1
|
Wu Z, Long W, Yin Y, Tan B, Liu C, Li H, Ge S. Outer membrane vesicles of Porphyromonas gingivalis: recent advances in pathogenicity and associated mechanisms. Front Microbiol 2025; 16:1555868. [PMID: 40256625 PMCID: PMC12007433 DOI: 10.3389/fmicb.2025.1555868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/20/2025] [Indexed: 04/22/2025] Open
Abstract
Periodontitis is a chronic infectious inflammatory disease primarily caused by periodontal pathogenic bacteria, which poses a significant threat to human health. The pathogenic mechanisms associated with Porphyromonas gingivalis (P. gingivalis), a principal causative agent of periodontitis, are particularly complex and warrant thorough investigation. The extensive array of virulence factors released by this bacterium during its growth and pathogenesis not only inflicts localized damage to periodontal tissues but is also intricately linked to the development of systemic diseases through various mechanisms. The outer membrane vesicles (OMVs) produced by P. gingivalis play a key role in this process. These OMVs serve as important mediators of communication between bacteria and host cells and other bacteria, carrying and delivering virulence factors to host cells and distant tissues, thereby damaging host cells and exacerbating inflammatory responses. The ability of these OMVs to disseminate and deliver bacterial virulence factors allows P. gingivalis to play a pathogenic role far beyond the confines of the periodontal tissue and has been closely associated with the development of a variety of systemic diseases such as cardiovascular disease, Alzheimer's disease, rheumatoid arthritis, diabetes mellitus, non-alcoholic hepatitis, and cancer. In view of this, it is of great pathophysiological and clinical significance to deeply investigate its pathogenic role and related mechanisms. This will not only help to better understand the pathogenesis of periodontitis and its related systemic diseases but also provide new ideas and more effective and precise strategies for the early diagnosis, prevention, and treatment of these diseases. However, the current research in this field is still insufficient and in-depth, and many key issues and mechanisms need to be further elucidated. This article summarizes the recent research progress on the role of P. gingivalis OMVs (P. g-OMVs) in related diseases, with the aim of providing a theoretical basis and direction for future research and revealing the pathogenic mechanism of P. g-OMVs more comprehensively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Song Ge
- School and Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Tanai A, Fukuhara Y, Eguchi T, Kawai H, Ueda K, Ochiai K, Ikegame M, Okamoto K, Okamura H. P. gingivalis-Infected Macrophage Extracellular Vesicles Cause Adverse Pregnancy Outcomes. J Dent Res 2025; 104:54-63. [PMID: 39651617 DOI: 10.1177/00220345241285132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease triggered by oral bacterial infection, with the bacterium Porphyromonas gingivalis being a major causative agent. The association between periodontitis and various systemic diseases has been demonstrated. Recent research has also highlighted the relationship between the aggravation of maternal periodontitis and adverse pregnancy outcomes such as preterm birth and low birth weight. However, the molecular mechanisms underlying how factors from periodontitis influence pregnancy and fetal development remain unclear. Extracellular vesicles (EVs) are nano-sized spherical particles secreted into the tissue microenvironment by various types of cells. EVs have garnered interest in recent years due to their role in intercellular communication. In the present study, we investigated whether EVs derived from P. gingivalis-infected macrophages (Pg-inf EVs) reach the feto-placental unit and influence fetal development. Through a series of in vivo experiments in mice, we demonstrated that Pg-inf EVs translocated to the feto-placental unit and impaired fetal development in size and weight. Histological analysis revealed disoriented blood vessel alignment and impaired angiogenesis in the placentas of Pg-inf EV-injected groups, indicative of compromised placental function. Proteome analysis revealed a significant decrease in Vegfr1 expression in the placentas of the experimental group. Moreover, Pg-inf EVs reduced VEGFR1 expression in cultured human vascular endothelial cells, highlighting a potential molecular mechanism through which these EVs exert their effects on placental angiogenesis. This is the first study to reveal a novel pathway in which oral bacteria-infected macrophage EVs in maternal periodontitis affect pregnancy via the feto-placental unit.
Collapse
Affiliation(s)
- A Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Y Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - T Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - H Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - K Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - K Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - M Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - K Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - H Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Jacob S, Gusmao L, Godboley D, Velusamy SK, George N, Schreiner H, Cugini C, Fine DH. Molecular Analysis of Aggregatibacter actinomycetemcomitans ApiA, a Multi-Functional Protein. Pathogens 2024; 13:1011. [PMID: 39599564 PMCID: PMC11597641 DOI: 10.3390/pathogens13111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Aggregatibacter actinomycetemcomitans ApiA is a trimeric autotransporter outer membrane protein (Omp) that participates in multiple functions, enabling A. actinomycetemcomitans to adapt to a variety of environments. The goal of this study is to identify regions in the apiA gene responsible for three of these functions: auto-aggregation, buccal epithelial cell binding, and complement resistance. Initially, apiA was expressed in Escherichia coli. Finally, wild-type A. actinomycetemcomitans and an apiA-deleted version were tested for their expression in the presence and absence of serum and genes related to stress adaptation, such as oxygen regulation, catalase activity, and Omp proteins. Sequential deletions in specific regions in the apiA gene as expressed in E. coli were examined for membrane proteins, which were confirmed by microscopy. The functional activity of epithelial cell binding, auto-aggregation, and complement resistance were then assessed, and regions in the apiA gene responsible for these functions were identified. A region spanning amino acids 186-217, when deleted, abrogated complement resistance and Factor H (FH) binding, while a region spanning amino acids 28-33 was related to epithelial cell binding. A 13-amino-acid peptide responsible for FH binding was shown to promote serum resistance. An apiA deletion in a clinical isolate (IDH781) was created and tested in the presence and/or absence of active and inactive serum and genes deemed responsible for prominent functional activity related to A. actinomycetemcomitans survival using qRT-PCR. These experiments suggested that apiA expression in IDH781 is involved in global regulatory mechanisms that are serum-dependent and show complement resistance. This is the first study to identify specific apiA regions in A. actinomycetemcomitans responsible for FH binding, complement resistance, and other stress-related functions. Moreover, the role of apiA in overall gene regulation was observed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen, Newark, NJ 07103, USA; (S.J.); (L.G.); (D.G.); (S.K.V.); (N.G.); (H.S.)
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen, Newark, NJ 07103, USA; (S.J.); (L.G.); (D.G.); (S.K.V.); (N.G.); (H.S.)
