1
|
Fu D, Shu X, Zhou G, Ji M, Liao G, Zou L. Connection between oral health and chronic diseases. MedComm (Beijing) 2025; 6:e70052. [PMID: 39811802 PMCID: PMC11731113 DOI: 10.1002/mco2.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic diseases have emerged as a paramount global health burden, accounting for 74% of global mortality and causing substantial economic losses. The oral cavity serves as a critical indicator of overall health and is inextricably linked to chronic disorders. Neglecting oral health can exacerbate localized pathologies and accelerate the progression of chronic conditions, whereas effective management has the potential to reduce their incidence and mortality. Nevertheless, limited resources and lack of awareness often impede timely dental intervention, delaying optimal therapeutic measures. This review provides a comprehensive analysis of the impact of prevalent chronic diseases-such as diabetes mellitus, rheumatoid arthritis, cardiovascular disorders, and chronic respiratory diseases-on oral health, along with an exploration of how changes in oral health affect these chronic conditions through both deterioration and intervention mechanisms. Additionally, novel insights into the underlying pathophysiological mechanisms governing these relationships are presented. By synthesizing these advancements, this review aims to illuminate the complex interrelationship between oral health and chronic diseases while emphasizing the urgent need for greater collaboration between dental practitioners and general healthcare providers to improve overall health outcomes.
Collapse
Affiliation(s)
- Di Fu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xingyue Shu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Ge Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Information Management, Department of Stomatology Informatics, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Lopez-Oliva I, Malcolm J, Culshaw S. Periodontitis and rheumatoid arthritis-Global efforts to untangle two complex diseases. Periodontol 2000 2024. [PMID: 38411247 DOI: 10.1111/prd.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 02/28/2024]
Abstract
Understanding the impact of oral health on rheumatoid arthritis (RA) will inform how best to manage patients with both periodontitis and RA. This review seeks to provide an update on interventional and mechanistic investigations, including a brief summary of European Research programs investigating the link between periodontitis and RA. Recent clinical studies are described that evaluate how the treatment of one disease impacts on the other, as are studies in both humans and animal models that have sought to identify the potential mechanisms linking the two diseases.
Collapse
Affiliation(s)
- Isabel Lopez-Oliva
- Department of Periodontology, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jennifer Malcolm
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Clinic for Periodontology, Endodontology and Cariology, University Center of Dental Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Abstract
For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.
Collapse
Affiliation(s)
- Adrian D Hobson
- Small Molecule Therapeutics & Platform Technologies, AbbVie Bioresearch Center, Worcester, MA, United States.
| |
Collapse
|
4
|
Pisano M, Giordano F, Sangiovanni G, Capuano N, Acerra A, D’Ambrosio F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. MICROBIOLOGY RESEARCH 2023; 14:1862-1878. [DOI: 10.3390/microbiolres14040127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: The human being is defined as a ‘superorganism’ since it is made up of its own cells and microorganisms that reside inside and outside the human body. Commensal microorganisms, which are even ten times more numerous than the cells present in the body, perform very important functions for the host, as they contribute to the health of the host, resist pathogens, maintain homeostasis, and modulate the immune system. In the mouth, there are different types of microorganisms, such as viruses, mycoplasmas, bacteria, archaea, fungi, and protozoa, often organized in communities. The aim of this umbrella review is to evaluate if there is a connection between the oral microbiome and systematic diseases. Methodology: A literature search was conducted through PubMed/MEDLINE, the COCHRANE library, Scopus, and Web of Science databases without any restrictions. Because of the large number of articles included and the wide range of methods and results among the studies found, it was not possible to report the results in the form of a systematic review or meta-analysis. Therefore, a narrative review was conducted. We obtained 73.931 results, of which 3593 passed the English language filter. After the screening of the titles and abstracts, non-topic entries were excluded, but most articles obtained concerned interactions between the oral microbiome and systemic diseases. Discussion: A description of the normal microbial flora was present in the oral cavity both in physiological conditions and in local pathological conditions and in the most widespread systemic pathologies. Furthermore, the therapeutic precautions that the clinician can follow in order to intervene on the change in the microbiome have been described. Conclusions: This review highlights what are the intercorrelations of the oral microbiota in healthy subjects and in subjects in pathological conditions. According to several recent studies, there is a clear correlation between dysbiosis of the oral microbiota and diseases such as diabetes, cardiovascular diseases, chronic inflammatory diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Massimo Pisano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Giuseppe Sangiovanni
