1
|
He X, Wang Q, Cheng X, Wang W, Li Y, Nan Y, Wu J, Xiu B, Jiang T, Bergholz JS, Gu H, Chen F, Fan G, Sun L, Xie S, Zou J, Lin S, Wei Y, Lee J, Asara JM, Zhang K, Cantley LC, Zhao JJ. Lysine vitcylation is a vitamin C-derived protein modification that enhances STAT1-mediated immune response. Cell 2025; 188:1858-1877.e21. [PMID: 40023152 DOI: 10.1016/j.cell.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/04/2025] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Vitamin C (vitC) is essential for health and shows promise in treating diseases like cancer, yet its mechanisms remain elusive. Here, we report that vitC directly modifies lysine residues to form "vitcyl-lysine"-a process termed vitcylation. Vitcylation occurs in a dose-, pH-, and sequence-dependent manner in both cell-free systems and living cells. Mechanistically, vitC vitcylates signal transducer and activator of transcription-1 (STAT1)- lysine-298 (K298), impairing its interaction with T cell protein-tyrosine phosphatase (TCPTP) and preventing STAT1-Y701 dephosphorylation. This leads to enhanced STAT1-mediated interferon (IFN) signaling in tumor cells, increased major histocompatibility complex (MHC)/human leukocyte antigen (HLA) class I expression, and activation of anti-tumor immunity in vitro and in vivo. The discovery of vitcylation as a distinctive post-translational modification provides significant insights into vitC's cellular function and therapeutic potential, opening avenues for understanding its biological effects and applications in disease treatment.
Collapse
Affiliation(s)
- Xiadi He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Lifecycle Health Management Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Xin Cheng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yutong Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yabing Nan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Wu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingqiu Xiu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tao Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hao Gu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fuhui Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lianhui Sun
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junjie Zou
- XtalPi Technology Co., Ltd., Shanghai 200131, China
| | - Sheng Lin
- XtalPi Technology Co., Ltd., Shanghai 200131, China
| | - Yun Wei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - James Lee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lewis C Cantley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Piłat P, Nikel K, Smolarczyk J, Piegza M. The Use of Ascorbic Acid in Adjunctive Treatment for Schizophrenia-Current State of Knowledge. Life (Basel) 2024; 14:828. [PMID: 39063582 PMCID: PMC11278382 DOI: 10.3390/life14070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Schizophrenia is a mental illness characterized by disturbances in the perception of reality, thinking, emotions, and social functioning. This significantly impacts the quality of life of patients and leads to long-term disability. Despite advances in understanding its pathogenesis and treatment, schizophrenia remains a clinical challenge, especially due to the diversity of its symptoms and the complexity of its mechanisms. Schizophrenia is associated with abnormal functioning of the dopaminergic system, disturbances in glutamatergic neurotransmission, and oxidative stress in the brain. In recent years, there has been increasing interest in optimizing the treatment of mental disorders. The potential use of ascorbic acid, or vitamin C, in the therapy of schizophrenia could bring substantial benefits to patients. Ascorbic acid exhibits antioxidant and neuroprotective properties, suggesting its potential efficacy in reducing brain oxidative stress and improving neurotransmission. Additionally, there have been reports of its positive effects on psychotic symptoms and its potential in reducing the side effects of antipsychotic drugs. In this review article, we present the current state of knowledge on the potential use of ascorbic acid in the treatment of schizophrenia as an adjunct to standard pharmacological therapy. We analyze existing clinical studies and the mechanisms of action of vitamin C, suggesting its promising role as an adjunctive therapy in the treatment of schizophrenia. These insights, though not yet widely disseminated, may be significant for the further development of therapeutic strategies for this mental illness.
Collapse
Affiliation(s)
- Patrycja Piłat
- Students Scientific Association, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Kamil Nikel
- Students Scientific Association, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Joanna Smolarczyk
- Department of Psychoprophylaxis, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Magdalena Piegza
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
3
|
Noreen A, Anwar Z, Ahsan Ejaz M, Usmani M, Khan T, Ali Sheraz M, Ahmed S, Mirza T, Khurshid A, Ahmad I. Riboflavin (vitamin B 2) sensitized photooxidation of ascorbic acid (vitamin C): A kinetic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123813. [PMID: 38198998 DOI: 10.1016/j.saa.2023.123813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Ascorbic acid (AH2) photoxidation sensitized by riboflavin (RF) has been studied between pH 2.0 and 12.0 in ambient air and anaerobic environment using UV and visible irradiation sources. The kinetics of AH2 degradation in aqueous medium along with RF is found to be first-order for its photodegradation. AH2 photolysis rate constants in aerobic and anaerobic conditions with RF (1.0-5.0 × 10-5 M) are 0.14-3.89 × 10-2 and 0.026-0.740 × 10-2 min-1, respectively. The rate constants (k2) of second-order kinetics for AH2 and RF photochemical interaction in aerobic and anaerobic conditions are in the range of 0.24-3.70 to 0.05-0.70 × 10-3 M-1 min-1, respectively, which manifests that increasing the RF concentration also increases the rate of photodegradation (photooxidation) of AH2. The k2 versus pH graph is bell-shaped which indicates that increasing the pH increases photolytic degradation rate of AH2 with RF. Increasing the pH results in the increased ionization of AH2 (ascorbyl anion, AH-) and redox potential which leads to the higher rates of photodegradation of AH2. Two-component spectrophotometric (243 and 266 nm, AH2 and RF, respectively) and high-performance liquid chromatography (HPLC) methods have been used to determine the concentration of AH2 and RF in pure and degraded solutions. The results obtained from these two methods are compared using a student t-test which showed no noteworthy difference between them.
