1
|
Yuan W, Huang M, Chen W, Chen S, Cai J, Chen L, Lin H, He K, Chen H, Jiang W, Ou Y, Chen J. Reduced graphene oxide loaded with tetrahedral framework nucleic acids for combating orthodontically induced root resorption. J Nanobiotechnology 2024; 22:700. [PMID: 39533318 PMCID: PMC11559230 DOI: 10.1186/s12951-024-02988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Root resorption occurs outside the root or within the root canal. Regardless of its region, root resorption is irreversible and in severe cases, may even cause tooth loss. Clinically, the external surface root resorption is usually a side effect of orthodontic tooth movement. However, it is frustrating to note that there are almost no effective treatment strategies for orthodontically induced root resorption (OIRR) due to the complexity and ambiguity of etiology. In the current study, we successfully fabricated a delivery complex, reduced graphene oxide nanosheet loading with tetrahedral framework nucleic acids (tFNAs-rGO) through self-assembly. No significant cytotoxicity or organ-toxicity of the tFNAs-rGO complex was observed in cell counting kit-8 assay (CCK-8) and hematoxylin-eosin (HE) staining. Histological staining such as tartrate-resistant acid phosphatase (TRAP) staining and Micro-CT three-dimensional reconstruction were employed to explore the dynamic changes of root and peri-root tissues in OIRR mice. In vitro, we developed an induction microenvironment to testify the effects of the tFNAs-rGO delivery complex on periodontal ligament cells (PDLCs) and macrophages by quantitative RT-PCR, western blot, and immunofluorescence staining. The data showed the reduced the region of root resorption and downregulated osteoclastic activity in OIRR by the tFNAs-rGO complex treatment. Furthermore, our study demonstrated that the tFNAs-rGO delivery complex enhanced osteogenic differentiation of PDLCs and facilitated M2-phenotype polarization of macrophages to ameliorate OIRR. Collectively, the insight into the nanoscale dual-functional tFNAs-rGO delivery complex regulating the cell populations of PDLCs and macrophages in the root resorption remodeling proposes a promising therapeutic strategy for orthodontically induced root resorption.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Postdoctoral Workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital Fujian Medical University, Fuzhou, 350000, China
| | - Wenqian Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Sihang Chen
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingwen Cai
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Linxin Chen
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Hanyu Lin
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kaixun He
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Huachen Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Wenting Jiang
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanjing Ou
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jiang Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Zhao S, Gao Y, Leng H, Sun L, Huo B. Prediction of Bone Remodeling in Rat Caudal Vertebrae Based on Fluid-Solid Coupling Simulation. Ann Biomed Eng 2024; 52:3009-3020. [PMID: 38941057 DOI: 10.1007/s10439-024-03562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
Some previous researches have demonstrated that appropriate mechanical stimulation can enhance bone formation. However, most studies have employed the strain energy density (SED) method for predicting bone remodeling, with only a few considering the potential impact of wall fluid shear stress (FSS) on this process. To bridge this gap, the current study compared the prediction of bone formation and resorption via SED and wall FSS by using fluid-solid coupling numerical simulation. Specifically, 8-week-old female Sprague-Dawley rats were subjected to stretching of the eighth caudal vertebra using a custom-made device. Based on micro-computed tomography images, a three-dimensional model integrating fluid-solid coupling was created to represent compact bone, cancellous bone, and bone marrow. The animals were grouped into control, 1 Hz, and 10 Hz categories, wherein a tensile displacement load of 1000 με was applied to the loading end. The results revealed that SED values tended to increase with elevated porosity, whereas wall FSS values decreased it. Notably, wall FSS demonstrated the higher predictive accuracy for cancellous bone resorption than SED. These findings support the notion that fluid flow within cancellous bone spaces can significantly impact bone resorption. Therefore, the findings of this study contribute to a more comprehensive understanding of the role of wall FSS in bone remodeling, providing a theoretical support for the dynamic evolution of bone structures under mechanical stimulation.
Collapse
Affiliation(s)
- Sen Zhao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yan Gao
- Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, 100091, People's Republic of China.