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Alfonso Acerra
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
5
|
Kim SJ, Lee SH, Quang BD, Tran TT, Kim YG, Ko J, Choi WY, Lee SY, Ryu JH. Avenanthramide-C Shows Potential to Alleviate Gingival Inflammation and Alveolar Bone Loss in Experimental Periodontitis. Mol Cells 2023; 46:627-636. [PMID: 37641936 PMCID: PMC10590710 DOI: 10.14348/molcells.2023.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease that leads to the gradual destruction of the supporting structures of the teeth including gums, periodontal ligaments, alveolar bone, and root cementum. Recently, interests in alleviating symptoms of periodontitis (PD) using natural compounds is increasing. Avenanthramide-C (Avn-C) is a polyphenol found only in oats. It is known to exhibit various biological properties. To date, the effect of Avn-C on PD pathogenesis has not been confirmed. Therefore, this study aimed to verify the protective effects of Avn-C on periodontal inflammation and subsequent alveolar bone erosion in vitro and in vivo. Upregulated expression of catabolic factors, such as matrix metalloproteinase 1 (MMP1), MMP3, interleukin (IL)-6, IL-8, and COX2 induced by lipopolysaccharide and proinflammatory cytokines, IL-1β, and tumor necrosis factor α (TNF-α), was dramatically decreased by Avn-C treatment in human gingival fibroblasts and periodontal ligament cells. Moreover, alveolar bone erosion in the ligature-induced PD mouse model was ameliorated by intra-gingival injection of Avn-C. Molecular mechanism studies revealed that the inhibitory effects of Avn-C on the upregulation of catabolic factors were mediated via ERK (extracellular signal-regulated kinase) and NF-κB pathway that was activated by IL-1β or p38 MAPK and JNK signaling that was activated by TNF-α, respectively. Based on this study, we recommend that Avn-C may be a new natural compound that can be applied to PD treatment.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Se Hui Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Binh Do Quang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Thanh-Tam Tran
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Young-Gwon Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Jun Ko
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Weon-Young Choi
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Sun Young Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
6
|
Fang J, Hou P, Liu S, Zuo M, Liu Z, Chen W, Han Y, Li Y, Wang T, Feng C, Li P, Shao C, Shi Y. NAD + salvage governs the immunosuppressive capacity of mesenchymal stem cells. Cell Mol Immunol 2023; 20:1171-1185. [PMID: 37580400 PMCID: PMC10541442 DOI: 10.1038/s41423-023-01073-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) possess robust immunoregulatory functions and are promising therapeutics for inflammatory disorders. This capacity is not innate but is activated or 'licensed' by inflammatory cytokines. The licensing mechanism remains unclear. Here, we examined whether inflammatory cytokines metabolically reprogrammed MSCs to confer this immunoregulatory capacity. In response to stimulation by inflammatory cytokines, MSCs exhibited a dramatic increase in the consumption of glucose, which was accompanied by an enhanced use of nicotinamide adenine dinucleotide (NAD+) and increased expression of nicotinamide phosphoribosyltransferase (NAMPT), a central enzyme in the salvage pathway for NAD+ production. When NAD+ synthesis was blocked by inhibiting or depleting NAMPT, the immunosuppressive function of MSCs induced by inflammatory cytokines was greatly attenuated. Consequently, when NAD+ metabolism in MSCs was perturbed, their therapeutic benefit was decreased in mice suffering from inflammatory bowel disease and acute liver injury. Further analysis revealed that NAMPT-driven production of NAD+ was critical for the inflammatory cytokine-induced increase in glycolysis in MSCs. Furthermore, the increase in glycolysis led to succinate accumulation in the tricarboxylic acid cycle, which led to hypoxia-inducible factor 1α (HIF-1α) stabilization and subsequently increased the transcription of key glycolytic genes, thereby persistently maintaining glycolytic flux. This study demonstrated that unlike its proinflammatory role in immune cells, NAD+ metabolism governs the anti-inflammatory function of MSCs during inflammation.