Collapse
Affiliation(s)
- Aisha Noreen
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan.
| | - Muhammad Ahsan Ejaz
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Muneeba Usmani
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Tooba Khan
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sindh, Allama I.I., Kazi Campus, Jamshoro 76080, Sindh, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Tania Mirza
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Adeela Khurshid
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Road, Super Highway, Karachi 75340, Pakistan
| |
Collapse
|
4
|
Vaziri N, Marques D, Greenway SC, Bousman CA. The cellular mechanism of antipsychotic-induced myocarditis: A systematic review. Schizophr Res 2023; 261:206-215. [PMID: 37797362 DOI: 10.1016/j.schres.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/23/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Antipsychotic drug-induced myocarditis is a serious and potentially fatal adverse drug reaction characterized by inflammation of the heart muscle (myocardium) that typically develops within the first month after commencing an antipsychotic drug. Although the precise mechanism of this severe adverse drug reaction is unknown, multiple theories have been proposed with varying levels of support from cellular or animal studies. We conducted a systematic review, in accordance with PRISMA guidelines, of published preclinical and clinical studies investigating the cellular mechanism by which antipsychotic drugs induce myocarditis. A literature search including all studies available before December 10, 2022, yielded 15 studies that met our inclusion criteria. Antipsychotics examined in the included studies included clozapine (n = 13), ziprasidone (n = 1), amisulpride (n = 1), haloperidol (n = 1), levomepromazine (n = 1), olanzapine (n = 1), and sertindole (n = 1). The evidence suggests several overlapping mechanistic cascades involving: (1) increased levels of catecholamines, (2) increased proinflammatory cytokines, (3) increased reactive oxygen species (ROS), (4) reduced antioxidant levels and activity, and (5) mitochondrial damage. Notable limitations such as, a focus on clozapine, sample heterogeneity, and use of supratherapeutic doses will need to be addressed in future studies. Discovery of the mechanism by which antipsychotic drugs induce myocarditis will allow the development of clinically-useful biomarkers to identify those patients at increased risk prior to drug exposure. The development or repurposing of therapeutics to prevent or treat drug-induced myocarditis will also be possible and this will enable increased and safe use of antipsychotics for those patients in need.
Collapse
Affiliation(s)
- Nazanin Vaziri
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Diogo Marques
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chad A Bousman
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
He X, Wei Y, Wu J, Wang Q, Bergholz JS, Gu H, Zou J, Lin S, Wang W, Xie S, Jiang T, Lee J, Asara JM, Zhang K, Cantley LC, Zhao JJ. Lysine vitcylation is a novel vitamin C-derived protein modification that enhances STAT1-mediated immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546774. [PMID: 37425798 PMCID: PMC10327172 DOI: 10.1101/2023.06.27.546774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Vitamin C (vitC) is a vital nutrient for health and also used as a therapeutic agent in diseases such as cancer. However, the mechanisms underlying vitC's effects remain elusive. Here we report that vitC directly modifies lysine without enzymes to form vitcyl-lysine, termed "vitcylation", in a dose-, pH-, and sequence-dependent manner across diverse proteins in cells. We further discover that vitC vitcylates K298 site of STAT1, which impairs its interaction with the phosphatase PTPN2, preventing STAT1 Y701 dephosphorylation and leading to increased STAT1-mediated IFN pathway activation in tumor cells. As a result, these cells have increased MHC/HLA class-I expression and activate immune cells in co-cultures. Tumors collected from vitC-treated tumor-bearing mice have enhanced vitcylation, STAT1 phosphorylation and antigen presentation. The identification of vitcylation as a novel PTM and the characterization of its effect in tumor cells opens a new avenue for understanding vitC in cellular processes, disease mechanisms, and therapeutics.
Collapse
|
6
|
Ferreira V, Folgueira C, García-Altares M, Guillén M, Ruíz-Rosario M, DiNunzio G, Garcia-Martinez I, Alen R, Bookmeyer C, Jones JG, Cigudosa JC, López-Larrubia P, Correig-Blanchar X, Davis RJ, Sabio G, Rada P, Valverde ÁM. Hypothalamic JNK1-hepatic fatty acid synthase axis mediates a metabolic rewiring that prevents hepatic steatosis in male mice treated with olanzapine via intraperitoneal: Additional effects of PTP1B inhibition. Redox Biol 2023; 63:102741. [PMID: 37230004 DOI: 10.1016/j.redox.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Olanzapine (OLA), a widely used second-generation antipsychotic (SGA), causes weight gain and metabolic alterations when administered orally to patients. Recently, we demonstrated that, contrarily to the oral treatment which induces weight gain, OLA administered via intraperitoneal (i.p.) in male mice resulted in body weight loss. This protection was due to an increase in energy expenditure (EE) through a mechanism involving the modulation of hypothalamic AMPK activation by higher OLA levels reaching this brain region compared to those of the oral treatment. Since clinical studies have shown hepatic steatosis upon chronic treatment with OLA, herein we further investigated the role of the hypothalamus-liver interactome upon OLA administration in wild-type (WT) and protein tyrosine phosphatase 1B knockout (PTP1B-KO) mice, a preclinical model protected against metabolic syndrome. WT and PTP1B-KO male mice were fed an OLA-supplemented diet or treated via i.p. Mechanistically, we found that OLA i.p. treatment induces mild oxidative stress and inflammation in the hypothalamus in a JNK1-independent and dependent manner, respectively, without features of cell dead. Hypothalamic JNK activation up-regulated lipogenic gene expression in the liver though the vagus nerve. This effect concurred with an unexpected metabolic rewiring in the liver in which ATP depletion resulted in increased AMPK/ACC phosphorylation. This starvation-like signature prevented steatosis. By contrast, intrahepatic lipid accumulation was observed in WT mice treated orally with OLA; this effect being absent in PTP1B-KO mice. We also demonstrated an additional benefit of PTP1B inhibition against hypothalamic JNK activation, oxidative stress and inflammation induced by chronic OLA i.p. treatment, thereby preventing hepatic lipogenesis. The protection conferred by PTP1B deficiency against hepatic steatosis in the oral OLA treatment or against oxidative stress and neuroinflammation in the i.p. treatment strongly suggests that targeting PTP1B might be also a therapeutic strategy to prevent metabolic comorbidities in patients under OLA treatment in a personalized manner.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - María García-Altares
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Giada DiNunzio
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Christoph Bookmeyer
- Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - John G Jones
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | | | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Xavier Correig-Blanchar
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain; Institut D'Investigacio Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Roger J Davis
- Program in Molecular Medicine, Chan Medical School, University of Massachusetts, Worcester, USA
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| |
Collapse
|
7
|
Zhang J, Chen S, Chen J, Zhang H, Rao WW. Comparison of olanzapine-induced weight gain and metabolism abnormalities between topiramate and vitamin C in patients with schizophrenia: a preliminary study. Front Psychiatry 2023; 14:1152953. [PMID: 37252140 PMCID: PMC10213308 DOI: 10.3389/fpsyt.2023.1152953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background Topiramate (TPM) may reduce olanzapine (OLZ)-related weight gain and metabolism abnormalities in patients with schizophrenia. However, differences in the efficacy of OLZ-related weight gain and metabolism abnormalities between TPM and vitamin C (VC) are not clear. This study aimed to investigate whether TPM is more effective than VC in reducing OLZ-induced weight gain and metabolic abnormalities in patients with schizophrenia and explore their patterns. Methods This was a 12-week longitudinal comparison study in OLZ-treated patients with schizophrenia. Twenty-two patients who received OLZ monotherapy plus VC treatment (OLZ + VC group) was matched to 22 patients who received OLZ monotherapy plus TPM treatment (OLZ + TPM group). Body mass index (BMI) and metabolism indicators were measured at baseline and 12-weeks follow-up. Results A significant difference in triglyceride (TG) levels at different time points (pre-treatment: F = 7.89, p = 0.008; 4-weeks treatment: F = 13.19, p = 0.001; 12-weeks treatment: F = 54.48, p < 0.001) was found. Latent profile analysis demonstrated that a 2-class model for OLZ + TPM group (high vs. low BMI in the first 4 weeks) and OLZ + VC group (high vs. low), respectively. Conclusion Our findings suggested that TPM could better mitigates OLZ-induced increase in TG levels. The trajectories of change also differed in all metabolic indexes over time between the two groups.