- Sport Biomechanics Center, Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, 100191, People's Republic of China.
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lianwen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Bo Huo
- Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, 100091, People's Republic of China.
- Sport Biomechanics Center, Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, 100191, People's Republic of China.
| |
Collapse
|
3
|
Ubuzima P, Nshimiyimana E, Mukeshimana C, Mazimpaka P, Mugabo E, Mbyayingabo D, Mohamed AS, Habumugisha J. Exploring biological mechanisms in orthodontic tooth movement: Bridging the gap between basic research experiments and clinical applications - A comprehensive review. Ann Anat 2024; 255:152286. [PMID: 38810763 DOI: 10.1016/j.aanat.2024.152286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The molecular mechanisms behind orthodontic tooth movements (OTM) were investigated by clarifying the role of chemical messengers released by cells. METHODS Using the Cochrane library, Google scholar, and PubMed databases, a literature search was conducted, and studies published from 1984 to 2024 were considered. RESULTS Both bone growth and remodeling may occur when a tooth is subjected to mechanical stress. These chemicals have a significant effect on the stimulation and regulation of osteoblasts, osteoclasts, and osteocytes during alveolar bone remodeling. This regulation can take place in pathological conditions, such as periodontal diseases, or during OTM alone. This comprehensive review outlines key molecular mechanisms underlying OTM and explores various clinical assumptions associated with specific molecules and their functional domains during this process. Furthermore, clinical applications of certain molecules such as relaxin, prostaglandin E (PGE), and interleukin-1β (IL-1β) in accelerating OTM have been reported. Our findings underscore the existing gap between OTM clinical applications and basic research investigations. CONCLUSION A comprehensive understanding of orthodontic treatment is enriched by insights into biological systems. We reported the activation of osteoblasts, osteoclast precursor cells, osteoclasts, and osteocytes in response to mechanical stress, leading to targeted cellular and molecular interventions and facilitating rapid and regulated alveolar bone remodeling during tooth movement. Despite the shortcomings of clinical studies in accelerating OTM, this review highlights the crucial role of biological agents in this process and advocates for prioritizing high-quality human studies in future research to gain further insights from clinical trials.
Collapse
Affiliation(s)
- Pascal Ubuzima
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China; School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eugene Nshimiyimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Christelle Mukeshimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Patrick Mazimpaka
- School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eric Mugabo
- Department of Orthodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Changsha, Hunan 410000, China
| | - Dieudonne Mbyayingabo
- Department of Orthodontics, Stomatological Hospital of Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi 710004, China
| | | | - Janvier Habumugisha
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kitaku, Okayama 700-8525, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
4
|
Tan Y, Zhou Y, Zhang W, Wu Z, Xu Q, Wu Q, Yang J, Lv T, Yan L, Luo H, Shi Y, Yang J. Repaglinide restrains HCC development and progression by targeting FOXO3/lumican/p53 axis. Cell Oncol (Dordr) 2024; 47:1167-1181. [PMID: 38326640 DOI: 10.1007/s13402-024-00919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE The recent focus on the roles of N-linked glycoproteins in carcinogenesis across various malignancies has prompted our exploration of aberrantly expressed glycoproteins responsible for HCC progression and potential therapeutic strategy. METHODS Mass spectrometry was applied to initially identify abnormally expressed glycoproteins in HCC, which was further assessed by immunohistochemistry (IHC) staining. The role of selected glycoprotein on HCC development and underlying mechanism was systematically investigated by colony formation, mouse xenograft, RNA-sequencing and western blot assays, etc. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to explore potential transcription factors (TFs) of selected glycoprotein. The regulation of repaglinide (RPG) on expression of lumican and downstream effectors was assessed by western blot and IHC, while its impact on malignant phenotypes of HCC was explored through in vitro and in vivo analyses, including a murine NASH-HCC model established using western diet and carbon tetrachloride (CCl4). RESULTS Lumican exhibited upregulation in both serum and tumor tissue, with elevated expression associated with an inferior prognosis in HCC patients. Knockdown of lumican resulted in significantly reduced growth of HCC in vitro and in vivo. Mechanically, lumican promoted HCC malignant phenotypes by inhibiting the p53/p21 signaling pathway. Forkhead Box O3 (FOXO3) was identified as the TF of lumican that transcriptionally enhanced its expression. Without silencing FOXO3, RPG blocked the binding of FOXO3 to the promoter region of lumican, thereby inhibiting the activation of lumican/p53/p21 axis. Mice treated with RPG developed fewer and smaller HCCs than those in the control group at 24 weeks after establishment. CONCLUSION Our results indicate that RPG prevented the development and progression of HCC via alteration of FOXO3/lumican/p53 axis.