Collapse
Affiliation(s)
- Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Pengbo Hou
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Muqiu Zuo
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuyi Han
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yanan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Zhang H, Wang L, Xiang Y, Wang Y, Li H. Nampt promotes fibroblast extracellular matrix degradation in stress urinary incontinence by inhibiting autophagy. Bioengineered 2021; 13:481-495. [PMID: 34967693 PMCID: PMC8805819 DOI: 10.1080/21655979.2021.2009417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress urinary incontinence (SUI) is defined as involuntary urinary leakage happening in exertion. Nicotinamide phosphoribosyltransferase (Nampt) is seldom researched in the pathogenesis of SUI. Accordingly, the current study set out to elucidate the role of Nampt in SUI progression. Firstly, we determined Nampt expression patterns in SUI patients and rat models. In addition, fibroblasts were obtained from the anterior vaginal wall tissues of non-SUI patients and subjected to treatment with different concentrations of interleukin-1β (IL-1β), followed by quantification of Nampt expressions in fibroblasts. Subsequently, an appropriate concentration of IL-1β was selected to treat anterior vaginal wall fibroblasts. Nampt was further silenced in IL-1β-treated fibroblasts to assess the role of Nampt in autophagy and extracellular matrix (ECM) degradation. Lastly, functional rescue assays were carried out to inhibit autophagy and evaluate the role of autophagy in the mechanism of Nampt modulating IL-1β-treated fibroblast ECM degradation. It was found that Nampt was highly-expressed in SUI patients and rat models and IL-1β-treated fibroblasts. On the other hand, Nampt silencing was found to suppress ECM degradation and promote SUI fibroblast autophagy. Additionally, inhibition of autophagy attenuated the inhibitory effects of Nampt silencing on SUI fibroblast ECM degradation. Collectively, our findings revealed that Nampt was over-expressed in SUI, whereas Nampt silencing enhanced SUI fibroblast autophagy, and thereby inhibited ECM degradation.
Collapse
Affiliation(s)
- Hui Zhang
- Gynecology II Ward, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lu Wang
- Gynecology II Ward, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuancui Xiang
- Gynecology II Ward, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yali Wang
- Gynecology II Ward, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongjuan Li
- Gynecology II Ward, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
8
|
Martínez-García M, Hernández-Lemus E. Periodontal Inflammation and Systemic Diseases: An Overview. Front Physiol 2021; 12:709438. [PMID: 34776994 PMCID: PMC8578868 DOI: 10.3389/fphys.2021.709438] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a common inflammatory disease of infectious origins that often evolves into a chronic condition. Aside from its importance as a stomatologic ailment, chronic periodontitis has gained relevance since it has been shown that it can develop into a systemic condition characterized by unresolved hyper-inflammation, disruption of the innate and adaptive immune system, dysbiosis of the oral, gut and other location's microbiota and other system-wide alterations that may cause, coexist or aggravate other health issues associated to elevated morbi-mortality. The relationships between the infectious, immune, inflammatory, and systemic features of periodontitis and its many related diseases are far from being fully understood and are indeed still debated. However, to date, a large body of evidence on the different biological, clinical, and policy-enabling sources of information, is available. The aim of the present work is to summarize many of these sources of information and contextualize them under a systemic inflammation framework that may set the basis to an integral vision, useful for basic, clinical, and therapeutic goals.
Collapse
Affiliation(s)
- Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mèxico, Mexico City, Mexico
| |
Collapse
|
9
|
Yao S, Jiang C, Zhang H, Gao X, Guo Y, Cao Z. Visfatin regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119042. [PMID: 33901513 DOI: 10.1016/j.bbamcr.2021.119042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Periodontitis is a widespread chronic infectious-inflammatory disease associated with multiple systemic diseases. Visfatin is an adipokine-enzyme that can be locally produced by human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). It can upregulate proinflammatory cytokines and matrix metalloproteinases (MMPs) in various types of cells. However, the effects of visfatin on healthy and inflammatory human periodontal cells as well as the underlying molecular mechanisms remain unclear. This study firstly demonstrated visfatin expression was highly elevated in inflamed human gingiva and Pg LPS-treated hPDLCs. Moreover, recombinant visfatin significantly upregulated the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and prodegradative factors (EMPPRIN, MMP1, MMP3 and MMP13) in hPDLCs. Next, we found the levels of proinflammatory and prodegradative cytokines were significantly increased in visfatin-overexpressing hPDLCs, and decreased in visfatin-silencing inflammatory hGFs (iGFs) when treated with Pg LPS. In the absence of Pg LPS, visfatin silencing failed to affect the expression of these factors in iGFs, and overexpression of visfatin upregulated MMPs but no other factors in hPDLCs. Furthermore, marked NF-κB pathway activation with increased phosphorylation of p65 was observed in visfatin-overexpressing hPDLCs. BAY11-7082, a specific inhibitor of NF-κB, partially reversed the upregulation proinflammatory and prodegradative factors induced by visfatin overexpression. Taken together, this study showed that visfatin critically regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. The findings suggest that visfatin is closely involved in the development of periodontitis, and may serve as a promising novel biomarker and therapeutic target for periodontitis management.
