1
|
Dahan E, Pergamenshik L, Taub T, Vovk A, Manier J, Avneri R, Lax E. Poly ADP-ribosylation regulates Arc expression and promotes adaptive stress-coping. Psychopharmacology (Berl) 2025; 242:741-750. [PMID: 39808339 PMCID: PMC11890342 DOI: 10.1007/s00213-025-06744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
RATIONALE Rapid adaptation to stressful events is essential for survival and requires acute stress response and stress-coping strategy. However, the molecular mechanisms that govern this coping strategy have yet to be fully discovered. OBJECTIVES This study aims to investigate the effects of poly ADP-ribosylation (PARylation) on stress-coping strategies following acute stress and to identify the target genes influenced by Parp1-induced histone PARylation. METHODS Mice were subjected to a forced swim test, a well-established acute stress paradigm, to evaluate cortical PARylation and assess the expression of activity-dependent genes. The pharmacological inhibition of Parp1 was conducted using ABT888 (Veliparib) to determine its effects on stress-coping behavior and related molecular changes. RESULTS The forced swim test increased cortical PARylation and upregulated the expression of activity-dependent genes. Systemic inhibition of Parp1 with ABT888 led to impaired stress-coping behavior, evidenced by a reduced immobility response during a subsequent forced swim test done 24 hours later. This impairment was associated with decreased chromatin PARylation and histone H4 acetylation at the Arc promoter and reduced Arc expression observed one hour after Parp1 inhibition. CONCLUSION Our findings indicate that chromatin PARylation at the Arc promoters regulates histone H4 acetylation and Arc gene expression, and a subsequent impact on successful stress-coping behavior in response to acute stress.
Collapse
Affiliation(s)
- Eliyahu Dahan
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Tze'ela Taub
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Arthur Vovk
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jade Manier
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Raphael Avneri
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
2
|
Aguilar-Delgadillo A, Cruz-Mendoza F, Luquin-de Andais teh S, Ruvalcaba-Delgadillo Y, Jáuregui-Huerta F. Stress-induced c-fos expression in the medial prefrontal cortex differentially affects the main residing cell phenotypes. Heliyon 2024; 10:e39325. [PMID: 39498004 PMCID: PMC11532284 DOI: 10.1016/j.heliyon.2024.e39325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Stress poses a challenge to the body's equilibrium and triggers a series of responses that enable organisms to adapt to stressful stimuli. The medial prefrontal cortex (mPFC), particularly in acute stress conditions, undergoes significant physiological changes to cope with the demands associated with cellular activation. The proto-oncogene c-fos and its protein product c-Fos have long been utilized to investigate the effects of external factors on the central nervous system (CNS). While c-Fos expression has traditionally been attributed to neurons, emerging evidence suggests its potential expression in glial cells. In this study, our main objective was to explore the expression of c-Fos in glial cells and examine how acute stress influences these activity patterns. We conducted our experiments on male Wistar rats, subjecting them to acute stress and sacrificing them 2 h after the stressor initiation. Using double-labelling fluorescent immunohistochemistry targeting c-Fos, along with markers such as GFAP, Iba-1, Olig2, NG2, and NeuN, we analyzed 35 μm brain slices obtained from the mPFC. Our findings compellingly demonstrate that c-Fos expression extends beyond neurons and is present in astrocytes, oligodendrocytes, microglia, and NG2 cells-the diverse population of glial cells. Moreover, we observed distinct regulation of c-Fos expression in response to stress across different subregions of the mPFC. These results emphasize the importance of considering glial cells and their perspective in studies investigating brain activity, highlighting c-Fos as a response marker in glial cells. By shedding light on the differential regulation of c-Fos expression in response to stress, our study contributes to the understanding of glial cell involvement in stress-related processes. This underscores the significance of including glial cells in investigations of brain activity and expands our knowledge of c-Fos as a potential marker for glial cell responses.
Collapse
Affiliation(s)
| | - Fernando Cruz-Mendoza
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
| | | | | | - Fernando Jáuregui-Huerta
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Botterill JJ, Khlaifia A, Appings R, Wilkin J, Violi F, Premachandran H, Cruz-Sanchez A, Canella AE, Patel A, Zaidi SD, Arruda-Carvalho M. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacology 2024; 49:993-1006. [PMID: 38233571 PMCID: PMC11039686 DOI: 10.1038/s41386-024-01795-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ryan Appings
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Francesca Violi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Arely Cruz-Sanchez
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Anna Elisabete Canella
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - S Danyal Zaidi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
4
|
Brandwein C, Leenaars CHC, Becker L, Pfeiffer N, Iorgu AM, Hahn M, Vairani GA, Lewejohann L, Bleich A, Mallien AS, Gass P. A systematic mapping review of the evolution of the rat Forced Swim Test: Protocols and outcome parameters. Pharmacol Res 2023; 196:106917. [PMID: 37690532 DOI: 10.1016/j.phrs.2023.106917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
As depression is projected to become the leading mental disease burden globally by 2030, understanding the underlying pathology, as well as screening potential anti-depressants with a higher efficacy, faster onset of action, and/or fewer side-effects is essential. A commonly used test for screening novel antidepressants and studying depression-linked aspects in rodents is the Porsolt Forced Swim Test. The present systematic mappping review gives a comprehensive overview of the evolution and of the most prevalently used set-ups of this test in rats, including the choice of animals (strain, sex, and age), technical aspects of protocol and environment, as well as reported outcome measures. Additionally, we provide an accessible list of all existing publications, to support informed decision-making for procedural and technical aspects of the test, to thereby enhance reproducibility and comparability. This should further contribute to reducing the number of unnecessarily replicated experiments, and consequently, reduce the number of animals used in future.
