1
|
Ghirotto B, Gonçalves LE, Ruder V, James C, Gerasimova E, Rizo T, Wend H, Farrell M, Gerez JA, Prymaczok NC, Kuijs M, Shulman M, Hartebrodt A, Prots I, Gessner A, Zunke F, Winkler J, Blumenthal DB, Theis FJ, Riek R, Günther C, Neurath M, Gupta P, Winner B. TNF- α disrupts the malate-aspartate shuttle, driving metabolic rewiring in iPSC-derived enteric neural lineages from Parkinson's Disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.644826. [PMID: 40196623 PMCID: PMC11974853 DOI: 10.1101/2025.03.25.644826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation. These alterations drive mitochondrial dysfunction, characterizing metabolic impairment under cytokine stress. Interestingly, targeting glutamate metabolism with Chicago Sky Blue 6B restores mitochondrial function, reversing TNF-α-driven metabolic disruption. Our findings position the ENS as a central player in PD pathogenesis, establishing a direct link between cytokines, α-syn accumulation, metabolic stress and mitochondrial dysfunction. By uncovering a previously unrecognized metabolic vulnerability in the ENS, we highlight its potential as a therapeutic target for early PD intervention.
Collapse
|
2
|
Huang J, Long X, Chen C. A real-world safety surveillance study of aducanumab through the FDA adverse event reporting system. Front Pharmacol 2025; 16:1522058. [PMID: 40170724 PMCID: PMC11960500 DOI: 10.3389/fphar.2025.1522058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
Background Alzheimer's disease poses a major public health challenge, with aducanumab's approval in 2021 as the first disease-modifying therapy raising important safety considerations. This study analyzed the Food Drug Administration Adverse Event Reporting System (FAERS) database to evaluate aducanumab's real-world safety profile and identify potential risk factors. Methods We conducted a comprehensive pharmacovigilance study using the FAERS database from January 2004 to June 2024, analyzing 510 aducanumab-associated reports from integrated databases containing over 18 million demographic records and 66 million drug records. Safety signals were evaluated using four complementary disproportionality methods: Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS). Analyses were stratified by age and sex, with adverse events examined at both System Organ Class (SOC) and Preferred Term (PT) levels using SAS 9.4. Results Among 510 aducanumab-associated adverse event reports, predominantly from elderly patients (55.49% aged ≥65 years), nervous system disorders were the most frequent (53.24%, n = 583). Amyloid related imaging abnormality-oedema/effusion (ARIA-E) and Amyloid related imaging abnormality-microhaemorrhages and haemosiderin deposits (ARIA-H) emerged as the most significant safety signals (ROR: 53,538.3 and 38,187.9, respectively). Sex-stratified analysis showed comparable safety profiles between males and females, with ARIA-E related events, ARIA-H related events, maintaining strong signals across all age groups, particularly in patients ≥75 years. The median time to adverse event onset was 146.0 days (IQR: 80.0-195.0). Temporal analysis revealed increasing signal strength for ARIA-related events from 2004-2024, with notable intensification during 2022-2023. Conclusion Our real-world analysis identified ARIA-related events as the primary safety concern for aducanumab, typically occurring within 146 days of treatment initiation, with comparable safety profiles across sex but heightened risks in patients ≥75 years. These findings support aducanumab's viability as a therapeutic option while emphasizing the critical importance of rigorous monitoring protocols, particularly for ARIA events during the first year of treatment.
Collapse
Affiliation(s)
- Jingjing Huang
- Cardiac Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohong Long
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Abdeen AH, Trist BG, Nikseresht S, Harwood R, Roudeau S, Rowlands BD, Kreilaus F, Cottam V, Mor D, Richardson M, Siciliano J, Forkgen J, Schaffer G, Genoud S, Li AA, Proschogo N, Antonio B, Falkenberg G, Brueckner D, Kysenius K, Liddell JR, Fat SCM, Wu S, Fifita J, Lockwood TE, Bishop DP, Blair I, Ortega R, Crouch PJ, Double KL. Parkinson-like wild-type superoxide dismutase 1 pathology induces nigral dopamine neuron degeneration in a novel murine model. Acta Neuropathol 2025; 149:22. [PMID: 40042537 PMCID: PMC11882636 DOI: 10.1007/s00401-025-02859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Abstract
Atypical wild-type superoxide dismutase 1 (SOD1) protein misfolding and deposition occurs specifically within the degenerating substantia nigra pars compacta (SNc) in Parkinson disease. Mechanisms driving the formation of this pathology and relationship with SNc dopamine neuron health are yet to be fully understood. We applied proteomic mass spectrometry and synchrotron-based biometal quantification to post-mortem brain tissues from the SNc of Parkinson disease patients and age-matched controls to uncover key factors underlying the formation of wild-type SOD1 pathology in this disorder. We also engineered two of these factors - brain copper deficiency and upregulated SOD1 protein levels - into a novel mouse strain, termed the SOCK mouse, to verify their involvement in the development of Parkinson-like wild-type SOD1 pathology and their impact on dopamine neuron health. Soluble SOD1 protein in the degenerating Parkinson disease SNc exhibited altered post-translational modifications, which may underlie changes to the enzymatic activity and aggregation of the protein in this region. These include decreased copper binding, dysregulation of physiological glycosylation, and atypical oxidation and glycation of key SOD1 amino acid residues. We demonstrated that the biochemical profile introduced in SOCK mice promotes the same post-translational modifications and the development of Parkinson-like wild-type SOD1 pathology in the midbrain and cortex. This pathology accumulates progressively with age and is accompanied by nigrostriatal degeneration and dysfunction, which occur in the absence of α-synuclein deposition. These mice do not exhibit weight loss nor spinal cord motor neuron degeneration, distinguishing them from transgenic mutant SOD1 mouse models. This study provides the first in vivo evidence that mismetallation and altered post-translational modifications precipitates wild-type SOD1 misfolding, dysfunction, and deposition in the Parkinson disease brain, which may contribute to SNc dopamine neuron degeneration. Our data position this pathology as a novel drug target for this disorder, with a particular focus on therapies capable of correcting alterations to SOD1 post-translational modifications.
Collapse
Affiliation(s)
- Amr H Abdeen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Sara Nikseresht
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Richard Harwood
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 33170, Gradignan, France
| | - Benjamin D Rowlands
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Fabian Kreilaus
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - David Mor
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Miriam Richardson
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Joel Siciliano
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Julia Forkgen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Greta Schaffer
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Sian Genoud
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Anne A Li
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Nicholas Proschogo
- Mass Spectrometry Facility, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bernadeth Antonio
- Mass Spectrometry Facility, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Kai Kysenius
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jeffrey R Liddell
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sandrine Chan Moi Fat
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Sharlynn Wu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Jennifer Fifita
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ian Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 33170, Gradignan, France
| | - Peter J Crouch
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Badran M, Gozal D. Intermittent Hypoxia as a Model of Obstructive Sleep Apnea: Present and Future. Sleep Med Clin 2025; 20:93-102. [PMID: 39894602 PMCID: PMC11788578 DOI: 10.1016/j.jsmc.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Intermittent hypoxia (IH) is an extremely frequent condition characterized by recurrent episodes of reduced oxygen levels interspersed with periods of normoxia, often seen in conditions like obstructive sleep apnea (OSA) and lung diseases. Among OSA patients, IH occurs due to periodic airway obstructions during sleep, leading to transient drops in blood oxygen saturation followed by reoxygenation. Future directions involve standardizing IH protocols, incorporating patient variability into the IH profiles being administered, and utilizing strategically developed animal models to enhance the reliability and applicability of IH-related research.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Pediatrics, University of Missouri, 7 Hospital Drive, Medical Science Building, Room MA104C, Columbia, MO 65202, USA; Department of Medical Physiology and Pharmacology, University of Missouri, Columbia, MO, USA.
| | - David Gozal
- Office of the Dean and Department of Pediatrics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
5
|
Deckha M, Michel M, Azilagbetor D, Blattner C, Cajiga Morales RM, Davies G, Elger B, Faizee S, Fox M, Gerritsen V, Heuss A, Kämpfen L, Louis-Maerten E, Lüthi N, Milford A, Müller ND, Persson K, Ritskes-Hoitinga M, Rothen-Rutishauser B, Rüttimann A, Stoykova K, Stucki S, Zemanova MA. Accelerating Animal Replacement: How Universities Can Lead - Results of a One-Day Expert Workshop in Zurich, Switzerland. Altern Lab Anim 2025; 53:106-118. [PMID: 40091303 DOI: 10.1177/02611929251317434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This report is a result of an interdisciplinary workshop held at the Collegium Helveticum in Zurich, Switzerland in February 2024, in which ideas for accelerating NAMs (New Approach Methodologies) in Swiss universities were shared and discussed. Due to regional differences in university organisation and funding structures, not all recommendations will be transferable to all regions worldwide. All participants were qualified to contribute to the discussion, due to their knowledge and experience of the Three Rs, in particular with regard to their implementation. The workshop participants believed that universities, which play a pioneering role in so many other areas, should also exploit their innovative potential in the field of animal-free research. The workshop uncovered four areas that would need to be addressed in order to achieve a significant change in university science culture and do more justice to the Three Rs, namely: language - innovative framing (pro-replacement framing in official university statements); knowledge transfer - communicating innovative findings in teaching (redirecting curriculum); change of values within science faculties; and structured implementation and well-coordinated planning of the transformation (establishment of a 'transition unit'). Specific strategies for implementing these four areas are outlined. In addition, we discuss why the replacement of animal testing should be an essential goal for universities, why this goal has not yet been achieved, and why concerted efforts toward change are required.