Collapse
Affiliation(s)
- Jinling Zhang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Shu Chen
- The Fourth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jia Chen
- The Fourth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Handi Zhang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Wen-Wang Rao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
8
|
Nano-hesperetin attenuates ketamine-induced schizophrenia-like symptoms in mice: participation of antioxidant parameters. Psychopharmacology (Berl) 2023; 240:1063-1074. [PMID: 36879073 DOI: 10.1007/s00213-023-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Antioxidant natural herb hesperetin (Hst) offers powerful medicinal properties. Despite having noticeable antioxidant properties, it has limited absorption, which is a major pharmacological obstacle. OBJECTIVES The goal of the current investigation was to determine if Hst and nano-Hst might protect mice against oxidative stress and schizophrenia (SCZ)-like behaviors brought on by ketamine (KET). METHODS Seven treatment groups (n=7) were created for the animals. For 10 days, they received distilled water or KET (10 mg/kg) intraperitoneally (i.p). From the 11th to the 40th day, they received daily oral administration of Hst and nano-Hst (10, 20 mg/kg) or vehicle. With the use of the forced swimming test (FST), open field test (OFT), and novel object recognition test (NORT), SCZ-like behaviors were evaluated. Malondialdehyde (MDA) and glutathione levels and antioxidant enzyme activities were assessed in the cerebral cortex. RESULTS Our findings displayed that behavioral disorders induced by KET would be improved by nano-Hst treated. MDA levels were much lower after treatment with nano-Hst, and brain antioxidant levels and activities were noticeably higher. The mice treated with nano-Hst had improved outcomes in the behavioral and biochemical tests when compared to the Hst group. CONCLUSIONS Our study's findings showed that nano-Hst had a stronger neuroprotective impact than Hst. In cerebral cortex tissues, nano-Hst treatment dramatically reduced KET-induced (SCZ)-like behavior and oxidative stress indicators. As a result, nano-Hst may have more therapeutic potential and may be effective in treating behavioral impairments and oxidative damage brought on by KET.
Collapse
|
9
|
Yang M, Wang C, Zhao G, Kong D, Liu L, Yuan S, Chen W, Feng C, Li Z. Comparative Analysis of the Pre- and Post-Medication Effects of Antipsychotic Agents on the Blood-Based Oxidative Stress Biomarkers in Patients with Schizophrenia: A Meta-Analysis. Curr Neuropharmacol 2023; 21:340-352. [PMID: 35794775 PMCID: PMC10190148 DOI: 10.2174/1570159x20666220706101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Studies have shown that oxidative stress (OS) is related to the pathophysiology of schizophrenia (SCZ), but whether antipsychotics can induce OS has not been investigated well. Moreover, antipsychotics have differential effects on the OS level modulation, i.e., different types of antipsychotics have different effects on the cellular antioxidants or pro-oxidants. METHODS We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and investigated the OS indicators including both enzymatic and nonenzymatic markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), glutathione (GSH), vitamin C, etc., of SCZ patients at baseline and follow-up of mono-medication. RESULTS Twenty studies met the inclusion criteria, with a total of 1162 patients enrolled at baseline, and 1105 patients completed the follow-up. OS markers were changed after a period of antipsychotic treatment in SCZ patients. The GPx activity and MDA level decreased in the whole blood (P<0.05), also the serum MDA level decreased (P<0.05). For the first-episode SCZ patients, the activity of GPx and the level of MDA decreased, while the level of vitamin C increased (all P<0.05). The levels of MDA in patients receiving atypical antipsychotics decreased (P<0.05), while the level of GSH in patients with typical antipsychotics decreased (P=0.05). CONCLUSION Antipsychotic medication may cause changes in the levels of OS markers in different blood samples of SCZ patients. However, the available studies might not be sufficient to reveal the underlying facts accurately due to the poor quality of experimental designs in the published literature.
Collapse
Affiliation(s)
- Mi Yang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Chunzhi Wang
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Guocheng Zhao
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Di Kong
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Liju Liu
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shuai Yuan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Wei Chen
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Can Feng
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Psychiatry, Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
10
|
Ellezian L, Jhawar A, Kyono Y, Flowers SA. Psychotropic Drugs in the Discussion of Antimicrobial-Resistant Microorganisms. DNA Cell Biol 2022; 41:919-923. [DOI: 10.1089/dna.2022.0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lori Ellezian
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Archana Jhawar
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmacy, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Yasuhiro Kyono
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie A. Flowers
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Analysis of Mitochondrial Function in Cell Membranes as Indicator of Tissue Vulnerability to Drugs in Humans. Biomedicines 2022; 10:biomedicines10050980. [PMID: 35625717 PMCID: PMC9138415 DOI: 10.3390/biomedicines10050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Drug side effects are one of the main reasons for treatment withdrawal during clinical trials. Reactive oxygen species formation is involved in many of the drug side effects, mainly by interacting with the components of the cellular respiration. Thus, the early detection of these effects in the drug discovery process is a key aspect for the optimization of pharmacological research. To this end, the superoxide formation of a series of drugs and compounds with antidepressant, antipsychotic, anticholinergic, narcotic, and analgesic properties was evaluated in isolated bovine heart membranes and on cell membrane microarrays from a collection of human tissues, together with specific inhibitors of the mitochondrial electron transport chain. Fluphenazine and PB28 promoted similar effects to those of rotenone, but with lower potency, indicating a direct action on mitochondrial complex I. Moreover, nefazodone, a drug withdrawn from the market due to its mitochondrial hepatotoxic effects, evoked the highest superoxide formation in human liver cell membranes, suggesting the potential of this technology to anticipate adverse effects in preclinical phases.
