. MATERIALS AND METHODS In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)). RESULTS Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test. CONCLUSION K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jia Chern Pang
- School of Postgraduate Studies, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Seow Liang Lin
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Division of Clinical Oral Health, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Wang Y, Zong Z, Ding N, Zhang Z. Polyvinylpyrrolidone as a primer for resin-dentin bonding. J Mech Behav Biomed Mater 2024; 150:106281. [PMID: 38048714 DOI: 10.1016/j.jmbbm.2023.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of polyvinylpyrrolidone (PVP)-containing primer (PCP) on dentin bonding. METHODS PVP and anhydrous ethanol were used to prepare the PCPs, which were prepared at concentrations of 0.5%, 1%, and 2% (w/v). These PCPs were subsequently applied to the dentin surface, denoted as E1, E2, and E3, respectively. In the control group, no primer was applied. Following the treatment, the dentin surfaces were subjected to analysis using Fourier-transform infrared spectroscopy (FTIR), and the micro-tensile bond strength (MTBS) was evaluated. The failure mode, nanoleakage, and bonding longitudinal section were observed utilizing scanning electron microscopy (SEM). Additionally, the effect of PCPs on matrix metalloproteinases (MMPs) activity was analyzed through an in situ zymography test. Data were subjected to statistical analysis using ANOVA tests (α = 0.05). RESULTS Significant alterations in the infrared resonances associated with collagen cross-linking within the collagen matrix were observed across all PCP groups. The application of PCP demonstrated a noteworthy enhancement in micro-tensile bond strength (MTBS) compared to group C (p < 0.05). Notably, group C exhibited the lowest MTBS (41 ± 7.7 MPa), whereas group E2 demonstrated the highest MTBS (66 ± 11.9 MPa). Even after undergoing aging, the MTBS of the PCP groups remained superior to that of group C (p < 0.05). The resin tag length in the PCP groups was found to be greater than that of group C, and the occurrence of nanoleakage was comparatively lower in the PCP groups, both before and after aging. Additionally, PCP exhibited a dose-dependent inhibition of matrix metalloproteinases (MMPs) activity, which was statistically significant (p < 0.05). CONCLUSIONS The utilization of PCP Primer exhibits notable enhancements in bond strength, mitigates nano-leakage, and suppresses enzyme activity within the hybrid layer.
Collapse
Affiliation(s)
- Yaoxin Wang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Zhenyu Zong
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Ning Ding
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
14
|
Hu D, Tian T, Ren Q, Han S, Li Z, Deng Y, Lu Z, Zhang L. Novel biomimetic peptide-loaded chitosan nanoparticles improve dentin bonding via promoting dentin remineralization and inhibiting endogenous matrix metalloproteinases. Dent Mater 2024; 40:160-172. [PMID: 37951748 DOI: 10.1016/j.dental.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE This study aims to synthesize novel chitosan nanoparticles loaded with an amelogenin-derived peptide QP5 (TMC-QP5/NPs), investigate their remineralization capability and inhibitory effects on endogenous matrix metalloproteinases (MMPs), and evaluate the dentin bonding properties of remineralized dentin regulated by TMC-QP5/NPs. METHODS TMC-QP5/NPs were prepared by ionic crosslinking method and characterized by dynamic light scattering method, scanning electron microscopy, transmission electron microscope, atomic force microscope, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The encapsulation and loading efficiency of TMC-QP5/NPs and the release of QP5 were examined. To evaluate the remineralization capability of TMC-QP5/NPs, the mechanical properties, and the changes in structure and composition of differently conditioned dentin were characterized. The MMPs inhibitory effects of TMC-QP5/NPs were explored by MMP Activity Assay and in-situ zymography. The dentin bonding performance was detected by interfacial microleakage and microshear bond strength (μSBS). RESULTS TMC-QP5/NPs were successfully synthesized, with uniform size, good stability and biosafety. The encapsulation and loading efficiency of TMC-QP5/NPs was respectively 69.63 ± 2.22% and 13.21 ± 0.73%, with a sustained release of QP5. TMC-QP5/NPs could induce mineral deposits on demineralized collagen fibers and partial occlusion of dentin tubules, and recover the surface microhardness of dentin, showing better remineralization effects than QP5. Besides, TMC-QP5/NPs significantly inhibited the endogenous MMPs activity. The remineralized dentin induced by TMC-QP5/NPs exhibited less interfacial microleakage and higher μSBS, greatly improved dentin bonding. SIGNIFICANCE This novel peptide-loaded chitosan nanoparticles improved resin-dentin bonding by promoting dentin remineralization and inactivating MMPs, suggesting a promising strategy for optimizing dentin adhesive restorations.
Collapse
Affiliation(s)
- Die Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tian Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sili Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhongcheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziqian Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Mokeem LS, Martini Garcia I, Balhaddad AA, Lan Y, Seifu D, Weir MD, Melo MA. Multifunctional Dental Adhesives Formulated with Silane-Coated Magnetic Fe 3O 4@m-SiO 2 Core-Shell Particles to Counteract Adhesive Interfacial Breakdown. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2120-2139. [PMID: 38170561 DOI: 10.1021/acsami.3c15157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The process of bonding to dentin is complex and dynamic, greatly impacting the longevity of dental restorations. The tooth/dental material interface is degraded by bacterial acids, matrix metalloproteinases (MMPs), and hydrolysis. As a result, bonded dental restorations face reduced longevity due to adhesive interfacial breakdown, leading to leakage, tooth pain, recurrent caries, and costly restoration replacements. To address this issue, we synthesized and characterized a multifunctional magnetic platform, CHX@SiQuac@Fe3O4@m-SiO2, to provide several beneficial functions. The platform comprises Fe3O4 microparticles and chlorhexidine (CHX) encapsulated within mesoporous silica, which was silanized by an antibacterial quaternary ammonium silane (SiQuac). This platform simultaneously targets bacterial inhibition, stability of the hybrid layer, and enhanced filler infiltration by magnetic motion. Comprehensive experiments include X-ray diffraction, FT-IR, VSM, EDS, N2 adsorption-desorption (BET), transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and UV-vis spectroscopy. Then, CHX@SiQuac@Fe3O4@m-SiO2 was incorporated into an experimental adhesive resin for dental bonding restorations, followed by immediate and long-term antibacterial assessment, cytotoxicity evaluation, and mechanical and bonding performance. The results confirmed the multifunctional nature of CHX@SiQuac@Fe3O4@m-SiO2. This work outlined a roadmap for (1) designing and tuning an adhesive formulation containing the new platform CHX@SiQuac@Fe3O4@m-SiO2; (2) assessing microtensile bond strength to dentin using a clinically relevant model of simulated hydrostatic pulpal pressure; and (3) investigating the antibacterial outcome performance of the particles when embedded into the formulated adhesives over time. The results showed that at 4 wt % of CHX@SiQuac@Fe3O4@m-SiO2-doped adhesive under the guided magnetic field, the bond strength increased by 28%. CHX@SiQuac@Fe3O4@m-SiO2 enhanced dentin adhesion in the magnetic guide bonding process without altering adhesive properties or causing cytotoxicity. This finding presents a promising method for strengthening the tooth/dental material interface's stability and extending the bonded restorations' lifespan.
Collapse
Affiliation(s)
- Lamia Sami Mokeem
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Isadora Martini Garcia
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Abdulrahman A Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, Baltimore, Maryland 21251, United States
| | - Dereje Seifu
- Department of Physics and Engineering Physics, Morgan State University, Baltimore, Maryland 21251, United States
| | - Michael D Weir
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Biomaterials and Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne Melo
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
16
|
Melo M, Garcia I, Mokeem L, Weir M, Xu H, Montoya C, Orrego S. Developing Bioactive Dental Resins for Restorative Dentistry. J Dent Res 2023; 102:1180-1190. [PMID: 37555431 PMCID: PMC11066520 DOI: 10.1177/00220345231182357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Despite its reputation as the most widely used restorative dental material currently, resin-based materials have acknowledged shortcomings. As most systematic survival studies of resin composites and dental adhesives indicate, secondary caries is the foremost reason for resin-based restoration failure and life span reduction. In subjects with high caries risk, the microbial community dominated by acidogenic and acid-tolerant bacteria triggers acid-induced deterioration of the bonding interface and/or bulk material and mineral loss around the restorations. In addition, resin-based materials undergo biodegradation in the oral cavity. As a result, the past decades have seen exponential growth in developing restorative dental materials for antimicrobial applications addressing secondary caries prevention and progression. Currently, the main challenge of bioactive resin development is the identification of efficient and safe anticaries agents that are detrimental free to final material properties and show satisfactory long-term performance and favorable clinical translation. This review centers on the continuous efforts to formulate novel bioactive resins employing 1 or multiple agents to enhance the antibiofilm efficacy or achieve multiple functionalities, such as remineralization and antimicrobial activity antidegradation. We present a comprehensive synthesis of the constraints and challenges encountered in the formulation process, the clinical performance-related prerequisites, the materials' intended applicability, and the current advancements in clinical implementation. Moreover, we identify crucial vulnerabilities that arise during the development of dental materials, including particle aggregation, alterations in color, susceptibility to hydrolysis, and loss of physicomechanical core properties of the targeted materials.