Collapse
Affiliation(s)
| | - Margot Michel
- Faculty of Law, University of Zurich, Zurich, Switzerland
| | - David Azilagbetor
- Faculty of Psychology, University of Basel, Basel, Switzerland and Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Charlotte Blattner
- Center for Public Law, Faculty of Law, University of Lausanne, Lausanne, Switzerland
| | | | | | - Bernice Elger
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland and Center for Legal Medicine, University of Geneva, Geneva, Switzerland
| | - Sara Faizee
- Faculty of Law, University of Zurich, Zurich, Switzerland
| | - Marie Fox
- School of Law and Social Justice, University of Liverpool, Liverpool, UK
| | | | | | - Laura Kämpfen
- Office for Animal Welfare and 3R, University of Zurich, Zurich, Switzerland
| | | | - Nicole Lüthi
- Faculty of Law, University of Zurich, Zurich, Switzerland
| | - Aoife Milford
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Nico Dario Müller
- University of Basel, Philosophical Seminar, University of Basel, Basel, Switzerland
| | - Kirsten Persson
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Merel Ritskes-Hoitinga
- Utrecht University Institute for Risk Assessment Sciences, Population Health Sciences, Utrecht, the Netherlands
- Department of Clinical Medicine, Aarhus Universitet, Aarhus, Denmark
| | | | | | | | - Saskia Stucki
- Max-Planck Institute for Comparative Public Law and International Law, Heidelberg, Germany
| | - Miriam A Zemanova
- Environmental Sciences and Humanities Institute, Universite de Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Osmanovic Barilar J, Papic V, Farkas V, Rubic I, Meglic P, Bagaric R, Babic Perhoc A, Virag D, Homolak J, Salkovic-Petrisic M, Knezovic A. Modeling of Parkinson's disease by intrastriatal administration of streptozotocin. Neuropharmacology 2025; 265:110246. [PMID: 39643239 DOI: 10.1016/j.neuropharm.2024.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Parkinson's disease (PD) is a highly heterogeneous and therefore a possible cause of translation failure of drugs from animal testing to human treatments can be because existing models cannot replicate the entire spectrum of PD features. One of the theories of the origin of neurodegenerative diseases assumes metabolic dysfunction as a common fundamental thread of disease development. Intracerebroventricular administration of streptozotocin induces insulin resistance in the brain (Alzheimer's disease animal model). The aim of this project is to examine whether metabolic dysfunction caused by direct application of streptozotocin to brain region affected in PD (striatum) can induce characteristic PD symptoms. Adult male Wistar rats were given streptozotocin bilaterally or unilaterally in striatum. PET scan, cognitive, behavioural and motoric functions were tested one month after administration. Metabolite and protein analysis was done by untargeted metabolomics, ELISA and Western blot. Rats administered bilaterally showed motoric deficit, cognitive deficit of spatial learning and memory, fear conditioned and recognition memory, and anxiety-like behaviour, accompanied by impaired brain glucose uptake and metabolism. The results provide first evidence that bilateral intrastriatal administration of streptozotocin (particularly lower dose) can cause development of the hallmark PD symptoms. As metabolic dysfunction is increasingly associated with PD, an animal model with hypermetabolism in the early-on could be a better PD model for testing diverse therapeutics and the results could be better translated to humans. Further characterization is needed for understanding possible underlying mechanism and development of a new animal model for unique PD endophenotype expressing motoric, cognitive and metabolic symptomatology.
Collapse
Affiliation(s)
- Jelena Osmanovic Barilar
- Department of Pharmacology, School of Medicine University of Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine University of Zagreb, Croatia
| | - Vito Papic
- Department of Pharmacology, School of Medicine University of Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine University of Zagreb, Croatia
| | - Vladimir Farkas
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Ivana Rubic
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Croatia
| | - Patrik Meglic
- Department of Pharmacology, School of Medicine University of Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine University of Zagreb, Croatia
| | - Robert Bagaric
- Department of Experimental Physics, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, School of Medicine University of Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine University of Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, School of Medicine University of Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine University of Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, School of Medicine University of Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine University of Zagreb, Croatia; M3 Research Institute & Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Germany
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, School of Medicine University of Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine University of Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, School of Medicine University of Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine University of Zagreb, Croatia.
| |
Collapse
|
7
|
Poceviciute I, Brazaityte A, Buisas R, Vengeliene V. Scopolamine animal model of memory impairment. Behav Brain Res 2025; 479:115344. [PMID: 39566583 DOI: 10.1016/j.bbr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
In this study, we reassessed the suitability of a commonly used pharmacological animal model of Alzheimer's disease (AD) - scopolamine-induced memory impairment. The goal of the study was to explore if this animal model induces other behavioral changes associated with AD. One of the key behavioral features of AD, manifesting already during the early stages of the illness, is apathy-like behavior. We also evaluated how behavioral alterations induced by scopolamine compare to those seen in healthy aging animals. To achieve these goals, locomotor activity and short-term memory of young male Wistar rats were tested in the open field, novel object recognition (NOR) and T-maze spontaneous alternation tests before, during and after 21 daily administrations of scopolamine. Three-, ten- and nineteen-month-old male and female rats were used to measure age-related changes in these behaviors. Our data showed that although both scopolamine treatment and aging reduced the number of approaches to the objects and their exploration time during the NOR test, correlation with impaired object recognition memory was only observed in the scopolamine treated animals. Furthermore, treatment with scopolamine significantly increased the locomotor activity, which could be observed even one week after treatment discontinuation. Contrary, locomotor activity in older rats was significantly lower than that of younger rats. These findings demonstrate that the animal model of scopolamine-induced memory impairment fails to incorporate apathy-like symptoms characteristic to the AD and age-related reduction in physical activity of older rats.
Collapse
Affiliation(s)
- Ieva Poceviciute
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Agne Brazaityte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Rokas Buisas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Valentina Vengeliene
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania.
| |
Collapse
|
8
|
García SR, Welsh C, Di Cara NH, Sterratt DC, Romanò N, Stefan MI. Data Hazards as An Ethical Toolkit for Neuroscience. NEUROETHICS-NETH 2025; 18:15. [PMID: 39980970 PMCID: PMC11835915 DOI: 10.1007/s12152-024-09580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/17/2024] [Indexed: 02/22/2025]
Abstract
The Data Hazards framework (Zelenka, Di Cara, & Contributors, 2024) is intended to encourage thinking about the ethical implications of data science projects. It takes the form of community-designed data hazard labels, similar to warning labels on chemicals, that can encourage reflection and discussion on what ethical risks are associated with a project and how they can be mitigated. In this article, we explain how the Data Hazards framework can apply to neuroscience. We demonstrate how the hazard labels can be applied to one of our own projects, on the computational modelling of postsynaptic mechanisms. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12152-024-09580-3.
Collapse
Affiliation(s)
- Susana Román García
- Centre for Discovery Brain Sciences, College of Medicine & Veterinary Medicine, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Ceilidh Welsh
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Nina H. Di Cara
- School of Psychological Science, University of Bristol, Bristol, UK
| | - David C. Sterratt
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Nicola Romanò
- Centre for Discovery Brain Sciences, College of Medicine & Veterinary Medicine, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, Haining, PRC China
| | - Melanie I. Stefan
- Centre for Discovery Brain Sciences, College of Medicine & Veterinary Medicine, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Department of Medicine, Medical School Berlin, Berlin, DE Germany
| |
Collapse
|
9
|
Old V, Davies M, Papamargaritis D, Choudhary P, Watson E. The Effects of Glucagon-Like Peptide-1 Receptor Agonists on Mitochondrial Function Within Skeletal Muscle: A Systematic Review. J Cachexia Sarcopenia Muscle 2025; 16:e13677. [PMID: 39815782 PMCID: PMC11735953 DOI: 10.1002/jcsm.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone. However, up to 40% of the weight lost with GLP-1 RAs comes from lean body mass, raising concerns about potential adverse effects on skeletal muscle function. Mitochondrial dysfunction, characterized by reduced mitochondrial size and activity, is prevalent in individuals with obesity and T2DM and is a known contributor to muscle wasting in ageing and some chronic diseases. This systematic review investigates the impact of GLP-1-based therapies on skeletal muscle mitochondrial function in individuals with obesity and T2DM or in related animal and cell models. METHODS A comprehensive search of MEDLINE, Scopus, CINAHL and clinicaltrials.gov was conducted. Inclusion criteria included randomized controlled trials, randomized crossover trials, cluster randomized control trials and basic science studies involving any GLP-1 RA or GLP-1/GIP dual agonist. Outcomes of interest were skeletal muscle respiratory function either in the form of measurements of mass, number, content, oxidative capacity/respiratory function, mitochondrial dynamics, mitochondrial biogenesis and mitophagy. RESULTS Eight studies were eligible for analysis; no human studies were identified. All of the included studies used GLP-1 RAs (single agonists) as intervention. The emerging evidence suggests that GLP-1 RAs increase mitochondrial area, number and morphology (i.e., reduces swelling). Data are conflicting on the effect of GLP-1 RAs upon mitochondrial mass, respiration and the expression of uncoupling proteins and PGC-1α. Data also demonstrate muscle specific (i.e., soleus vs. extensor digitorum longus) responses to GLP-1 RAs. CONCLUSION GLP-1 RAs appear to have a positive effect upon mitochondria area, number and morphology, but effects upon other aspects of mitochondrial health remain inconclusive. Data are very limited and solely presented in animal and in vitro models. Future studies should be conducted in human populations in order to begin to understand the effect of GLP-1 RAs and GLP-1-based therapies on human skeletal muscle mitochondria.