Collapse
|
12
|
Hu M, Wang R, Chen X, Zheng M, Zheng P, Boz Z, Tang R, Zheng K, Yu Y, Huang XF. Resveratrol prevents haloperidol-induced mitochondria dysfunction through the induction of autophagy in SH-SY5Y cells. Neurotoxicology 2021; 87:231-242. [PMID: 34688786 DOI: 10.1016/j.neuro.2021.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Haloperidol is a commonly used antipsychotic drug and may increase neuronal oxidative stress associated with the side effects, including tardive dyskinesia and neurite withdraw. Autophagy plays a protective role in response to the accumulated reactive oxygen species (ROS) induced mitochondria damage. Resveratrol is an antioxidant compound having neuroprotective effects; however, it is unknown if resveratrol may stimulate autophagy and decrease mitochondria damage induced by haloperidol. HYPOTHESIS We hypothesis that resveratrol stimulates the autophagic process and protects mitochondria lesion induced by haloperidol. METHODS MitoSOX™ Red Mitochondrial Superoxide Indicator and MitoTracker™ Green FM staining were used to measure the amount of the mitochondria ROS production and mitochondria mass in human SH-SY5Y cells treated with haloperidol and/or resveratrol. Autophagic related dyes and Western blot were applied to study the autophagic process and related protein expression. Besides, tandem monomeric mRFP-GFP-LC3 was used to investigate the fusion of autophagosome and lysosome. Transmission electron microscopy was used to investigate the mitochondrial and autophagic ultrastructures with or without haloperidol and resveratrol treatment. RESULTS Haloperidol administration significantly increased mitochondria ROS and mitochondrial mass, indicating the increase of mitochondria dysfunction. Although haloperidol increased the autophagosomes and lysosome formation, the autophagosome-lysosome fusion and degradation were impaired. This was because we found an increased p62 after haloperidol treatment, an indication of autophagy incompletion. Importantly, resveratrol promoted the degradation of p62, upregulated the formation of autophagolysosome, and reversed haloperidol-induced mitochondria damage. CONCLUSION These results collectively suggest that resveratrol may be introduced as a protective compound against haloperidol-induced mitochondria impairment and aberrant autophagy.
Collapse
Affiliation(s)
- Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Ruiqi Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xi Chen
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Zehra Boz
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
13
|
del Campo A, Salamanca C, Fajardo A, Díaz-Castro F, Bustos C, Calfío C, Troncoso R, Pastene-Navarrete ER, Acuna-Castillo C, Milla LA, Villarroel CA, Cubillos FA, Aranda M, Rojo LE. Anthocyanins from Aristotelia chilensis Prevent Olanzapine-Induced Hepatic-Lipid Accumulation but Not Insulin Resistance in Skeletal Muscle Cells. Molecules 2021; 26:molecules26206149. [PMID: 34684731 PMCID: PMC8537850 DOI: 10.3390/molecules26206149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes and obesity are major problems worldwide and dietary polyphenols have shown efficacy to ameliorate signs of these diseases. Anthocyanins from berries display potent antioxidants and protect against weight gain and insulin resistance in different models of diet-induced metabolic syndrome. Olanzapine is known to induce an accelerated form of metabolic syndrome. Due to the aforementioned, we evaluated whether delphinidin-3,5-O-diglucoside (DG) and delphinidin-3-O-sambubioside-5-O-glucoside (DS), two potent antidiabetic anthocyanins isolated from Aristotelia chilensis fruit, could prevent olanzapine-induced steatosis and insulin resistance in liver and skeletal muscle cells, respectively. HepG2 liver cells and L6 skeletal muscle cells were co-incubated with DG 50 μg/mL or DS 50 μg/mL plus olanzapine 50 μg/mL. Lipid accumulation was determined in HepG2 cells while the expression of p-Akt as a key regulator of the insulin-activated signaling pathways, mitochondrial function, and glucose uptake was assessed in L6 cells. DS and DG prevented olanzapine-induced lipid accumulation in liver cells. However, insulin signaling impairment induced by olanzapine in L6 cells was not rescued by DS and DG. Thus, anthocyanins modulate lipid metabolism, which is a relevant factor in hepatic tissue, but do not significantly influence skeletal muscle, where a potent antioxidant effect of olanzapine was found.
Collapse
Affiliation(s)
- Andrea del Campo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (C.S.); (A.F.); (C.B.); (C.C.); (C.A.-C.)
- Laboratorio de Fisiología y Bioenergética Celular, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (A.d.C.); (L.E.R.); Tel.: +56-223544384 (A.d.C.); +56-22718-1177 (L.E.R.)
| | - Catalina Salamanca
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (C.S.); (A.F.); (C.B.); (C.C.); (C.A.-C.)
| | - Angelo Fajardo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (C.S.); (A.F.); (C.B.); (C.C.); (C.A.-C.)
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (F.D.-C.); (R.T.)
| | - Catalina Bustos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (C.S.); (A.F.); (C.B.); (C.C.); (C.A.-C.)
| | - Camila Calfío
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (C.S.); (A.F.); (C.B.); (C.C.); (C.A.-C.)
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (F.D.-C.); (R.T.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile
| | - Edgar R. Pastene-Navarrete
- Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 4081112, Chile;
| | - Claudio Acuna-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (C.S.); (A.F.); (C.B.); (C.C.); (C.A.-C.)
| | - Luis A. Milla
- Escuela de Medicina, Universidad de Santiago de Chile, CIBAP, Obispo Umaña 050, Santiago 9170201, Chile;
| | - Carlos A. Villarroel
- ANID-Programa Iniciativa Científica Milenio-Instituto Milenio de Biología Integrativa (iBio), General del Canto 50, Providencia, Santiago 7500565, Chile; (C.A.V.); (F.A.C.)
- Laboratorio Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
| | - Francisco A. Cubillos
- ANID-Programa Iniciativa Científica Milenio-Instituto Milenio de Biología Integrativa (iBio), General del Canto 50, Providencia, Santiago 7500565, Chile; (C.A.V.); (F.A.C.)
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile
| | - Mario Aranda
- Laboratorio de Investigación en Fármacos y Alimentos, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (C.S.); (A.F.); (C.B.); (C.C.); (C.A.-C.)