Collapse
Affiliation(s)
- Yifei Tan
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiong Wu
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Yang
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Lv
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Lvnan Yan
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Luo
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Yujun Shi
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jiayin Yang
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Yu W, Tong MJ, Wu GH, Ma TL, Cai CD, Wang LP, Zhang YK, Gu JL, Yan ZQ. FoxO3 Regulates Mouse Bone Mesenchymal Stem Cell Fate and Bone-Fat Balance During Skeletal Aging. Stem Cells Dev 2024; 33:365-375. [PMID: 38661524 DOI: 10.1089/scd.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Age-related osteoporosis is characterized by an imbalance between osteogenic and adipogenic differentiation in bone mesenchymal stem cells (BMSCs). Forkhead box O 3 (FoxO3) transcription factor is involved in lifespan and cell differentiation. In this study, we explore whether FoxO3 regulates age-related bone loss and marrow fat accumulation. The expression levels of FoxO3 in BMSCs during aging were detected in vivo and in vitro. To explore the role of FoxO3 in osteogenic and adipogenic differentiation, primary BMSCs were isolated from young and aged mice. FoxO3 expression was modulated by adenoviral vector transfection. The role of FoxO3 in bone-fat balance was evaluated by alizarin red S staining, oil red O staining, quantitative reverse transcription-polymerase chain reaction, Western blot, and histological analysis. Age-related bone loss and fat deposit are associated with downregulation of FoxO3. Overexpression of FoxO3 alleviated age-related bone loss and marrow fat accumulation in aged mice. Mechanistically, FoxO3 reduced adipogenesis and enhanced osteogenesis of BMSCs via downregulation of PPAR-γ and Notch signaling, respectively. In conclusion, FoxO3 is an essential factor controlling the fate of BMSCs and is a potential target for the prevention of age-related osteoporosis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min-Ji Tong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Hao Wu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tian-Le Ma
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Dong Cai
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Peng Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying-Kai Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin-Lun Gu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuo-Qin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Seki Y, Takebe H, Nakao Y, Sato K, Mizoguchi T, Nakamura H, Iijima M, Hosoya A. Osteoblast differentiation of Gli1⁺ cells via Wnt and BMP signaling pathways during orthodontic tooth movement. J Oral Biosci 2024; 66:373-380. [PMID: 38499228 DOI: 10.1016/j.job.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVES Factors that induce bone formation during orthodontic tooth movement (OTM) remain unclear. Gli1 was recently identified as a stem cell marker in the periodontal ligament (PDL). Therefore, we evaluated the mechanism of differentiation of Cre/LoxP-mediated Gli1/Tomato+ cells into osteoblasts during OTM. METHODS After the final administration of tamoxifen to 8-week-old Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato mice for 2 days, nickel-titanium closed coil springs were attached between the upper anterior alveolar bone and the first molar. Immunohistochemical localizations of β-catenin, Smad4, and Runx2 were observed in the PDL on 2, 5, and 10 days after OTM initiation. RESULTS In the untreated tooth, few Gli1/Tomato+ cells were detected in the PDL. Two days after OTM initiation, the number of Gli1/Tomato+ cells increased in the PDL on the tension side. On this side, 49.3 ± 7.0% of β-catenin+ and 48.7 ± 5.7% of Smad4+ cells were found in the PDL, and Runx2 expression was detected in some Gli1/Tomato+ cells apart from the alveolar bone. The number of positive cells in the PDL reached a maximum on day 5. In contrast, on the compression side, β-catenin and Smad4 exhibited less immunoreactivity. On day 10, Gli1/Tomato+ cells were aligned on the alveolar bone on the tension side, with some expressing Runx2. CONCLUSIONS Gli1+ cells in the PDL differentiated into osteoblasts during OTM. Wnt and bone morphogenetic proteins signaling pathways may be involved in this differentiation.