Collapse
Affiliation(s)
- Christiane Brandwein
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Cathalijn H C Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Laura Becker
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Natascha Pfeiffer
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ana-Maria Iorgu
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Melissa Hahn
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Gaia A Vairani
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Max‑Dohrn‑Str. 8-10, 10589 Berlin, Germany; Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Anne S Mallien
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Hong J, Lozano DE, Beier KT, Chung S, Weber F. Prefrontal cortical regulation of REM sleep. Nat Neurosci 2023; 26:1820-1832. [PMID: 37735498 DOI: 10.1038/s41593-023-01398-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2023] [Indexed: 09/23/2023]
Abstract
Rapid eye movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram. The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus and regulate phasic events, reflected in accelerated electroencephalogram theta oscillations and increased eye movement density during REM sleep. Calcium imaging reveals that the majority of lateral hypothalamus-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Lozano
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
7
|
Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology 2022; 47:225-246. [PMID: 34341498 PMCID: PMC8617037 DOI: 10.1038/s41386-021-01101-7] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The prefrontal cortex (PFC) has emerged as one of the regions most consistently impaired in major depressive disorder (MDD). Although functional and structural PFC abnormalities have been reported in both individuals with current MDD as well as those at increased vulnerability to MDD, this information has not translated into better treatment and prevention strategies. Here, we argue that dissecting depressive phenotypes into biologically more tractable dimensions - negative processing biases, anhedonia, despair-like behavior (learned helplessness) - affords unique opportunities for integrating clinical findings with mechanistic evidence emerging from preclinical models relevant to depression, and thereby promises to improve our understanding of MDD. To this end, we review and integrate clinical and preclinical literature pertinent to these core phenotypes, while emphasizing a systems-level approach, treatment effects, and whether specific PFC abnormalities are causes or consequences of MDD. In addition, we discuss several key issues linked to cross-species translation, including functional brain homology across species, the importance of dissecting neural pathways underlying specific functional domains that can be fruitfully probed across species, and the experimental approaches that best ensure translatability. Future directions and clinical implications of this burgeoning literature are discussed.
Collapse
Affiliation(s)
- Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School & McLean Hospital, Belmont, MA, USA.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Anderson EM, Demis S, Wrucke B, Engelhardt A, Hearing MC. Infralimbic cortex pyramidal neuron GIRK signaling contributes to regulation of cognitive flexibility but not affect-related behavior in male mice. Physiol Behav 2021; 242:113597. [PMID: 34536435 DOI: 10.1016/j.physbeh.2021.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Dysfunction of the infralimbic cortical (ILC) region of the medial prefrontal cortex (mPFC) is thought to be an underlying factor in both affect- and cognition-related behavioral deficits that co-occur across neuropsychiatric disorders. Increasing evidence highlights pathological imbalances in prefrontal pyramidal neuron excitability and associated aberrant firing as an underlying factor in this dysfunction. G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels mediate excitability of mPFC pyramidal neurons, however the functional role of these channels in ILC-dependent regulation of behavior and pyramidal neuron excitation is unknown. The present study used a viral-cre approach in male mice harboring a 'floxed' version of the kcnj3 (Girk1) gene, to disrupt GIRK1-containing channel expression in pyramidal neurons within the ILC. Loss of GIRK1-dependent signaling increased excitability and spike firing of pyramidal neurons but did not alter affective behavior measured in an elevated plus maze, forced swim test, or progressive ratio test of motivation. Alternatively, ablation of GIRK1 impaired performance in an operant-based attentional set-shifting task designed to assess cognitive flexibility. These data highlight a unique role for GIRK1 signaling in ILC pyramidal neurons in the regulation of strategy shifting but not affect and suggest that these channels may represent a therapeutic target for treatment of cognitive deficits in neuropsychiatric disease.