| |
Collapse
|
4
|
Bloch S, Hager-Mair FF, Bacher J, Tomek MB, Janesch B, Andrukhov O, Schäffer C. Investigating the role of a Tannerella forsythia HtrA protease in host protein degradation and inflammatory response. FRONTIERS IN ORAL HEALTH 2024; 5:1425937. [PMID: 39035711 PMCID: PMC11257890 DOI: 10.3389/froh.2024.1425937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Degradation of host proteins by bacterial proteases leads to the subversion of the host response and disruption of oral epithelial integrity, which is considered an essential factor in the progression of periodontitis. High-temperature requirement A (HtrA) protease, which is critical for bacterial survival and environmental adaptation, is found in several oral bacteria, including the periodontal pathogen Tannerella forsythia. This study investigated the proteolytic activity of HtrA from T. forsythia and its ability to modulate the host response. METHODS HtrA of T. forsythia was identified bioinformatically and produced as a recombinant protein. T. forsythia mutants with depleted and restored HtrA production were constructed. The effect of T. forsythia wild-type, mutants and recombinant HtrA on the degradation of casein and E-cadherin was tested in vitro. Additionally, the responses of human gingival fibroblasts and U937 macrophages to the different HtrA-stimuli were investigated and compared to those triggered by the HtrA-deficient mutant. RESULTS T. forsythia wild-type producing HtrA as well as the recombinant enzyme exhibited proteolytic activity towards casein and E-cadherin. No cytotoxic effect of either the wild-type, T. forsythia mutants or rHtrA on the viability of host cells was found. In hGFB and U937 macrophages, both T. forsythia species induced an inflammatory response of similar magnitude, as indicated by gene and protein expression of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor α and monocyte chemoattractant protein (MCP)-1. Recombinant HtrA had no significant effect on the inflammatory response in hGFBs, whereas in U937 macrophages, it induced a transient inflammatory response at the early stage of infection. CONCLUSION HtrA of T. forsythia exhibit proteolytic activity towards the host adhesion molecule E-cadherin and has the potential to influence the host response. Its role in the progression of periodontitis needs further clarification.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Johanna Bacher
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus B. Tomek
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Bettina Janesch
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
5
|
Manoil D, Parga A, Bostanci N, Belibasakis GN. Microbial diagnostics in periodontal diseases. Periodontol 2000 2024; 95:176-193. [PMID: 38797888 DOI: 10.1111/prd.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Microbial analytical methods have been instrumental in elucidating the complex microbial etiology of periodontal diseases, by shaping our understanding of subgingival community dynamics. Certain pathobionts can orchestrate the establishment of dysbiotic communities that can subvert the host immune system, triggering inflammation and tissue destruction. Yet, diagnosis and management of periodontal conditions still rely on clinical and radiographic examinations, overlooking the well-established microbial etiology. This review summarizes the chronological emergence of periodontal etiological models and the co-evolution with technological advances in microbial detection. We additionally review the microbial analytical approaches currently accessible to clinicians, highlighting their value in broadening the periodontal assessment. The epidemiological importance of obtaining culture-based antimicrobial susceptibility profiles of periodontal taxa for antibiotic resistance surveillance is also underscored, together with clinically relevant analytical approaches to guide antibiotherapy choices, when necessary. Furthermore, the importance of 16S-based community and shotgun metagenomic profiling is discussed in outlining dysbiotic microbial signatures. Because dysbiosis precedes periodontal damage, biomarker identification offers early diagnostic possibilities to forestall disease relapses during maintenance. Altogether, this review highlights the underutilized potential of clinical microbiology in periodontology, spotlighting the clinical areas most conductive to its diagnostic implementation for enhancing prevention, treatment predictability, and addressing global antibiotic resistance.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ana Parga
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
6
|
Anwar SK, Hafez AM, Roshdy YS. Clinical and microbiological efficacy of intra-pocket application of diode laser in grade C periodontitis: a randomized controlled clinical trial. BMC Oral Health 2024; 24:270. [PMID: 38395824 PMCID: PMC10893689 DOI: 10.1186/s12903-024-04031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Periodontitis is a microbially induced disease destroying structures anchoring teeth to jaw bones. Although metronidazole in combination with spiramycin is the effective conventional treatment of stage III grade C periodontitis, it has several systemic side effects. Laser therapy is widely used nowadays as an adjunct to scaling and root planing (SRP) to modulate inflammatory host response and eradicate microbes, due to bactericidal and detoxifying effects. Since microbiological analysis is one of the diagnostic methods identifying periodontal risk; our research aimed to investigate the efficacy of intra-pocket application of diode laser (980 nm) versus antibiotic therapy in enhancing clinical and microbiological parameters in stage III grade C periodontitis. METHODS A randomized controlled clinical trial was conducted on fifty patients with stage III grade C periodontitis, divided equally into two groups. We managed test group by SRP with intra-pocket application of diode laser (980 nm) and the control group by SRP with systemic antibiotic administration (spiramycin and metronidazole). Then, we measured periodontal pocket depth (PPD) and clinical attachment loss (CAL) for both groups, before treatment (baseline), four and twelve weeks after. Moreover, we collected gingival crevicular fluid from both groups at baseline, four and twelve weeks after treatment and analyzed by real-time polymerase chain reaction to detect the relative count of Aggregatibacter actinomycetemcomitans and Porhyromonas gingivalis. RESULTS Compared to baseline, all assessed clinical and microbiological parameters attested improvement at the end of the study period in each group individually with no significant difference between the two studied groups. Although, at twelve weeks, flare up of bacterial levels was detected with systemic antibiotic administration. CONCLUSION Laser therapy can be considered as an effective treatment modality in stage III grade C periodontitis, avoiding the systemic antibiotic side effects and solving the recurrence problems due to bacterial resistance by long term usage. TRIAL REGISTRATION NCT05222737 retrospectively on 03/02/2022, Clinicaltrial.gov.
Collapse
Affiliation(s)
- Souzy Kamal Anwar
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Champolion St. Azarita, Alexandria, 21521, Egypt.
| | - Amira Mohamed Hafez
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Champolion St. Azarita, Alexandria, 21521, Egypt
| | - Yara Safwat Roshdy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Champolion St. Azarita, Alexandria, 21521, Egypt
| |
Collapse
|
7
|
Guo J, Lin K, Wang S, He X, Huang Z, Zheng M. Effects and mechanisms of Porphyromonas gingivalis outer membrane vesicles induced cardiovascular injury. BMC Oral Health 2024; 24:112. [PMID: 38243239 PMCID: PMC10799447 DOI: 10.1186/s12903-024-03886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The outer membrane vesicles (OMVs) derived from Porphyromonas gingivalis (P. gingivalis) have long been acknowledged for their crucial role in the initiation of periodontitis. However, the implications of P. gingivalis OMVs in the context of cardiovascular disease (CVD) remain incompletely understood. This study aimed to clarify both the impact and the underlying mechanisms through which P. gingivalis OMVs contribute to the propagation of distal cardiovascular inflammation and trauma. METHODS In this study, various concentrations (0, 1.25, 2.5, and 4.5 µg/µL) of P. gingivalis OMVs were microinjected into the common cardinal vein of zebrafish larvae at 48 h post-fertilization (hpf) to assess changes in cardiovascular injury and inflammatory response. Zebrafish larvae from both the PBS and the 2.5 µg/µL injection cohorts were harvested at 30 h post-injection (hpi) for transcriptional analysis. Real-time quantitative PCR (RT-qPCR) was employed to evaluate relative gene expression. RESULTS These findings demonstrated that P. gingivalis OMVs induced pericardial enlargement in zebrafish larvae, caused vascular damage, increased neutrophil counts, and activated inflammatory pathways. Transcriptomic analysis further revealed the involvement of the immune response and the extracellular matrix (ECM)-receptor interaction signaling pathway in this process. CONCLUSION This study illuminated potential mechanisms through which P. gingivalis OMVs contribute to CVD. It accentuated their involvement in distal cardiovascular inflammation and emphasizes the need for further research to comprehensively grasp the connection between periodontitis and CVD.