Collapse
Affiliation(s)
- Yuri Seki
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Yuya Nakao
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Kohei Sato
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
7
|
Huang J, Jiang H, Wang H, Xue Q, Hu M, Li Y. Aucubin produces anti-osteoporotic effects under mechanical stretch stress and orthodontic tooth movement. Chem Biol Interact 2024; 393:110955. [PMID: 38492842 DOI: 10.1016/j.cbi.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Aucubin (AU), an iridoid glycoside extracted from Eucommia ulmoides, exerts anti-osteoporotic effects by promoting osteogenesis, as reported in previous studies. Here, we investigated the effects of AU under mechanical stretch stress. MC3T3-E1 cells were treated with dexamethasone (DEX) in vitro and subjected to mechanical stretch stress to establish an osteoporotic orthodontic force cell model. AU treatment increased the mRNA and protein expressions of BMP2, OPN, RUNX2, COL-1 and other osteogenic differentiation factors in MC3T3-E1 cells. Furthermore, we established an in vivo orthodontic tooth movement (OTM) model of osteoporosis. Serum parameter detection of ALP concentration, radiography of the femur, hematoxylin-eosin (HE) staining, and micro-CT of the maxilla confirmed that AU could partially reverse the damage induced by DEX. Immunohistochemical (IHC) analysis showed that AU increased the expression of COL-1, OCN, and OPN on the tension side of the periodontium. In conclusion, AU treatment promotes osteogenic differentiation under mechanical stretch stress and positively affects bone remodeling during OTM in DEX-induced osteoporosis.
Collapse
Affiliation(s)
- Jiamiao Huang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Huan Jiang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Haoyu Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Qing Xue
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China; School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Wang W, Wang Q, Sun S, Zhang P, Li Y, Lin W, Li Q, Zhang X, Ma Z, Lu H. CD97 inhibits osteoclast differentiation via Rap1a/ERK pathway under compression. Int J Oral Sci 2024; 16:12. [PMID: 38311610 PMCID: PMC10838930 DOI: 10.1038/s41368-023-00272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanoreceptors on the surface of monocytes/macrophages, especially adhesion G protein-coupled receptors (aGPCRs), play important roles in force sensing. However, its role in the regulation of osteoclast differentiation remains unclear. Herein, through single-cell analysis, we revealed that CD97, a novel mechanosensitive aGPCR, was expressed in macrophages. Compression upregulated CD97 expression and inhibited osteoclast differentiation; while knockdown of CD97 partially rescued osteoclast differentiation. It suggests that CD97 may be an important mechanosensitive receptor during osteoclast differentiation. RNA sequencing analysis showed that the Rap1a/ERK signalling pathway mediates the effects of CD97 on osteoclast differentiation under compression. Consistently, we clarified that administration of the Rap1a inhibitor GGTI298 increased osteoclast activity, thereby accelerating tooth movement. In conclusion, our results indicate that CD97 suppresses osteoclast differentiation through the Rap1a/ERK signalling pathway under orthodontic compressive force.
Collapse
Affiliation(s)
- Wen Wang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiying Sun
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Pengfei Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhe Ma
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Haiyan Lu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China.