Collapse
Affiliation(s)
- Victoria J. Old
- Department of Cardiovascular Sciences, College of Life SciencesUniversity of LeicesterLeicesterUK
| | - Melanie J. Davies
- Diabetes Research Centre, College of Life SciencesUniversity of LeicesterLeicesterUK
| | | | - Pratik Choudhary
- Diabetes Research Centre, College of Life SciencesUniversity of LeicesterLeicesterUK
| | - Emma L. Watson
- Department of Cardiovascular Sciences, College of Life SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
10
|
Zhao Z, Wu X, Zhang T, Zhou M, Liu S, Yang R, Li JP. Evaluation of Multispecific Drugs Based on Patient-Derived Immunocompetent Tumor Organoids. Chembiochem 2025; 26:e202400731. [PMID: 39800663 DOI: 10.1002/cbic.202400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Indexed: 01/24/2025]
Abstract
The evolution of antitumor drug development has transitioned from single-agent chemotherapy to targeted therapy, immunotherapy, and more recently, multispecific drugs. These innovative drugs target multiple cellular or molecular pathways simultaneously, offering a more comprehensive anticancer approach and addressing some of the limitations inherent in traditional monotherapies. However, preclinical assessment of multispecific drugs remains challenging, as conventional tumor models often lack the necessary complexity to accurately reflect the interactions between various cell types and targets. Patient-derived immunocompetent tumor organoids (PDITOs), which incorporate both tumor cells and immune cells, present a promising platform for the evaluation of these drugs. Beyond their use in drug evaluation, PDITOs can also be utilized in personalized drug screening and predicting patient-specific treatment outcomes, thus advancing both multispecific drug development and precision medicine. This perspective discusses the current landscape of multispecific drug development and the methodologies for constructing PDITOs. It also addresses the associated challenges and introduces the concept of employing these organoids to optimize the evaluation and rational design of multispecific drug therapies.
Collapse
Affiliation(s)
- Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Tianyang Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
- University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Meng Zhou
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Siyang Liu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
11
|
Imani Farahani N, Lin L, Nazir S, Naderi A, Rokos L, McIntosh AR, Julian LM. Advances in physiological and clinical relevance of hiPSC-derived brain models for precision medicine pipelines. Front Cell Neurosci 2025; 18:1478572. [PMID: 39835290 PMCID: PMC11743572 DOI: 10.3389/fncel.2024.1478572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Precision, or personalized, medicine aims to stratify patients based on variable pathogenic signatures to optimize the effectiveness of disease prevention and treatment. This approach is favorable in the context of brain disorders, which are often heterogeneous in their pathophysiological features, patterns of disease progression and treatment response, resulting in limited therapeutic standard-of-care. Here we highlight the transformative role that human induced pluripotent stem cell (hiPSC)-derived neural models are poised to play in advancing precision medicine for brain disorders, particularly emerging innovations that improve the relevance of hiPSC models to human physiology. hiPSCs derived from accessible patient somatic cells can produce various neural cell types and tissues; current efforts to increase the complexity of these models, incorporating region-specific neural tissues and non-neural cell types of the brain microenvironment, are providing increasingly relevant insights into human-specific neurobiology. Continued advances in tissue engineering combined with innovations in genomics, high-throughput screening and imaging strengthen the physiological relevance of hiPSC models and thus their ability to uncover disease mechanisms, therapeutic vulnerabilities, and tissue and fluid-based biomarkers that will have real impact on neurological disease treatment. True physiological understanding, however, necessitates integration of hiPSC-neural models with patient biophysical data, including quantitative neuroimaging representations. We discuss recent innovations in cellular neuroscience that can provide these direct connections through generative AI modeling. Our focus is to highlight the great potential of synergy between these emerging innovations to pave the way for personalized medicine becoming a viable option for patients suffering from neuropathologies, particularly rare epileptic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Negin Imani Farahani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa Lin
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shama Nazir
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Alireza Naderi
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Leanne Rokos
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Toronto, ON, Canada
| | - Anthony Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M. Julian
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Monzavi SM, Muhammadnejad S, Mansouri V, Ashraf H, Ahmadbeigi N. Unwanted disorders and xenogeneic graft-versus-host disease in experimental immunodeficient mice: How to evaluate and how to report. Animal Model Exp Med 2025; 8:20-29. [PMID: 39601130 PMCID: PMC11798742 DOI: 10.1002/ame2.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human-derived tumor models are essential for preclinical development of new anticancer drug entities. Generating animal models bearing tumors of human origin, such as patient-derived or cell line-derived xenograft tumors, is dependent on immunodeficient strains. Tumor-bearing immunodeficient mice are susceptible to developing unwanted disorders primarily irrelevant to the tumor nature; and if get involved with such disorders, reliability of the study results will be undermined, inevitably confounding the research in general. Therefore, a rigorous health surveillance and clinical monitoring system, along with the establishment of a strictly controlled barrier facility to maintain a pathogen-free state, are mandatory. Even if all pathogen control and biosafety measures are followed, there are various noninfectious disorders capable of causing tissue and multiorgan damage in immunodeficient animals. Therefore, the researchers should be aware of sentinel signs to carefully monitor and impartially report them. This review discusses clinical signs of common unwanted disorders in experimental immunodeficient mice, and how to examine and report them.
Collapse
Affiliation(s)
- Seyed Mostafa Monzavi
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- INSERM U981Institut Gustave RoussyVillejuifFrance
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Hami Ashraf
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
13
|
Thoma A, Alomosh R, Bond HL, Akter-Miah T, Al-Shanti N, Degens H, Pekovic-Vaughan V, Lightfoot AP. A combination of major histocompatibility complex (MHC) I overexpression and type I interferon induce mitochondrial dysfunction in human skeletal myoblasts. J Cell Physiol 2025; 240:e31458. [PMID: 39382090 DOI: 10.1002/jcp.31458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
The overexpression of major histocompatibility complex (MHC) I on the surface of muscle fibers is a characteristic hallmark of the idiopathic inflammatory myopathies (IIMs), collectively termed myositis. Alongside MHC-I overexpression, subtypes of myositis, display a distinct type I interferon (IFN) signature. This study examined the combinational effects of elevated MHC-I and type I IFNs (IFNα/β) on mitochondrial function, as mitochondrial dysfunction is often seen in IIMs. Human skeletal muscle myoblasts were transfected with an MHC-I isoform using the mammalian HLA-A2/Kb vector. Mitochondrial respiration, mitochondrial membrane potential, and reactive oxygen/nitrogen species generation were assessed with or without IFNα and IFNβ. We show that MHC-I overexpression in human skeletal muscle myoblasts led to decreased basal glycolysis and mitochondrial respiration, cellular spare respiratory capacity, adenosine triphosphate-linked respiration, and an increased proton leak, which were all exaggerated by type I IFNs. Mitochondrial membrane depolarization was induced by MHC-I overexpression both in absence and presence of type I IFNs. Human myoblasts overexpressing MHC-I showed elevated nitric oxide generation that was abolished when combined with IFN. MHC-I on its own did not result in an increased reactive oxygen species (ROS) production, but IFN on their own, or combined with MHC-I overexpression did induce elevated ROS generation. Surprisingly, we observed no gross changes in mitochondrial reticular structure or markers of mitochondrial dynamics. We present new evidence that MHC-I overexpression and type I IFNs aggravate the effects each has on mitochondrial function in human skeletal muscle cells, providing novel insights into their mechanisms of action and suggesting important implications in the further study of myositis pathogenesis.
Collapse
Affiliation(s)
- Anastasia Thoma
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Razan Alomosh
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Holly L Bond
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Tania Akter-Miah
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Nasser Al-Shanti
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Vanja Pekovic-Vaughan
- Department of Musculoskeletal and Ageing Science, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Adam P Lightfoot
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
14
|
Bhutta ZA, Choi KC. Canine mammary tumors as a promising adjunct preclinical model for human breast cancer research: similarities, opportunities, and challenges. Arch Pharm Res 2025; 48:43-61. [PMID: 39752109 DOI: 10.1007/s12272-024-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Despite significant progress in the field of human breast cancer research and treatment, there is a consistent increase in the incidence rate of 0.5 percent annually, posing challenges in the development of effective novel therapeutic strategies. The failure rate of drugs in clinical trials stands at approximately 95%, primarily attributed to the limitations and lack of reliability of existing preclinical models, such as mice, which do not mimic human tumor biology. This article examines the potential utility of canine mammary tumors as an adjunct preclinical model for investigating human breast cancer. Given the numerous similarities between canine and human breast cancer, canines present a promising alternative model. The discussion delves into the intricate molecular and clinical aspects of human breast cancer and canine mammary tumors, shedding light on the tumors' molecular profiles, identifying specific molecular markers, and the application of radiological imaging modalities. Furthermore, the manuscript addresses the current constraints of preclinical cancer studies, the benefits of using canines as models, and the obstacles linked to the canine mammary tumors model. By concentrating on these elements, this review aims to highlight the viability of canine models in enhancing our understanding and management of human breast cancer.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
15
|
Jaiswal R, Ahmad S, Pandey S, Ali A, Jaiswal R, Yadav R, Yadav R, Ahsan R, Dwivedi T. Innovative approaches to eczema treatment: A review of Fevipiprant and its potential as a new therapeutic agent. Prostaglandins Other Lipid Mediat 2025; 176:106946. [PMID: 39740738 DOI: 10.1016/j.prostaglandins.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Eczema is also known as atopic dermatitis, which goes on to affect the skin as a chronic inflammatory disease. It is associated with a constant feeling of scratchiness, erthyma and disruption of the natural skin barrier. Treatment provided at present may improve some of the symptoms, for instance use of corticosteroids or immunosuppressive agents, however, there is an overwhelming need for better focused and effective methods of treatment with minimal adverse effects. Fevipiprant, a DP2 receptor antagonist, has emerged as a promising agent targeting prostaglandin D2 (PGD2) pathways, which play a crucial role in eczema pathophysiology. This review examines the mechanism of action, pharmacological profile of Fevipiprant and present studies on preclinical and clinical development of Fevipiprant for treatment of eczema. Additionally, we provide a comparison of Fevipiprant with existing treatment options and evaluate its safety and tolerability. The evaluation gives a reason that targeting in the treatment of eczema by the use of Fevipiprant is able to effectively target the DP2 pathway which is associated with a good safetyl however presenting itself as a new treatment option in the management of eczema. Finally, long-term studies are essential to validate the feasibility, safety, and effectiveness of Fevipiprant compared to existing therapies for eczema. Novartis has taken advantage of this stat for comp… given the scarcity of effective therapies for paediatric atopic dermatitis in Japan. Exploring Fevipiprant from the Efficacy Perspective is also required because it will impact how it will enter clinical practice in therapy of eczema in the future.