Collapse
|
9
|
Wallace T, Myers B. Effects of Biological Sex and Stress Exposure on Ventromedial Prefrontal Regulation of Mood-Related Behaviors. Front Behav Neurosci 2021; 15:737960. [PMID: 34512290 PMCID: PMC8426926 DOI: 10.3389/fnbeh.2021.737960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ventral portion of the medial prefrontal cortex (vmPFC) regulates mood, sociability, and context-dependent behaviors. Consequently, altered vmPFC activity has been implicated in the biological basis of emotional disorders. Recent methodological advances have greatly enhanced the ability to investigate how specific prefrontal cell populations regulate mood-related behaviors, as well as the impact of long-term stress on vmPFC function. However, emerging preclinical data identify prominent sexual divergence in vmPFC behavioral regulation and stress responsivity. Notably, the rodent infralimbic cortex (IL), a vmPFC subregion critical for anti-depressant action, shows marked functional divergence between males and females. Accordingly, this review examines IL encoding and modulation of mood-related behaviors, including coping style, reward, and sociability, with a focus on sex-based outcomes. We also review how these processes are impacted by prolonged stress exposure. Collectively, the data suggest that chronic stress has sex-specific effects on IL excitatory/inhibitory balance that may account for sex differences in the prevalence and course of mood disorders.
Collapse
Affiliation(s)
- Tyler Wallace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
10
|
Zappa Villar MF, López Hanotte J, Crespo R, Pardo J, Reggiani PC. Insulin-like growth factor 1 gene transfer for sporadic Alzheimer's disease: New evidence for trophic factor mediated hippocampal neuronal and synaptic recovery-based behavior improvement. Hippocampus 2021; 31:1137-1153. [PMID: 34324234 DOI: 10.1002/hipo.23379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative disorder with no cure. Patients typically suffer from cognitive impairment imprinted by irreversible neocortex and hippocampal degeneration with overt synaptic and neuron dysfunction. Insulin-like growth factor 1 (IGF1) has proven to be a potent neuroprotective molecule in animal models of age-related neurodegeneration. In this regard, adenoviral gene transfer aiming at IGF1 brain overexpression has been hitherto an underexplored approach for the sAD treatment. We postulated enhanced IGF1 signaling in the brain as a restorative means in the diseased brain to revert cognitive deficit and restore hippocampal function. We implemented recombinant adenovirus mediated intracerebroventricular IGF1 gene transfer on the streptozotocin (STZ) induced sAD rat model, using 3-month-old male Sprague Dawley rats. This approach enhanced IGF1 signaling in the hippocampus and dampened sAD phosphorylated Tau. We found a remarkable short-term improvement in species-typical behavior, recognition memory, spatial memory, and depressive-like behavior. Histological analysis revealed a significant recovery of immature hippocampal neurons. We additionally recorded an increase in hippocampal microglial cells, which we suggest to exert anti-inflammatory effects. Finally, we found decreased levels of pre- and postsynaptic proteins in the hippocampus of STZ animals. Interestingly, IGF1 gene transfer increased the levels of PSD95 and GAD65/67 synaptic markers, indicating that the treatment enhanced the synaptic plasticity. We conclude that exogenous activation of IGF1 signaling pathway, 1 week after intracerebroventricular STZ administration, protects hippocampal immature neurons, dampens phosphorylated Tau levels, improves synaptic function and therefore performs therapeutically on the sAD STZ model. Hence, this study provides strong evidence for the use of this trophic factor to treat AD and age-related neurodegeneration.
Collapse
Affiliation(s)
- María Florencia Zappa Villar
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Juliette López Hanotte
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Rosana Crespo
- Institute of Experimental Pharmacology of Córdoba (IFEC-CONICET), Department of Pharmacology, School of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Joaquín Pardo
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina.,Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Paula Cecilia Reggiani
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina.,Department of Cytology, Histology and Embryology B, School of Medical Sciences, UNLP, La Plata, Argentina
| |
Collapse
|
11
|
Avecillas-Chasin JM, Hurwitz TA, Bogod NM, Honey CR. Tractography-Guided Anterior Capsulotomy for Major Depression and Obsessive-Compulsive Disorder: Targeting the Emotion Network. Oper Neurosurg (Hagerstown) 2021; 20:406-412. [PMID: 33475697 DOI: 10.1093/ons/opaa420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Bilateral anterior capsulotomy (BAC) is an effective surgical option for patients with treatment-resistant major depression (TRMD) and treatment-resistant obsessive-compulsive disorder (TROCD). The size of the lesion and its precise dorsal-ventral location within the anterior limb of the internal capsule (ALIC) remain undefined. OBJECTIVE To present a method to identify the trajectories of the associative and limbic white matter pathways within the ALIC for targeting in BAC surgery. METHODS Using high-definition tractography, we prospectively tested the feasibility of this method in 2 patients with TRMD and TROCD to tailor the capsulotomy lesion to their limbic pathway. RESULTS The trajectories of the associative and limbic pathways were identified in the ALIC of both patients and we targeted the limbic pathways by defining the dorsal limit of the lesion in a way to minimize the damage to the associative pathways. The final lesions were smaller than those that have been previously published. This individualized procedure was associated with long-term benefit in both patients. CONCLUSION Tractography-guided capsulotomy is feasible and was associated with long-term benefit in patients with TRMD and TROCD.