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
9
|
Pu P, Wu S, Zhang K, Xu H, Guan J, Jin Z, Sun W, Zhang H, Yan B. Mechanical force induces macrophage-derived exosomal UCHL3 promoting bone marrow mesenchymal stem cell osteogenesis by targeting SMAD1. J Nanobiotechnology 2023; 21:88. [PMID: 36915132 PMCID: PMC10012474 DOI: 10.1186/s12951-023-01836-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM), a process of alveolar bone remodelling, is induced by mechanical force and regulated by local inflammation. Bone marrow-derived mesenchymal stem cells (BMSCs) play a fundamental role in osteogenesis during OTM. Macrophages are mechanosensitive cells that can regulate local inflammatory microenvironment and promote BMSCs osteogenesis by secreting diverse mediators. However, whether and how mechanical force regulates osteogenesis during OTM via macrophage-derived exosomes remains elusive. RESULTS Mechanical stimulation (MS) promoted bone marrow-derived macrophage (BMDM)-mediated BMSCs osteogenesis. Importantly, when exosomes from mechanically stimulated BMDMs (MS-BMDM-EXOs) were blocked, the pro-osteogenic effect was suppressed. Additionally, compared with exosomes derived from BMDMs (BMDM-EXOs), MS-BMDM-EXOs exhibited a stronger ability to enhance BMSCs osteogenesis. At in vivo, mechanical force-induced alveolar bone formation was impaired during OTM when exosomes were blocked, and MS-BMDM-EXOs were more effective in promoting alveolar bone formation than BMDM-EXOs. Further proteomic analysis revealed that ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) was enriched in MS-BMDM-EXOs compared with BMDM-EXOs. We went on to show that BMSCs osteogenesis and mechanical force-induced bone formation were impaired when UCHL3 was inhibited. Furthermore, mothers against decapentaplegic homologue 1 (SMAD1) was identified as the target protein of UCHL3. At the mechanistic level, we showed that SMAD1 interacted with UCHL3 in BMSCs and was downregulated when UCHL3 was suppressed. Consistently, overexpression of SMAD1 rescued the adverse effect of inhibiting UCHL3 on BMSCs osteogenesis. CONCLUSIONS This study suggests that mechanical force-induced macrophage-derived exosomal UCHL3 promotes BMSCs osteogenesis by targeting SMAD1, thereby promoting alveolar bone formation during OTM.
Collapse
Affiliation(s)
- Panjun Pu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shengnan Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Jiani Guan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China.
| |
Collapse
|
10
|
Xu J, Lin Y, Tian M, Li X, Yin Y, Li Q, Li Z, Zhou J, Jiang X, Li Y, Chen S. Periodontal Ligament Stem Cell-Derived Extracellular Vesicles Enhance Tension-Induced Osteogenesis. ACS Biomater Sci Eng 2023; 9:388-398. [PMID: 36538768 DOI: 10.1021/acsbiomaterials.2c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tension-induced osteogenesis has great significance in maintaining bone homeostasis and ensuring the efficiency and stability of orthodontic treatment. Recently, extracellular vesicles (EVs) have shown great potential in regulating bone remodeling. Here, we aimed to explore the effects of periodontal ligament stem cell (PDLSC)-derived EVs on tension-induced osteogenesis and the potential mechanism. PDLSC-derived EVs were extracted by ultracentrifugation. In vitro, PDLSC-derived EVs of 10 μg/mL significantly improved the proliferation of MC3T3-E1 cells and enhanced the osteogenic differentiation of osteoblasts under a tensile strain of 2000 uε. Next, a mouse model of orthodontic tooth movement (OTM) was established and treated with subperiosteal injection of PDLSC-derived EVs (1 mg/kg) on the tension side. The results showed that treatment with PDLSC-derived EVs effectively enhanced OTM and promoted osteogenesis on the tension side, including increasing trabecular bone parameters and promoting the expression of osteogenic-related biomarkers (OCN and OPN). More interestingly, we identified several mechano-sensitive miRNAs enriched in PDLSC-derived EVs by high-throughput miRNA sequencing. Bioinformatics analysis indicated that they were related to various osteogenesis-related signaling pathways. Therefore, PDLSC-derived EVs could improve the efficiency of OTM by enhancing tension-induced osteogenesis of osteoblasts. Our study may provide potential evidence for the promoting effects of PDLSC-derived EVs on osteogenesis and offer new insights into the development of treatment strategies for enhancing osteogenesis in orthodontic treatment and other metabolic bone diseases.