- Correspondence: (A.d.C.); (L.E.R.); Tel.: +56-223544384 (A.d.C.); +56-22718-1177 (L.E.R.)
| |
Collapse
|
14
|
Chen CH, Leu SJJ, Hsu CP, Pan CC, Shyue SK, Lee TS. Atypical antipsychotic drugs deregulate the cholesterol metabolism of macrophage-foam cells by activating NOX-ROS-PPARγ-CD36 signaling pathway. Metabolism 2021; 123:154847. [PMID: 34364926 DOI: 10.1016/j.metabol.2021.154847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Clinical reports indicate that schizophrenia patients taking atypical antipsychotic drugs suffer from metabolism diseases including atherosclerosis. However, the mechanisms underlying the detrimental effect of atypical antipsychotic drugs on atherosclerosis remain to be explored. METHODS In this study, we used apolipoprotein E-deficient (apoe-/-) hyperlipidemic mice and apoe-/-cd36-/- mice to investigate the underlying mechanism of atypical antipsychotic drugs on atherosclerosis and macrophage-foam cells. RESULTS In vivo studies showed that genetic deletion of cd36 gene ablated the pro-atherogenic effect of olanzapine in apoe-/- mice. Moreover, in vitro studies revealed that genetic deletion or siRNA-mediated knockdown of cd36 or pharmacological inhibition of CD36 prevented atypical antipsychotic drugs-induced oxLDL accumulation in macrophages. Additionally, olanzapine and clozapine activated NADPH oxidase (NOX) to generate reactive oxygen species (ROS) which upregulated the activity of peroxisome proliferator-activated receptor γ (PPARγ) and subsequently elevated CD36 expression. Inhibition of NOX activity, ROS production or PPARγ activity suppressed CD36 expression and abolished the detrimental effects of olanzapine and clozapine on oxLDL accumulation in macrophages. CONCLUSION Collectively, our results suggest that atypical antipsychotic drugs exacerbate atherosclerosis and macrophage-foam cell formation by activating the NOX-ROS-PPARγ-CD36 pathway.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shr-Jeng Jim Leu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiao-Po Hsu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Chian Pan
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Song-Kun Shyue
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
D’Errico S, Russa RL, Maiese A, Santurro A, Scopetti M, Romano S, Zanon M, Frati P, Fineschi V. Atypical antipsychotics and oxidative cardiotoxicity: review of literature and future perspectives to prevent sudden cardiac death. J Geriatr Cardiol 2021; 18:663-685. [PMID: 34527032 PMCID: PMC8390928 DOI: 10.11909/j.issn.1671-5411.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress is considered the principal mediator of myocardial injury under pathological conditions. It is well known that reactive oxygen (ROS) or nitrogen species (RNS) are involved in myocardial injury and repair at the same time and that cellular damage is generally due to an unbalance between generation and elimination of the free radicals due to an inadequate mechanism of antioxidant defense or to an increase in ROS and RNS. Major adverse cardiovascular events are often associated with drugs with associated findings such as fibrosis or inflammation of the myocardium. Despite efforts in the preclinical phase of the development of drugs, cardiotoxicity still remains a great concern. Cardiac toxicity due to second-generation antipsychotics (clozapine, olanzapine, quetiapine) has been observed in preclinical studies and described in patients affected with mental disorders. A role of oxidative stress has been hypothesized but more evidence is needed to confirm a causal relationship. A better knowledge of cardiotoxicity mechanisms should address in the future to establish the right dose and length of treatment without impacting the physical health of the patients.
Collapse
Affiliation(s)
- Stefano D’Errico
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | - Aniello Maiese
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Romano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Martina Zanon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Paola Frati
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Fineschi
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Metabolic and behavioral effects of olanzapine and fluoxetine on the model organism Caenorhabditis elegans. Saudi Pharm J 2021; 29:917-929. [PMID: 34408550 PMCID: PMC8363109 DOI: 10.1016/j.jsps.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
The use of many psychotropic drugs (PDs) is associated with increased caloric intake, significant weight gain, and metabolic disorders. The nematode Caenorhabditis elegans (C. elegans) has been used to study the effects of PDs on food intake. However, little is known about PDs effects on the body fat of C. elegans. In C. elegans, feeding behavior and fat metabolism are regulated through independent mechanisms. This study aims to evaluate the body fat and food intake of C. elegans in response to treatment olanzapine and fluoxetine. Here we report that, with careful consideration to the dosage used, administration of fluoxetine and olanzapine increases body fat and food intake in C. elegans.
Collapse
|
17
|
Liu D, Gu Y, Yu H. Vitamin C regulates the production of reactive oxygen species through Wnt10b signaling in the gill of zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1271-1282. [PMID: 34228252 DOI: 10.1007/s10695-021-00982-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, the mechanism that vitamin C (VC) regulates the production of reactive oxygen species (ROS) through Wnt10b signaling was investigated in the gill of zebrafish (Danio rerio). The results showed that 0.5 and 1.0 g/kg VC diets induced the gene expression of Wnt10b, β-catenin, SOD, CAT, and GSH-PX in gill. In addition, VC decreased the levels of H2O2, O2·- and ·OH, whereas the activities of SOD, CAT, and GSH-PX were increased by VC in the gill of zebrafish. To evaluate the role of Wnt10b in regulating oxidative stress, Wnt10b RNA was further interfered and the gene expression and activities of antioxidant enzymes were detected in gill. The result of Wnt10b RNA interference showed that Wnt10b signaling played a key role in regulating the gene expression of SOD, CAT, and GSH-PX. In all, VC may regulate the production of ROS through Wnt10b signaling in the gill of zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Dongwu Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China.