Collapse
Affiliation(s)
- M.A.S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
- Dental Biomedical Sciences PhD Program, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - I.M. Garcia
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - L. Mokeem
- Dental Biomedical Sciences PhD Program, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - M.D. Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - H.H.K. Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - C. Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - S. Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Chen H, Hou Y, Lin Q, Yu S, Bai T, Cui Z, Zhu S. Application of modified aldehyde compounds in self-etching bonding of dentin. J Mech Behav Biomed Mater 2023; 146:106087. [PMID: 37669579 DOI: 10.1016/j.jmbbm.2023.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the ability of 4-formylphenyl acrylate (FA) to enhance the bond strength and stabilize the resin-dentin bonding interface of universal adhesives in self-etching mode over time. METHODS Different concentrations of FA (1%, 3%, 5%, 7%, 9%) were prepared as primer. The optimal group was selected according to degree of conversion of 2 universal adhesives (Single Bond Universal (SBU)/All-Bond Universal (ABU)), and grouped according to the pre-treatment time (30s, 1min, 2min). The micro-tensile strength before and after 10,000 times thermocycling aging was used to evaluate the bonding performance. RESULTS The 1min application of FA (5%) increased the conversion rate of the adhesive. The expressions of microtensile bond strength and nanoleakage in the FA treatment group did not decrease significantly compared with their immediate values even after 10,000 thermocycling of aging. In situ zymography results showed that the hydrolytic activity of endogenous proteins decreased significantly in FA-1min group. CONCLUSIONS Treatment by FA primer can effectively enhance the bond stability at the bonding interface. CLINICAL RELEVANCE FA can be used as a functional monomer in self-etching bonding system to dentin, which not only had high biocompatibility, but also can show good collagen cross-linking ability within clinically acceptable application time.
Collapse
Affiliation(s)
- Huan Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, PR China
| | - Yanyan Hou
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, PR China
| | - Qi Lin
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, PR China
| | - Shiyang Yu
- Sun Yat-Sen University Guanghua School of Stomatology, Hospital of Stomatology, Guangzhou, PR China
| | - Tingting Bai
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, PR China
| | - Zhanchen Cui
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, PR China.
| |
Collapse
|
18
|
Akbari MA, Rezvani MB, Mohammadibasir M, Karimi M, Balalai A, Hamze F, Hasheminejad SA. Evaluating the Effect of Sumac Extract on Dentine Micro-Hardness during pH Cycling. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2023; 24:206-212. [PMID: 37388201 PMCID: PMC10300136 DOI: 10.30476/dentjods.2022.92780.1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/13/2022] [Accepted: 04/19/2022] [Indexed: 07/01/2023]
Abstract
Statement of the Problem Although sumac extract (SE) is reported as a collagen cross linker, the available data regarding its effect on the dentine micro-hardness is quite sparse. Purpose Therefore, the aim of this study includes evaluating the effect of different concentrations of SE on dentine micro-hardness comparing to grape seed extract (GSE). Materials and Method In this experimental study, the GSE was purchased from available market and convert to 5% solution. Meanwhile the 5, 10, and 20% of SE solutions were prepared experimentally. The base line micro-hardness of 60 samples (30 premolars divided to buccal and lingual segments) was recorded triplicate for each specimen and they were randomly divided into 5 groups (four abovementioned experimental solutions and de-ionized water as negative control). For 35 consecutive days, each sample was twice pH cycled and treated by solutions. Ultimately, the final micro-hardness was recorded triplicate again for each sample and the numerical data was compared with each other using one-way ANOVA and Tukey HSD Post Hoc tests (α=0.05). Results The meanSD values of micro-hardness for the groups was recorded as 54.45 13.4, 65.6518.5, 39.572.26, 41.131.66 and 43.794.96 at base line and 10.40.99, 11.85 0.75, 10.161.84, 8.481.16 and 6.311.01 at final stage for control, GSE 5%, SE 5%, SE 10% and SE 20% respectively. There was no significant difference among the micro-hardness of the groups before treatment (p= 0.369). However, after experimental treatment, there was significant difference between the groups (p= 0.024) while in pairwise comparison just two groups (GSE 5% and SE 20%) had significant difference with each other (p= 0.017). Conclusion The efficacy of SE was reversely related to its concentration. Moreover, neither GSE nor SE had significant effect on dentine micro-hardness after 35 day pH cycling.
Collapse
Affiliation(s)
| | | | | | - Mehrdad Karimi
- Dept. of Traditional Medicine, School of Persian medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Faeze Hamze
- Dept. of Operative, Shahed Dental School, Shahed University, Tehran, Iran
| | - Seyed Abbas Hasheminejad
- Dept. of Traditional Medicine, School of Persian medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Porto ICCDM, Lôbo TDLGF, Rodrigues RF, Lins RBE, da Silva MAB. Insight into the development of versatile dentin bonding agents to increase the durability of the bonding interface. FRONTIERS IN DENTAL MEDICINE 2023; 4:1127368. [PMID: 39916922 PMCID: PMC11797806 DOI: 10.3389/fdmed.2023.1127368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2025] Open
Abstract
Despite the huge improvements made in adhesive technology over the past 50 years, there are still some unresolved issues regarding the durability of the adhesive interface. A complete sealing of the interface between the resin and the dentin substrate remains difficult to achieve, and it is doubtful whether an optimal interdiffusion of the adhesive system within the demineralized collagen framework can be produced in a complete and homogeneous way. In fact, it is suggested that hydrolytic degradation, combined with the action of dentin matrix enzymes, destabilizes the tooth-adhesive bond and disrupts the unprotected collagen fibrils. While a sufficient resin-dentin adhesion is usually achieved immediately, bonding efficiency declines over time. Thus, here, a review will be carried out through a bibliographic survey of scientific articles published in the last few years to present strategies that have been proposed to improve and/or develop new adhesive systems that can help prevent degradation at the adhesive interface. It will specially focus on new clinical techniques or new materials with characteristics that contribute to increasing the durability of adhesive restorations and avoiding the recurrent replacement restorative cycle and the consequent increase in damage to the tooth.
Collapse
Affiliation(s)
- Isabel Cristina Celerino de Moraes Porto
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
- Laboratory of Quality Control of Drugs, Medicines, Foods and Biomaterials, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Brazil
| | - Teresa de Lisieux Guedes Ferreira Lôbo
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
- Laboratory of Quality Control of Drugs, Medicines, Foods and Biomaterials, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Brazil
| | - Raphaela Farias Rodrigues
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| | - Rodrigo Barros Esteves Lins
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| | - Marcos Aurélio Bomfim da Silva
- Laboratory of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Brazil
| |
Collapse
|
20
|
Nagarkar S, Loguercio AD, Perdigão J. Evidence-based fact checking for selective procedures in restorative dentistry. Clin Oral Investig 2023; 27:475-488. [PMID: 36607490 DOI: 10.1007/s00784-022-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/18/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Similar to other dental specialties, there are many clinical procedures in restorative dentistry that may or may not be supported by good evidence. Thus, the effectiveness of these procedures is uncertain. The aim of this paper is to reduce this knowledge gap by critically inspecting selective procedures in restorative dentistry and exploring if these well-established or widely advocated treatment modalities are necessary for improving treatment outcomes based on the best available evidence. MATERIALS AND METHODS A MEDLINE search was conducted to identify research on selective procedures while focusing on clinical trials and systematic reviews. Due to their practical relevance in the decision-making process, cost-effectiveness analyses were also included. RESULTS Mixed results were identified regarding the included interventions. Some procedures had adequate evidence supporting them while others were mostly based on beliefs. CONCLUSIONS A critical review of the available literature indicates that some common restorative procedures lack adequate support from high-quality research evidence. CLINICAL RELEVANCE This paper attempts to highlight the need to critically examine the scientific validity of traditional knowledge and techniques through the context of current research evidence. This will not only help generate consensus between educators, clinicians, and researchers regarding restorative procedures but will also lead to improved patient care and outcomes.
Collapse
Affiliation(s)
- Sanket Nagarkar
- Park Dental Group, Minneapolis, MN, USA.,Department of Restorative Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro D Loguercio
- School of Dentistry, Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Jorge Perdigão
- Division of Operative Dentistry, Department of Restorative Sciences, University of Minnesota, 515 SE Delaware St, 8-450 Moos Tower, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Salim I, Seseogullari-Dirihan R, Imazato S, Tezvergil-Mutluay A. The inhibitory effects of various ions released from S-PRG fillers on dentin protease activity. Dent Mater J 2023; 42:99-104. [PMID: 36450455 DOI: 10.4012/dmj.2022-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This study investigates the effect of ions released from S-PRG fillers on host-derived enzymatic degradation of dentin collagen matrices. Dentin beams (n=80) were demineralized and distributed to eight groups following baseline dry mass and total MMP activity assessments. Each group treated with boron, fluoride, sodium, silicone, strontium, aluminium, or S-PRG eluate solutions for 5 min. Untreated beams served as control. After pre-treatment, MMP activity was reassessed, beams were incubated in complete medium for 1 week, dry mass was reassessed. Incubation media were analyzed for MMP and cathepsin-K-mediated degradation fragments. Data were analyzed with ANOVA and Tukey's test. All pretreatment groups showed significant reduction in total MMP activity (p<0.05) that was sustainable after incubation in all groups except for boron and silicone groups (p<0.05). Cathepsin-K activity did not differ between control or treatment groups. The results indicated that ions released from S-PRG fillers have the potential to partly inhibit MMP-mediated endogenous enzymatic activity.