Collapse
Affiliation(s)
| | - Trevor A Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas M Bogod
- Neurosciences Program, Vancouver General Hospital, Division of Neurology, UBC Department of Medicine, Vancouver, British Columbia, Canada
| | - Christopher R Honey
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Cortical and raphe GABAA, AMPA receptors and glial GLT-1 glutamate transporter contribute to the sustained antidepressant activity of ketamine. Pharmacol Biochem Behav 2020; 192:172913. [DOI: 10.1016/j.pbb.2020.172913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
|
13
|
Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Transl Psychiatry 2019; 9:223. [PMID: 31519869 PMCID: PMC6744405 DOI: 10.1038/s41398-019-0556-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/23/2019] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder is the main cause of disability worldwide with imperfect treatment options. However, novel therapeutic approaches are currently discussed, from augmentation strategies to novel treatments targeting the immune system or the microbiome-gut-brain axis. Therefore, we examined the potential beneficial effects of minocycline, a tetracycline antibiotic with pleiotropic, immunomodulatory action, alone or as augmentation of escitalopram on behavior, prefrontal microglial density, and the gut microbiome in rats selectively bred for high anxiety-like behavior (HAB). We show that concomitant with their high innate anxiety and depression, HABs have lower microglial numbers in the infralimbic and prelimbic prefrontal cortex and an altered gut microbiota composition compared with controls. Three weeks of minocycline treatment alleviated the depressive-like phenotype, further reduced microglial density, exclusively in male HAB rats, and reduced plasma concentrations of pro-inflammatory cytokines. However, coadministration of escitalopram, which had no effect alone, prevented these minocycline-induced effects. Moreover, minocycline led to a robust shift in cecal microbial composition in both HABs and rats non-selected for anxiety-like behavior. Minocycline markedly increased relative abundance of Lachnospiraceae and Clostridiales Family XIII, families known for their butyrate production, with a corresponding increase and positive correlation in plasma 3-OH-butyrate levels in a trait-dependent manner. Thus, our data suggest that the antidepressant effect of minocycline is sex- and trait-dependent, associated with a reduced microglial number in the prefrontal cortex, and with changes in microbial composition and their metabolites. These results further support the microbiome-gut-brain axis as potential target in the treatment of depression.
Collapse
|
14
|
Alexander L, Clarke HF, Roberts AC. A Focus on the Functions of Area 25. Brain Sci 2019; 9:E129. [PMID: 31163643 PMCID: PMC6627335 DOI: 10.3390/brainsci9060129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
Subcallosal area 25 is one of the least understood regions of the anterior cingulate cortex, but activity in this area is emerging as a crucial correlate of mood and affective disorder symptomatology. The cortical and subcortical connectivity of area 25 suggests it may act as an interface between the bioregulatory and emotional states that are aberrant in disorders such as depression. However, evidence for such a role is limited because of uncertainty over the functional homologue of area 25 in rodents, which hinders cross-species translation. This emphasizes the need for causal manipulations in monkeys in which area 25, and the prefrontal and cingulate regions in which it is embedded, resemble those of humans more than rodents. In this review, we consider physiological and behavioral evidence from non-pathological and pathological studies in humans and from manipulations of area 25 in monkeys and its putative homologue, the infralimbic cortex (IL), in rodents. We highlight the similarities between area 25 function in monkeys and IL function in rodents with respect to the regulation of reward-driven responses, but also the apparent inconsistencies in the regulation of threat responses, not only between the rodent and monkey literatures, but also within the rodent literature. Overall, we provide evidence for a causal role of area 25 in both the enhanced negative affect and decreased positive affect that is characteristic of affective disorders, and the cardiovascular and endocrine perturbations that accompany these mood changes. We end with a brief consideration of how future studies should be tailored to best translate these findings into the clinic.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Hannah F Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
15
|
Lee EH, Han PL. Reciprocal interactions across and within multiple levels of monoamine and cortico-limbic systems in stress-induced depression: A systematic review. Neurosci Biobehav Rev 2019; 101:13-31. [PMID: 30917923 DOI: 10.1016/j.neubiorev.2019.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
The monoamine hypothesis of depression, namely that the reduction in synaptic serotonin and dopamine levels causes depression, has prevailed in past decades. However, clinical and preclinical studies have identified various cortical and subcortical regions whose altered neural activities also regulate depressive-like behaviors, independently from the monoamine system. Our systematic review indicates that neural activities of specific brain regions and associated neural circuitries are adaptively altered after chronic stress in a specific direction, such that the neural activity in the infralimbic cortex, lateral habenula and amygdala is upregulated, whereas the neural activity in the prelimbic cortex, hippocampus and monoamine systems is downregulated. The altered neural activity dynamics between monoamine systems and cortico-limbic systems are reciprocally interwoven at multiple levels. Furthermore, depressive-like behaviors can be experimentally reversed by counteracting the altered neural activity of a specific neural circuitry at multiple brain regions, suggesting the importance of the reciprocally interwoven neural networks in regulating depressive-like behaviors. These results promise for reshaping altered neural activity dynamics as a therapeutic strategy for treating depression.