Collapse
Affiliation(s)
- Rahul Jaiswal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India.
| | - Sageer Ahmad
- Sagar Institute of Technology And Management Department of Pharmacy, Barabanki, Uttar Pradesh, India
| | - Supriya Pandey
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Asad Ali
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Rupali Jaiswal
- Rajarshi Rananjay Sinh College of Pharmacy, Amethi, Uttar Pradesh 227405, India
| | - Reetu Yadav
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Reema Yadav
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| | - Rabiya Ahsan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| | - Tapasya Dwivedi
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
16
|
Mohd Murshid N, Mohd Sahardi NFN, Makpol S. Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies. Int J Mol Sci 2024; 26:241. [PMID: 39796097 PMCID: PMC11719782 DOI: 10.3390/ijms26010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature. This review aims to study the development of an advanced AD model that accurately replicates key AD pathophysiological aspects using cutting-edge biomaterials and microenvironment design. Incorporating biomolecular elements like Tau proteins and beta-amyloid (Aβ) plaques improve the accuracy of illustrating disease mechanisms. The expected results involve creating a solid foundation for high-throughput screening with enhanced scalability, translational significance, and the possibility of speeding up drug discovery. Thus, this review fills the gaps in AD modelling and shows potential for creating precise and efficient drug treatments for AD.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Fatin Nabilah Mohd Sahardi
- Secretariat of Research and Innovation, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
17
|
Irwandi RA, Marruganti C, Collins G, Carvalho JDS, Gilroy D, D’Aiuto F. The translational potential of inflammation-induced skin blister human models in exploring the pathogenesis of periodontitis and its systemic health implications. Front Immunol 2024; 15:1469828. [PMID: 39737182 PMCID: PMC11682961 DOI: 10.3389/fimmu.2024.1469828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Periodontitis is a highly prevalent chronic disease. Despite decades of extensive research on the topic, a complete understanding of its immunopathogenesis, especially when linked to other inflammatory comorbidities, is lacking. Ex vivo human and in vivo animal experiments have shown the host inflammatory response's crucial role in both the disease's onset and its systemic implications. These approaches, however, remain questionable when translating these findings into real-world scenarios linked to periodontitis. A clear need for new in vivo human models is discussed, especially within the context of understanding the host response to key pathogens linked to periodontitis, such as Porphyromonas gingivalis (P. gingivalis). Therefore, a skin blister model was employed to describe the stages of the host immune response in humans after challenges by microbial and/or sterile insults. A novel human challenge model using UV-killed P. gingivalis holds promise in producing new evidence and bridging the gap of the host response to periodontitis and its links with other common chronic diseases.
Collapse
Affiliation(s)
- Rizky Aditya Irwandi
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Crystal Marruganti
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- Unit of Periodontology, Endodontology and Restorative Dentistry, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - George Collins
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jhonatan de Souza Carvalho
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Derek Gilroy
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
18
|
Monticello TM, Potter DM, Huang Q, Hart TK, Shuey D, Troth S, Vergis JM, Tassew N, Glascott P. Do longer duration nonclinical toxicology studies provide predictive clinical safety value? The IQ consortium longer duration nonclinical to clinical translational database. Toxicol Appl Pharmacol 2024; 492:117087. [PMID: 39243825 DOI: 10.1016/j.taap.2024.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The IQ Consortium's DruSafe Leadership Group previously reported results of a nonclinical to clinical translational database for First-In-Human (FIH)-enabling animal toxicology studies. We have completed an additional translational database populated with longer duration (>1 month) animal toxicology studies and longer duration (Phase 2 and beyond) clinical trials. The blinded database was composed of 127 molecules. Animal and clinical data were categorized by organ system and animal model (e.g. rodent, dog). The 2 × 2 contingency table (true positive, false positive, true negative, false negative) was used for statistical analysis and both the positive predictive value (PPV) and negative predictive value (NPV) were determined. As also reported in the FIH database, the NPV was the strongest predictive performance measure at 96 %. The PPV was lower than the FIH database with the rodent at 29 %, dog at 21 % and NHP at 20 %. No new additional target organs were observed in 62 % of the entries. A new target organ was identified in 38 % of the entries, with the majority in a rodent (26 %) and fewer in the dog (8 %) or NHP (12 %). However, new target organ data resulted in only a PPV of 13 %, suggesting that current ICH requirements for longer duration animal general toxicology studies should be re-evaluated and better aligned with the 3Rs. A newer paradigm could include an appropriately justified single animal model for longer duration studies, in addition to utilizing New Approach Methods (NAMs) that would provide translational safety data, but additional research is needed.
Collapse
Affiliation(s)
- Thomas M Monticello
- Translational Safety and Bioanalytical Analysis, Amgen, Thousand Oaks, CA 91320, United States of America
| | - David M Potter
- Independent Statistical Consultant, Bristol, RI 02809, United States of America
| | - Qihong Huang
- Boehringer Ingelheim, Ridgefield, CT, 06879, United States of America
| | - Timothy K Hart
- GlaxoSmithKline, King of Prussia, PA, 19406, United States of America
| | - Dana Shuey
- Toxicology, Incyte Corporation, Wilmington, DE 19803, United States of America
| | - Sean Troth
- Nonclinical Drug Safety, Merck and Co., Inc., Rahway, NJ, 07065, United States of America
| | - James M Vergis
- IQ Consortium, Washington, DC, 20005, United States of America
| | - Nardos Tassew
- Safety Assessment, Genentech, South San Francisco, CA, 92056, United States of America
| | - Peter Glascott
- Preclinical Safety, Sanofi, Bridgewater, NJ, 08807, United States of America.
| |
Collapse
|
19
|
Madden JC, Kandarova H, Neuhaus W, Osborne N, Paini A, Seabra R, Trigwell S. Journeying Through Journals: The Publishing Process and How to Maximise Research Impact. Altern Lab Anim 2024; 52:334-351. [PMID: 39325993 DOI: 10.1177/02611929241286624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Publication is essential to share new ideas, knowledge, or recent findings with those who have an interest in a particular area. Selecting the most appropriate format and timing for dissemination is critical to ensuring the long-term impact of research. However, many researchers, particularly those in the early stages of their career, are unaware of how the publication process works and the different options available for promoting research to maximum effect. Understanding how to maximise impact is particularly important for research using animal models or alternative methods, to make the best use of any animal data generated and reduce animal testing in future. Herein, different publishing models are explained, including anonymised peer review, open review and data sharing initiatives. An overview is given of key resources available to assist authors, reviewers and editors in the process of writing, presenting, reviewing and publishing research. New challenges and opportunities in publishing are discussed, including the potential influence of Artificial Intelligence. A list of 'ten top tips' in publishing for early career researchers is presented, providing advice and recommendations for ensuring a successful and impactful publication record.
Collapse
Affiliation(s)
- Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Science, Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems an der Donnau, Austria
| | | | - Alicia Paini
- esqLABS GmbH, Saterland, Germany
- European Food Safety Authority, Parma, Italy
| | | | | |
Collapse
|
20
|
Chim SM, Howell K, Kokkosis A, Zambrowicz B, Karalis K, Pavlopoulos E. A Human Brain-Chip for Modeling Brain Pathologies and Screening Blood-Brain Barrier Crossing Therapeutic Strategies. Pharmaceutics 2024; 16:1314. [PMID: 39458643 PMCID: PMC11510380 DOI: 10.3390/pharmaceutics16101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The limited translatability of preclinical experimental findings to patients remains an obstacle for successful treatment of brain diseases. Relevant models to elucidate mechanisms behind brain pathogenesis, including cell-specific contributions and cell-cell interactions, and support successful targeting and prediction of drug responses in humans are urgently needed, given the species differences in brain and blood-brain barrier (BBB) functions. Human microphysiological systems (MPS), such as Organ-Chips, are emerging as a promising approach to address these challenges. Here, we examined and advanced a Brain-Chip that recapitulates aspects of the human cortical parenchyma and the BBB in one model. Methods: We utilized human primary astrocytes and pericytes, human induced pluripotent stem cell (hiPSC)-derived cortical neurons, and hiPSC-derived brain microvascular endothelial-like cells and included for the first time on-chip hiPSC-derived microglia. Results: Using Tumor necrosis factor alpha (TNFα) to emulate neuroinflammation, we demonstrate that our model recapitulates in vivo-relevant responses. Importantly, we show microglia-derived responses, highlighting the Brain-Chip's sensitivity to capture cell-specific contributions in human disease-associated pathology. We then tested BBB crossing of human transferrin receptor antibodies and conjugated adeno-associated viruses. We demonstrate successful in vitro/in vivo correlation in identifying crossing differences, underscoring the model's capacity as a screening platform for BBB crossing therapeutic strategies and ability to predict in vivo responses. Conclusions: These findings highlight the potential of the Brain-Chip as a reliable and time-efficient model to support therapeutic development and provide mechanistic insights into brain diseases, adding to the growing evidence supporting the value of MPS in translational research and drug discovery.