Collapse
Affiliation(s)
- Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huihui Zhang
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Teles F, Wang Y, Hajishengallis G, Hasturk H, Marchesan JT. Impact of systemic factors in shaping the periodontal microbiome. Periodontol 2000 2021; 85:126-160. [PMID: 33226693 DOI: 10.1111/prd.12356] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since 2010, next-generation sequencing platforms have laid the foundation to an exciting phase of discovery in oral microbiology as it relates to oral and systemic health and disease. Next-generation sequencing has allowed large-scale oral microbial surveys, based on informative marker genes, such as 16S ribosomal RNA, community gene inventories (metagenomics), and functional analyses (metatranscriptomics), to be undertaken. More specifically, the availability of next-generation sequencing has also paved the way for studying, in greater depth and breadth, the effect of systemic factors on the periodontal microbiome. It was natural to investigate systemic diseases, such as diabetes, in such studies, along with systemic conditions or states, , pregnancy, menopause, stress, rheumatoid arthritis, and systemic lupus erythematosus. In addition, in recent years, the relevance of systemic "variables" (ie, factors that are not necessarily diseases or conditions, but may modulate the periodontal microbiome) has been explored in detail. These include ethnicity and genetics. In the present manuscript, we describe and elaborate on the new and confirmatory findings unveiled by next-generation sequencing as it pertains to systemic factors that may shape the periodontal microbiome. We also explore the systemic and mechanistic basis for such modulation and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Julie T Marchesan
- Department of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Wang H, Chen Y, Li W, Sun L, Chen H, Yang Q, Zhang H, Zhang W, Yuan H, Zhang H, Xing L, Sun W. Effect of VEGFC on lymph flow and inflammation-induced alveolar bone loss. J Pathol 2020; 251:323-335. [PMID: 32418202 PMCID: PMC10587832 DOI: 10.1002/path.5456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022]
Abstract
The lymphatic system plays a crucial role in the maintenance of tissue fluid homeostasis and the immunological response to inflammation. The effects of lymphatic drainage dysfunction on periodontitis have not been well studied. Here we show that lymphatic vessel endothelial receptor 1 (LYVE1)+ /podoplanin (PDPN)+ lymphatic vessels (LVs) are increased in the periodontal tissues, with accumulation close to the alveolar bone surface, in two murine periodontitis models: rheumatoid arthritis (RA)-associated periodontitis and ligature-induced periodontitis. Further, PDPN+ /alpha-smooth muscle actin (αSMA)- lymphatic capillaries are increased, whereas PDPN+ /αSMA+ collecting LVs are decreased significantly in the inflamed periodontal tissues. Both mouse models of periodontitis have delayed lymph flow in periodontal tissues, increased TRAP-positive osteoclasts, and significant alveolar bone loss. Importantly, the local administration of adeno-associated virus for vascular endothelial growth factor C, the major growth factor that promotes lymphangiogenesis, increases the area and number of PDPN+ /αSMA+ collecting LVs, promotes local lymphatic drainage, and reduces alveolar bone loss in both models of periodontitis. Lastly, LYVE1+ /αSMA- lymphatic capillaries are increased, whereas LYVE1+ /αSMA+ collecting LVs are decreased significantly in gingival tissues of patients with chronic periodontitis compared with those of clinically healthy controls. Thus, our findings reveal an important role of local lymphatic drainage in periodontal inflammation-mediated alveolar bone loss. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Yuyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Wenlei Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Hongyu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Qiudong Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Hang Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Weibing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
12
|
Bartold PM, Lopez‐Oliva I. Periodontitis and rheumatoid arthritis: An update 2012‐2017. Periodontol 2000 2020; 83:189-212. [DOI: 10.1111/prd.12300] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Mark Bartold
- Department of Dentistry University of Adelaide Adelaide South Australia Australia
| | | |
Collapse
|
13
|