Collapse
Affiliation(s)
- Jianbin Guo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Kaijin Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Siyi Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaozhen He
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhen Huang
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
- College of Life Sciences, Fujian Normal University, Fuzhou, 350108, China
| | - Minqian Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
8
|
Ehteshami A, Shirban F, Bagherniya M, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Association between High-density Lipoproteins and Periodontitis. Curr Med Chem 2024; 31:6407-6428. [PMID: 37493158 DOI: 10.2174/0929867331666230726140736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Periodontitis is one of the most typical chronic dental diseases. This inflammatory disease can change various functions of immune cells and impair lipid metabolism through proinflammatory cytokines. High-Density Lipoprotein (HDL) is considered protective of the cardiovascular system. It has anti-thrombotic and anti-inflammatory effects. In this article, we have reviewed the association between periodontitis and HDL. Various studies have demonstrated a reverse relationship between inflammatory cytokines and HDL. HDL contains antioxidative enzymes and proteins, whereas periopathogens impair HDL's antioxidant function. The presence of periodontal bacteria is associated with a low HDL level in patients with periodontitis. Genetic variants in the interleukin- 6 (IL)-6 gene and cytochrome (CYP)1A1 rs1048943 gene polymorphism are associated with HDL levels and periodontal status. Studies showed that HDL levels improve after treatment for periodontitis. On the one hand, periodontal pathogenic bacteria and their metabolites and pro-inflammatory cytokines from periodontal infection can result in various disorders of lipid metabolism and lipid peroxidation. On the other hand, hyperlipidemia and lipid peroxidation stimulate proinflammatory cytokines, resulting in oxidative stress and delayed wound healing, making individuals susceptible to periodontitis.
Collapse
Affiliation(s)
- Ailin Ehteshami
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK of Great Britain and Northern Ireland, Hull, UK
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Venkata Subbiah H, Ramesh Babu P, Subbiah U. The Role of β-Defensin 1 Against Porphyromonas gingivalis Lipopolysaccharide-Mediated Inflammation in the THP-1 Cell Line. Cureus 2023; 15:e50880. [PMID: 38249288 PMCID: PMC10799292 DOI: 10.7759/cureus.50880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) is one of the crucial virulence factors of periodontitis. Antimicrobial peptides (AMPs) are emerging as alternatives or adjuncts to antibiotics in the treatment of microbial infections. In this study, cytotoxicity, anti-inflammatory activity, anti-oxidative stress, cell cycle analysis, and apoptosis properties of AMP, β-defensin 1, were studied in Pg-LPS-stimulated THP-1 (Tohoku Hospital Pediatrics - 1) cell line. Methods The cytotoxic nature of Pg-LPS and β-defensin 1 was studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The cytotoxic effect of β-defensin 1 on Pg-LPS-stimulated THP-1 cells was also studied by the same method. The anti-inflammatory role of β-defensin 1 against cyclooxygenase (COX), lipoxygenase (LOX), myeloperoxidase (MPO), and inducible nitric oxide synthase activities were studied. The anti-oxidative nature of β-defensin 1 was analyzed by measuring reactive oxygen species (ROS) generation by dichlorodihydrofluorescein diacetate (DCFDA) assay. Cell cycle distribution and apoptosis were studied by flow cytometry. The hemolytic nature of β-defensin 1 was predicted using the HemoPred web tool. Results The results of the study demonstrated that Pg-LPS showed dose-dependent cytotoxicity to THP-1 cells. β-Defensin 1 had dose-dependent cytotoxicity to THP-1 cells and showed a protective effect on THP-cells up to 1 µg/mL of Pg-LPS, beyond which cell viability decreased. β-Defensin 1 inhibited COX, LOX, MPO, and inducible nitric oxide synthase activities in a concentration-dependent manner. β-Defensin 1 showed anti-oxidative activity by suppressing the generation of ROS measured through fluorescence intensity. From the cell cycle analysis, it was found that β-defensin 1 was able to reduce the Pg-LPS-induced cell cycle arrest at the G0/G1 phase. From the apoptosis profile, β-defensin 1 was found to increase the live cells when compared to THP-1 cells stimulated only with Pg-LPS, indicating that β-defensin 1 provided a protective role to THP-1 cells. β-Defensin 1 was found to be hemolytic in nature by the HemoPred web tool. Conclusion β-Defensin 1 exerted multifunctional activities and can be considered a promising agent for controlling periodontitis.
Collapse
Affiliation(s)
- Harini Venkata Subbiah
- Human Genetics Research Centre, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Polani Ramesh Babu
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Usha Subbiah
- Human Genetics Research Centre, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
10
|
Gu BL, She Y, Pei GK, Du Y, Yang R, Ma LX, Zhao Q, Gao SG. Systematic analysis of prophages carried by Porphyromonas gingivalis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105489. [PMID: 37572952 DOI: 10.1016/j.meegid.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
To systematically investigate the prophages carrying in Porphyromonas gingivalis (P. gingivalis) strains, analyze potential antibiotic resistance genes (ARGs) and virulence genes in these prophages. We collected 90 whole genome sequences of P. gingivalis from NCBI and utilized the Prophage Hunter online software to predict prophages; Comprehensive antibiotic research database (CARD) and virulence factors database (VFDB) were adopted to analyze the ARGs and virulence factors (VFs) carried by the prophages. Sixty-nine prophages were identified among 24/90 P. gingivalis strains, including 17 active prophages (18.9%) and 52 ambiguous prophages (57.8%). The proportion of prophages carried by each P. gingivalis genome ranged from 0.5% to 6.7%. A total of 188 antibiotic resistance genes belonging to 25 phenotypes and 46 different families with six mechanisms of antibiotic resistance were identified in the 17 active prophages. Three active prophages encoded 4 virulence genes belonging to type III and type VI secretion systems. The potential hosts of these virulence genes included Escherichia coli, Shigella sonnei, Salmonella typhi, and Klebsiella pneumoniae. In conclusion, 26.7% P. gingivalis strains carry prophages, while the proportion of prophage genes in the P. gingivalis genome is relatively low. In addition, approximately 39.7% of the P. gingivalis prophage genes have ARGs identified, mainly against streptogramin, peptides, and aminoglycosides. Only a few prophages carry virulence genes. Prophages may play an important role in the acquisition, dissemination of antibiotic resistance genes, and pathogenicity evolution in P. gingivalis.
Collapse
Affiliation(s)
- B L Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Y She
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - G K Pei
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Y Du
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - R Yang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - L X Ma
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China
| | - Q Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - S G Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, China.
| |
Collapse
|
11
|
Fan X, Zheng S, Chen C, Lin L, Wang H, Shen Y, Pan Y, Li C. Sialidase facilitates Porphyromonas gingivalis immune evasion by reducing M1 polarization, antigen presentation, and phagocytosis of infected macrophages. Front Cell Infect Microbiol 2023; 13:1173899. [PMID: 37325520 PMCID: PMC10266273 DOI: 10.3389/fcimb.2023.1173899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background Porphyromonas gingivalis (P. gingivalis), a major pathogen of periodontitis, can evade host immune defenses. Previously, we found that P. gingivalis W83 sialidase gene mutant strain (ΔPG0352) was more easily cleared by macrophages. The aims of this study were to investigate the effects of sialidase in P. gingivalis on the polarization, antigen presentation, and phagocytosis of infected macrophages and to clarify the mechanism of P. gingivalis immune evasion. Methods Human monocytes U937 were differentiated to macrophages and infected with P. gingivalis W83, ΔPG0352, comΔPG0352, and Escherichia coli (E. coli). The phagocytosis of macrophages was observed by transmission electron microscopy and flow cytometry. ELISA or Griess reaction were used to examine the levels of interleukin-12 (IL-12), inducible nitric oxide synthase (iNOS) and interleukin-10 (IL-10), and the expressions of CD68, CD80 and CD206 were determined by flow cytometry. The expression of major histocompatibility complex-II (MHC-II) was detected by immunofluorescence. A rat periodontitis model was established to determine the M1 and M2 polarization of macrophages. Results Compare with P. gingivalis W83, ΔPG0352 increased the levels of IL-12, iNOS, CD80, and MHC-II and inhibited the levels of IL-10 and CD206. Macrophages phagocytosed 75.4% of ΔPG0352 and 59.5% of P. gingivalis W83. In the rat periodontitis model, the levels of M1 and M2 macrophages in P. gingivalis W83 group were both higher than those in ΔPG0352 group, while the ratio of M1/M2 was higher in the ΔPG0352 group. Alveolar bone absorption was lower in ΔPG0352 group. Conclusion Sialidase facilitates P. gingivalis immune evasion by reducing M1 polarization, antigen presentation, and phagocytosis of infected macrophages.