Collapse
Affiliation(s)
- Ikram Salim
- Finnish Doctoral Program in Oral Sciences (FINDOS), University of Turku, Institute of Dentistry.,Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku.,Adhesive Dentistry Research Group, Biomaterials, and Medical Device Research Program, Biocity
| | - Roda Seseogullari-Dirihan
- Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku.,Adhesive Dentistry Research Group, Biomaterials, and Medical Device Research Program, Biocity
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Arzu Tezvergil-Mutluay
- Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku.,Adhesive Dentistry Research Group, Biomaterials, and Medical Device Research Program, Biocity.,Turku University Hospital, TYKS, University of Turku
| |
Collapse
|
22
|
Zhao S, Zhang Y, Chen Y, Xing X, Wang Y, Wu G. Evaluation of Chitosan-Oleuropein Nanoparticles on the Durability of Dentin Bonding. Drug Des Devel Ther 2023; 17:167-180. [PMID: 36712950 PMCID: PMC9879028 DOI: 10.2147/dddt.s390039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/14/2023] [Indexed: 01/23/2023] Open
Abstract
Purpose To evaluate the effects of dentin pretreatment with chitosan-loaded oleuropein nanoparticles (CONPs) on the durability of resin-dentin bonding interfaces. Methods Eighty freshly extracted non-carious human third molars were randomly divided into four groups (n = 20 each): a de-ionized water (DW) group, a chitosan (CS) group, a chlorhexidine (CHX) group and a CONP group. The dentin in the DW, CS, CHX, and CONP groups were pretreated with de-ionized water, 1.0 mg/L CS solution, 2% chlorhexidine solution, and CONP suspension (prepared with 100 mg/L oleuropein), respectively, followed by the universal adhesive and resin composites. The bonded teeth of each group were randomly divided into two subgroups: an immediate subgroup and an aged subgroup. The bonded teeth of each group were then cut into the bonded beams. We measured their microtensile bond strength (μTBS), observed the characteristics of bonding interface by atomic force microscope, calculated the percentage of silver particles in a selected area for interfacial nanoleakage analysis, and evaluated the endogenous gelatinase activity within the bonding interface for in-situ zymogram analysis. Data were analyzed with two-way ANOVA and LSD multiple comparison test (P < 0.05). Results Regardless of after 24 h or after thermocycling, CONP exhibited better μTBS (P < 0.05) than the other three groups except that there was not a statistical significance (P > 0.05) in the CONP and CHX groups after 24 h. Besides, the CONP group presented significantly higher modulus of elasticity in the hybrid layers (P < 0.05), lower expression of nanoleakage (P < 0.05), and better inhibitory effect of matrix metalloproteinases than the other three groups before and after thermocycling. Conclusion Altogether, the CONPs had the potential to act as a dentin primer, which could effectively improve the dentin-resin binding durability.
Collapse
Affiliation(s)
- Shuya Zhao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yunyang Zhang
- Center of Modem Analysis, Nanjing University, Nanjing, People’s Republic of China
| | - Yun Chen
- Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yu Wang
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Guofeng Wu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China,Correspondence: Guofeng Wu; Xianghui Xing, Email ;
| |
Collapse
|
23
|
Forgione D, Nassar M, Seseogullari-Dirihan R, Jamleh A, Tezvergil-Mutluay A. Effect of phytic acid on dentinal collagen solubilization and its binding and debinding potentials to dentin. J Dent 2023; 128:104361. [PMID: 36379300 DOI: 10.1016/j.jdent.2022.104361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To study phytic acid (IP6) effect on collagen solubilization by assessing hydroxyproline (HYP) release, evaluate its binding to demineralized (DD) and mineralized dentin (MD) and determine the effect of different media on debinding of IP6. METHODS Demineralized dentin beams were incubated in 1%, 2% or 3% IP6 and HYP release was evaluated at 1 or 3 weeks and compared to those obtained in untreated control or phosphoric acid (PA)-treated beams. DD or MD powder was treated with 1%, 2% or 3% IP6 and the decrease in IP6 amount was quantitated by ultraviolet-visible spectroscopy. IP6-treated samples were re-suspended in distilled water, ethanol, urea or sodium chloride and the amount of IP6 displaced was determined. RESULTS At 1 week, the control group and IP6 showed lower HYP release when compared to PA (P < 0.05). There was no difference among PA, IP6 and control at 3 weeks (P = 0.22). IP6 binding was concentration dependent. 1% IP6 had higher binding potential with MD compared to DD while 2% IP6 showed the opposite result (P<0.05). 3% IP6 had similar binding values between DD and MD (P = 0.53). The highest debinding in MD occurred with urea for 2%, 3% and 1% IP6 in descending manner. Within each concentration of IP6 in DD, the highest debinding effect was reported with ethanol. CONCLUSIONS IP6 bound to DD and MD in a concentration-dependent manner. IP6 was debound from DD mostly by the action of ethanol, while in MD, urea caused the most displacement. Collagen solubilization of IP6-treated DD was comparable to untreated DD. CLINICAL SIGNIFICANCE These findings add to the potential use of IP6 as an alternative to PA for dentin etching which possibly results in long-term stability of resin-dentin adhesion.
Collapse
Affiliation(s)
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | | | - Ahmed Jamleh
- Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Arzu Tezvergil-Mutluay
- Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland
| |
Collapse
|
24
|
Yaghmoor RB, Jamal H, Abed H, Allan E, Ashley P, Young A. Incorporation of MMP inhibitors into dental adhesive systems and bond strength of coronal composite restorations: A systematic review and meta-analysis of in vitro studies. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:298-315. [PMID: 36247748 PMCID: PMC9557023 DOI: 10.1016/j.jdsr.2022.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022] Open
Abstract
Purpose To systematically review in vitro studies that incorporated MMP inhibitors into adhesive systems in terms of the effect on immediate and aged bond strength of dental composite to dentine. Materials and methods Independently, two reviewers conducted an electronic search in three databases (MEDLINE, EMBASE, and Google Scholar) following the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols (PRISMA-P), up to 6 March 2022. Results The search resulted in 894 papers, 33 of which were eligible to be included in the review; of those, 13 fulfilled the meta-analysis eligibility criteria. Nineteen inhibitors were used among the studies, and those included in the meta-analysis were 2%, 0.2% chlorhexidine (CHX), 5 µM GM1489, and 0.5%, 1% benzalkonium chloride (BAC). In the meta-analysis, while above inhibitors showed no adverse effect on bond strength, 0.2% CHX and 5 µM GM1489 caused a significant increase in immediate and 12-months bond strength. All other inhibitors resulted in a significant increase in bond strength at six months of ageing. Conclusions Incorporation of MMP inhibitors into the adhesive system has no unfavourable effect on immediate bond strength but a favourable effect on longer-term bond strength. Additionally, inhibitors other than CHX could have similar or better effects on bond strength.
Collapse
Affiliation(s)
- Rayan B. Yaghmoor
- Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital London, NW3 2PF, UK
- Department of Microbial Diseases, UCL Eastman Dental Institute, Royal Free Hospital, London NW3 2PF, UK
- Corresponding author at: Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Hasan Jamal
- Unit of Paediatric Dentistry, UCL Eastman Dental Institute, London WC1E 6DE, UK
| | - Hassan Abed
- Department of Basic and Clinical Oral Sciences, Umm Al-Qura University, Faculty of Dentistry, Makkah 24381, Saudi Arabia
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute, Royal Free Hospital, London NW3 2PF, UK
| | - Paul Ashley
- Unit of Paediatric Dentistry, UCL Eastman Dental Institute, London WC1E 6DE, UK
| | - Anne Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital London, NW3 2PF, UK
| |
Collapse
|
25
|
Wang X, Li Q, Lu H, Liu Z, Wu Y, Mao J, Gong S. Effects of the Combined Application of Trimethylated Chitosan and Carbodiimide on the Biostability and Antibacterial Activity of Dentin Collagen Matrix. Polymers (Basel) 2022; 14:polym14153166. [PMID: 35956681 PMCID: PMC9370890 DOI: 10.3390/polym14153166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
The structural integrity of a dentin matrix that has been demineralized by the clinical use of etchants or calcium-depleting endodontic irrigants, such as endodontic ethylenediaminetetraacetic acid (EDTA), is often deteriorated due to the collagenolytic activities of reactivated endogenous enzymes as well as the infiltration of extrinsic bacteria. Therefore, the biomodification of dentin collagen with improved stability and antibacterial activity holds great promise in conservative dentistry. The purpose of this study was to evaluate the effects of the combined application of trimethylated chitosan (TMC) and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) on the biostability and antibacterial activity of the demineralized dentin collagen matrix. The morphological changes in the collagen matrix were observed by scanning electron microscopy (SEM), the amount of TMC adsorbed on the collagen surface was detected by X-ray photoelectron spectroscopy, and the elastic modulus was measured by a three-point bending device. Dry weight loss and amino acid release were detected to evaluate its anti-collagenase degradation performance. The antibacterial performance was detected by confocal microscopy. The TMC-treated group had less collagen space and a more compact collagen arrangement, while the untreated group had a looser collagen arrangement. The combined application of TMC and EDC can increase the elastic modulus, reduce the loss of elastic modulus, and result in good antibacterial performance. The current study proved that a dentin collagen matrix biomodified by TMC and EDC showed improved biodegradation resistance and antibacterial activities.
Collapse
Affiliation(s)
- Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Haibo Lu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
| | - Zhuo Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Correspondence: (J.M.); (S.G.); Tel.: +86-27-8366-3225 (S.G.)
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Correspondence: (J.M.); (S.G.); Tel.: +86-27-8366-3225 (S.G.)
| |
Collapse
|
26
|
Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. COATINGS 2022. [DOI: 10.3390/coatings12081094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Instability of the dentine-resin interface is owed to the partial/incomplete penetration of the resin adhesives in the collagen fibrils. However, interfacial hydrolysis of the resin-matrix hybrid layer complex activates the collagenolytic and esterase enzymes that cause the degradation of the hybrid layer. Adequate hybridization is often prevented due to the water trapped between the interfibrillar spaces of the collagen network. Cyclic fatigue rupture and denaturation of the exposed collagen fibrils have been observed on repeated application of masticatory forces. To prevent interfacial microstructure, various approaches have been explored. Techniques that stabilize the resin–dentine bond have utilized endogenous proteases inhibitors, cross linking agents’ incorporation in the exposed collagen fibrils, an adhesive system free of water, and methods to increase the monomer penetration into the adhesives interface. Therefore, it is important to discover and analyze the causes of interfacial degradation and discover methods to stabilize the hybrid layer to execute new technique and materials. To achieve a predictable and durable adhesive resin, restoration is a solution to the many clinical problems arising due to microleakage, loss of integrity of the restoration, secondary caries, and postoperative sensitivity. To enhance the longevity of the resin-dentine bond strength, several experimental strategies have been carried out to improve the resistance to enzymatic degradation by inhibiting intrinsic collagenolytic activity. In addition, biomimetic remineralization research has advanced considerably to contemporary approaches of both intrafibrillar and extrafibrillar remineralization of dental hard tissues. Thus, in the presence of biomimetic analog complete remineralization of collagen, fibers are identified.