Wang H, Li S, Zhang G, Wu H, Chang X. Potential therapeutic effects of cyanidin-3-O-glucoside on rheumatoid arthritis by relieving inhibition of CD38+ NK cells on Treg cell differentiation. Arthritis Res Ther 2019; 21:220. [PMID: 31661005 PMCID: PMC6819496 DOI: 10.1186/s13075-019-2001-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background CD38+ NK cells are overabundant in rheumatoid arthritis (RA). Cyanidin-3-O-glucoside (C3G) is an inhibitor of CD38. This study investigated the pathogenic role of CD38+ NK cells and the effect of C3G on RA. Methods Rats with bovine type II collagen-induced arthritis (CIA) were injected with C3G. RA synovial fibroblasts (RASFs) or mononuclear cells (MNCs) were cultured with C3G. MNCs were also cocultured with CD38+ NK cells following C3G pretreatment. Results C3G injection significantly alleviated CIA. C3G also significantly increased the level of interleukin (IL)-10 and the regulatory T (Treg) cell proportion, and it decreased the interleukin (IL)-6 and interferon (IFN)-γ levels and CD38+ NK cell proportion in rat peripheral blood and synovial fluid. Additionally, C3G significantly increased RASF apoptosis and decreased RASF proliferation and IL-6 production in the culture medium. Furthermore, C3G stimulated MNCs to increase IL-2 and IL-10 production and the Treg cell proportion, and it caused MNCs to decrease IL-6 and IFN-γ production and the CD38+ NK cell proportion. Although CD38+ NK cells significantly decreased the Treg cell proportion and IL-10 level in MNCs, CD38+ NK cells that had been pretreated with C3G increased the proportion of Treg cells and IL-10 levels and decreased the IL-6 and IFN-γ levels in the coculture. In CD38+ NK cells, C3G significantly increased Sirtuin 6 (Sirt6) expression and the tumor necrosis factor (TNF)-α level, and it decreased natural killer group 2D (NKG2D) expression and the IFN-γ level. However, when CD38+ NK cells were treated with Sirt6 siRNA, C3G did not change the NKG2D expression, the TNF-α level sharply decreased, and the IFN-γ level increased. When MNCs were cocultured with C3G-pretreated CD38+ NK cells in the presence of TNF-α and an anti-IFN-γ antibody, the IL-10+ Treg cell proportion significantly increased. When MNCs were cocultured with C3G-pretreated CD38+ NK cells in the presence of IFN-γ and an anti-TNF-α antibody, the IL-10+ Treg cell proportion sharply decreased. When CIA rats were injected with both C3G and the Sirt6 inhibitor OSS_128167, the rats exhibited joint inflammation and a low Treg cell proportion, but the CD38+ NK proportion was still low. Conclusion C3G has therapeutic effects on CIA and RA. C3G decreased the proportion of CD38+ cells, RASF proliferation, and proinflammatory cytokine secretion, and it increased the Treg cell proportion. C3G also elevated Sirt6 expression to suppress NKG2D expression, increase TNF-α secretion, and decrease IFN-γ secretion in CD38+ NK cells, which stimulates MNCs to differentiate into Treg cells. This study also demonstrates that the inhibition of Treg cell differentiation in MNCs by CD38+ NK cells is a potential cause of the immune imbalance in RA and CIA.
Collapse
Affiliation(s)
- Hongxing Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Shutong Li
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Guoqing Zhang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Hui Wu
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China. .,Qingdao Engineering Technology Center For Major Disease Marker, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Tantilertanant Y, Niyompanich J, Everts V, Supaphol P, Pavasant P, Sanchavanakit N. Cyclic tensile force-upregulated IL6 increases MMP3 expression by human periodontal ligament cells. Arch Oral Biol 2019; 107:104495. [PMID: 31377584 DOI: 10.1016/j.archoralbio.2019.104495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Cyclic tensile force (CTF) modulates physiological responses of periodontal ligament (PDL) cells. PDL cells are mechanosensitive and are able to maintain tissue homeostasis; a process mediated by the expression of particular cytokines including interleukin 6 (IL6). It is unknown whether CTF-induced IL6 regulates the expression of MMPs, enzymes needed for tissue remodeling. DESIGN Human PDL cells were subjected to 10% elongation strain of CTF at a frequency of 60 rpm continuously for 6 h. RNA and proteins were extracted and analyzed for IL6 and MMP expression by quantitative real-time PCR and ELISA, respectively. Using a neutralizing anti-IL6 antibody and addition of recombinant human IL6 at concentrations of 0.1, 1, 10 ng.mL-1 were performed to clarify whether CTF-upregulated IL6 increased MMP expression. Inhibitors of intracellular signaling molecules were employed to reveal possible pathway(s) of IL6-induced MMP expression. RESULTS CTF-induced IL6 expression coincided with an increased MMP3 expression. A neutralizing anti-IL6 antibody attenuated the CTF-increased MMP3 expression, whereas stimulating the cells with recombinant human IL6 increased MMP3 expression. Both PI3K and MAPK pathways were essential in the IL6 induced expression of MMP3. CONCLUSION Our findings suggest a role of CTF in the modulation of expression of IL6 and MMP3 and thus in the regulation of homeostasis and remodeling of the periodontal ligament.