Collapse
Affiliation(s)
- Shek Man Chim
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Kristen Howell
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Alexandros Kokkosis
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Brian Zambrowicz
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Katia Karalis
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Elias Pavlopoulos
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| |
Collapse
|
21
|
Deceuninck P, Gastaldello A, Mennecozzi M, Pistollato F. Exploring the connection between EU-funded research and methodological approaches: insights from a retrospective analysis. J Transl Med 2024; 22:891. [PMID: 39363357 PMCID: PMC11447993 DOI: 10.1186/s12967-024-05557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Over the last two decades, substantial investments have been directed towards supporting fundamental and applied research in Alzheimer's disease (AD), breast cancer (BC), and prostate cancer (PC), which continue to pose significant health challenges. Recently, the Joint Research Centre (JRC) of the European Commission (EC) conducted a retrospective analysis to examine the major scientific advancements resulting from EU-funded research in these disease areas and their impact on society. METHODS Building upon this analysis, our subsequent investigation delves into the methodological approaches-both animal and non-animal models and methods-employed in AD, BC, and PC research funded under past EU framework programs (FP5, FP6, FP7, and H2020), and explored the notable research outputs associated with these approaches. RESULTS Our findings indicate a prevalent use of animal-based methodologies in AD research, particularly evident in projects funded under H2020. Notably, projects focused on drug development, testing, or repurposing heavily relied on animal models. Conversely, research aimed at clinical trial design, patient stratification, diagnosis and diagnostic tool development, lifestyle interventions, and prevention-outputs with potential societal impact-more frequently utilised non-animal methods. Advanced investigations leveraging imaging, computational tools, biomarker discovery and organ/tissue chip technologies predominantly favoured non-animal strategies. CONCLUSIONS These insights highlight a correlation between methodological choices and the translational potential of research outcomes, suggesting the need for a reconsideration of research strategy planning in future framework programs.
Collapse
|
22
|
Kiaris H. Nontraditional models as research tools: the road not taken. Trends Mol Med 2024; 30:924-931. [PMID: 39069395 PMCID: PMC11466687 DOI: 10.1016/j.molmed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Historical reasons resulted in the almost exclusive use of a few species, most prominently Mus musculus, as the mainstream models in biomedical research. This selection was not based on Mus's distinctive relevance to human disease but rather to the pre-existing availability of resources and tools for the species that were used as models, which has enabled their adoption for research in health sciences. Unless the utilization and range of nontraditional research models expand considerably, progress in biomedical research will remain restricted within the trajectory that has been set by the existing models and their ability to provide clinically relevant information.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
23
|
Mei Y, Lakotsenina E, Wegner M, Hehne T, Krause D, Hakimeh D, Wu D, Schültke E, Hausmann F, Kurreck J, Tolksdorf B. Three-Dimensional-Bioprinted Non-Small Cell Lung Cancer Models in a Mouse Phantom for Radiotherapy Research. Int J Mol Sci 2024; 25:10268. [PMID: 39408596 PMCID: PMC11476964 DOI: 10.3390/ijms251910268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Lung cancer continues to have one of the highest morbidity and mortality rates of any cancer. Although radiochemotherapy, in combination with immunotherapy, has significantly improved overall survival, new treatment options are urgently needed. However, preclinical radiotherapy testing is often performed in animal models, which has several drawbacks, including species-specific differences and ethical concerns. To replace animal models, this study used a micro-extrusion bioprinting approach to generate a three-dimensional (3D) human lung cancer model consisting of lung tumor cells embedded in human primary lung fibroblasts for radiotherapy research. The models were placed in a mouse phantom, i.e., a 3D-printed mouse model made of materials that mimic the X-ray radiation attenuation rates found in mice. In radiotherapy experiments, the model demonstrated a selective cytotoxic effect of X-rays on tumor cells, consistent with findings in 2D cells. Furthermore, the analysis of metabolic activity, cell death, apoptosis, and DNA damage-induced γH2AX foci formation revealed different results in the 3D model inside the phantom compared to those observed in irradiated models without phantom and 2D cells. The proposed setup of the bioprinted 3D lung model inside the mouse phantom provides a physiologically relevant model system to study radiation effects.
Collapse
Affiliation(s)
- Yikun Mei
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (Y.M.); (D.H.)
| | - Elena Lakotsenina
- Department of Radiation Oncology, Charité University Medicine Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, 13353 Berlin, Germany; (E.L.); (T.H.); (F.H.)
| | - Marie Wegner
- Department of Product Development and Mechanical Engineering Design, Hamburg University of Technology, 21073 Hamburg, Germany; (M.W.); (D.K.)
| | - Timon Hehne
- Department of Radiation Oncology, Charité University Medicine Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, 13353 Berlin, Germany; (E.L.); (T.H.); (F.H.)
| | - Dieter Krause
- Department of Product Development and Mechanical Engineering Design, Hamburg University of Technology, 21073 Hamburg, Germany; (M.W.); (D.K.)
| | - Dani Hakimeh
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (Y.M.); (D.H.)
- Department of Pediatric Oncology and Hematology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (Y.M.); (D.H.)
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany;
| | - Franziska Hausmann
- Department of Radiation Oncology, Charité University Medicine Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, 13353 Berlin, Germany; (E.L.); (T.H.); (F.H.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (Y.M.); (D.H.)
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; (Y.M.); (D.H.)
| |
Collapse
|
24
|
Mag P, Nemes-Terényi M, Jerzsele Á, Mátyus P. Some Aspects and Convergence of Human and Veterinary Drug Repositioning. Molecules 2024; 29:4475. [PMID: 39339469 PMCID: PMC11433938 DOI: 10.3390/molecules29184475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Drug innovation traditionally follows a de novo approach with new molecules through a complex preclinical and clinical pathway. In addition to this strategy, drug repositioning has also become an important complementary approach, which can be shorter, cheaper, and less risky. This review provides an overview of drug innovation in both human and veterinary medicine, with a focus on drug repositioning. The evolution of drug repositioning and the effectiveness of this approach are presented, including the growing role of data science and computational modeling methods in identifying drugs with potential for repositioning. Certain business aspects of drug innovation, especially the relevant factors of market exclusivity, are also discussed. Despite the promising potential of drug repositioning for innovation, it remains underutilized, especially in veterinary applications. To change this landscape for mutual benefits of human and veterinary drug innovation, further exploitation of the potency of drug repositioning is necessary through closer cooperation between all stakeholders, academia, industry, pharmaceutical authorities, and innovation policy makers, and the integration of human and veterinary repositioning into a unified innovation space. For this purpose, the establishment of the conceptually new "One Health Drug Repositioning Platform" is proposed. Oncology is one of the disease areas where this platform can significantly support the development of new drugs for human and dog (or other companion animals) anticancer therapies. As an example of the utilization of human and veterinary drugs for veterinary repositioning, the use of COX inhibitors to treat dog cancers is reviewed.
Collapse
Affiliation(s)
- Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Melinda Nemes-Terényi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Péter Mátyus
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| |
Collapse
|
25
|
Johnston KG, Grieco SF, Nie Q, Theis FJ, Xu X. Small data methods in omics: the power of one. Nat Methods 2024; 21:1597-1602. [PMID: 39174710 DOI: 10.1038/s41592-024-02390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
Over the last decade, biology has begun utilizing 'big data' approaches, resulting in large, comprehensive atlases in modalities ranging from transcriptomics to neural connectomics. However, these approaches must be complemented and integrated with 'small data' approaches to efficiently utilize data from individual labs. Integration of smaller datasets with major reference atlases is critical to provide context to individual experiments, and approaches toward integration of large and small data have been a major focus in many fields in recent years. Here we discuss progress in integration of small data with consortium-sized atlases across multiple modalities, and its potential applications. We then examine promising future directions for utilizing the power of small data to maximize the information garnered from small-scale experiments. We envision that, in the near future, international consortia comprising many laboratories will work together to collaboratively build reference atlases and foundation models using small data methods.
Collapse
Affiliation(s)
- Kevin G Johnston
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Fabian J Theis
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
- Department of Mathematics, Technical University of Munich, Munich, Germany.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Jembrek MJ. Inhibition of Oxidative Stress and Related Signaling Pathways in Neuroprotection. Antioxidants (Basel) 2024; 13:1033. [PMID: 39334692 PMCID: PMC11428803 DOI: 10.3390/antiox13091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress, characterized by increased production of reactive oxygen species (ROS) and disturbed redox homeostasis, is one of the key mechanisms underlying synaptic loss and neuronal death in various neurodegenerative diseases [...].
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Compeer B, Neijzen TR, van Lelyveld SFL, Martina BEE, Russell CA, Goeijenbier M. Uncovering the Contrasts and Connections in PASC: Viral Load and Cytokine Signatures in Acute COVID-19 versus Post-Acute Sequelae of SARS-CoV-2 (PASC). Biomedicines 2024; 12:1941. [PMID: 39335455 PMCID: PMC11428903 DOI: 10.3390/biomedicines12091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The recent global COVID-19 pandemic has had a profound and enduring impact, resulting in substantial loss of life. The scientific community has responded unprecedentedly by investigating various aspects of the crisis, particularly focusing on the acute phase of COVID-19. The roles of the viral load, cytokines, and chemokines during the acute phase and in the context of patients who experienced enduring symptoms upon infection, so called Post-Acute Sequelae of COVID-19 or PASC, have been studied extensively. Here, in this review, we offer a virologist's perspective on PASC, highlighting the dynamics of SARS-CoV-2 viral loads, cytokines, and chemokines in different organs of patients across the full clinical spectrum of acute-phase disease. We underline that the probability of severe or critical disease progression correlates with increased viral load levels detected in the upper respiratory tract (URT), lower respiratory tract (LRT), and plasma. Acute-phase viremia is a clear, although not unambiguous, predictor of PASC development. Moreover, both the quantity and diversity of functions of cytokines and chemokines increase with acute-phase disease severity. Specific cytokines remain or become elevated in the PASC phase, although the driving factor of ongoing inflammation found in patients with PASC remains to be investigated. The key findings highlighted in this review contribute to a further understanding of PASC and their differences and overlap with acute disease.