Collapse
|
27
|
Mussel-inspired monomer - A new selective protease inhibitor against dentine collagen degradation. Dent Mater 2022; 38:1149-1161. [PMID: 35680429 DOI: 10.1016/j.dental.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/03/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To evaluate the inhibitory effect of a novel mussel-inspired monomer (N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) on the soluble and matrix-bound proteases. METHODS The inhibitory effect of DMA (0, 1, 5, and 10 mM) and 1 mM chlorhexidine (CHX) dissolved in 50% ethanol/water on soluble recombinant human matrix metalloproteinases (rhMMP-2, -8, and -9), as well as cysteine cathepsins (B and K) were evaluated using both fluorometric assay kits and molecular docking. The effect of CHX and DMA on matrix-bound proteases was examined by in situ zymography, and the fluorescence intensity and relative area were calculated by Image J software. All data obtained were analyzed by one-way ANOVA followed by Tukey test (α = 0.05). RESULTS The anti-proteolytic ability of DMA increased in a dose-dependent manner except that of rhMMP-9. Inhibitory effect of 1 mM DMA against rhMMP-2, - 8, - 9, as well as cathepsin B and K was all significantly lower than 1 mM CHX (p < 0.05). The molecular docking analysis was in good agreement with the experimental results, that the binding energy of DMA was lower than CHX for all proteases. In situ zymography revealed that all DMA- and CHX-treated groups significantly inactivated the matrix-bound proteases, with a dramatic reduction of the fluorescence intensity and relative area compared with the control group (p < 0.05). SIGNIFICANCE Under the prerequisite condition that the overall inhibitory performance on matrix-bound proteases was comparable by DMA and CHX, the more selective property of DMA could avoid inducing potential negative effects by suppressing MMP-9 when applied in dental treatment compared with CHX.
Collapse
|
28
|
Tonprasong W, Inokoshi M, Shimizubata M, Yamamoto M, Hatano K, Minakuchi S. Impact of direct restorative dental materials on surface root caries treatment. Evidence based and current materials development: A systematic review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:13-30. [PMID: 35024074 PMCID: PMC8724859 DOI: 10.1016/j.jdsr.2021.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 12/04/2022] Open
Abstract
This systematic review provides an update on the development and efficacy of direct restorative dental materials for root caries interventions from in vitro and clinical studies. PubMed, Embase, and Web of Science were searched using specific MeSH keywords. Full articles from September 1990 to October 2021 were collected. Additional articles were identified by reference retrieval and manual searching. Studies not related to restorative materials for root caries treatment, case reports, non-original articles, and/or articles not written in English were excluded. Bias risk assessment was performed for the clinical studies. Forty-two articles (eleven clinical studies and thirty-one in vitro studies) were included for analysis. Most in vitro studies indicated an excellent cariostatic effect of glass ionomer cement. Resin-modified glass ionomer restorations also presented reduced recurrent caries activity but had a lower efficacy than glass ionomer cement restorations. For composite resin restorations, the main material development strategies are to strengthen the tooth structure and integrate antimicrobial activity. The clinical studies offered limited data, so the most appropriate material for surface root caries treatment is still inconclusive. However, atraumatic restorative treatment (ART) is an alternative treatment for patients with limiting conditions. Further clinical studies are required to confirm the efficacy of bioactive materials.
Collapse
Affiliation(s)
- Watcharapong Tonprasong
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.,Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, 99 Village No.9, Phitsanulok-Nakhon Sawan road, Tha Pho, Mueang Phitsanulok District, Phitsanulok 65000, Thailand
| | - Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Makoto Shimizubata
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Mao Yamamoto
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Keita Hatano
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shunsuke Minakuchi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
29
|
Inagati CM, Scheffel DLS, Anovazzi G, Alonso JRL, Christoffoli MT, Pashley DH, De Souza Costa CA, Hebling J. Proteolytic activity and degradation of bovine versus human dentin matrices. J Appl Oral Sci 2021; 29:e20210290. [PMID: 34878005 PMCID: PMC8653807 DOI: 10.1590/1678-7757-2021-0290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Non-human teeth have been commonly used in research as replacements for human teeth, and potential dissimilarities between the dental tissues should be considered when interpreting the outcomes.
Collapse
Affiliation(s)
- Cristiane Mayumi Inagati
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araraquara, Departamento de Materiais Dentários e Prótese, Araraquara, São Paulo, Brasil
| | | | - Giovana Anovazzi
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, São Paulo, Brasil
| | - Juliana Rosa Luiz Alonso
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araraquara, Departamento de Materiais Dentários e Prótese, Araraquara, São Paulo, Brasil
| | | | - David Henry Pashley
- Augusta University, Department of Oral Biology, The Dental College of Georgia, Augusta, Georgia, United States
| | - Carlos Alberto De Souza Costa
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, São Paulo, Brasil
| | - Josimeri Hebling
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, São Paulo, Brasil
| |
Collapse
|
30
|
Gou Y, Jin W, He Y, Luo Y, Si R, He Y, Wang Z, Li J, Liu B. Effect of Cavity Cleanser With Long-Term Antibacterial and Anti-Proteolytic Activities on Resin-Dentin Bond Stability. Front Cell Infect Microbiol 2021; 11:784153. [PMID: 34869081 PMCID: PMC8641795 DOI: 10.3389/fcimb.2021.784153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Secondary caries caused by oral microbiome dysbiosis and hybrid layer degradation are two important contributors to the poor resin-dentin bond durability. Cavity cleansers with long-term antimicrobial and anti-proteolytic activities are in demand for eliminating bacteria-induced secondary caries and preventing hybrid layers from degradation. The objectives of the present study were to examine the long-term antimicrobial effect and anti-proteolytic potential of poly(amidoamine) dendrimers with amino terminal groups (PAMAM-NH2) cavity cleanser. Methods Adsorption tests by attenuated total reflectance-infrared (ATR-IR) spectroscopy and confocal laser scanning microscopy (CLSM) were first performed to evaluate whether the PAMAM-NH2 cavity cleanser had binding capacity to dentin surface to fulfill its relatively long-term antimicrobial and anti-proteolytic effects. For antibacterial testing, Streptococcus mutans, Actinomyces naeslundii, and Enterococcus faecalis were grown on dentin surfaces, prior to the application of cavity cleanser. Colony-forming unit (CFU) counts and live/dead bacterial staining were performed to assess antibacterial effects. Gelatinolytic activity within the hybrid layers was directly detected by in situ zymography. Adhesive permeability of bonded interface and microtensile bond strength were employed to assess whether the PAMAM-NH2 cavity cleanser adversely affected resin-dentin bonding. Finally, the cytotoxicity of PAMAM-NH2 was evaluated by the Cell Counting Kit-8 (CCK-8) assay. Results Adsorption tests demonstrated that the binding capacity of PAMAM-NH2 on dentin surface was much stronger than that of 2% chlorhexidine (CHX) because its binding was strong enough to resist phosphate-buffered saline (PBS) washing. Antibacterial testing indicated that PAMAM-NH2 significantly inhibited bacteria grown on the dentin discs as compared with the control group (p < 0.05), which was comparable with the antibacterial activity of 2% CHX (p > 0.05). Hybrid layers conditioned with PAMAM-NH2 showed significant decrease in gelatin activity as compared with the control group. Furthermore, PAMAM-NH2 pretreatment did not adversely affect resin-dentin bonding because it did not decrease adhesive permeability and microtensile strength. CCK-8 assay showed that PAMAM-NH2 had low cytotoxicity on human dental pulp cells (HDPCs) and L929. Conclusions PAMAM-NH2 cavity cleanser developed in this study could provide simultaneous long-term antimicrobial and anti-proteolytic activities for eliminating secondary caries that result from a dysbiosis in the oral microbiome and for preventing hybrid layers from degradation due to its good binding capacity to dentin collagen matrix, which are crucial for the maintenance of resin-dentin bond durability.
Collapse
Affiliation(s)
- Yaping Gou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Wei Jin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yanning He
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yu Luo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Ruirui Si
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yuan He
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhongchi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
31
|
Belmar da Costa M, Delgado AHS, Amorim Afonso T, Proença L, Ramos AS, Mano Azul A. Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin. Polymers (Basel) 2021; 13:polym13203562. [PMID: 34685320 PMCID: PMC8538624 DOI: 10.3390/polym13203562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
To compare the adhesive interface of eroded dentin formed by a functional dental adhesive and a gold standard strategy, by testing microtensile bond strength (μTBS), hardness/elastic modulus. Permanent sound human molars were randomly allocated to four experimental groups, all subject to artificial erosion (0.05 M citric acid; 3× daily, 5 days). Groups included control Clearfil SE Bond 2 (CFSE), and experimental group Clearfil SE Protect (CFP), at two different time points-immediate (24 h) and long term (3 months–3 M). Samples were sectioned into microspecimens for μTBS (n = 8) and into 2-mm thick slabs for nanoindentation assays (n = 3). Groups CFSE_3M and CFP_3M were stored in artificial saliva. Statistical analysis included two-way ANOVA for μTBS data, while hardness/modulus results were analyzed using Kruskal–Wallis H Test (significance level of 5%; SPSS v.27.0). Although no significant differences were found between mean μTBS values, for different adhesives and time points (p > 0.05), a positive trend, with μTBS rising in the CFP_3M group, was observed. Regarding hardness, no significant differences were seen in the hybrid layer, considering the two variables (p > 0.05), while the reduced elastic modulus rose in CFP_3M when compared to 24 h. Thus, CFP shows similar mechanical and adhesive performance to CFSE in eroded dentin, although it may comprise promising long-term results. This is advantageous in eroded substrates due to their increased enzymatic activity and need for remineralization.