| | - Yaqi Gu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang, 261061, China
| |
Collapse
|
18
|
Abdel-Wahab BA, Salem SY, Mohammed HM, Mohammed NA, Hetta HF. The role of vimentin, Connexin-43 proteins, and oxidative stress in the protective effect of propranolol against clozapine-induced myocarditis and apoptosis in rats. Eur J Pharmacol 2021; 890:173645. [PMID: 33098837 DOI: 10.1016/j.ejphar.2020.173645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
Clozapine (CLZ) represents an effective treatment for resistant schizophrenia. However, myocarditis, recently reported in about 66% of the psychiatric patients treated with CLZ, has raised concerns about its safety. β-blocking agents have shown to be helpful in the management of myocarditis. Moreover, Vimentin (VIM) and Connexin-43 (CX43) are important structural proteins play key roles in cytoskeletal functions and cellular communication and have complex implications in pathophysiology. The present work aimed to study the mechanisms behind the protective effect of propranolol (PRO) against CLZ-induced myocarditis and the possible involvement of VIM and CX43. The effect of PRO (5 and 10 mg/kg, oral) on the myocarditis induced by CLZ (25 mg/kg/d, i. p.) treatment for 21 days in rats, was assessed biochemically, and immunohistochemically. CLZ treatment increased the serum levels of cardiac injury (CK-MP, LDH and cTn-I) and cardiac levels of oxidative stress (TBARS and NO) markers, proinflammatory cytokines (IL-1β and TNF-α), and mRNA expression of VIM and CX43 with decreased the antioxidant defenses (GSH and GSH-Px). Immunohistochemical study showed increased cardiac expression of VIM, CX43 and caspase-3 proteins. Coadministration of PRO with CLZ, dose-dependently decreased the biochemical and immunohistochemical hallmarks of CLZ-induced myocardial injury and significantly decreased mRNA expression of VIM and CX43. Taken together, our results demonstrate that the cardioprotective effects of PRO on CLZ-induced myocarditis are related in addition to its β-blocking activity to protection of myocardial VIM and CX43 proteins through antagonizing the CLZ-induced oxidative stress and inflammatory response, and preventing cell apoptosis.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Safaa Yousef Salem
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hala Mostafa Mohammed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
19
|
Caruso G, Grasso M, Fidilio A, Tascedda F, Drago F, Caraci F. Antioxidant Properties of Second-Generation Antipsychotics: Focus on Microglia. Pharmaceuticals (Basel) 2020; 13:ph13120457. [PMID: 33322693 PMCID: PMC7764768 DOI: 10.3390/ph13120457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest a primary role of oxidative stress in an early phase of the pathogenesis of schizophrenia and a strong neurobiological link has been found between dopaminergic system dysfunction, microglia overactivation, and oxidative stress. Different risk factors for schizophrenia increase oxidative stress phenomena raising the risk of developing psychosis. Oxidative stress induced by first-generation antipsychotics such as haloperidol significantly contributes to the development of extrapyramidal side effects. Haloperidol also exerts neurotoxic effects by decreasing antioxidant enzyme levels then worsening pro-oxidant events. Opposite to haloperidol, second-generation antipsychotics (or atypical antipsychotics) such as risperidone, clozapine, and olanzapine exert a strong antioxidant activity in experimental models of schizophrenia by rescuing the antioxidant system, with an increase in superoxide dismutase and glutathione (GSH) serum levels. Second-generation antipsychotics also improve the antioxidant status and reduce lipid peroxidation in schizophrenic patients. Interestingly, second-generation antipsychotics, such as risperidone, paliperidone, and in particular clozapine, reduce oxidative stress induced by microglia overactivation, decreasing the production of microglia-derived free radicals, finally protecting neurons against microglia-induced oxidative stress. Further, long-term clinical studies are needed to better understand the link between oxidative stress and the clinical response to antipsychotic drugs and the therapeutic potential of antioxidants to increase the response to antipsychotics.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Correspondence: or
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Annamaria Fidilio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.); (F.D.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.); (F.D.)
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
20
|
Madireddy S, Madireddy S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci 2020; 10:brainsci10100742. [PMID: 33081261 PMCID: PMC7603028 DOI: 10.3390/brainsci10100742] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The biochemical integrity of the brain is paramount to the function of the central nervous system, and oxidative stress is a key contributor to cerebral biochemical impairment. Oxidative stress, which occurs when an imbalance arises between the production of reactive oxygen species (ROS) and the efficacy of the antioxidant defense mechanism, is believed to play a role in the pathophysiology of various brain disorders. One such disorder, schizophrenia, not only causes lifelong disability but also induces severe emotional distress; however, because of its onset in early adolescence or adulthood and its progressive development, consuming natural antioxidant products may help regulate the pathogenesis of schizophrenia. Therefore, elucidating the functions of ROS and dietary antioxidants in the pathogenesis of schizophrenia could help formulate improved therapeutic strategies for its prevention and treatment. This review focuses specifically on the roles of ROS and oxidative damage in the pathophysiology of schizophrenia, as well as the effects of nutrition, antipsychotic use, cognitive therapies, and quality of life on patients with schizophrenia. By improving our understanding of the effects of various nutrients on schizophrenia, it may become possible to develop nutritional strategies and supplements to treat the disorder, alleviate its symptoms, and facilitate long-term recovery.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence: ; Tel.: +1-408-9214162
| | - Sahithi Madireddy
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;
| |
Collapse
|
21
|
Endocrine disruption and obesity: A current review on environmental obesogens. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2020; 3. [PMCID: PMC7326440 DOI: 10.1016/j.crgsc.2020.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Obesity represents an important public health concern because it substantially increases the risk of multiple chronic diseases and thereby contributing to a decline in both quality of life and life expectancy. Besides unhealthy diet, physical inactivity and genetic susceptibility, environmental pollutants also contribute to the rising prevalence of obesity epidemic. An environmental obesogen is defined as a chemical that can alter lipid homeostasis to promote adipogenesis and lipid accumulation whereas an endocrine disrupting chemical (EDC) is defined as a synthetic chemical that can interfere with the endocrine function and cause adverse health effects. Many obesogens are EDCs that interfere with normal endocrine regulation of metabolism, adipose tissue development and maintenance, appetite, weight and energy balance. An expanding body of scientific evidence from animal and epidemiological studies has begun to provide links between exposure to EDCs and obesity. Despite the significance of environmental obesogens in the pathogenesis of metabolic diseases, the contribution of synthetic chemical exposure to obesity epidemic remains largely unrecognised. Hence, the purpose of this review is to provide a current update on the evidences from animal and human studies on the role of fourteen environmental obesogens in obesity, a comprehensive view of the mechanisms of action of these obesogens and current green and sustainable chemistry strategies to overcome chemical exposure to prevent obesity. Designing of safer version of obesogens through green chemistry approaches requires a collaborative undertaking to evaluate the toxicity of endocrine disruptors using appropriate experimental methods, which will help in developing a new generation of inherently safer chemicals. Many environmental obesogens are endocrine disrupting chemicals that interfere with normal endocrine regulation of metabolism. Understanding the role of environmental obesogens in the epidemics of obesity is in an infant stage. Green chemistry approach aims to design a safer version of these chemicals by understanding their hazardous effects. Further studies are necessary to fully establish the hazardous effects of obesogens and their association to human obesity.