Collapse
Affiliation(s)
- Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Todorović N, Mićić B, Schwirtlich M, Stevanović M, Filipović D. Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. Neuroscience 2018; 396:24-35. [PMID: 30448452 DOI: 10.1016/j.neuroscience.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Dysregulation of GABAergic system is becoming increasingly associated with depression, psychiatric disorder that imposes severe clinical, social and economic burden. Special attention is paid to the fast-spiking parvalbumin-positive (PV+) interneurons, GABAergic neurons which are highly susceptible to redox dysregulation and oxidative stress and implicated in a variety of psychiatric diseases. Here we analyzed the number of PV+ and cleaved caspase-3-positive (CC3+) cells in the rat medial prefrontal cortical (mPFC) subregions following chronic social isolation (CSIS), an animal model of depression and schizophrenia. Also, we examined potential protective effects of antidepressant fluoxetine (FLX) and atypical antipsychotic clozapine (CLZ) on the number of these cells in mPFC subregions, when applied parallel with CSIS in doses that correspond to therapeutically effective ones in patients. Immunofluorescence analysis revealed decreased number of PV+ cells in cingulate cortex area 1, prelimbic area (PrL), infralimbic area (IL) and dorsal peduncular cortex of the mPFC in isolated rats, which coincided with depressive- and anxiety-like behaviors. In addition, CSIS-induced increase in the number of CC3+ cells was detected in aforementioned subregions of mPFC. Treatments with either FLX or CLZ prevented behavioral changes, decrease in PV+ and increase in CC3+ cell numbers in PrL and IL subregions in isolated rats. These results indicate the importance of intact GABAergic signaling in these areas for resistance against CSIS-induced behavioral changes, as well as subregion-specific protective effects of FLX and CLZ in mPFC of CSIS rats.
Collapse
Affiliation(s)
- Nevena Todorović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Bojana Mićić
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia; University of Belgrade, Faculty of Biology, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia. http://www.vinca.rs
| |
Collapse
|
17
|
Deep brain stimulation electrode insertion and depression: Patterns of activity and modulation by analgesics. Brain Stimul 2018; 11:1348-1355. [DOI: 10.1016/j.brs.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
|
18
|
Rotaru DC, van Woerden GM, Wallaard I, Elgersma Y. Adult Ube3a Gene Reinstatement Restores the Electrophysiological Deficits of Prefrontal Cortex Layer 5 Neurons in a Mouse Model of Angelman Syndrome. J Neurosci 2018; 38:8011-8030. [PMID: 30082419 PMCID: PMC6596147 DOI: 10.1523/jneurosci.0083-18.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022] Open
Abstract
E3 ubiquitin ligase (UBE3A) levels in the brain need to be tightly regulated, as loss of functional UBE3A protein is responsible for the severe neurodevelopmental disorder Angelman syndrome (AS), whereas increased activity of UBE3A is associated with nonsyndromic autism. Given the role of mPFC in neurodevelopmental disorders including autism, we aimed to identify the functional changes resulting from loss of UBE3A in infralimbic and prelimbic mPFC areas in a mouse model of AS. Whole-cell recordings from layer 5 mPFC pyramidal neurons obtained in brain slices from adult mice of both sexes revealed that loss of UBE3A results in a strong decrease of spontaneous inhibitory transmission and increase of spontaneous excitatory transmission potentially leading to a marked excitation/inhibition imbalance. Additionally, we found that loss of UBE3A led to decreased excitability and increased threshold for action potential of layer 5 fast spiking interneurons without significantly affecting the excitability of pyramidal neurons. Because we previously showed that AS mouse behavioral phenotypes are reversible upon Ube3a gene reactivation during a restricted period of early postnatal development, we investigated whether Ube3a gene reactivation in a fully mature brain could reverse any of the identified physiological deficits. In contrast to our previously reported behavioral findings, restoring UBE3A levels in adult animals fully rescued all the identified physiological deficits of mPFC neurons. Moreover, the kinetics of reversing these synaptic deficits closely followed the reinstatement of UBE3A protein level. Together, these findings show a striking dissociation between the rescue of behavioral and physiological deficits.SIGNIFICANCE STATEMENT Here we describe significant physiological deficits in the mPFC of an Angelman syndrome mouse model. We found a marked change in excitatory/inhibitory balance, as well as decreased excitability of fast spiking interneurons. A promising treatment strategy for Angelman syndrome is aimed at restoring UBE3A expression by activating the paternal UBE3A gene. Here we find that the physiological changes in the mPFC are fully reversible upon gene reactivation, even when the brain is fully mature. This indicates that there is no critical developmental window for reversing the identified physiological deficits in mPFC.