Collapse
Affiliation(s)
- Xiaomiao Fan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Shaowen Zheng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Chen Chen
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Hongyan Wang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Kang S, Dai A, Wang H, Ding PH. Interaction Between Autophagy and Porphyromonas gingivalis-Induced Inflammation. Front Cell Infect Microbiol 2022; 12:892610. [PMID: 35846745 PMCID: PMC9283780 DOI: 10.3389/fcimb.2022.892610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an immune homeostasis process induced by multiple intracellular and extracellular signals. Inflammation is a protective response to harmful stimuli such as pathogen microbial infection and body tissue damage. Porphyromonas gingivalis infection elicits both autophagy and inflammation, and dysregulation of autophagy and inflammation promotes pathology. This review focuses on the interaction between autophagy and inflammation caused by Porphyromonas gingivalis infection, aiming to elaborate on the possible mechanism involved in the interaction.
Collapse
|
13
|
Braun ML, Tomek MB, Grünwald-Gruber C, Nguyen PQ, Bloch S, Potempa JS, Andrukhov O, Schäffer C. Shut-Down of Type IX Protein Secretion Alters the Host Immune Response to Tannerella forsythia and Porphyromonas gingivalis. Front Cell Infect Microbiol 2022; 12:835509. [PMID: 35223555 PMCID: PMC8869499 DOI: 10.3389/fcimb.2022.835509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Tannerella forsythia and Porphyromonas gingivalis target distinct virulence factors bearing a structurally conserved C-terminal domain (CTD) to the type IX protein secretion system (T9SS). The T9SS comprises an outer membrane translocation complex which works in concert with a signal peptidase for CTD cleavage. Among prominent T9SS cargo linked to periodontal diseases are the TfsA and TfsB components of T. forsythia's cell surface (S-) layer, the bacterium's BspA surface antigen and a set of cysteine proteinases (gingipains) from P. gingivalis. To assess the overall role of the bacterial T9SS in the host response, human macrophages and human gingival fibroblasts were stimulated with T. forsythia and P. gingivalis wild-type bacteria and T9SS signal peptidase-deficient mutants defective in protein secretion, respectively. The immunostimulatory potential of these bacteria was compared by analyzing the mRNA expression levels of the pro-inflammatory mediators IL-6, IL-8, MCP-1 and TNF-α by qPCR and by measuring the production of the corresponding proteins by ELISA. Shot-gun proteomics analysis of T. forsythia and P. gingivalis outer membrane preparations confirmed that several CTD-bearing virulence factors which interact with the human immune system were depleted from the signal peptidase mutants, supportive of effective T9SS shut-down. Three and, more profoundly, 16 hours post stimulation, the T. forsythia T9SS mutant induced significantly less production of cytokines and the chemokine in human cells compared to the corresponding parent strain, while the opposite was observed for the P. gingivalis T9SS mutant. Our data indicate that T9SS shut-down translates into an altered inflammatory response in periodontal pathogens. Thus, the T9SS as a potential novel target for periodontal therapy needs further evaluation.
Collapse
Affiliation(s)
- Matthias L. Braun
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus B. Tomek
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Phuong Q. Nguyen
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Susanne Bloch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Jan S. Potempa
- Oral Health and Systemic Disease Group, University of Louisville, Louisville, KY, United States
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
14
|
Okamura H, Hirota K, Yoshida K, Weng Y, He Y, Shiotsu N, Ikegame M, Uchida-Fukuhara Y, Tanai A, Guo J. Outer membrane vesicles of Porphyromonas gingivalis: Novel communication tool and strategy. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:138-146. [PMID: 34484474 PMCID: PMC8399048 DOI: 10.1016/j.jdsr.2021.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have been recognized as a universal method of cellular communications and are reportedly produced in bacteria, archaea, and eukaryotes. Bacterial EVs are often called “Outer Membrane Vesicles” (OMVs) as they were the result of a controlled blebbing of the outer membrane of gram-negative bacteria such as Porphyromonas gingivalis (P. gingivalis). Bacterial EVs are natural messengers, implicated in intra- and inter-species cell-to-cell communication among microorganism populations present in microbiota. Bacteria can incorporate their pathogens into OMVs; the content of OMVs differs, depending on the type of bacteria. The production of distinct types of OMVs can be mediated by different factors and routes. A recent study highlighted OMVs ability to carry crucial molecules implicated in immune modulation, and, nowadays, they are considered as a way to communicate and transfer messages from the bacteria to the host and vice versa. This review article focuses on the current understanding of OMVs produced from major oral bacteria, P. gingivalis: generation, characteristics, and contents as well as the involvement in signal transduction of host cells and systemic diseases. Our recent study regarding the action of P. gingivalis OMVs in the living body is also summarized.