Collapse
Affiliation(s)
- Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Mi Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiming Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Ziyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Jialiang Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yulin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Gong X, Sun S, Yang Y, Huang X, Gao X, Jin A, Xu H, Wang X, Liu Y, Liu J, Dai Q, Jiang L. Osteoblastic STAT3 Is Crucial for Orthodontic Force Driving Alveolar Bone Remodeling and Tooth Movement. J Bone Miner Res 2023; 38:214-227. [PMID: 36370067 DOI: 10.1002/jbmr.4744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
Mechanical force is essential to shape the internal architecture and external form of the skeleton by regulating the bone remodeling process. However, the underlying mechanism of how the bone responds to mechanical force remains elusive. Here, we generated both orthodontic tooth movement (OTM) model in vivo and a cyclic stretch-loading model in vitro to investigate biomechanical regulation of the alveolar bone. In this study, signal transducer and activator of transcription 3 (STAT3) was screened as one of the mechanosensitive proteins by protein array analysis of cyclic stretch-loaded bone mesenchymal stem cells (BMSCs) and was also proven to be activated in osteoblasts in response to the mechanical force during OTM. With an inducible osteoblast linage-specific Stat3 knockout model, we found that Stat3 deletion decelerated the OTM rate and reduced orthodontic force-induced bone remodeling, as indicated by both decreased bone resorption and formation. Both genetic deletion and pharmacological inhibition of STAT3 in BMSCs directly inhibited mechanical force-induced osteoblast differentiation and impaired osteoclast formation via osteoblast-osteoclast cross-talk under mechanical force loading. According to RNA-seq analysis of Stat3-deleted BMSCs under mechanical force, matrix metalloproteinase 3 (Mmp3) was screened and predicted to be a downstream target of STAT3. The luciferase and ChIP assays identified that Stat3 could bind to the Mmp3 promotor and upregulate its transcription activity. Furthermore, STAT3-inhibitor decelerated tooth movement through inhibition of the bone resorption activity, as well as MMP3 expression. In summary, our study identified the mechanosensitive characteristics of STAT3 in osteoblasts and highlighted its critical role in force-induced bone remodeling during orthodontic tooth movement via osteoblast-osteoclast cross-talk. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xinyi Gong
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xijun Wang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qinggang Dai
- The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Seki Y, Takebe H, Mizoguchi T, Nakamura H, Iijima M, Irie K, Hosoya A. Differentiation ability of Gli1 + cells during orthodontic tooth movement. Bone 2023; 166:116609. [PMID: 36371039 DOI: 10.1016/j.bone.2022.116609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Orthodontic tooth movement (OTM) induces bone formation on the alveolar bone of the tension side; however, the mechanism of osteoblast differentiation is not fully understood. Gli1 is an essential transcription factor for hedgehog signaling and functions in undifferentiated cells during embryogenesis. In this study, we examined the differentiation of Gli1+ cells in the periodontal ligament (PDL) during OTM using a lineage-tracing analysis. After the final administration of tamoxifen for 2 days to 8-week-old Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice, Gli1/Tomato+ cells were rarely observed near endomucin+ blood vessels in the PDL. Osteoblasts lining the alveolar bone did not exhibit Gli1/Tomato fluorescence. To move the first molar of iGli1/Tomato mice medially, nickel-titanium closed-coil springs were attached between the upper anterior alveolar bone and the first molar. Two days after OTM initiation, the number of Gli1/Tomato+ cells increased along with numerous PCNA+ cells in the PDL of the tension side. As some Gli1/Tomato+ cells exhibited positive expression of osterix, an osteoblast differentiation marker, Gli1+ cells probably differentiated into osteoblast progenitor cells. On day 10, the newly formed bone labeled by calcein administration during OTM was detected on the surface of the original alveolar bone of the tension side. Gli1/Tomato+ cells expressing osterix localized to the surface of the newly formed bone. In contrast, in the PDL of the compression side, Gli1/Tomato+ cells proliferated before day 10 and expressed type I collagen, suggesting that the Gli1+ cells also differentiated into fibroblasts. Collectively, these results demonstrate that Gli1+ cells in the PDL can differentiate into osteoblasts at the tension side and may function in bone remodeling as well as fibril formation in the PDL during OTM.