Collapse
Affiliation(s)
- Brandon Compeer
- Artemis Bioservices B.V., 2629 JD Delft, The Netherlands
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Tobias R Neijzen
- Department of Intensive Care Medicine, Spaarne Gasthuis, 2035 RC Haarlem, The Netherlands
| | | | | | - Colin A Russell
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
- Department of Intensive Care, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
28
|
Mehta V, Karnam G, Madgula V. Liver-on-chips for drug discovery and development. Mater Today Bio 2024; 27:101143. [PMID: 39070097 PMCID: PMC11279310 DOI: 10.1016/j.mtbio.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Recent FDA modernization act 2.0 has led to increasing industrial R&D investment in advanced in vitro 3D models such as organoids, spheroids, organ-on-chips, 3D bioprinting, and in silico approaches. Liver-related advanced in vitro models remain the prime area of interest, as liver plays a central role in drug clearance of compounds. Growing evidence indicates the importance of recapitulating the overall liver microenvironment to enhance hepatocyte maturity and culture longevity using liver-on-chips (LoC) in vitro. Hence, pharmaceutical industries have started exploring LoC assays in the two of the most challenging areas: accurate in vitro-in vivo extrapolation (IVIVE) of hepatic drug clearance and drug-induced liver injury. We examine the joint efforts of commercial chip manufacturers and pharmaceutical companies to present an up-to-date overview of the adoption of LoC technology in the drug discovery. Further, several roadblocks are identified to the rapid adoption of LoC assays in the current drug development framework. Finally, we discuss some of the underexplored application areas of LoC models, where conventional 2D hepatic models are deemed unsuitable. These include clearance prediction of metabolically stable compounds, immune-mediated drug-induced liver injury (DILI) predictions, bioavailability prediction with gut-liver systems, hepatic clearance prediction of drugs given during pregnancy, and dose adjustment studies in disease conditions. We conclude the review by discussing the importance of PBPK modeling with LoC, digital twins, and AI/ML integration with LoC.
Collapse
Affiliation(s)
- Viraj Mehta
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Guruswamy Karnam
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Vamsi Madgula
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| |
Collapse
|
29
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Alver CG, Drabbe E, Ishahak M, Agarwal A. Roadblocks confronting widespread dissemination and deployment of Organs on Chips. Nat Commun 2024; 15:5118. [PMID: 38879554 PMCID: PMC11180125 DOI: 10.1038/s41467-024-48864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/16/2024] [Indexed: 06/19/2024] Open
Abstract
Organ on Chip platforms hold significant promise as alternatives to animal models or traditional cell cultures, both of which poorly recapitulate human pathophysiology and human level responses. Within the last 15 years, we have witnessed seminal scientific developments from academic laboratories, a flurry of startups and investments, and a genuine interest from pharmaceutical industry as well as regulatory authorities to translate these platforms. This Perspective identifies several fundamental design and process features that may act as roadblocks that prevent widespread dissemination and deployment of these systems, and provides a roadmap to help position this technology in mainstream drug discovery.
Collapse
Affiliation(s)
- Charles G Alver
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emma Drabbe
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Matthew Ishahak
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
31
|
Saravanan KM, Wan JF, Dai L, Zhang J, Zhang JZH, Zhang H. A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity. Methods 2024; 226:164-175. [PMID: 38702021 DOI: 10.1016/j.ymeth.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
Ensuring the safety and efficacy of chemical compounds is crucial in small-molecule drug development. In the later stages of drug development, toxic compounds pose a significant challenge, losing valuable resources and time. Early and accurate prediction of compound toxicity using deep learning models offers a promising solution to mitigate these risks during drug discovery. In this study, we present the development of several deep-learning models aimed at evaluating different types of compound toxicity, including acute toxicity, carcinogenicity, hERG_cardiotoxicity (the human ether-a-go-go related gene caused cardiotoxicity), hepatotoxicity, and mutagenicity. To address the inherent variations in data size, label type, and distribution across different types of toxicity, we employed diverse training strategies. Our first approach involved utilizing a graph convolutional network (GCN) regression model to predict acute toxicity, which achieved notable performance with Pearson R 0.76, 0.74, and 0.65 for intraperitoneal, intravenous, and oral administration routes, respectively. Furthermore, we trained multiple GCN binary classification models, each tailored to a specific type of toxicity. These models exhibited high area under the curve (AUC) scores, with an impressive AUC of 0.69, 0.77, 0.88, and 0.79 for predicting carcinogenicity, hERG_cardiotoxicity, mutagenicity, and hepatotoxicity, respectively. Additionally, we have used the approved drug dataset to determine the appropriate threshold value for the prediction score in model usage. We integrated these models into a virtual screening pipeline to assess their effectiveness in identifying potential low-toxicity drug candidates. Our findings indicate that this deep learning approach has the potential to significantly reduce the cost and risk associated with drug development by expediting the selection of compounds with low toxicity profiles. Therefore, the models developed in this study hold promise as critical tools for early drug candidate screening and selection.
Collapse
Affiliation(s)
- Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - Jiang-Fan Wan
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Drug Evaluation and Inspection of NMPA, Shenzhen 518000, China
| | - Liujiang Dai
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiajun Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Science, Hunan University of Technology and Business, Changsha 410205, China
| | - John Z H Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haiping Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
32
|
Han X, Cai C, Deng W, Shi Y, Li L, Wang C, Zhang J, Rong M, Liu J, Fang B, He H, Liu X, Deng C, He X, Cao X. Landscape of human organoids: Ideal model in clinics and research. Innovation (N Y) 2024; 5:100620. [PMID: 38706954 PMCID: PMC11066475 DOI: 10.1016/j.xinn.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
In the last decade, organoid research has entered a golden era, signifying a pivotal shift in the biomedical landscape. The year 2023 marked a milestone with the publication of thousands of papers in this arena, reflecting exponential growth. However, amid this burgeoning expansion, a comprehensive and accurate overview of the field has been conspicuously absent. Our review is intended to bridge this gap, providing a panoramic view of the rapidly evolving organoid landscape. We meticulously analyze the organoid field from eight distinctive vantage points, harnessing our rich experience in academic research, industrial application, and clinical practice. We present a deep exploration of the advances in organoid technology, underpinned by our long-standing involvement in this arena. Our narrative traverses the historical genesis of organoids and their transformative impact across various biomedical sectors, including oncology, toxicology, and drug development. We delve into the synergy between organoids and avant-garde technologies such as synthetic biology and single-cell omics and discuss their pivotal role in tailoring personalized medicine, enhancing high-throughput drug screening, and constructing physiologically pertinent disease models. Our comprehensive analysis and reflective discourse provide a deep dive into the existing landscape and emerging trends in organoid technology. We spotlight technological innovations, methodological evolution, and the broadening spectrum of applications, emphasizing the revolutionary influence of organoids in personalized medicine, oncology, drug discovery, and other fields. Looking ahead, we cautiously anticipate future developments in the field of organoid research, especially its potential implications for personalized patient care, new avenues of drug discovery, and clinical research. We trust that our comprehensive review will be an asset for researchers, clinicians, and patients with keen interest in personalized medical strategies. We offer a broad view of the present and prospective capabilities of organoid technology, encompassing a wide range of current and future applications. In summary, in this review we attempt a comprehensive exploration of the organoid field. We offer reflections, summaries, and projections that might be useful for current researchers and clinicians, and we hope to contribute to shaping the evolving trajectory of this dynamic and rapidly advancing field.
Collapse
Affiliation(s)
- Xinxin Han
- Organ Regeneration X Lab, Lisheng East China Institute of Biotechnology, Peking University, Jiangsu 226200, China
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chunhui Cai
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Wei Deng
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yanghua Shi
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Lanyang Li
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chen Wang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jian Zhang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Mingjie Rong
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jiping Liu
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Bangjiang Fang
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
33
|
Bossini L, Sessa A. Need of orthogonal approaches in neurological disease modeling in mouse. Front Mol Neurosci 2024; 17:1399953. [PMID: 38756706 PMCID: PMC11096479 DOI: 10.3389/fnmol.2024.1399953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Over the years, advancements in modeling neurological diseases have revealed innovative strategies aimed at gaining deeper insights and developing more effective treatments for these complex conditions. However, these progresses have recently been overshadowed by an increasing number of failures in clinical trials, raising doubts about the reliability and translatability of this type of disease modeling. This mini-review does not aim to provide a comprehensive overview of the current state-of-the-art in disease mouse modeling. Instead, it offers a brief excursus over some recent approaches in modeling neurological diseases to pinpoint a few intriguing strategies applied in the field that may serve as sources of inspiration for improving currently available animal models. In particular, we aim to guide the reader toward the potential success of adopting a more orthogonal approach in the study of human diseases.
Collapse
Affiliation(s)
- Linda Bossini
- Neuroepigenetics Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- “Vita e Salute” San Raffaele University, Milan, Italy
| | - Alessandro Sessa
- Neuroepigenetics Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
34
|
Abstract
The Three Rs have become widely accepted and pursued, and are now the go-to framework that encourages the humane use of animals in science, where no other option is believed to exist. However, many people, including scientists, harbour varying degrees of concern about the value and impact of the Three Rs. This ranges from a continued adherence to the Three Rs principles in the belief that they have performed well, through a belief that there should be more emphasis (or indeed a sole focus) on replacement, to a view that the principles have hindered, rather than helped, a critical approach to animal research that should have resulted in replacement to a much greater extent. This critical review asks questions of the Three Rs and their implementation, and provides an overview of the current situation surrounding animal use in biomedical science (chiefly in research). It makes a case that it is time to move away from the Three Rs and that, while this happens, the principles need to be made more robust and enforced more efficiently. To expedite a shift from animal use in science, toward a much greater and quicker adoption of human-specific New Approach Methodologies (NAMs), some argue for a straightforward focus on the best available science.