Collapse
Affiliation(s)
- Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Katsuhiko Hirota
- Department of Medical Hygiene, Dental Hygiene Course, Kochi Gakuen College, Kochi 780-0955, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Yuhan He
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Noriko Shiotsu
- Comprehensive Dental Clinic, Okayama University Hospital, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Yoko Uchida-Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Jiajie Guo
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan.,Department of Endodontics, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, China
| |
Collapse
|
15
|
Guimarães PPG, de Menezes AC, Teixeira KIR, Denadai ÂML, Fills RA, Cortés ME, Sinisterra RD. Enhanced efficacy against bacterial biofilms via host:guest cyclodextrin‐doxycycline inclusion complexes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-020-01041-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Yang Y, Huang Y, Li W. Autophagy and its significance in periodontal disease. J Periodontal Res 2020; 56:18-26. [PMID: 33247437 DOI: 10.1111/jre.12810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/24/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Autophagy is an evolutionarily conserved process essential for cellular homeostasis and human health. As a lysosome-dependent degradation pathway, autophagy acts as a modulator of the pathogenesis of diverse diseases. The relationship between autophagy and oral diseases has been explored in recent years, and there is increasing interest in the role of autophagy in periodontal disease. Periodontal disease is a prevalent chronic inflammatory disorder characterized by the destruction of periodontal tissues. It is initiated through pathogenic bacterial infection and interacts with the host immune defense, leading to inflammation and alveolar bone resorption. In this review, we outline the machinery of autophagy and present an overview of work on the significance of autophagy in regulating pathogen invasion, the immune response, inflammation, and alveolar bone homeostasis of periodontal disease. Existing data provide support for the importance of autophagy as a multi-dimensional regulator in the pathogenesis of periodontal disease and demonstrate the importance of future research on the potential roles of autophagy in periodontal disease.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
17
|
Ardila CM, Bedoya-García JA. Antimicrobial resistance of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in periodontitis patients. J Glob Antimicrob Resist 2020; 22:215-218. [PMID: 32169683 DOI: 10.1016/j.jgar.2020.02.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Administration of systemic antimicrobials as an adjunct to mechanical treatment of periodontitis and sites with adverse clinical results leads to improved outcomes. This study aimed to assess the antimicrobial susceptibility of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia isolated from periodontitis patients to amoxicillin, metronidazole, azithromycin and moxifloxacin. METHODS A total of 76 patients diagnosed with generalised periodontitis were included in the study. Subgingival samples were processed by culture. Etest was used to determine susceptibility to amoxicillin, metronidazole, azithromycin and moxifloxacin. RESULTS A total of 141 isolates from 76 patients were evaluated, including 61 P. gingivalis, 43 T. forsythia and 37 A. actinomycetemcomitans. Etest results showed complete susceptibility of A. actinomycetemcomitans, P. gingivalis and T. forsythia to moxifloxacin. However, the isolates presented reduced susceptibility to the other antimicrobial agents investigated. Of the A. actinomycetemcomitans isolates, 70.3%, 40.5% and 89.2% were resistant to amoxicillin, azithromycin and metronidazole, respectively. The P. gingivalis samples showed relatively similar rates of resistance to amoxicillin (24.6%), azithromycin (21.3%) and metronidazole (24.6%). Similarly, 25.6%, 21.0% and 25.6% of the T. forsythia isolates were resistant to amoxicillin, azithromycin, and metronidazole, respectively. CONCLUSION These findings show that moxifloxacin may be a promising antimicrobial agent against P. gingivalis, T. forsythia and A. actinomycetemcomitans for the treatment of periodontitis. However, amoxicillin, azithromycin and metronidazole were less effective, especially against A. actinomycetemcomitans in vitro.
Collapse
Affiliation(s)
- Carlos-Martín Ardila
- Faculty of Dentistry, Universidad de Antioquia (UdeA), Medellín, Colombia; Biomedical Stomatology Research Group, Universidad de Antioquia (UdeA), Medellín, Colombia.
| | | |
Collapse
|
18
|
Outer membrane vesicles derived from Porphyromonas gingivalis induced cell death with disruption of tight junctions in human lung epithelial cells. Arch Oral Biol 2020; 118:104841. [PMID: 32717445 DOI: 10.1016/j.archoralbio.2020.104841] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Porphyromonas gingivalis (P. gingivalis) is a major bacterium responsible for the progression of periodontitis. P. gingivalis produces small vesicles called outer membrane vesicles (OMVs) containing virulence factors. Increasing evidence suggests a close relationship between periodontitis and respiratory system diseases, such as aspiration pneumonia. However, little is known about whether P. gingivalis OMVs give rise to the impediment of lung epithelial cells. We investigated the effect of the OMVs on cell viability and tight junctions of lung epithelial cells. DESIGN Human lung epithelial A549 cells were treated with P. gingivalis OMVs. Cell viability was evaluated, and cell morphology was examined using scanning electron and phase contrast microscopies. To detect apoptosis induced by P. gingivalis OMVs, activation of caspase-3 and poly ADP-ribose polymerase (PARP) cleavage was examined by using Western blotting. Immunocytochemistry was performed to stain tight junction proteins. RESULTS P. gingivalis OMVs decreased cell viability in A549 cells in a dose- and time-dependent manner. Microscopic analysis revealed that the OMVs induced morphological changes leading to irregular cell membrane structures. The OMVs caused cell shrinkage, membrane blebbing, and cytoplasmic expulsion in a dose-dependent manner. Western blot analysis showed the OMVs induced caspase-3 activation and PARP cleavage. Treatment with the OMVs disrupted the intact distributions of tight junction proteins. CONCLUSIONS These results indicate that P. gingivalis OMVs induced cell death by destroying the barrier system in lung epithelial cells. Our present study raises the possibility that P. gingivalis OMVs is an important factor in the engagement of periodontitis with respiratory system diseases.
Collapse
|
19
|
Lund Håheim L, Schwarze PE, Thelle DS, Nafstad P, Rønningen KS, Olsen I. Low levels of antibodies for the oral bacterium Tannerella forsythia predict cardiovascular disease mortality in men with myocardial infarction: A prospective cohort study. Med Hypotheses 2020; 138:109575. [PMID: 32088522 DOI: 10.1016/j.mehy.2020.109575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/01/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
Antibody levels to periodontal pathogens in prediction of cardiovascular disease (CVD) mortality were explored using data from a health survey in Oslo in 2000 (Oslo II-study) with 12 1/2 years follow-up. IgG antibodies to four common periodontal pathogens; Tannerella forsythia (TF), Porphyromonas gingivalis (PG), and Treponema denticola (TD) all termed collectively the "red complex", and Aggregatibacter actinomycetemcomitans(AA) were analysed. The study sample consisted of 1172 men drawn from a cohort of 6,530 men who participated in the Oslo II-study, where they provided information on medical and dental history. Of the study sample, 548 men had reported prior myocardial infarction (MI) at baseline whereas the remaining 624 men were randomly drawn from the ostensibly healthy participants for comparative analyses. Dental anamnestic information included tooth extractions and oral infections. An inverse relation was found for trend by the quartile risk level of TF predicting CVD mortality, p-value for trend = 0.017. Comparison of the first to fourth quartile of TF antibodies resulted in hazard ratio (HR) = 1.82, 95% confidence interval 1.12-2.94, p = 0.015, adjusted for age, education, diabetes, daily smoking, and systolic blood pressure. Specificity comparing decile 1 to deciles 2-10 of TF predicting mortality was 92.3%. We found an increased HR by low levels of antibodies to the bacterium T. forsythia predicting CVD mortality in a 12 ½ years follow-up in persons who had experienced an MI but not among non-MI men. This novel finding constitutes a plausible causal link between oral infections and CVD mortality.
Collapse
Affiliation(s)
- Lise Lund Håheim
- Department of Oral Biology, Dental Faculty, University of Oslo, Norway.