Collapse
Affiliation(s)
- Madalena Belmar da Costa
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
| | - António HS Delgado
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Hampstead, London NW3 2PF, UK
- Correspondence:
| | - Tomás Amorim Afonso
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
| | - Luís Proença
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
| | - Ana Sofia Ramos
- Department of Mechanical Engineering, University of Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal;
| | - Ana Mano Azul
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
| |
Collapse
|
32
|
Kara O, Seseogullari Dirihan R, Sayin Ozel G, Tezvergil Mutluay A, Usumez A. Inhibition of cathepsin-K and matrix metalloproteinase by photodynamic therapy. Dent Mater 2021; 37:e485-e492. [PMID: 34503836 DOI: 10.1016/j.dental.2021.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The objective of this study was to determine the effects of antimicrobial photodynamic therapy (aPDT) with indocyanine green (ICG) and toluidine blue (TB) on protease activity (matrix-bound cathepsin K and matrix metalloproteinase (MMP) and dentin bond strength. METHODS Caries-free human third molars were assigned to five groups: 1-control group, 2-application of ICG with activation using an 810 nm diode (aPDT), 3-application of ICG, 4-application of TB with activation using a 660 nm diode (aPDT), and 5-application of TB. For the enzymatic investigation, dentin beams were incubated for either 3 days or 3 weeks. Aliquots of the incubation media were analyzed by ELISA for CTX (C-terminal cross-linked telopeptide of type I Collagen) and ICTP (cross-linked carboxy-terminal telopeptide of type I collagen). For microtensile bond strength testing (μTBS), composite resins were layered onto the tooth surface; the samples were then subjected to μTBS. Kruskall-Wallis and Mann-Whitney U tests were applied for statistical analysis of CTX and ICTP, one way-ANOVA and Tukey's test were applied for statistical analysis of μTBS. RESULTS Pretreating the dentin matrices with aPDT decreased the endogenous protease activity. ICG with laser activation resulted in the highest μTBS. Therefore, aPDT should be considered as a treatment method because it can reduce MMP-mediated dentin degradation and increase the μTBS. SIGNIFICANCE Inhibiting endogenous protease activity improves the stability of the dentin-adhesive bond and the durability of the bond strength.
Collapse
Affiliation(s)
- Ozlem Kara
- Department of Prosthodontics, BezmialemVakif University, Faculty of Dentistry, Istanbul, Turkey.
| | - Roda Seseogullari Dirihan
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku and TYKS, University of Turku Hospital, Turku, 20520, Finland.
| | - Gulsum Sayin Ozel
- Department of Prosthodontics, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey.
| | - Arzu Tezvergil Mutluay
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku and TYKS, University of Turku Hospital, Turku, 20520, Finland.
| | - Aslihan Usumez
- Private Practicer, Dental Plus Clinic Bakirkoy, Istanbul, Turkey.
| |
Collapse
|
33
|
Effect of chlorhexidine-loaded poly(amido amine) dendrimer on matrix metalloproteinase activities and remineralization in etched human dentin in vitro. J Mech Behav Biomed Mater 2021; 121:104625. [PMID: 34130080 DOI: 10.1016/j.jmbbm.2021.104625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
To investigate the effect of chlorhexidine (CHX)-loaded carboxyl-terminated poly (amido amine) dendrimer (CHX-PAMAM-COOH) on matrix metalloproteinase (MMP) activities and remineralization in human dentin, CHX-PAMAM-COOH was prepared and characterized by Fourier-transform infrared spectroscopy. The inhibitory effects of CHX, PAMAM-COOH, and CHX-PAMAM-COOH on soluble recombinant human matrix metalloproteinase (rhMMP-2) and dentin-bound endogenous MMP activity were measured using an MMP Activity Assay Kit. In situ zymography was performed to evaluate the gelatinase activity in dentin pretreated with CHX, PAMAM-COOH, and CHX-PAMAM-COOH. The remineralization of etched dentin pretreated with CHX, PAMAM-COOH, and CHX-PAMAM-COOH was evaluated by field emission-scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) after incubation in artificial saliva for 14 days. The results of the rhMMP-2 activity assay showed that the MMP-2 activity in the CHX-PAMAM-COOH group and the CHX group decreased significantly to 5.58 ± 0.85% (P < 0.05) and 4.86 ± 1.12% (P < 0.05), respectively, but that in the PAMAM-COOH group increased significantly to 213.38 ± 0.11% (P < 0.05). The results of total MMP activity and in situ zymography showed a significant reduction in endogenous gelatinase activity in dentin in the CHX-PAMAM-COOH group and the CHX group. The SEM and EDS results showed that rod-like crystals were formed on the etched dentin surface in the PAMAM-COOH group and the CHX-PAMAM-COOH group, and their Ca/P ratios were 1.73 and 1.71, respectively. In conclusion, CHX-PAMAM-COOH can inhibit dentin-bound endogenous MMPs and induce remineralization in etched dentin simultaneously. However, it is important to note that the catalytic role of PAMAM dendrimers may have an undesired excitatory effect on MMP activity, which cannot be ignored if PAMAM dendrimers were used alone in the oral environment.
Collapse
|
34
|
Daood U, Malik AA, Ilyas MS, Ahmed A, Qasim SSB, Banavar SR, Khan AS, Kuan EKS, Bilal S, Matinlinna J, Seow LL. Antimicrobial and self-crosslinking potential of experimentally developed dioctadecyldimethyl ammonium bromide and riboflavin dentin adhesive. J Biomed Mater Res A 2021; 109:2392-2406. [PMID: 34018311 DOI: 10.1002/jbm.a.37221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 11/07/2022]
Abstract
The aim of the study is to investigate a new formulation, based on dioctadecyldimethyl ammonium-bromide (QA) and riboflavin (RF), combining antimicrobial activities and protease inhibitory properties with collagen crosslinking without interference to bonding capabilities in a rabbit model. Quaternary ammonium riboflavin (QARF) experimental adhesives modified with dioctadecyldimethyl ammonium-bromide and riboflavin were bonded (0.5/1.0/2.0%) to rabbit dentin to investigate for pulpal-histology, interfacial-morphology, transmission electron microscopy, mechanical properties, collagen crosslinking, micro-Raman analysis, antimicrobial, and anti-protease activities. Collagen type-I molecules were generated using molecular-docking. Odontoblasts appeared with normal histology, were seen in controls with no inflammatory cells detected in 0.5% specimens at day 7 and mild inflammatory response at day 30. In QARF 2.0%, inflammatory cells were not detected at day 7 and 30 (p < .05). Dentinal tubules are seen with intact collagen surface in 1% specimens. Resin penetrated inside 1% adhesive specimens with few irregularly funnel-shaped tags. Transmission electron microscopy showed thinner collagen in all specimens except 1% QARF specimens. Biofilms were influenced by QARF adhesives. Elastic moduli were significantly higher in 1.0% and 2.0% QARF adhesive specimens with a significant increase in total crosslinks. Stable amide groups with anti-protease activity was observed in QARF groups. Charged residues were seen in the triple helix hCOL3A1, Gly489-Gly510 after stabilisation with formulation. The 1% QARF modified adhesives improved biochemical and biomechanical properties of rabbit dentin.
Collapse
Affiliation(s)
- Umer Daood
- Clinical Dentistry, Faculty of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | | | - Asrar Ahmed
- Department of Oral Biology, Post Graduate Medical Institute, Lahore, Pakistan
| | - Syed Saad B Qasim
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Safat, Kuwait
| | - Spoorthi Ravi Banavar
- Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Esther Kok Sook Kuan
- Clinical Dentistry, Faculty of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Sobia Bilal
- Department of Children and Community Oral Health, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Jukka Matinlinna
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Liang Lin Seow
- Clinical Dentistry, Faculty of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Hass V, Li Y, Wang R, Nguyen D, Peng Z, Wang Y. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers - Part 1: Efficacy in dentin collagen bio-stabilization and cross-linking. Dent Mater 2021; 37:1183-1192. [PMID: 33994202 DOI: 10.1016/j.dental.2021.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/05/2021] [Accepted: 04/24/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the effects of methacrylate-functionalized proanthocyanidins (MAPAs) on dentin collagen's bio-stabilization against enzymatic degradation and crosslinking capability. METHODS Three MAPAs were synthesized via varying methacrylate (MA) to proanthocyanidins (PA) feeding ratios of 1:2, 1:1, and 2:1 to obtain MAPA-1, MAPA-2, and MAPA-3, respectively. The three MAPAs were structurally characterized by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopic methods. 5-μm-thick dentin films were microtomed from dentin slabs of third molars. Following demineralization, films or slabs were treated with 1% MAPAs or PA in ethanol for 30 s. Collagen bio-stabilization against enzymatic degradation was analyzed by weight loss (WL) and hydroxyproline release (HYP) of films, as well as scanning electron microscopy (SEM) on dentin slabs. Crosslinking capacity and interactions of MAPAs with collagen were investigated by FTIR. Data were analyzed by ANOVA and Tukey's test (α = 0.05%). RESULTS MA:PA feeding ratios affected MAPAs' chemical structures which in turn led to different collagen stabilization efficacy against degradation and varied collagen crosslinking capabilities. Higher collagen stabilization efficacy was detected using MAPA-1 (WL 10.52%; HYP 13.53 μg/mg) and MAPA-2 (WL 5.99%; HYP 11.02 μg/mg), which was comparable to that using PA (WL 8.79%; HYP 13.17 μg/mg) (p > 0.05), while a lower collagen stability occurred in MAPA-3 (WL 38.48%; HYP 29.49 μg/mg), indicating excessive MA-functionalization would compromise its stabilization efficacy. In comparison, complete digestion was detected for untreated collagen (WL 100%; HYP 102.76 μg/mg). The above results were consistent with collagen crosslinking efficacy of the three MAPAs revealed by SEM and FTIR. SIGNIFICANCE A new class of novel polymerizable collagen cross-linkers MAPAs was synthesized and shown that, when appropriate MA:PA ratios were applied, the resulting MAPAs could render high collagen stability and the ability to copolymerize with resin monomers, overcoming the drawbacks of PA. These new polymerizable crosslinkers, when included in adhesives, could lead to long-lasting dentin bonding.