Collapse
|
35
|
Brennen WN, Le Magnen C, Karkampouna S, Anselmino N, Bock N, Choo N, Clark AK, Coleman IM, Dolgos R, Ferguson AM, Goode DL, Krutihof-de Julio M, Navone NM, Nelson PS, O'Neill E, Porter LH, Ranasinghe W, Sunada T, Williams ED, Butler LM, Corey E, van Weerden WM, Taylor RA, Risbridger GP, Lawrence MG. Defining the challenges and opportunities for using patient-derived models in prostate cancer research. Prostate 2024; 84:623-635. [PMID: 38450798 PMCID: PMC11014775 DOI: 10.1002/pros.24682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nathalie Bock
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Robin Dolgos
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, Division of Research and Enterprise, University of New South Wales, Sydney, NSW, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marianna Krutihof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Translational Organoid Resource, University of Bern, Bern, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Edward O'Neill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Weranja Ranasinghe
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Department of Surgery, Monash University, Melbourne, VIC, Australia
- Department of Urology, Monash Health, Melbourne, VIC, Australia
- Department of Urology, Austin Health, Melbourne, VIC, Australia
| | - Takuro Sunada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Bissoyi A, Gao Y, Tomás RMF, Kinney NLH, Whale TF, Guo Q, Gibson MI. Cryopreservation and Rapid Recovery of Differentiated Intestinal Epithelial Barrier Cells at Complex Transwell Interfaces Is Enabled by Chemically Induced Ice Nucleation. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38671549 PMCID: PMC11082836 DOI: 10.1021/acsami.4c03931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Cell-based models, such as organ-on-chips, can replace and inform in vivo (animal) studies for drug discovery, toxicology, and biomedical science, but most cannot be banked "ready to use" as they do not survive conventional cryopreservation with DMSO alone. Here, we demonstrate how macromolecular ice nucleators enable the successful cryopreservation of epithelial intestinal models supported upon the interface of transwells, allowing recovery of function in just 7 days post-thaw directly from the freezer, compared to 21 days from conventional suspension cryopreservation. Caco-2 cells and Caco-2/HT29-MTX cocultures are cryopreserved on transwell inserts, with chemically induced ice nucleation at warmer temperatures resulting in increased cell viability but crucially retaining the complex cellular adhesion on the transwell insert interfaces, which other cryoprotectants do not. Trans-epithelial electrical resistance measurements, confocal microscopy, histology, and whole-cell proteomics demonstrated the rapid recovery of differentiated cell function, including the formation of tight junctions. Lucifer yellow permeability assays confirmed that the barrier functions of the cells were intact. This work will help solve the long-standing problem of transwell tissue barrier model storage, facilitating access to advanced predictive cellular models. This is underpinned by precise control of the nucleation temperature, addressing a crucial biophysical mode of damage.
Collapse
Affiliation(s)
- Akalabya Bissoyi
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Yanan Gao
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruben M. F. Tomás
- Cryologyx
Ltd, Venture Centre, University of Warwick
Science Park, Coventry CV4 7EZ, U.K.
| | - Nina L. H. Kinney
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Royal
Botanic Gardens Kew, Ardingly, West Sussex RH17 6TN, U.K.
| | - Thomas F. Whale
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- School
of Earth and Environment, University of
Leeds, Leeds LS2 9JT, U.K.
| | - Qiongyu Guo
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
37
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
38
|
Marriott AE, Casewell NR, Lilley E, Gutiérrez JM, Ainsworth S. Improving in vivo assays in snake venom and antivenom research: A community discussion. F1000Res 2024; 13:192. [PMID: 38708289 PMCID: PMC11066530 DOI: 10.12688/f1000research.148223.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
On the 26 th January 2023, a free to attend, 'improving in vivo snake venom research: a community discussion' meeting was held virtually. This webinar brought together researchers from around the world to discuss current neutralisation of venom lethality mouse assays that are used globally to assess the efficacy of therapies for snakebite envenoming. The assay's strengths and weaknesses were highlighted, and we discussed what improvements could be made to refine and reduce animal testing, whilst supporting preclinical antivenom and drug discovery for snakebite envenoming. This report summarises the issues highlighted, the discussions held, with additional commentary on key perspectives provided by the authors.
Collapse
Affiliation(s)
- Amy E Marriott
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, L3 5RF, UK
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Elliot Lilley
- National Centre for the Replacement, Reduction and Refinement of Animals in Research, London, NW1 2BE, UK
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, L3 5RF, UK
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
39
|
Kalliolias GD, Basdra EK, Papavassiliou AG. How to improve translatability and clinical relevance of preclinical studies in rheumatoid arthritis. Immunology 2024; 171:440-443. [PMID: 38148686 DOI: 10.1111/imm.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- George D Kalliolias
- Arthritis & Tissue Degeneration, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
40
|
Bordini EAF, Stuani VDT, Correa LE, Cassiano FB, Lovison MF, Leite ML, Hebling J, de Souza Costa CA, Soares DG. Chitosan-Calcium Aluminate as a Cell-homing Scaffold: Its Bioactivity Testing in a Microphysiological Dental Pulp Platform. Altern Lab Anim 2024; 52:107-116. [PMID: 38351650 DOI: 10.1177/02611929241232558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
In vitro models of the dental pulp microenvironment have been proposed for the assessment of biomaterials, to minimise animal use in operative dentistry. In this study, a scaffold/3-D dental pulp cell culture interface was created in a microchip, under simulated dental pulp pressure, to evaluate the cell-homing potential of a chitosan (CH) scaffold functionalised with calcium aluminate (the 'CHAlCa scaffold'). This microphysiological platform was cultured at a pressure of 15 cm H2O for up to 14 days; cell viability, migration and odontoblastic differentiation were then assessed. The CHAlCa scaffold exhibited intense chemotactic potential, causing cells to migrate from the 3-D culture to its surface, followed by infiltration into the macroporous structure of the scaffold. By contrast, the cells in the presence of the non-functionalised chitosan scaffold showed low cell migration and no cell infiltration. CHAlCa scaffold bioactivity was confirmed in dentin sialophosphoprotein-positive migrating cells, and odontoblastic markers were upregulated in 3-D culture. Finally, in situ mineralised matrix deposition by the cells was confirmed in an Alizarin Red-based assay, in which the CHAlCa and CH scaffolds were adapted to fit within dentin discs. More intense deposition of matrix was observed with the CHAlCa scaffold, as compared to the CH scaffold. In summary, we present an in vitro platform that provides a simple and reproducible model for selecting and developing innovative biomaterials through the assessment of their cell-homing potential. By using this platform, it was shown that the combination of calcium aluminate and chitosan has potential as an inductive biomaterial that can mediate dentin tissue regeneration during cell-homing therapies.
Collapse
Affiliation(s)
- Ester Alves Ferreira Bordini
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Vitor de Toledo Stuani
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Lígia Espoliar Correa
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Fernanda Balestrero Cassiano
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Marcella Fernandes Lovison
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Maria Luisa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| |
Collapse
|
41
|
Baker TK, Van Vleet TR, Mahalingaiah PK, Grandhi TSP, Evers R, Ekert J, Gosset JR, Chacko SA, Kopec AK. The Current Status and Use of Microphysiological Systems by the Pharmaceutical Industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate Survey and Commentary. Drug Metab Dispos 2024; 52:198-209. [PMID: 38123948 DOI: 10.1124/dmd.123.001510] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Microphysiological systems (MPS) are comprised of one or multiple cell types of human or animal origins that mimic the biochemical/electrical/mechanical responses and blood-tissue barrier properties of the cells observed within a complex organ. The goal of incorporating these in vitro systems is to expedite and advance the drug discovery and development paradigm with improved predictive and translational capabilities. Considering the industry need for improved efficiency and the broad challenges of model qualification and acceptance, the International Consortium for Innovation and Quality (IQ) founded an IQ MPS working group in 2014 and Affiliate in 2018. This group connects thought leaders and end users, provides a forum for crosspharma collaboration, and engages with regulators to qualify translationally relevant MPS models. To understand how pharmaceutical companies are using MPS, the IQ MPS Affiliate conducted two surveys in 2019, survey 1, and 2021, survey 2, which differed slightly in the scope of definition of the complex in vitro models under question. The surveys captured demographics, resourcing, rank order for organs of interest, compound modalities tested, and MPS organ-specific questions, including nonclinical species needs and cell types. The major focus of this manuscript is on results from survey 2, where we specifically highlight the context of use for MPS within safety, pharmacology, or absorption, disposition, metabolism, and excretion and discuss considerations for including MPS data in regulatory submissions. In summary, these data provide valuable insights for developers, regulators, and pharma, offering a view into current industry practices and future considerations while highlighting key challenges impacting MPS adoption. SIGNIFICANCE STATEMENT: The application of microphysiological systems (MPS) represents a growing area of interest in the drug discovery and development framework. This study surveyed 20+ pharma companies to understand resourcing, current areas of application, and the key challenges and barriers to internal MPS adoption. These results will provide regulators, tech providers, and pharma industry leaders a starting point to assess the current state of MPS applications along with key learnings to effectively realize the potential of MPS as an emerging technology.