| | - P E Schwarze
- Norwegian Institute for Public Health, Oslo, Norway
| | - D S Thelle
- Institute of Basic Medical Sciences, Medical Faculty, University of Oslo, Norway; Department of Community Medicine and Public Health, University of Gothenburg, Sweden
| | - P Nafstad
- Norwegian Institute for Public Health, Oslo, Norway; Institute of Health and Society, Medical Faculty, University of Oslo, Norway
| | - K S Rønningen
- Department of Paediatric Research, Division for Women and Children, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - I Olsen
- Department of Oral Biology, Dental Faculty, University of Oslo, Norway
| |
Collapse
|
20
|
Lorenzo-Pouso AI, Castelo-Baz P, Pérez-Sayáns M, Lim J, Leira Y. Autophagy in periodontal disease: Evidence from a literature review. Arch Oral Biol 2019; 102:55-64. [DOI: 10.1016/j.archoralbio.2019.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
|
21
|
Bloch S, Tomek MB, Friedrich V, Messner P, Schäffer C. Nonulosonic acids contribute to the pathogenicity of the oral bacterium Tannerella forsythia. Interface Focus 2019; 9:20180064. [PMID: 30842870 PMCID: PMC6388019 DOI: 10.1098/rsfs.2018.0064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a polymicrobial, biofilm-caused, inflammatory disease affecting the tooth-supporting tissues. It is not only the leading cause of tooth loss worldwide, but can also impact systemic health. The development of effective treatment strategies is hampered by the complicated disease pathogenesis which is best described by a polymicrobial synergy and dysbiosis model. This model classifies the Gram-negative anaerobe Tannerella forsythia as a periodontal pathogen, making it a prime candidate for interference with the disease. Tannerella forsythia employs a protein O-glycosylation system that enables high-density display of nonulosonic acids via the bacterium's two-dimensional crystalline cell surface layer. Nonulosonic acids are sialic acid-like sugars which are well known for their pivotal biological roles. This review summarizes the current knowledge of T. forsythia's unique cell envelope with a focus on composition, biosynthesis and functional implications of the cell surface O-glycan. We have obtained evidence that glycobiology affects the bacterium's immunogenicity and capability to establish itself in the polymicrobial oral biofilm. Analysis of the genomes of different T. forsythia isolates revealed that complex protein O-glycosylation involving nonulosonic acids is a hallmark of pathogenic T. forsythia strains and, thus, constitutes a valuable target for the design of novel anti-infective strategies to combat periodontitis.
Collapse
|
22
|
Colicchio R, Pagliuca C, Ricci S, Scaglione E, Grandgirard D, Masouris I, Farina F, Pagliarulo C, Mantova G, Paragliola L, Leib SL, Koedel U, Pozzi G, Alifano P, Salvatore P. Virulence Traits of a Serogroup C Meningococcus and Isogenic cssA Mutant, Defective in Surface-Exposed Sialic Acid, in a Murine Model of Meningitis. Infect Immun 2019; 87:e00688-18. [PMID: 30718288 PMCID: PMC6434112 DOI: 10.1128/iai.00688-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
In serogroup C Neisseria meningitidis, the cssA (siaA) gene codes for an UDP-N-acetylglucosamine 2-epimerase that catalyzes the conversion of UDP-N-acetyl-α-d-glucosamine into N-acetyl-d-mannosamine and UDP in the first step in sialic acid biosynthesis. This enzyme is required for the biosynthesis of the (α2→9)-linked polysialic acid capsule and for lipooligosaccharide (LOS) sialylation. In this study, we have used a reference serogroup C meningococcal strain and an isogenic cssA knockout mutant to investigate the pathogenetic role of surface-exposed sialic acids in a model of meningitis based on intracisternal inoculation of BALB/c mice. Results confirmed the key role of surface-exposed sialic acids in meningococcal pathogenesis. The 50% lethal dose (LD50) of the wild-type strain 93/4286 was about four orders of magnitude lower than that of the cssA mutant. Compared to the wild-type strain, the ability of this mutant to replicate in brain and spread systemically was severely impaired. Evaluation of brain damage evidenced a significant reduction in cerebral hemorrhages in mice infected with the mutant in comparison with the levels in those challenged with the wild-type strain. Histological analysis showed the typical features of bacterial meningitis, including inflammatory cells in the subarachnoid, perivascular, and ventricular spaces especially in animals infected with the wild type. Noticeably, 80% of mice infected with the wild-type strain presented with massive bacterial localization and accompanying inflammatory infiltrate in the corpus callosum, indicating high tropism of meningococci exposing sialic acids toward this brain structure and a specific involvement of the corpus callosum in the mouse model of meningococcal meningitis.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Susanna Ricci
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ilias Masouris
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Fabrizio Farina
- Department of Law, Economics, Management and Quantitative Methods, University of Sannio, Benevento, Italy
| | | | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Laura Paragliola
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Uwe Koedel
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
- CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
23
|
Deng ZL, Sztajer H, Jarek M, Bhuju S, Wagner-Döbler I. Worlds Apart - Transcriptome Profiles of Key Oral Microbes in the Periodontal Pocket Compared to Single Laboratory Culture Reflect Synergistic Interactions. Front Microbiol 2018; 9:124. [PMID: 29467738 PMCID: PMC5807917 DOI: 10.3389/fmicb.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/18/2018] [Indexed: 12/28/2022] Open
Abstract
Periodontitis is a worldwide prevalent oral disease which results from dysbiosis of the periodontal microbiome. Some of the most active microbial players, e.g., Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum, have extensively been studied in the laboratory, but it is unclear to which extend these findings can be transferred to in vivo conditions. Here we show that the transcriptional profiles of P. gingivalis, T. denticola, and F. nucleatum in the periodontal niche are distinct from those in single laboratory culture and exhibit functional similarities. GO (gene ontology) term enrichment analysis showed up-regulation of transporters, pathogenicity related traits and hemin/heme uptake mechanisms for all three species in vivo. Differential gene expression analysis revealed that cysteine proteases, transporters and hemin/heme-binding proteins were highly up-regulated in the periodontal niche, while genes involved in DNA modification were down-regulated. The data suggest strong interactions between those three species regarding protein degradation, iron up-take, and mobility in vivo, explaining their enhanced synergistic pathogenicity. We discovered a strikingly high frequency of Single Nucleotide Polymorphisms (SNPs) in vivo. For F. nucleatum we discovered a total of 127,729 SNPs in periodontal niche transcripts, which were found in similar frequency in health and disease and covered the entire genome, suggesting continuous evolution in the host. We conclude that metabolic interactions shape gene expression in vivo. Great caution is required when inferring pathogenicity of microbes from laboratory data, and microdiversity is an important adaptive trait of natural communities.
Collapse
Affiliation(s)
- Zhi-Luo Deng
- Research Group Microbial Communication, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Helena Sztajer
- Research Group Microbial Communication, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabin Bhuju
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Research Group Microbial Communication, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
24
|
Friedrich V, Janesch B, Windwarder M, Maresch D, Braun ML, Megson ZA, Vinogradov E, Goneau MF, Sharma A, Altmann F, Messner P, Schoenhofen IC, Schäffer C. Tannerella forsythia strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications. Glycobiology 2018; 27:342-357. [PMID: 27986835 PMCID: PMC5378307 DOI: 10.1093/glycob/cww129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/12/2016] [Indexed: 01/17/2023] Open
Abstract
Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes’ functions. Using capillary electrophoresis (CE), CE–mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs.
Collapse
Affiliation(s)
- Valentin Friedrich
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Bettina Janesch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Markus Windwarder
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, Vienna, Austria
| | - Matthias L Braun
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Zoë A Megson
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Evgeny Vinogradov
- National Research Council, Human Health Therapeutics Portfolio, 100 Sussex Drive, Ottawa, ON, Canada
| | - Marie-France Goneau
- National Research Council, Human Health Therapeutics Portfolio, 100 Sussex Drive, Ottawa, ON, Canada
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 311 Foster Hall, 3435 Main St. Buffalo, New York, USA
| | - Friedrich Altmann
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| | - Ian C Schoenhofen
- National Research Council, Human Health Therapeutics Portfolio, 100 Sussex Drive, Ottawa, ON, Canada
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna, Austria
| |
Collapse
|
25
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Blasco-Baque V, Garidou L, Pomié C, Escoula Q, Loubieres P, Le Gall-David S, Lemaitre M, Nicolas S, Klopp P, Waget A, Azalbert V, Colom A, Bonnaure-Mallet M, Kemoun P, Serino M, Burcelin R. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 2017; 66:872-885. [PMID: 26838600 PMCID: PMC5531227 DOI: 10.1136/gutjnl-2015-309897] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/18/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. DESIGN We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. RESULTS Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. CONCLUSIONS We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis.