Collapse
Affiliation(s)
- Viviane Hass
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Yong Li
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA
| | - Rong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Dung Nguyen
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA
| | - Zhonghua Peng
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA.
| | - Yong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
36
|
Abstract
Current adhesives bond to dentin via a micro-interlocking mechanism within the hybrid layer. Besides such mechanical retention, bonding to dentin would benefit from additional chemical interaction between collagen and resin. This study aims to synthesize a novel light-curable collagen crosslinker methacrylate (MA) functionalized grapeseed extract (GSE) and to assess MAGSE's ability to crosslink dentin collagen in a clinically relevant setting as well as its role in light-cure as a resin. MA functionalization was accomplished by reacting GSE with methacryloyl chloride to obtain MAGSE, which was characterized by 1H-NMR and Fourier transformed infrared spectroscopy (FTIR). The 6-µm-thick dentin films were microtomed from dentin slabs of third molars. Following demineralization, they were treated for 30 s by 1% MAGSE. Collagen crosslinking and resistance to digestion of MAGSE were evaluated by FTIR, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) assay of films, and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) on slabs. Meanwhile, 1% MAGSE or GSE was added to an experimental adhesive formulated with 2-hydroxyethyl methacrylate and a tricomponent photoinitiator system. Polymerization kinetics were monitored continuously in real time for 10 min using FTIR-attenuated total reflection. The results indicated that MAGSE could bind to dentin collagen and protect it from collagenase degradation as strong as GSE. Dentin collagen treated by 1% MAGSE for 30 s was scarcely digested (1.6 ± 1.6%) after 1 h in 0.1% collagenase, while untreated collagen was completely digested (100.9 ± 20.2%). SEM/TEM images indicated MAGSE efficiently crosslinked dentin collagen in 30 s and rendered it almost inert to digestion under clinically relevant settings. Unlike GSE that hindered light-curing of HEMA, MAGSE accelerated the rate of polymerization and exhibited typical traits of a resin monomer with multiple polymerizable units. In conclusion, a novel collagen crosslinking resin MAGSE is synthesized, which inherits collagen crosslinking ability from GSE and polymerization function from MA. Inclusion of this light-curable collagen crosslinker into adhesives might be a revolutionary way to improve durability of dentin bonding in composite restorations.
Collapse
Affiliation(s)
- Y Wang
- University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA
| | - Y Liu
- University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA
| | - H Liu
- University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA
| | - S Li
- University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA
| |
Collapse
|
37
|
Stape THS, Mutluay MM, Tjäderhane L, Uurasjärvi E, Koistinen A, Tezvergil-Mutluay A. The pursuit of resin-dentin bond durability: Simultaneous enhancement of collagen structure and polymer network formation in hybrid layers. Dent Mater 2021; 37:1083-1095. [PMID: 33863568 DOI: 10.1016/j.dental.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Imperfect polymer formation as well as collagen's susceptibility to enzymatic degradation increase the vulnerability of hybrid layers over time. This study investigated the effect of new dimethyl sulfoxide (DMSO)-containing pretreatments on long-term bond strength, hybrid layer quality, monomer conversion and collagen structure. METHODS H3PO4-etched mid-coronal dentin surfaces from extracted human molars (n = 8) were randomly treated with aqueous and ethanolic DMSO solutions or following the ethanol-wet bonding technique. Dentin bonding was performed with a three-step etch-and-rinse adhesive. Resin-dentin beams (0.8 mm2) were stored in artificial saliva at 37 °C for 24 h and 2.5 years, submitted to microtensile bond strength testing at 0.5 mm/min and semi-quantitative SEM nanoleakage analysis (n = 8). Micro-Raman spectroscopy was used to determine the degree of conversion at different depths in the hybrid layer (n = 6). Changes in the apparent modulus of elasticity of demineralized collagen beams measuring 0.5 × 1.7 × 7 mm (n = 10) and loss of dry mass (n = 10) after 30 days were calculated via three-point bending and precision weighing, respectively. RESULTS DMSO-containing pretreatments produced higher bond strengths, which did not change significantly over time presenting lower incidence of water-filled zones. Higher uniformity in monomer conversion across the hybrid layer occurred for all pretreatments. DMSO-induced collagen stiffening was reversible in water, but with lower peptide solubilization. SIGNIFICANCE Improved polymer formation and higher stability of the collagen-structure can be attributed to DMSO's unique ability to simultaneously modify both biological and resin components within the hybrid layer. Pretreatments composed of DMSO/ethanol may be a viable-effective alternative to extend the longevity of resin-dentin bonds.
Collapse
Affiliation(s)
- Thiago Henrique Scarabello Stape
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland.
| | - Mustafa Murat Mutluay
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Department of Prosthodontics and Clinical Dentistry, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.
| | - Leo Tjäderhane
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland and Helsinki University Hospital, Helsinki, Finland; Research Unit of Oral Health Sciences and Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland.
| | | | - Arto Koistinen
- University of Eastern Finland, SIB Labs, Kuopio, Finland.
| | - Arzu Tezvergil-Mutluay
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland.
| |
Collapse
|
38
|
Quercetin as an Auxiliary Endodontic Irrigant for Root Canal Treatment: Anti-Biofilm and Dentin Collagen-Stabilizing Effects In Vitro. MATERIALS 2021; 14:ma14051178. [PMID: 33802293 PMCID: PMC7959140 DOI: 10.3390/ma14051178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023]
Abstract
Bacterial reinfection and root fracture are the main culprits related to root canal treatment failure. This study aimed to assess the utility of quercetin solution as an adjunctive endodontic irrigant that does not weaken root canal dentin with commitment anti-biofilm activity and bio-safety. Based on a noninvasive dentin infection model, dentin tubules infected with Enterococcus faecalis (E. faecalis) were irrigated with sterile water (control group), and 0, 1, 2, 4 wt% quercetin-containing ethanol solutions. Live and dead bacteria percentages in E. faecalis biofilms were analyzed by confocal laser scanning microscopy (CLSM). Elastic modulus, hydroxyproline release and X-ray photoelectron spectroscopy (XPS) characterization were tested to evaluate the irrigants’ collagen-stabilizing effect. The cytotoxicity was tested by CCK-8 assay. Quercetin increased the proportion of dead bacteria volumes within E. faecalis and improved the flexural strength of dentin compared to control group (p < 0.05). Quercetin-treated dentin matrix had less elasticity loss and hydroxyproline release after collagenase degradation (p < 0.05). Moreover, quercetin solutions revealed an increase in the C-O peak area under both C1s and O1s narrow-scan spectra of XPS characterization, and no cytotoxicity (p > 0.05). Quercetin exhibited anti-biofilm activity, a collagen-stabilizing effect with cytocompatibility, supporting quercetin as a potential candidate for endodontic irrigant.
Collapse
|
39
|
Forgione D, Nassar M, Seseogullari-Dirihan R, Thitthaweerat S, Tezvergil-Mutluay A. The effect of phytic acid on enzymatic degradation of dentin. Eur J Oral Sci 2021; 129:e12771. [PMID: 33644893 DOI: 10.1111/eos.12771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022]
Abstract
We evaluated the effect of phytic acid on matrix metalloproteinase (MMP)- or cysteine cathepsin (CC)-mediated dentin degradation. Demineralized dentin beams were divided into five groups (n = 12) and treated with 1%, 2%, or 3% phytic acid or with 37% phosphoric acid. Untreated demineralized beams served as controls. After incubation for 1 or 3 wk, dry mass loss was determined and aliquots of incubation media were analysed for cross-linked telopeptide of type I collagen (ICTP) fragments for MMP-mediated and c-terminal telopeptide of type I collagen (CTX) for cathepsin-k-mediated degradation. The direct effect of phytic acid was evaluated using MMP activity assay. Data were analysed using repeated-measures anova. ICTP releases with 1% and 2% phytic acid treatment were statistically significantly lower than those following phosphoric acid treatment at 3 wk. The CTX release for phytic acid-treated beams at 3 wk was not significantly different from that of untreated control beams, but it was significantly lower than that of phosphoric acid-treated beams. Their MMP activities at 3 wk were not significantly different from those of the controls but they were significantly lower than those seen for phosphoric acid-treated beams. Compared to phosphoric acid, phytic acid treatment resulted in a reduced dentinal host-derived endogenous enzymatic activity and collagen degradation.
Collapse
Affiliation(s)
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Arzu Tezvergil-Mutluay
- Institute of Dentistry, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| |
Collapse
|
40
|
Gobbi P, Maravic T, Comba A, Mazzitelli C, Mancuso E, Falconi M, Breschi L, Mazzoni A. Biochemical and immunohistochemical analysis of tissue inhibitor of metalloproteinases-1 in human sound dentin. Clin Oral Investig 2021; 25:5067-5075. [PMID: 33569677 PMCID: PMC8342377 DOI: 10.1007/s00784-021-03819-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/29/2021] [Indexed: 11/29/2022]
Abstract
Objectives Matrix metalloproteases (MMPs) are a family of enzymes that operate a proteolytic activity at the level of the extracellular matrix. MMPs are regulated by tissue inhibitors of metalloproteinases (TIMPs) that can ubiquitously bind different enzyme forms. The study aims to identify a morfo-functional association between TIMP-1 and MMP-2 and -9 in human dentin. Materials and methods Proteins were extracted from demineralized human sound dentin powder and centrifuged to separate two aliquots with different molecular weights of proteins, higher and lower than 30 kDa. In each aliquot, the evaluation of the presence of TIMP-1/MMP-2 and TIMP-1/MMP-9 was performed using co-immunoprecipitation/immunoblotting analysis. The distribution of TIMP-1, in association with MMP-2 and -9, was investigated using a double immunohistochemical technique. Furthermore, the activity of TIMP-1 was measured by reverse zymography, where acrylamide gel was copolymerized with gelatin and recombinant MMP-2. Results Co-immunoprecipitation/immunoblotting analysis showed the association TIMP-1/MMP-2 and TIMP-1/MMP-9 in human sound dentin. Electron microscopy evaluation revealed a diffuse presence of TIMP-1 tightly associated with MMP-2 and -9. Reverse zymography analysis confirmed that TIMP-1 present in human dentin is active and can bind different MMPs isoforms. Conclusions The strict association of TIMP-1 with MMP-2 and -9 in situ appeared a constant finding in the human sound dentin. Clinical relevance Considering the role of TIMP-1, MMP-2, and MMP-9 within the connective tissues, clinically applicable protocols could be developed in the future to increase or decrease the level of TIMPs in human dentin to regulate the activity of MMPs, contributing to reduce caries progression and collagen degradation.