Collapse
Affiliation(s)
- Diana C Rotaru
- Department of Neuroscience and ENCORE Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience and ENCORE Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ilse Wallaard
- Department of Neuroscience and ENCORE Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience and ENCORE Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
19
|
Gasull-Camós J, Martínez-Torres S, Tarrés-Gatius M, Ozaita A, Artigas F, Castañé A. Serotonergic mechanisms involved in antidepressant-like responses evoked by GLT-1 blockade in rat infralimbic cortex. Neuropharmacology 2018; 139:41-51. [DOI: 10.1016/j.neuropharm.2018.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/28/2022]
|
20
|
Abstract
Clinical studies have demonstrated that a single sub-anesthetic dose of the dissociative anesthetic ketamine induces rapid and sustained antidepressant actions. Although this finding has been met with enthusiasm, ketamine's widespread use is limited by its abuse potential and dissociative properties. Recent preclinical research has focused on unraveling the molecular mechanisms underlying the antidepressant actions of ketamine in an effort to develop novel pharmacotherapies, which will mimic ketamine's antidepressant actions but lack its undesirable effects. Here we review hypotheses for the mechanism of action of ketamine as an antidepressant, including synaptic or GluN2B-selective extra-synaptic N-methyl-D-aspartate receptor (NMDAR) inhibition, inhibition of NMDARs localized on GABAergic interneurons, inhibition of NMDAR-dependent burst firing of lateral habenula neurons, and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor activation. We also discuss links between ketamine's antidepressant actions and downstream mechanisms regulating synaptic plasticity, including brain-derived neurotrophic factor (BDNF), eukaryotic elongation factor 2 (eEF2), mechanistic target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3). Mechanisms that do not involve direct inhibition of the NMDAR, including a role for ketamine's (R)-ketamine enantiomer and hydroxynorketamine (HNK) metabolites, specifically (2R,6R)-HNK, are also discussed. Proposed mechanisms of ketamine's action are not mutually exclusive and may act in a complementary manner to exert acute changes in synaptic plasticity, leading to sustained strengthening of excitatory synapses, which are necessary for antidepressant behavioral actions. Understanding the molecular mechanisms underpinning ketamine's antidepressant actions will be invaluable for the identification of targets, which will drive the development of novel, effective, next-generation pharmacotherapies for the treatment of depression.
Collapse
|
21
|
Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OFX, Antoniou K, Sousa N, Dalla C. The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 2018; 23:579-586. [PMID: 28397837 PMCID: PMC5822458 DOI: 10.1038/mp.2017.55] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
The hippocampus and prefrontal cortex (PFC) are connected in a reciprocal manner: whereas the hippocampus projects directly to the PFC, a polysynaptic pathway that passes through the nucleus reuniens (RE) of the thalamus relays inputs from the PFC to the hippocampus. The present study demonstrates that lesioning and/or inactivation of the RE reduces coherence in the PFC-hippocampal pathway, provokes an antidepressant-like behavioral response in the forced swim test and prevents, but does not ameliorate, anhedonia in the chronic mild stress (CMS) model of depression. Additionally, RE lesioning before CMS abrogates the well-known neuromorphological and endocrine correlates of CMS. In summary, this work highlights the importance of the reciprocal connectivity between the hippocampus and PFC in the establishment of stress-induced brain pathology and suggests a role for the RE in promoting resilience to depressive illness.
Collapse
Affiliation(s)
- V Kafetzopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - N Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece,First Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - I Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - J F Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - H Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - A Vasalou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - V M Sardinha
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - Z Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - O F X Almeida
- NeuroAdaptations Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - K Antoniou
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - C Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece,Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Athens 11527, Greece. E-mail:
| |
Collapse
|
22
|
Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats. Transl Psychiatry 2017; 7:e1038. [PMID: 28221365 PMCID: PMC5438036 DOI: 10.1038/tp.2017.7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/22/2016] [Indexed: 12/28/2022] Open
Abstract
Ketamine and deep brain stimulation produce rapid antidepressant effects in humans and rodents. An increased AMPA receptor (AMPA-R) signaling in medial prefrontal cortex (mPFC) has been suggested to mediate these responses. However, little research has addressed the direct effects of enhancing glutamate tone or AMPA-R stimulation in mPFC subdivisions. The current study investigates the behavioral and neurochemical consequences of glutamate transporter-1 (GLT-1) blockade or s-AMPA microinfusion in the infralimbic (IL) and prelimbic (PrL) cortex. Owing to the connectivity between the mPFC and raphe nuclei, the role of serotonin is also explored. The bilateral microinfusion of the depolarizing agent veratridine into IL -but not PrL- of rats evoked immediate antidepressant-like responses. The same regional selectivity was observed after microinfusion of dihydrokainic acid (DHK), a selective inhibitor of GLT-1, present in astrocytes. The DHK-evoked antidepressant-like responses appear to be mediated by an AMPA-R-driven enhancement of serotonergic activity, as (i) they were prevented by NBQX 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) and mimicked by s-AMPA; (ii) DHK and s-AMPA elevated similarly extracellular glutamate in IL and PrL, although extracellular 5-HT and c-fos expression in the midbrain dorsal raphe increased only when these agents were applied in IL; and (iii) DHK antidepressant-like responses were prevented by 5-HT synthesis inhibition and mimicked by citalopram microinfusion in IL. These results indicate that an acute increase of glutamatergic neurotransmission selectively in IL triggers immediate antidepressant-like responses in rats, likely mediated by the activation of IL-raphe pathways, which then results in a fast increase of serotonergic activity.