Collapse
Affiliation(s)
- Yuri Seki
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan; Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Kazuharu Irie
- Division of Anatomy, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
13
|
Zhai M, Cui S, Li L, Cheng C, Zhang Z, Liu J, Wei F. Mechanical Force Modulates Alveolar Bone Marrow Mesenchymal Cells Characteristics for Bone Remodeling during Orthodontic Tooth Movement through Lactate Production. Cells 2022; 11:cells11233724. [PMID: 36496983 PMCID: PMC9738738 DOI: 10.3390/cells11233724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Orthodontic tooth movement (OTM) relies on mechanical force-induced bone remodeling. As a metabolic intermediate of glycolysis, lactate has recently been discovered to participate in bone remodeling by serving as a signaling molecule. However, whether lactate could respond to mechanical stimulus during OTM, as well as whether lactate has an impact on the alveolar bone remodeling during orthodontics, remain to be further elucidated. In the current study, we observed physiologically elevated production of lactate along with increased osteogenic differentiation, proliferation, and migration of alveolar bone marrow mesenchymal cells (ABMMCs) under mechanical force. Inhibition of lactate, induced by cyclic mechanical stretch by GNE-140, remarkably suppressed the osteogenic differentiation, proliferation, and migration, yet enhanced apoptosis of ABMMCs. Mechanistically, these regulatory effects of lactate were mediated by histone lactylation. Taken together, our results suggest that force-induced lactate is involved in controlling bone remodeling-related cellular activities in ABMMCs and plays a vital role in the alveolar bone remodeling during OTM. Our findings indicate that lactate might be a critical modulator for alveolar bone remodeling during OTM, providing a novel therapeutic target for the purpose of more effectively controlling tooth movement and improving the stability of orthodontic results.
Collapse
|
14
|
Roth DM, Souter K, Graf D. Craniofacial sutures: Signaling centres integrating mechanosensation, cell signaling, and cell differentiation. Eur J Cell Biol 2022; 101:151258. [PMID: 35908436 DOI: 10.1016/j.ejcb.2022.151258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022] Open
Abstract
Cranial sutures are dynamic structures in which stem cell biology, bone formation, and mechanical forces interface, influencing the shape of the skull throughout development and beyond. Over the past decade, there has been significant progress in understanding mesenchymal stromal cell (MSC) differentiation in the context of suture development and genetic control of suture pathologies, such as craniosynostosis. More recently, the mechanosensory function of sutures and the influence of mechanical signals on craniofacial development have come to the forefront. There is currently a gap in understanding of how mechanical signals integrate with MSC differentiation and ossification to ensure appropriate bone development and mediate postnatal growth surrounding sutures. In this review, we discuss the role of mechanosensation in the context of cranial sutures, and how mechanical stimuli are converted to biochemical signals influencing bone growth, suture patency, and fusion through mediation of cell differentiation. We integrate key knowledge from other paradigms where mechanosensation forms a critical component, such as bone remodeling and orthodontic tooth movement. The current state of the field regarding genetic, cellular, and physiological mechanisms of mechanotransduction will be contextualized within suture biology.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Katherine Souter
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Thant L, Kakihara Y, Kaku M, Kitami M, Kitami K, Mizukoshi M, Maeda T, Saito I, Saeki M. Involvement of Rab11 in osteoblastic differentiation: Its up-regulation during the differentiation and by tensile stress. Biochem Biophys Res Commun 2022; 624:16-22. [DOI: 10.1016/j.bbrc.2022.07.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
|
16
|