Collapse
Affiliation(s)
- Pietro Gobbi
- Department of Biomolecular Sciences, Carlo Bo Urbino University, Via Aurelio Saffi 2, 61029, Urbino, Italy
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Allegra Comba
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy.
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| |
Collapse
|
41
|
Dalhoff A. Selective toxicity of antibacterial agents-still a valid concept or do we miss chances and ignore risks? Infection 2021; 49:29-56. [PMID: 33367978 PMCID: PMC7851017 DOI: 10.1007/s15010-020-01536-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Selective toxicity antibacteribiotics is considered to be due to interactions with targets either being unique to bacteria or being characterized by a dichotomy between pro- and eukaryotic pathways with high affinities of agents to bacterial- rather than eukaryotic targets. However, the theory of selective toxicity oversimplifies the complex modes of action of antibiotics in pro- and eukaryotes. METHODS AND OBJECTIVE This review summarizes data describing multiple modes of action of antibiotics in eukaryotes. RESULTS Aminoglycosides, macrolides, oxazolidinones, chloramphenicol, clindamycin, tetracyclines, glycylcyclines, fluoroquinolones, rifampicin, bedaquillin, ß-lactams inhibited mitochondrial translation either due to binding to mitosomes, inhibition of mitochondrial RNA-polymerase-, topoisomerase 2ß-, ATP-synthesis, transporter activities. Oxazolidinones, tetracyclines, vancomycin, ß-lactams, bacitracin, isoniazid, nitroxoline inhibited matrix-metalloproteinases (MMP) due to chelation with zinc and calcium, whereas fluoroquinols fluoroquinolones and chloramphenicol chelated with these cations, too, but increased MMP activities. MMP-inhibition supported clinical efficacies of ß-lactams and daptomycin in skin-infections, and of macrolides, tetracyclines in respiratory-diseases. Chelation may have contributed to neuroprotection by ß-lactams and fluoroquinolones. Aminoglycosides, macrolides, chloramphenicol, oxazolidins oxazolidinones, tetracyclines caused read-through of premature stop codons. Several additional targets for antibiotics in human cells have been identified like interaction of fluoroquinolones with DNA damage repair in eukaryotes, or inhibition of mucin overproduction by oxazolidinones. CONCLUSION The effects of antibiotics on eukaryotes are due to identical mechanisms as their antibacterial activities because of structural and functional homologies of pro- and eukaryotic targets, so that the effects of antibiotics on mammals are integral parts of their overall mechanisms of action.
Collapse
Affiliation(s)
- Axel Dalhoff
- Christian-Albrechts-University of Kiel, Institue for Infection Medicine, Brunswiker Str. 4, D-24105, Kiel, Germany.
| |
Collapse
|
42
|
Anshida VP, Kumari RA, Murthy CS, Samuel A. Extracellular matrix degradation by host matrix metalloproteinases in restorative dentistry and endodontics: An overview. J Oral Maxillofac Pathol 2021; 24:352-360. [PMID: 33456247 PMCID: PMC7802866 DOI: 10.4103/jomfp.jomfp_34_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 11/04/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of over 25 secreted and membrane-bound enzymes responsible for pericellular substrate degeneration. In response to injury, they play key roles in morphogenesis, wound healing, tissue repair and remodeling. They have been isolated from dentin, odontoblasts, pulp and periapical tissue. They play a major role in the formation of dentin matrix and secondary and tertiary dentin. These are also responsible for releasing dentinal growth factors. MMP family proteins elicit a dual role in the pathogenesis of inflammation, stimulating protective innate and/or adaptive immune functions, as well as tissue destruction. The main organic component of tooth structure is collagen, and MMPs that degrade collagen and the extracellular matrix have been implicated in the progression of dental caries, dental erosion as well as degradation of the hybrid layer. MMPs have also been shown to be active in pulpitis, and studies have shown that they can be used as diagnostic markers of pulpal and periapical inflammation. This review describes the role of MMPs in dental caries, dental erosion, bond stability as well as in pulpal and periapical inflammation.
Collapse
Affiliation(s)
- V P Anshida
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - R Anitha Kumari
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - Chethana S Murthy
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - Anoop Samuel
- Department of Conservative Dentistry and Endodontics, Noorul Islam College of Dental Sciences, Thiruvananthapuram, Kerala, India
| |
Collapse
|
43
|
Nagpal M, Taneja S, Kumar M, Dudeja C. Evaluation of the effect of natural versus synthetic matrix metalloproteinase silencers in preservation of dentin collagen and long-term bond strength of total etch adhesive. J Conserv Dent 2020; 23:221-226. [PMID: 33551589 PMCID: PMC7861083 DOI: 10.4103/jcd.jcd_91_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 11/04/2022] Open
Abstract
Aim This study investigated the effect of various synthetic (galardin [Gal] and benzalkonium chloride [BAC]) and natural agents (hesperidin [HES] and epigallocatechin gallate) on the stability of dentin collagen matrix to resist collagenase degradation and improve long-term microtensile bond strength. Materials and Methods Ten sound-impacted third molars were collected and manual removal of pulp, periodontal ligament, cementum, and enamel was done. Remaining dentin fragments were pulverized under liquid nitrogen to obtain dentin powder. 2 mg aliquot of dentin powder was allocated to each of the test solutions and subjected to hydroxyproline assay. Another 60 sound human third molars were collected and occlusal enamel was ground flat to reach dentinoenamel junction. Class I cavities were prepared in dentin, followed by etching using 37% phosphoric acid for 15 s. Samples were then subjected to surface treatment with different agents for 60 s, followed by application of Optibond S and restoration with P 60 composite resin. Samples of all groups except control were subject to thermocycling. Samples were sectioned to 1 mm thick slabs which were subject to universal testing machine to determine ultimate tensile strength. One-way analysis of variance and Bonferroni post hoc test with a significance level of P < 0.05 were used to analyze data. Results HES resulted in maximum resistance to collagen degradation, followed by epigallocatechin gallate (EGCG), Gal, and BAC with a significant difference among the groups. Samples of Gal group showed the highest microtensile bond strength values, followed by HES, EGCG, BAC with a significant difference between the groups except HES and EGCG where the difference was nonsignificant. Conclusion The use of matrix metalloproteinase silencers could improve the mechanical properties of collagen and resist enzymatic degradation, leading to an improved long-term intimate restoration.
Collapse
Affiliation(s)
| | - Sonali Taneja
- Department of Conservative Dentistry & Endodontics, ITS Dental College and Hospital, Ghaziabad, Uttar Pradesh, India
| | - Mohit Kumar
- Department of Conservative Dentistry & Endodontics, ITS Dental College and Hospital, Ghaziabad, Uttar Pradesh, India
| | - Chetna Dudeja
- Department of Conservative Dentistry & Endodontics, ITS Dental College and Hospital, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
44
|
Shen J, Xie H, Wang Q, Wu X, Yang J, Chen C. Evaluation of the interaction of chlorhexidine and MDP and its effects on the durability of dentin bonding. Dent Mater 2020; 36:1624-1634. [DOI: 10.1016/j.dental.2020.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
|
45
|
Saffarpour A, Valizadeh S, Amini A, Kharazifard MJ, Rohaninasab M. Effect of matrix metalloproteinase inhibitors on microtensile bond strength of dental composite restorations to dentin in use of an etch-and-rinse adhesive system. Clin Exp Dent Res 2020; 6:686-692. [PMID: 32989895 PMCID: PMC7745076 DOI: 10.1002/cre2.313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 06/20/2020] [Indexed: 11/19/2022] Open
Abstract
Aim This study assesses the effect of matrix metalloproteinases on microtensile bond strength (μTBS) of an etch‐and‐rinse adhesive system. Methods This in vitro study evaluated 88 extracted premolars. The teeth were sectioned to expose dentin and were then randomly divided into four groups (n = 22). In group 1 (control), dentin surface was etched, and Adper Single Bond 2 was applied. In groups 2–4, dentin surface was etched and chlorhexidine (CHX), 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC), and dimethyl sulfoxide (DMSO) were applied on the surfaces, respectively, and blotted dry. Next, Adper Single Bond 2 was applied and all teeth were built up with Z350 composite. In each group, half the samples immediately and the other half after 10,000 thermal cycles underwent μTBS test. Data were analyzed using ANOVA and Tukey's test (α = .05). Results In thermocycled samples, maximum μTBS was noted in CHX group followed by DMSO, EDC, and control group (p < .001). The thermocycled μTBS of composite to dentin was significantly higher in CHX group compared with EDC, DMSO, and control groups (p < .001) but was not significantly different in EDC and DMSO groups (p = .498). Conclusion The thermocycled μTBS obtained by the application of CHX, EDC, and DMSO was significantly higher compared with the value to the control group.