Collapse
|
23
|
Participation of hippocampal nitric oxide synthase and soluble guanylate cyclase in the modulation of behavioral responses elicited by the rat forced swimming test. Behav Pharmacol 2017; 28:19-29. [PMID: 27779493 DOI: 10.1097/fbp.0000000000000263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Kuniishi H, Ichisaka S, Matsuda S, Futora E, Harada R, Hata Y. Chronic Inactivation of the Orbitofrontal Cortex Increases Anxiety-Like Behavior and Impulsive Aggression, but Decreases Depression-Like Behavior in Rats. Front Behav Neurosci 2017; 10:250. [PMID: 28167902 PMCID: PMC5253363 DOI: 10.3389/fnbeh.2016.00250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
The orbitofrontal cortex (OFC) is involved in emotional processing, and orbitofrontal abnormalities have often been observed in various affective disorders. Thus, chronic dysfunction of the OFC may cause symptoms of affective disorders, such as anxiety, depression and impulsivity. Previous studies have investigated the effect of orbitofrontal dysfunction on anxiety-like behavior and impulsive aggression in rodents, but the results are inconsistent possibly reflecting different methods of OFC inactivation. These studies used either a lesion of the OFC, which may affect other brain regions, or a transient inactivation of the OFC, whose effect may be restored in time and not reflect effects of chronic OFC dysfunction. In addition, there has been no study on the effect of orbitofrontal inactivation on depression-like behavior in rodents. Therefore, the present study examined whether chronic inactivation of the OFC by continuous infusion of a GABAA receptor agonist, muscimol, causes behavioral abnormalities in rats. Muscimol infusion inactivated the ventral and lateral part of the OFC. Following a week of OFC inactivation, the animals showed an increase in anxiety-like behavior in the open field test and light-dark test. Impulsive aggression was also augmented in the chronically OFC-inactivated animals because they showed increased frequency of fighting behavior induced by electric foot shock. On the other hand, chronic OFC inactivation reduced depression-like behavior as evaluated by the forced swim test. Additionally, it did not cause a significant change in corticosterone secretion in response to restraint stress. These data suggest that orbitofrontal neural activity is involved in the regulation of anxiety- and depression-like behaviors and impulsive aggression in rodents.
Collapse
Affiliation(s)
- Hiroshi Kuniishi
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences Yonago, Japan
| | - Satoshi Ichisaka
- Division of Neurobiology, School of Life Sciences, Faculty of Medicine, Tottori University Yonago, Japan
| | - Sae Matsuda
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences Yonago, Japan
| | - Eri Futora
- Division of Neurobiology, School of Life Sciences, Faculty of Medicine, Tottori University Yonago, Japan
| | - Riho Harada
- Division of Neurobiology, School of Life Sciences, Faculty of Medicine, Tottori University Yonago, Japan
| | - Yoshio Hata
- Division of Integrative Bioscience, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Sciences Yonago, Japan
| |
Collapse
|
25
|
Sartim A, Moreira F, Joca S. Involvement of CB 1 and TRPV1 receptors located in the ventral medial prefrontal cortex in the modulation of stress coping behavior. Neuroscience 2017; 340:126-134. [DOI: 10.1016/j.neuroscience.2016.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/24/2016] [Accepted: 10/12/2016] [Indexed: 01/03/2023]
|
26
|
Diniz CR, Casarotto PC, Joca SR. NMDA-NO signaling in the dorsal and ventral hippocampus time-dependently modulates the behavioral responses to forced swimming stress. Behav Brain Res 2016; 307:126-36. [DOI: 10.1016/j.bbr.2016.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
|
27
|
Jiménez-Sánchez L, Castañé A, Pérez-Caballero L, Grifoll-Escoda M, López-Gil X, Campa L, Galofré M, Berrocoso E, Adell A. Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex. Cereb Cortex 2016; 26:2778-2789. [PMID: 26088969 DOI: 10.1093/cercor/bhv133] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although deep brain stimulation (DBS) has been used with success in treatment-resistant depression, little is known about its mechanism of action. We examined the antidepressant-like activity of short (1 h) DBS applied to the infralimbic prefrontal cortex in the forced swim test (FST) and the novelty-suppressed feeding test (NSFT). We also used in vivo microdialysis to evaluate the release of glutamate, γ-aminobutyric acid, serotonin, dopamine, and noradrenaline in the prefrontal cortex and c-Fos immunohistochemistry to determine the brain regions activated by DBS. One hour of DBS of the infralimbic prefrontal cortex has antidepressant-like effects in FST and NSFT, and increases prefrontal efflux of glutamate, which would activate AMPA receptors (AMPARs). This effect is specific of the infralimbic area since it is not observed after DBS of the prelimbic subregion. The activation of prefrontal AMPARs would result in a stimulation of prefrontal output to the brainstem, thus increasing serotonin, dopamine, and noradrenaline in the prefrontal cortex. Further, the activation of prefrontal AMPARs is necessary and sufficient condition for the antidepressant response of 1 h DBS.