Collapse
|
22
|
Moretti M, Rodrigues ALS. Ascorbic acid as an antioxidant and applications to the central nervous system. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Differential Expression of CD3, TNF-α, and VEGF Induced by Olanzapine on the Spleen of Adult Male Albino Rats and the Possible Protective Role of Vitamin C. Biomedicines 2019; 7:biomedicines7020039. [PMID: 31126077 PMCID: PMC6631609 DOI: 10.3390/biomedicines7020039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Olanzapine is an antipsychotic drug effective in the treatment of stress-associated psychiatric illnesses, but its effect on the spleen remains unclear. Vitamin C is essential for the optimum function of the immune system. We aim to investigate the effect of Olanzapine on spleen structures and to assess the protective effect of vitamin C. Forty adult male albino rats were divided into four groups: group (I), a control; group (II), rats were given vitamin C at 40 mg/kg body weight; group (III), rats were given Olanzapine at 2 mg/kg body weight; and group (IV), rats were given vitamin C and Olanzapine at the same dose of group (II) and group (III) for one month. The hematoxylin and eosin (H&E) of the olanzapine treated group showed focal areas of cellular depletion and a decrease in the size of the white pulp. The red pulp was expanded and showed marked congestion and dilatation of blood sinusoids. Cluster of differentiation 3 (CD3) was significantly reduced, however both tumor necrosis factor alpha (TNF-α), and vascular endothelial growth factor (VEGF) were significantly higher. The administration of vitamin C repaired structural and immunohistochemical changes via increased CD3 and decreased TNF-α and VEGF. Therefore, the oxidative and the inflammatory pathways may be the possible mechanisms underlying olanzapine immunotoxicity. Vitamin C exerted immune modulator and antioxidant effects against olanzapine.
Collapse
|
24
|
Abstract
Ascorbate has critical roles in the central nervous system (CNS); it is a neuromodulator of glutamatergic, cholinergic, dopaminergic, and γ-aminobutyric acid (GABA)-ergic neurotransmission, provides support and structure to neurons, and participates in processes such as differentiation, maturation, and survival of neurons. Over the past decade, antioxidant properties of ascorbate have been extensively characterized and now it is known that this compound is highly concentrated in the brain and neuroendocrine tissues. All this information raised the hypothesis that ascorbate may be involved in neurological disorders. Indeed, the biological mechanisms of ascorbate in health and disease and its involvement in homeostasis of the CNS have been the subject of extensive research. In particular, evidence for an association of this vitamin with schizophrenia, major depressive disorder, and bipolar disorder has been provided. Considering that conventional pharmacotherapy for the treatment of these neuropathologies has important limitations, this review aims to explore basic and human studies that implicate ascorbic acid as a potential therapeutic strategy. Possible mechanisms involved in the beneficial effects of ascorbic acid for the management of psychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Daiane Bittencourt Fraga
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
25
|
Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients 2017; 9:E659. [PMID: 28654017 PMCID: PMC5537779 DOI: 10.3390/nu9070659] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (Vit C) is considered to be a vital antioxidant molecule in the brain. Intracellular Vit C helps maintain integrity and function of several processes in the central nervous system (CNS), including neuronal maturation and differentiation, myelin formation, synthesis of catecholamine, modulation of neurotransmission and antioxidant protection. The importance of Vit C for CNS function has been proven by the fact that targeted deletion of the sodium-vitamin C co-transporter in mice results in widespread cerebral hemorrhage and death on post-natal day one. Since neurological diseases are characterized by increased free radical generation and the highest concentrations of Vit C in the body are found in the brain and neuroendocrine tissues, it is suggested that Vit C may change the course of neurological diseases and display potential therapeutic roles. The aim of this review is to update the current state of knowledge of the role of vitamin C on neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic sclerosis, as well as psychiatric disorders including depression, anxiety and schizophrenia. The particular attention is attributed to understanding of the mechanisms underlying possible therapeutic properties of ascorbic acid in the presented disorders.
Collapse
Affiliation(s)
- Joanna Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Dorota Luchowska-Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Małgorzata Kiełczykowska
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Irena Musik
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| |
Collapse
|
26
|
Abdel Hamid OI, Ahmed MG, Hassaneine HMA, Rashed HE. Evaluation of the role of captopril on clozapine-induced cardiotoxicity and hematotoxicity in adult male albino rats. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317696539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Clozapine (CLZ) is considered the most effective drug in treatment of resistant schizophrenia. However, its cardiotoxic effect has raised concerns about its safety. Captopril is a well-known angiotensin-converting enzyme inhibitor with unique antioxidant properties. The aim of this study was to investigate the protective effect of captopril against CLZ-induced myocarditis, and since both drugs have hematotoxic effects, this study aimed to clarify the effect of their combined use on the bone marrow. The study was conducted for 4 weeks on 50 adult male albino rats divided into five groups: group I (negative control), group II (positive control), group III treated with captopril 5 mg/kg/day, group IV treated with CLZ 25 mg/kg/day, and group V treated with captopril (5 mg/kg) 1 hour before CLZ (25 mg/kg/day). CLZ group showed a significant increase in serum troponin I, marked histopathological changes, and immunohistochemical staining of DNA degradation product 8-hydroxy-2-deoxy guanosine (8-OHdG). It significantly increased malondialdehyde level and decreased glutathione peroxidase. Captopril coadministration decreased the histopathological hallmarks and biochemical marker of myocarditis and attenuated CLZ effects on the oxidative stress parameters and 8-OHdG, suggesting its protective action against CLZ-induced myocarditis. Complete blood count and bone marrow evaluation was normal indicating that captopril, in the protective dose given, didn’t increase the risk of CLZ-induced hematotoxicity
Collapse
Affiliation(s)
- Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Marwa G Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Hanan MA Hassaneine
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Hayam E Rashed
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
27
|
Gulec M, Ozcan H, Oral E, Dursun OB, Unal D, Aksak S, Selli J, Keles ON, Unal B, Albayrak A, Halici Z. Nephrotoxic Effects of Chronically Administered Olanzapine and Risperidone in Male Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20111208083355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mustafa Gulec
- Department of Psychiatry, Ataturk University School of Medicine, Erzurum - Turkey
| | - Halil Ozcan
- Department of Psychiatry, Ataturk University School of Medicine, Erzurum - Turkey
| | - Elif Oral
- Department of Psychiatry, Ataturk University School of Medicine, Erzurum - Turkey
| | - Onur Burak Dursun
- Department of Child and Adolescent Psychiatry, Ataturk University School of Medicine, Erzurum - Turkey
| | - Deniz Unal
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Selina Aksak
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Jale Selli
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Osman Nuri Keles
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Bunyamin Unal
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University School of Medicine, Erzurum - Turkey
| |
Collapse
|
28
|
Eftekhari A, Azarmi Y, Parvizpur A, Eghbal MA. Involvement of oxidative stress and mitochondrial/lysosomal cross-talk in olanzapine cytotoxicity in freshly isolated rat hepatocytes. Xenobiotica 2015; 46:369-78. [PMID: 26364812 DOI: 10.3109/00498254.2015.1078522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Olanzapine (OLZ) is a widely used atypical antipsychotic agent for the treatment of schizophrenia and other disorders. Serious hepatotoxicity and elevated liver enzymes have been reported in patients receiving OLZ. However, the cellular and molecular mechanisms of the OLZ hepatotoxicity are unknown. 2. In this study, the cytotoxic effect of OLZ on freshly isolated rat hepatocytes was assessed. Our results showed that the cytotoxicity of OLZ in hepatocytes is mediated by overproduction of reactive oxygen species (ROS), mitochondrial potential collapse, lysosomal membrane leakiness, GSH depletion and lipid peroxidation preceding cell lysis. All the aforementioned OLZ-induced cellular events were significantly (p < 0.05) prevented by ROS scavengers, antioxidants, endocytosis inhibitors and adenosine triphosphate generators. Also, the present results demonstrated that CYP450 is involved in OLZ-induced oxidative stress and cytotoxicity mechanism. 3. It is concluded that OLZ hepatotoxicity is associated with both mitochondrial/lysosomal involvement following the initiation of oxidative stress in hepatocytes.