Collapse
Affiliation(s)
- Vincent Blasco-Baque
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France,Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Lucile Garidou
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Céline Pomié
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Quentin Escoula
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Pascale Loubieres
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France,Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | | | - Mathieu Lemaitre
- Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Simon Nicolas
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Pascale Klopp
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Aurélie Waget
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Vincent Azalbert
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - André Colom
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | | | - Philippe Kemoun
- Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Matteo Serino
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Rémy Burcelin
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
27
|
Zaric SS, Lappin MJ, Fulton CR, Lundy FT, Coulter WA, Irwin CR. Sialylation of Porphyromonas gingivalis LPS and its effect on bacterial-host interactions. Innate Immun 2017; 23:319-326. [PMID: 28205451 DOI: 10.1177/1753425917694245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Porphyromonas gingivalis produces different LPS isoforms with significant structural variations of their lipid A and O-antigen moieties that can affect its pro-inflammatory and bone-resorbing potential. We show here, for the first time, that P. gingivalis LPS isolated from W83 strain is highly sialylated and possesses significantly reduced inflammatory potential compared with less sialylated ATCC 33277 strain LPS. Nevertheless, the reduction in the endotoxin activity is not mediated by the presence of sialic acid LPS moieties as the sialic acid-free LPS produced by the mutant W83 strain exhibits a similar inflammatory potential to the wild type strain. Furthermore, our findings suggest that the interaction between the sialic acid LPS moieties and the inhibitory CD33 receptor is prevented by endogenously expressed sialic acid on the surface of THP-1 cells that cannot be out-competed by sialic acid containing P. gingivalis LPS. The present study also highlights the importance of endogenous sialic acid as a 'self-associated molecular pattern' and CD33 receptors in modulation of innate immune response as human gingival fibroblasts, which do not express CD33 receptors, and desialylated THP-1 cells have both been found to have much higher spontaneous IL-8 production than naïve THP-1 cells.
Collapse
Affiliation(s)
- Svetislav S Zaric
- 1 Plymouth University, Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Mark J Lappin
- 2 Queen's University Belfast, Centre for Dentistry, Belfast, UK
| | - Catherine R Fulton
- 3 Queen's University Belfast, Centre for Experimental Medicine, Belfast, UK
| | - Fionnuala T Lundy
- 3 Queen's University Belfast, Centre for Experimental Medicine, Belfast, UK
| | - Wilson A Coulter
- 4 University of Ulster, School of Biomedical Science, Coleraine, UK
| | | |
Collapse
|
28
|
Abstract
Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.
Collapse
Affiliation(s)
- Ya-Qin Tan
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| | - Jing Zhang
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China.,b Department of Oral Medicine , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| | - Gang Zhou
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China.,b Department of Oral Medicine , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| |
Collapse
|
29
|
He CY, Gao XQ, Jiang LP. The impact of smoking on levels of chronic periodontitis-associated biomarkers. Exp Mol Pathol 2016; 101:110-5. [PMID: 27450647 DOI: 10.1016/j.yexmp.2016.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the effect of smoking on the expression levels of matrix metalloproteinase (MMP)-1, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and the concentrations of TNF-α and IL-10 in patients with chronic periodontitis (ChP). METHODS This is an ex-vivo study. Our study consisted of 78 cases, all of which were diagnosed with ChP and were selected according to the inclusion and exclusion criteria. Among these 78 cases, 38 patients were classified into the smoking group (S-ChP group), and 40 patients in the non-smoking group (NS-ChP group). The clinical periodontal parameters of all patients were recorded, including the plaque index (PLI), probing depth (PD), loss of attachment (LA) and sulcus bleeding index (SBI). Serum was collected from forearm blood to establish a Porphyromonas gingivalis (Pg) internalizing KB cell model. Enzyme-linked immunosorbent assay (ELISA) was used to determine the concentrations of MMP-1, MMP-9 and TIMP-1 in the KB cell lysis solution as well as IL-10 and TNF-α in the gingival crevicular fluid (GCF). RESULTS Fewer Pg internalizing KB cell colonies were observed in the NS-ChP group than in the S-ChP group (P<0.01). When 400μL serum was added, there were remarkable differences in the concentrations of MMP-1 and TIMP-1 secreted from the KB cells between the S-ChP and NS-ChP groups (MMP-1: t=-21.71, P<0.01; TIMP-1: t=64.35, P<0.001). Additionally, when 800μL serum was added, there were significant differences in the concentrations of MMP-1, MMP-9 and TIMP-1 in the KB cells between the S-ChP and NS-ChP groups (MMP-1: t=-81.89, P<0.001; MMP-9: t=-15.67, P<0.001; TIMP-1: t=109.4, P<0.001). The TNF-α levels were higher, but the IL-10 levels were lower in the GCF from the ChP patients in the S-ChP group than those in the NS-ChP group (both P<0.001). CONCLUSION The serum of S-ChP patients can enhance the concentrations of MMP-1 and MMP-9, but reduce TIMP-1 secreted from Pg internalizing KB cells. However, the concentration of TNF-α was increased and IL-10 was decreased. Abnormal concentrations of ChP-associated biomarkers may be conducive to the development and progression of ChP.
Collapse
Affiliation(s)
- Chun-Yan He
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Xiu-Qiu Gao
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Li-Peng Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China.
| |
Collapse
|
30
|
Friedrich V, Gruber C, Nimeth I, Pabinger S, Sekot G, Posch G, Altmann F, Messner P, Andrukhov O, Schäffer C. Outer membrane vesicles of Tannerella forsythia: biogenesis, composition, and virulence. Mol Oral Microbiol 2015; 30:451-473. [PMID: 25953484 PMCID: PMC4604654 DOI: 10.1111/omi.12104] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/25/2022]
Abstract
Tannerella forsythia is the only 'red-complex' bacterium covered by an S-layer, which has been shown to affect virulence. Here, outer membrane vesicles (OMVs) enriched with putative glycoproteins are described as a new addition to the virulence repertoire of T. forsythia. Investigations of this bacterium are hampered by its fastidious growth requirements and the recently discovered mismatch of the available genome sequence (92A2 = ATCC BAA-2717) and the widely used T. forsythia strain (ATCC 43037). T. forsythia was grown anaerobically in serum-free medium and biogenesis of OMVs was analyzed by electron and atomic force microscopy. This revealed OMVs with a mean diameter of ~100 nm budding off from the outer membrane while retaining the S-layer. An LC-ESI-TOF/TOF proteomic analysis of OMVs from three independent biological replicates identified 175 proteins. Of these, 14 exhibited a C-terminal outer membrane translocation signal that directs them to the cell/vesicle surface, 61 and 53 were localized to the outer membrane and periplasm, respectively, 22 were predicted to be extracellular, and 39 to originate from the cytoplasm. Eighty proteins contained the Bacteroidales O-glycosylation motif, 18 of which were confirmed as glycoproteins. Release of pro-inflammatory mediators from the human monocytic cell line U937 and periodontal ligament fibroblasts upon stimulation with OMVs followed a concentration-dependent increase that was more pronounced in the presence of soluble CD14 in conditioned media. The inflammatory response was significantly higher than that caused by whole T. forsythia cells. Our study represents the first characterization of T. forsythia OMVs, their proteomic composition and immunogenic potential.