Collapse
Affiliation(s)
- Thomas K Baker
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.) baker_thomas_k@lilly
| | - Terry R Van Vleet
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Prathap Kumar Mahalingaiah
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Taraka Sai Pavan Grandhi
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Raymond Evers
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Jason Ekert
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - James R Gosset
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Silvi A Chacko
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Anna K Kopec
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| |
Collapse
|
42
|
Ali ASM, Berg J, Roehrs V, Wu D, Hackethal J, Braeuning A, Woelken L, Rauh C, Kurreck J. Xeno-Free 3D Bioprinted Liver Model for Hepatotoxicity Assessment. Int J Mol Sci 2024; 25:1811. [PMID: 38339088 PMCID: PMC10855587 DOI: 10.3390/ijms25031811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Three-dimensional (3D) bioprinting is one of the most promising methodologies that are currently in development for the replacement of animal experiments. Bioprinting and most alternative technologies rely on animal-derived materials, which compromises the intent of animal welfare and results in the generation of chimeric systems of limited value. The current study therefore presents the first bioprinted liver model that is entirely void of animal-derived constituents. Initially, HuH-7 cells underwent adaptation to a chemically defined medium (CDM). The adapted cells exhibited high survival rates (85-92%) after cryopreservation in chemically defined freezing media, comparable to those preserved in standard medium (86-92%). Xeno-free bioink for 3D bioprinting yielded liver models with high relative cell viability (97-101%), akin to a Matrigel-based liver model (83-102%) after 15 days of culture. The established xeno-free model was used for toxicity testing of a marine biotoxin, okadaic acid (OA). In 2D culture, OA toxicity was virtually identical for cells cultured under standard conditions and in CDM. In the xeno-free bioprinted liver model, 3-fold higher concentrations of OA than in the respective monolayer culture were needed to induce cytotoxicity. In conclusion, this study describes for the first time the development of a xeno-free 3D bioprinted liver model and its applicability for research purposes.
Collapse
Affiliation(s)
- Ahmed S. M. Ali
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Viola Roehrs
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Lisa Woelken
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany (C.R.)
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany (C.R.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
43
|
Mishra B, Sudheer P, Agarwal A, Nilima N, Srivastava MVP, Vishnu VY. Minimal Clinically Important Difference of Scales Reported in Stroke Trials: A Review. Brain Sci 2024; 14:80. [PMID: 38248295 PMCID: PMC10813687 DOI: 10.3390/brainsci14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
There is a growing awareness of the significance of using minimum clinically important differences (MCIDs) in stroke research. An MCID is the smallest change in an outcome measure that is considered clinically meaningful. This review is the first to provide a comprehensive summary of various scales and patient-reported outcome measures (PROMs) used in stroke research and their MCID values reported in the literature, including a concise overview of the concept of and methods for determining MCIDs in stroke research. Despite the controversies and limitations surrounding the estimation of MCIDs, their importance in modern clinical trials cannot be overstated. Anchor-based and distribution-based methods are recommended for estimating MCIDs, with patient self-evaluation being a crucial component in capturing the patient's perspective on their health. A combination of methods can provide a more comprehensive understanding of the clinical relevance of treatment effects, and incorporating the patient's perspective can enhance the care of stroke patients.
Collapse
Affiliation(s)
- Biswamohan Mishra
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India; (B.M.); (P.S.); (A.A.); (M.V.P.S.)
| | - Pachipala Sudheer
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India; (B.M.); (P.S.); (A.A.); (M.V.P.S.)
| | - Ayush Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India; (B.M.); (P.S.); (A.A.); (M.V.P.S.)
| | - Nilima Nilima
- Department of Biostatics, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | - Venugopalan Y. Vishnu
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India; (B.M.); (P.S.); (A.A.); (M.V.P.S.)
| |
Collapse
|
44
|
Blaudin de Thé FX, Baudier C, Andrade Pereira R, Lefebvre C, Moingeon P. Transforming drug discovery with a high-throughput AI-powered platform: A 5-year experience with Patrimony. Drug Discov Today 2023; 28:103772. [PMID: 37717933 DOI: 10.1016/j.drudis.2023.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
High-throughput computational platforms are being established to accelerate drug discovery. Servier launched the Patrimony platform to harness computational sciences and artificial intelligence (AI) to integrate massive multimodal data from internal and external sources. Patrimony has enabled researchers to prioritize therapeutic targets based on a deep understanding of the pathophysiology of immuno-inflammatory diseases. Herein, we share our experience regarding main challenges and critical success factors faced when industrializing the platform and broadening its applications to neurological diseases. We emphasize the importance of integrating such platforms in an end-to-end drug discovery process and engaging human experts early on to ensure a transforming impact.
Collapse
|
45
|
Campanile M, Bettinelli L, Cerutti C, Spinetti G. Bone marrow vasculature advanced in vitro models for cancer and cardiovascular research. Front Cardiovasc Med 2023; 10:1261849. [PMID: 37915743 PMCID: PMC10616801 DOI: 10.3389/fcvm.2023.1261849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiometabolic diseases and cancer are among the most common diseases worldwide and are a serious concern to the healthcare system. These conditions, apparently distant, share common molecular and cellular determinants, that can represent targets for preventive and therapeutic approaches. The bone marrow plays an important role in this context as it is the main source of cells involved in cardiovascular regeneration, and one of the main sites of liquid and solid tumor metastasis, both characterized by the cellular trafficking across the bone marrow vasculature. The bone marrow vasculature has been widely studied in animal models, however, it is clear the need for human-specific in vitro models, that resemble the bone vasculature lined by endothelial cells to study the molecular mechanisms governing cell trafficking. In this review, we summarized the current knowledge on in vitro models of bone marrow vasculature developed for cardiovascular and cancer research.
Collapse
Affiliation(s)
- Marzia Campanile
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Leonardo Bettinelli
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Camilla Cerutti
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
46
|
Hartmann J, Henschel N, Bartmann K, Dönmez A, Brockerhoff G, Koch K, Fritsche E. Molecular and Functional Characterization of Different BrainSphere Models for Use in Neurotoxicity Testing on Microelectrode Arrays. Cells 2023; 12:cells12091270. [PMID: 37174670 PMCID: PMC10177384 DOI: 10.3390/cells12091270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The currently accepted methods for neurotoxicity (NT) testing rely on animal studies. However, high costs and low testing throughput hinder their application for large numbers of chemicals. To overcome these limitations, in vitro methods are currently being developed based on human-induced pluripotent stem cells (hiPSC) that allow higher testing throughput at lower costs. We applied six different protocols to generate 3D BrainSphere models for acute NT evaluation. These include three different media for 2D neural induction and two media for subsequent 3D differentiation resulting in self-organized, organotypic neuron/astrocyte microtissues. All induction protocols yielded nearly 100% NESTIN-positive hiPSC-derived neural progenitor cells (hiNPCs), though with different gene expression profiles concerning regional patterning. Moreover, gene expression and immunocytochemistry analyses revealed that the choice of media determines neural differentiation patterns. On the functional level, BrainSpheres exhibited different levels of electrical activity on microelectrode arrays (MEA). Spike sorting allowed BrainSphere functional characterization with the mixed cultures consisting of GABAergic, glutamatergic, dopaminergic, serotonergic, and cholinergic neurons. A test method for acute NT testing, the human multi-neurotransmitter receptor (hMNR) assay, was proposed to apply such MEA-based spike sorting. These models are promising tools not only in toxicology but also for drug development and disease modeling.
Collapse
Affiliation(s)
- Julia Hartmann
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Noah Henschel
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Kristina Bartmann
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Arif Dönmez
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Gabriele Brockerhoff
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Katharina Koch
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Mei Y, Wu D, Berg J, Tolksdorf B, Roehrs V, Kurreck A, Hiller T, Kurreck J. Generation of a Perfusable 3D Lung Cancer Model by Digital Light Processing. Int J Mol Sci 2023; 24:ijms24076071. [PMID: 37047045 PMCID: PMC10094257 DOI: 10.3390/ijms24076071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Lung cancer still has one of the highest morbidity and mortality rates among all types of cancer. Its incidence continues to increase, especially in developing countries. Although the medical field has witnessed the development of targeted therapies, new treatment options need to be developed urgently. For the discovery of new drugs, human cancer models are required to study drug efficiency in a relevant setting. Here, we report the generation of a non-small cell lung cancer model with a perfusion system. The bioprinted model was produced by digital light processing (DLP). This technique has the advantage of including simulated human blood vessels, and its simple assembly and maintenance allow for easy testing of drug candidates. In a proof-of-concept study, we applied gemcitabine and determined the IC50 values in the 3D models and 2D monolayer cultures and compared the response of the model under static and dynamic cultivation by perfusion. As the drug must penetrate the hydrogel to reach the cells, the IC50 value was three orders of magnitude higher for bioprinted constructs than for 2D cell cultures. Compared to static cultivation, the viability of cells in the bioprinted 3D model was significantly increased by approximately 60% in the perfusion system. Dynamic cultivation also enhanced the cytotoxicity of the tested drug, and the drug-mediated apoptosis was increased with a fourfold higher fraction of cells with a signal for the apoptosis marker caspase-3 and a sixfold higher fraction of cells positive for PARP-1. Altogether, this easily reproducible cancer model can be used for initial testing of the cytotoxicity of new anticancer substances. For subsequent in-depth characterization of candidate drugs, further improvements will be necessary, such as the generation of a multi-cell type lung cancer model and the lining of vascular structures with endothelial cells.
Collapse
Affiliation(s)
- Yikun Mei
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Viola Roehrs
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Anke Kurreck
- BioNukleo GmbH, Ackerstr. 76, 13355 Berlin, Germany
| | - Thomas Hiller
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- PRAMOMOLECULAR GmbH, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|