Collapse
Affiliation(s)
- Aziz Eftekhari
- a Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and.,d Students' Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Yadollah Azarmi
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Alireza Parvizpur
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Mohammad Ali Eghbal
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| |
Collapse
|
29
|
Clozapine-Induced Cardiotoxicity: Role of Oxidative Stress, Tumour Necrosis Factor Alpha and NF-κβ. Cardiovasc Toxicol 2014; 15:355-65. [DOI: 10.1007/s12012-014-9304-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Abdel-Wahab BA, Metwally ME. Clozapine-induced cardiotoxicity in rats: Involvement of tumour necrosis factor alpha, NF-κβ and caspase-3. Toxicol Rep 2014; 1:1213-1223. [PMID: 28962331 PMCID: PMC5598316 DOI: 10.1016/j.toxrep.2014.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/17/2014] [Accepted: 11/12/2014] [Indexed: 12/18/2022] Open
Abstract
Clozapine, an ideal antipsychotic drug for the treatment of resistant schizophrenia, is considered the most underutilised treatment for schizophrenia. However, safety concerns have been raised about clozapine-induced cardiotoxicity, which may lead to sudden death, particularly in young patients. The exact mechanism of clozapine cardiotoxicity has not yet been thoroughly studied. This study aimed to investigate the possible mechanisms of clozapine-induced cardiotoxicity in a rat model. Young male Wistar rats were treated with clozapine (10, 15 and 25 mg/kg/day, i.p.) for 21 days. Haemodynamic and echocardiographic studies were performed for assessment of cardiac functions. Heart sections were studied histopathologically and immunohistochemically. Serum and cardiac markers of cardiotoxicity, oxidative stress, inflammation and apoptosis were evaluated. Heart sections of CLZ-treated animals showed increased cardiac inflammation that correlated with the clozapine dose. Serum levels of CK-MB and LDH levels increased, as did cardiac levels of TNF-α, MDA, NO, myeloperoxidase (MPO), 8-OHdG, caspase-3 and NF-κB p65. In contrast, GSH levels and GSH-Px activity decreased. Furthermore, immunohistochemical examination of the heart sections showed positive immunostaining for both 3-nitrotyrosine and caspase-3 in all clozapine-treated groups. Clozapine, particularly in relatively high doses, has a clear cardiotoxic effect. This cardiotoxicity is accompanied by increased myocardial oxidative stress, inflammatory cytokines, DNA damage and apoptosis with attenuation in antioxidant defences, thus explaining the previously reported myocarditis and pericarditis during clozapine therapy in clinical studies.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Metwally E Metwally
- Department of Forensic Medicine and Toxicology, College of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
31
|
Abdel-Wahab BA, Abdalla ME, El-khawanki MM. Does clozapine induce myocarditis, myocardial oxidative stress and DNA damage in rats? EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2014. [DOI: 10.1016/j.ejfs.2014.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
32
|
Protective effect of captopril against clozapine-induced myocarditis in rats: Role of oxidative stress, proinflammatory cytokines and DNA damage. Chem Biol Interact 2014; 216:43-52. [DOI: 10.1016/j.cbi.2014.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
|
33
|
Reconstitution of the interplay between cytochrome P450 and human glutathione S-transferases in clozapine metabolism in yeast. Toxicol Lett 2013; 222:247-56. [DOI: 10.1016/j.toxlet.2013.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 01/10/2023]
|
34
|
Contreras-Shannon V, Heart DL, Paredes RM, Navaira E, Catano G, Maffi SK, Walss-Bass C. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells. PLoS One 2013; 8:e59012. [PMID: 23527073 PMCID: PMC3604003 DOI: 10.1371/journal.pone.0059012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 02/09/2013] [Indexed: 01/02/2023] Open
Abstract
Background Metabolic syndrome (MetS) is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS) and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined. Methodology/Principal Findings Cultured mouse myoblasts (C2C12), adipocytes (3T3-L1), hepatocytes (FL-83B), and monocytes (RAW 264.7) were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line. Conclusions/Significance Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated with the development of these diseases in the general population.
Collapse
Affiliation(s)
- Verόnica Contreras-Shannon
- Department of Biological Sciences, Saint Mary's University, San Antonio, Texas, United States of America
| | - Dylan L. Heart
- Department of Biological Sciences, Saint Mary's University, San Antonio, Texas, United States of America
| | - R. Madelaine Paredes
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Erica Navaira
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Gabriel Catano
- Department of Medicine, and the Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Shivani Kaushal Maffi
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Medical Research Division, Regional Academic Health Center-Edinburg, Edinburg, Texas, United States of America
| | - Consuelo Walss-Bass
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Salsano E, Gambini O, Giovagnoli AR, Farina L, Uziel G, Pareyson D. Effectiveness of valproate for the treatment of manic-like behavior in X-linked adrenoleukodystrophy. Neurol Sci 2011; 33:1197-9. [PMID: 22120190 DOI: 10.1007/s10072-011-0863-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/15/2011] [Indexed: 11/25/2022]
|