Collapse
Affiliation(s)
- V Friedrich
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - C Gruber
- Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - I Nimeth
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - S Pabinger
- AIT Austrian Institute of Technology, Health & Environment Department, Molecular Diagnostics, Vienna, Austria
| | - G Sekot
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - G Posch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - F Altmann
- Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - P Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - O Andrukhov
- Division of Conservative Dentistry and Periodontology, Competence Centre of Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - C Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
31
|
Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00660-15. [PMID: 26067981 PMCID: PMC4463545 DOI: 10.1128/genomea.00660-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).
Collapse
|
32
|
Olsen I, Amano A. Outer membrane vesicles - offensive weapons or good Samaritans? J Oral Microbiol 2015; 7:27468. [PMID: 25840612 PMCID: PMC4385126 DOI: 10.3402/jom.v7.27468] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 01/10/2023] Open
Abstract
Outer membrane vesicles (OMVs) from Gram-negative bacteria were first considered as artifacts and were followed with disbelief and bad reputation. Later, their existence was accepted and they became characterized as bacterial bombs, virulence bullets, and even decoys. Today, we know that OMVs also can be involved in cell-cell signaling/communication and be mediators of immune regulation and cause disease protection. Furthermore, OMVs represent a distinct bacterial secretion pathway selecting and protecting their cargo, and they can even be good Samaritans providing nutrients to the gut microbiota maintaining commensal homeostasis beneficial to the host. The versatility in functions of these nanostructures is remarkable and includes both defense and offense. The broad spectrum of usability does not stop with that, as it now seems that OMVs can be used as vaccines and adjuvants or vehicles engineered for drug treatment of emerging and new diseases not only caused by bacteria but also by virus. They may even represent new ways of selective drug treatment.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway;
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
33
|
Ardila CM, Perez-Valencia AY, Rendon-Osorio WL. Tannerella forsythia is associated with increased levels of atherogenic low density lipoprotein and total cholesterol in chronic periodontitis. J Clin Exp Dent 2015; 7:e254-e260. [PMID: 26155342 PMCID: PMC4483333 DOI: 10.4317/jced.52128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/05/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that acute and chronic infections with periodontopathogens are associated with an increased risk of cardiovascular disease. The objective of this study was to assess whether Tanerella forsythia and Porphyromonas gingivalis are associated with increased levels of atherogenic low-density lipoprotein (LDL), high-density lipoprotein, total cholesterol (TC), triglycerides and body mass index (BMI) in chronic periodontitis patients. MATERIAL AND METHODS Medical history and clinical and radiographic examination were conducted in 80 chronic periodontitis patients and 28 healthy individuals. Fasting blood samples were drawn for the measurement of the parameters of dyslipidemia. Anthropometric measurements such as height in meters and weight in kilograms were recorded. Both periodontitis and control subjects were asked to answer a questionnaire with regard to their socio-demographic and smoking status. The presence of T. forsythia, and P. gingivalis was detected using primers designed to target the respective 16S rRNA gene sequences. RESULTS The occurrence of T. forsythia and P. gingivalis was higher in the group of subjects with periodontitis. Superior levels of triglycerides were observed in chronic periodontitis patients compared to healthy individuals. High levels of TC in periodontitis persons were significantly associated with increased bleeding on probing. Greater mean levels of TC and LDL were shown in the presence of T. forsythia (P<0.05). Likewise, higher proportions of patients with BMI ≥25 kg/m2 related with T. forsythia (P<0.05). T. forsythia was a significant discriminating factor in the multivariate linear regression model emerging as significant explanatory of increased levels of TC (β=17,879, 95% CI = 4,357-31,401; p=0.01) and LDL (β=17,162, 95% CI= 4,009-30,316; p=0.01). CONCLUSIONS Higher levels of serum total cholesterol and LDL were observed in the occurrence of T. forsythia and the presence of this periodontopathogen may increase the atherogenic potency of low-density lipoprotein that may augment the risk for atherosclerosis in periodontal disease patients. Key words:Periodontitis, dyslipidemia, Tannerella forsythia, cardiovascular disease.
Collapse
Affiliation(s)
- Carlos M Ardila
- Periodontist. Ph.D in Epidemiology, Biomedical Stomatology Group, Universidad de Antioquia U de A, Medellín, Colombia, Department of Periodontology, School of Dentistry, Universidad de Antioquia
| | | | | |
Collapse
|
34
|
Abstract
Periodontitis is a dysbiotic inflammatory disease with an adverse impact on systemic health. Recent studies have provided insights into the emergence and persistence of dysbiotic oral microbial communities that can mediate inflammatory pathology at local as well as distant sites. This Review discusses the mechanisms of microbial immune subversion that tip the balance from homeostasis to disease in oral or extra-oral sites.
Collapse
|
35
|
Ardila CM, Olarte-Sossa M, Guzmán IC. Association between immunoglobulin G1 against Tannerella forsythia and reduction in the loss of attachment tissue. J Periodontal Implant Sci 2014; 44:274-279. [PMID: 25568807 PMCID: PMC4284375 DOI: 10.5051/jpis.2014.44.6.274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate whether the levels of immunoglobulin G (IgG) antibody to Tanerella forsythia are associated with periodontal status. METHODS Patients with a diagnosis of chronic periodontitis were considered candidates for the study; thus 80 chronic periodontitis patients and 28 healthy persons (control group) were invited to participate in this investigation. The presence of T. forsythia was detected by polymerase chain reaction (PCR) analysis using primers designed to target the respective 16S rRNA gene sequences. Peripheral blood was collected from each subject to identify the IgG1 and IgG2 serum antibodies against T. forsythia. All microbiological and immunological laboratory processes were completed blindly, without awareness of the clinical status of the study patients or of the periodontal sites tested. RESULTS The bivariate analysis showed that lower mean levels of clinical attachment level (CAL) and probing depth were found in the presence of the IgG1 antibody titers against whole-cell T. forsythia; however, only the difference in CAL was statistically significant. In the presence of the IgG2 antibody titers against whole-cell T. forsythia, the periodontal parameters evaluated were higher but they did not show statistical differences, except for plaque. The unadjusted linear regression model showed that the IgG1 antibody against whole-cell T. forsythia in periodontitis patients was associated with a lower mean CAL (β=-0.654; 95% confidence interval [CI], -1.27 to -0.28; P<0.05). This statistically significant association remained after adjusting for possible confounders (β=-0.655; 95% CI, -1.28 to -0.29; P<0.05). On the other hand, smoking was a statistically significant risk factor in the model (β=0.704; 95% CI, 0.24 to 1.38; P<0.05). CONCLUSIONS Significantly lower mean levels of CAL were shown in the presence of the IgG1 antibody titers against whole-cell T. forsythia in periodontitis patients. Thus, the results of this study suggest that IgG1 antibody to T. forsythia may have been a protective factor from periodontitis in this sample.
Collapse
Affiliation(s)
- Carlos Martín Ardila
- Biomedical Stomatology Group, Universidad de Antioquia U de A, Medellín, Colombia
| | - Mariana Olarte-Sossa
- Biomedical Stomatology Group, Universidad de Antioquia U de A, Medellín, Colombia
| | | |
Collapse
|