Collapse
Affiliation(s)
- Aida Saffarpour
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Operative Dentistry, School of Dentistry, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Sara Valizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Restorative Dentistry Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Javd Kharazifard
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Rohaninasab
- Department of Operative Dentistry, School of Dentistry, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
46
|
Yao C, Ahmed MH, Li X, Nedeljkovic I, Vandooren J, Mercelis B, Zhang F, Van Landuyt KL, Huang C, Van Meerbeek B. Zinc-Calcium-Fluoride Bioglass-Based Innovative Multifunctional Dental Adhesive with Thick Adhesive Resin Film Thickness. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30120-30135. [PMID: 32530270 DOI: 10.1021/acsami.0c06865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Apart from producing high bond strength to tooth enamel and dentin, a dental adhesive with biotherapeutic potential is clinically desirable, aiming to further improve tooth restoration longevity. In this laboratory study, an experimental two-step universal adhesive, referred to as Exp_2UA, applicable in both the etch-and-rinse (E&R) and self-etch (SE) modes and combining a primer, containing 10-methacryloyloxydecyldihydrogen phosphate as a functional monomer with chemical binding potential to hydroxyapatite, with a bioglass-containing hydrophobic adhesive resin, was multifactorially investigated. In addition to primary property assessment, including measurement of bond strength, water sorption, solubility, and polymerization efficiency, the resultant adhesive-dentin interface was characterized by transmission electron microscopy (TEM), the filler composition was analyzed by energy-dispersive X-ray spectroscopy, and the bioactive potential of the adhesive was estimated by measuring the long-term ion release and assessing its antienzymatic and antibacterial potential. Four representative commercial adhesives were used as reference/controls. Application in both the E&R and SE modes resulted in a durable bonding performance to dentin, as evidenced by favorable 1 year aged bond strength data and a tight interfacial ultrastructure that, as examined by TEM, remained ultramorphologically unaltered upon 1 year of water storage aging. TEM revealed a 20 μm thick hydrophobic adhesive layer with a homogeneous bioglass filler distribution. Adequate polymerization conversion resulted in extremely low water sorption and solubility. In situ zymography revealed reduced endogenous proteolytic activity, while Streptococcus mutans biofilm formation was inhibited. In conclusion, the three-/two-step E&R/SE Exp_2UA combines the high bonding potential and bond degradation resistance with long-term ion release, rendering the adhesive antienzymatic and antibacterial potential.
Collapse
Affiliation(s)
- Chenmin Yao
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Mohammed H Ahmed
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Faculty of Dentistry, Department of Dental Biomaterials, Tanta University, 31511 Tanta, Egypt
| | - Xin Li
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Ivana Nedeljkovic
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Department of Dental Material Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Ben Mercelis
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Fei Zhang
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Department of Materials Engineering, KU Leuven (University of Leuven), 3001 Leuven, Belgium
| | - Kirsten L Van Landuyt
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| |
Collapse
|
47
|
Daood U, Omar H, Qasim S, Nogueira LP, Pichika MR, Mak KK, Steier L, Cky Y, Lin SL, Fawzy AS. New antimicrobial and collagen crosslinking formulated dentin adhesive with improved bond durability. J Mech Behav Biomed Mater 2020; 110:103927. [PMID: 32957222 DOI: 10.1016/j.jmbbm.2020.103927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Here we describe a novel formulation, based on quaternary ammonium (QA) and riboflavin (RF), which combines antimicrobial activities and protease inhibitory properties with collagen crosslinking without interference to bonding capabilities, was investigated. METHODS Experimental adhesives modified with different fractions of dioctadecyldimethyl ammonium bromide quaternary ammonium and riboflavin (QARF) were formulated. Dentine specimens were bonded to resincomposites with control or the experimental adhesives to be evaluated for bond strength, interfacial morphology, micro-Raman analysis, nano-CT and nano-leakage expression. In addition, the antibacterial and biocompatibilities of the experimental adhesives were investigated. The endogenous proteases activities and their molecular binding-sites were studied. RESULTS Modifying the experimental adhesives with QARF did not adversely affect micro-tensile bond strength or the degree of conversion along with the demonstration of anti-proteases and antibacterial abilities with acceptable biocompatibilities. In general, all experimental adhesives demonstrated favourable bond strength with increased and improved values in 1% QARF adhesive at 24 h (39.2 ± 3.0 MPa) and following thermocycling (34.8 ± 4.3 MPa). SIGNIFICANCE It is possible to conclude that the use of QARF with defined concentration can maintain bond strength values when an appropriate protocol is used and have contributed in ensuring a significant decrease in microbial growth of biofilms. Incorporation of 1% QARF in the experimental adhesive lead to simultaneous antimicrobial and anti-proteolytic effects with low cytotoxic effects, acceptable bond strength and interfacial morphology.
Collapse
Affiliation(s)
- Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Hanan Omar
- Missouri School of Dentistry and Oral Health (MOSDOH) - ATSU, USA
| | - Saad Qasim
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, P.O Box - 24923, Kuwait; Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 69-71, 0455, Oslo, Norway
| | - Liebert P Nogueira
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, P.O Box - 24923, Kuwait; Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 69-71, 0455, Oslo, Norway
| | - Malikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Liviu Steier
- Post-Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Brazil; Royal College of Surgeons of Edinburgh, United Kingdom
| | - Yiu Cky
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Seow Liang Lin
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Amr S Fawzy
- UWA Dental School, University of Western Australia, 17 Monash Avenue, Nedlands WA 6009, Australia.
| |
Collapse
|
48
|
Dressano D, Salvador MV, Oliveira MT, Marchi GM, Fronza BM, Hadis M, Palin WM, Lima AF. Chemistry of novel and contemporary resin-based dental adhesives. J Mech Behav Biomed Mater 2020; 110:103875. [PMID: 32957185 DOI: 10.1016/j.jmbbm.2020.103875] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
The chemistry of resin-based dental adhesives is critical for its interaction with dental tissues and long-term bonding stability. Changes in dental adhesives composition influences the materials' key physical-chemical properties, such as rate and degree of conversion, water sorption, solubility, flexural strength and modulus, and cohesive strength and improves the biocompatibility to dental tissues. Maintaining a suitable reactivity between photoinitiators and monomers is important for optimal properties of adhesive systems, in order to enable adequate polymerisation and improved chemical, physical and biological properties. The aim of this article is to review the current state-of-the-art of dental adhesives, and their chemical composition and characteristics that influences the polymerisation reaction and subsequent materials properties and performance.
Collapse
Affiliation(s)
- Diogo Dressano
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av Limeira, 901 Mail Box 52, Piracicaba, Sao Paulo, 13414-903, Brazil.
| | - Marcos V Salvador
- Dental Research Division, Paulista University, Sao Paulo, Rua Doutor Bacelar, 1212, CEP: 04026-002, Brazil.
| | | | - Giselle Maria Marchi
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av Limeira, 901 Mail Box 52, Piracicaba, Sao Paulo, 13414-903, Brazil.
| | - Bruna M Fronza
- Department of Biomaterials and Oral Biology, University of São Paulo, 2227 Prof. Lineu Prestes Ave, 05508-000, São Paulo, SP, Brazil.
| | - Mohammed Hadis
- Dental Materials Science, Birmingham Dental School and Hospital, College of Medical and Dental Science, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| | - William M Palin
- Dental Materials Science, Birmingham Dental School and Hospital, College of Medical and Dental Science, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| | - Adriano Fonseca Lima
- Dental Research Division, Paulista University, Sao Paulo, Rua Doutor Bacelar, 1212, CEP: 04026-002, Brazil.
| |
Collapse
|
49
|
de Moraes IQS, do Nascimento TG, da Silva AT, de Lira LMSS, Parolia A, Porto ICCDM. Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion. Restor Dent Endod 2020; 45:e31. [PMID: 32839712 PMCID: PMC7431940 DOI: 10.5395/rde.2020.45.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were “matrix metalloproteinases”, “collagen”, and “dentin” and “hybrid layer”. MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.
Collapse
Affiliation(s)
- Izadora Quintela Souza de Moraes
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ticiano Gomes do Nascimento
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Antonio Thomás da Silva
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Lilian Maria Santos Silva de Lira
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Abhishek Parolia
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Isabel Cristina Celerino de Moraes Porto
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil.,Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| |
Collapse
|
50
|
Baras BH, Melo MAS, Thumbigere-Math V, Tay FR, Fouad AF, Oates TW, Weir MD, Cheng L, Xu HHK. Novel Bioactive and Therapeutic Root Canal Sealers with Antibacterial and Remineralization Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1096. [PMID: 32121595 PMCID: PMC7084849 DOI: 10.3390/ma13051096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
According to the American Dental Association Survey of Dental Services Rendered (published in 2007), 15 million root canal treatment procedures are performed annually. Endodontic therapy relies mainly on biomechanical preparation, chemical irrigation and intracanal medicaments which play an important role in eliminating bacteria in the root canal. Furthermore, adequate obturation is essential to confine any residual bacteria within the root canal and deprive them of nutrients. However, numerous studies have shown that complete elimination of bacteria is not achieved due to the complex anatomy of the root canal system. There are several conventional antibiotic materials available in the market for endodontic use. However, the majority of these antibiotics and antiseptics provide short-term antibacterial effects, and they impose a risk of developing antibacterial resistance. The root canal is a dynamic environment, and antibacterial and antibiofilm materials with long-term effects and nonspecific mechanisms of action are highly desirable in such environments. In addition, the application of acidic solutions to the root canal wall can alter the dentin structure, resulting in a weaker and more brittle dentin. Root canal sealers with bioactive properties come in direct contact with the dentin wall and can play a positive role in bacterial elimination and strengthening of the root structure. The new generation of nanostructured, bioactive, antibacterial and remineralizing additives into polymeric resin-based root canal sealers are discussed in this review. The effects of these novel bioactive additives on the physical and sealing properties, as well as their biocompatibility, are all important factors that are presented in this article.
Collapse
Affiliation(s)
- Bashayer H. Baras
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mary Anne S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
| | - Vivek Thumbigere-Math
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Franklin R. Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ashraf F. Fouad
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA;
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Lei Cheng
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|