Collapse
Affiliation(s)
- Yanee Tantilertanant
- Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jitti Niyompanich
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Pitt Supaphol
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Department of Anatomy and Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Neeracha Sanchavanakit
- Department of Anatomy and Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Jorge-Mora A, Gualillo O, Gómez-Reino JJ, Gómez Bahamonde R. Visfatin as a therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 2019; 23:607-618. [DOI: 10.1080/14728222.2019.1617274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- Research laboratory 9 (NEIRID LAB), Institute of Medical Research, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan J. Gómez-Reino
- Rheumatology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Rodolfo Gómez Bahamonde
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
16
|
Abstract
Periodontal diseases are initiated by bacteria that accumulate in a biofilm on the tooth surface and affect the adjacent periodontal tissue. Systemic diseases such as diabetes, rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) increase susceptibility to destructive periodontal diseases. In human studies and in animal models, these diseases have been shown to enhance inflammation in the periodontium and increase the risk or severity of periodontitis. All 3 systemic diseases are linked to a decrease in bacterial taxa associated with health and an increase in taxa associated with disease. Although there is controversy regarding the specific oral bacterial changes associated with each disease, it has been reported that diabetes increases the levels of Capnocytophaga, Porphyromonas, and Pseudomonas, while Prevotella and Selenomonas are increased in RA and Selenomonas, Leptotrichia, and Prevotella in SLE. In an animal model, diabetes increased the pathogenicity of the oral microbiome, as shown by increased inflammation, osteoclastogenesis, and periodontal bone loss when transferred to normal germ-free hosts. Moreover, in diabetic animals, the increased pathogenicity could be substantially reversed by inhibition of IL-17, indicating that host inflammation altered the microbial pathogenicity. Increased IL-17 has also been shown in SLE, RA, and leukocyte adhesion deficiency and may contribute to oral microbial changes in these diseases. Successful RA treatment with anti-inflammatory drugs partially reverses the oral microbial dysbiosis. Together, these data demonstrate that systemic diseases characterized by enhanced inflammation disturb the oral microbiota and point to IL-17 as key mediator in this process.
Collapse
Affiliation(s)
- D T Graves
- 1 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J D Corrêa
- 2 Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T A Silva
- 2 Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Hwang ES, Song SB. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci 2017; 74:3347-3362. [PMID: 28417163 PMCID: PMC11107671 DOI: 10.1007/s00018-017-2527-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 01/15/2023]
Abstract
Nicotinamide (NAM), a form of vitamin B3, plays essential roles in cell physiology through facilitating NAD+ redox homeostasis and providing NAD+ as a substrate to a class of enzymes that catalyze non-redox reactions. These non-redox enzymes include the sirtuin family proteins which deacetylate target proteins while cleaving NAD+ to yield NAM. Since the finding that NAM exerts feedback inhibition to the sirtuin reactions, NAM has been widely used as an inhibitor in the studies where SIRT1, a key member of sirtuins, may have a role in certain cell physiology. However, once administered to cells, NAM is rapidly converted to NAD+ and, therefore, the cellular concentration of NAM decreases rapidly while that of NAD+ increases. The result would be an inhibition of SIRT1 for a limited duration, followed by an increase in the activity. This possibility raises a concern on the validity of the interpretation of the results in the studies that use NAM as a SIRT1 inhibitor. To understand better the effects of cellular administration of NAM, we reviewed published literature in which treatment with NAM was used to inhibit SIRT1 and found that the expected inhibitory effect of NAM was either unreliable or muted in many cases. In addition, studies demonstrated NAM administration stimulates SIRT1 activity and improves the functions of cells and organs. To determine if NAM administration can generate conditions in cells and tissues that are stimulatory to SIRT1, the changes in the cellular levels of NAM and NAD+ reported in the literature were examined and the factors that are involved in the availability of NAD+ to SIRT1 were evaluated. We conclude that NAM treatment can hypothetically be stimulatory to SIRT1.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, 163 Seoulsiripdaero, Seoul, 02504, Republic of Korea.
| | - Seon Beom Song
- Department of Life Science, University of Seoul, Dongdaemungu, 163 Seoulsiripdaero, Seoul, 02504, Republic of Korea
| |
Collapse
|
18
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|