Wang C, Yang Q, Han Y, Liu H, Wang Y, Huang Y, Zheng Y, Li W. A reduced level of the long non-coding RNA SNHG8 activates the NF-kappaB pathway by releasing functional HIF-1alpha in a hypoxic inflammatory microenvironment. Stem Cell Res Ther 2022; 13:229. [PMID: 35659362 PMCID: PMC9166574 DOI: 10.1186/s13287-022-02897-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A series of biochemical responses, including hypoxia and aseptic inflammation, occur in periodontal ligament cells (PDLCs) during periodontal tissue remodeling of orthodontic tooth movement (OTM). However, the role of long non-coding RNA (lncRNA) in these responses is still largely unknown. We investigated the role of the lncRNA SNHG8 in hypoxic and inflammatory responses during OTM and explored the underlying mechanisms. METHODS The expression pattern of SNHG8, and hypoxic and inflammatory responses under compressive force were analyzed by qRT-PCR, immunohistochemistry, and western blotting, in vivo and in vitro. The effect of overexpression or knockdown of SNHG8 on the nuclear factor-kappaB (NF-κB) pathway was evaluated. RNA sequencing was performed for mechanistic analysis. The interaction between SNHG8 and hypoxia-inducible factor (HIF)-1α was studied using catRAPID, RNA immunoprecipitation, and RNA pulldown assays. The effect of the SNHG8-HIF-1α interaction on the NF-κB pathway was determined by western blotting. RESULTS The NF-κB pathway was activated, and HIF-1α release was stabilized, in PDLCs under compressive force as well as in OTM model rats. The SNHG8 level markedly decreased both in vivo and in vitro. Overexpression of SNHG8 decreased the expression levels of inflammatory cytokines, the phosphorylation of p65, and the degradation of IκBα in PDLCs, whereas knockdown of SNHG8 reversed these effects. Mechanically, RNA sequencing showed that differentially expressed genes were enriched in cellular response to hypoxia after SNHG8 overexpression. SNHG8 binds to HIF-1α, thus preventing HIF-1 from activating downstream genes, including those related to the NF-κB pathway. CONCLUSION SNHG8 binds to HIF-1α. During OTM, the expression of SNHG8 dramatically decreased, releasing free functional HIF-1α and activating the downstream NF-κB pathway. These data suggest a novel lncRNA-regulated mechanism during periodontal tissue remodeling in OTM.
Collapse
Affiliation(s)
- Chenxin Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yue Wang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
17
|
Liu H, Huang Y, Yang Y, Han Y, Jia L, Li W. Compressive force-induced LincRNA-p21 inhibits mineralization of cementoblasts by impeding autophagy. FASEB J 2021; 36:e22120. [PMID: 34958157 DOI: 10.1096/fj.202101589r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
The mineralization capability of cementoblasts is the foundation for repairing orthodontic treatment-induced root resorption. It is essential to investigate the regulatory mechanism of mineralization in cementoblasts under mechanical compression to improve orthodontic therapy. Autophagy has a protective role in maintaining cell homeostasis under environmental stress and was reported to be involved in the mineralization process. Long noncoding RNAs are important regulators of biological processes, but their functions in compressed cementoblasts during orthodontic tooth movement remain unclear. In this study, we showed that compressive force downregulated the expression of mineralization-related markers. LincRNA-p21 was strongly enhanced by compressive force. Overexpression of lincRNA-p21 downregulated the expression of mineralization-related markers, while knockdown of lincRNA-p21 reversed the compressive force-induced decrease in mineralization. Furthermore, we found that autophagy was impeded in compressed cementoblasts. Then, overexpression of lincRNA-p21 decreased autophagic activity, while knockdown of lincRNA-p21 reversed the autophagic process decreased by mechanical compression. However, the autophagy inhibitor 3-methyladenine abolished the lincRNA-p21 knockdown-promoted mineralization, and the autophagy activator rapamycin rescued the mineralization inhibited by lincRNA-p21 overexpression. Mechanistically, the direct binding between lincRNA-p21 and FoxO3 blocked the expression of autophagy-related genes. In a mouse orthodontic tooth movement model, knockdown of lincRNA-p21 rescued the impeded autophagic process in cementoblasts, enhanced cementogenesis, and alleviated orthodontic force-induced root resorption. Overall, compressive force-induced lincRNA-p21 inhibits the mineralization capability of cementoblasts by impeding the autophagic process.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|