Collapse
Affiliation(s)
- Laura Jiménez-Sánchez
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Anna Castañé
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Laura Pérez-Caballero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cadiz, Cadiz 11510, Spain
| | - Marc Grifoll-Escoda
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain
| | - Xavier López-Gil
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Current address: Experimental 7T MRI Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Leticia Campa
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Mireia Galofré
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cadiz, Cadiz 11510, Spain
| | - Albert Adell
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.,Current address: Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander 39011, Spain
| |
Collapse
|
28
|
Halladay LR, Blair HT. Prefrontal infralimbic cortex mediates competition between excitation and inhibition of body movements during pavlovian fear conditioning. J Neurosci Res 2016; 95:853-862. [PMID: 26997207 DOI: 10.1002/jnr.23736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/21/2023]
Abstract
The infralimbic subregion of the prefrontal cortex (IL) is broadly involved in behavioral flexibility, risk assessment, and outcome reinforcement. In aversive conditioning tasks, the IL has been implicated in fear extinction and in mediating transitions between Pavlovian and instrumental responses. Here we examine the role of the IL in mediating transitions between two competing Pavlovian fear responses, conditioned motor inhibition (CMI) and conditioned motor excitation (CME). Rats were trained to fear an auditory conditioned stimulus (CS) by pairing it with periorbital shock to one eyelid (the unconditioned stimulus [US]). Trained animals exhibited CMI responses (movement suppression) to the CS when they had not recently encountered the US (>24 hr), but, after recent encounters with the US (<5 min), the CS evoked CME responses (turning in circles away from anticipated shock). Animals then received bilateral infusions of muscimol or picrotoxin to inactivate or hyperactivate the IL, respectively. Neither drug reliably affected CMI responses, but there was a bidirectional effect on CME responses; inactivation of the IL attenuated CME responses, whereas hyperactivation potentiated CME responses. These results provide evidence that activation of the IL may promote behavioral strategies that involve mobilizing the body and suppress strategies that involve immobilizing the body. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, University of California Los Angeles, Los Angeles, California.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Hugh T Blair
- Department of Psychology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
29
|
Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology 2015. [PMID: 26211972 DOI: 10.1016/j.neuropharm.2015.07.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A single, low dose of ketamine evokes antidepressant actions in depressed patients and in patients with treatment-resistant depression (TRD). Unlike classic antidepressants, which regulate monoamine neurotransmitter systems, ketamine is an antagonist of the N-methyl-D-aspartate (NMDA) family of glutamate receptors. The effectiveness of NMDAR antagonists in TRD unveils a new set of targets for therapeutic intervention in major depressive disorder (MDD) and TRD. However, a better understanding of the cellular mechanisms underlying these effects is required for guiding future therapeutic strategies, in order to minimize side effects and prolong duration of efficacy. Here we review the evidence for and against two hypotheses that have been proposed to explain how NMDAR antagonism initiates protein synthesis and increases excitatory synaptic drive in corticolimbic brain regions, either through selective antagonism of inhibitory interneurons and cortical disinhibition, or by direct inhibition of cortical pyramidal neurons. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Oliver H Miller
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Jacqueline T Moran
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| | - Benjamin J Hall
- Neuroscience Program, Tulane University, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
30
|
Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions. Proc Natl Acad Sci U S A 2015; 112:8106-11. [PMID: 26056286 DOI: 10.1073/pnas.1414728112] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ketamine produces rapid and sustained antidepressant actions in depressed patients, but the precise cellular mechanisms underlying these effects have not been identified. Here we determined if modulation of neuronal activity in the infralimbic prefrontal cortex (IL-PFC) underlies the antidepressant and anxiolytic actions of ketamine. We found that neuronal inactivation of the IL-PFC completely blocked the antidepressant and anxiolytic effects of systemic ketamine in rodent models and that ketamine microinfusion into IL-PFC reproduced these behavioral actions of systemic ketamine. We also found that optogenetic stimulation of the IL-PFC produced rapid and long-lasting antidepressant and anxiolytic effects and that these effects are associated with increased number and function of spine synapses of layer V pyramidal neurons. The results demonstrate that ketamine infusions or optogenetic stimulation of IL-PFC are sufficient to produce long-lasting antidepressant behavioral and synaptic responses similar to the effects of systemic ketamine administration.
Collapse
|
31
|
Abstract
The wide spectrum of disruptions that characterizes major depressive disorder (MDD) and bipolar disorder (BD) highlights the difficulties researchers are posed with as they try to mimic these disorders in the laboratory. Nonetheless, numerous attempts have been made to create rodent models of mood disorders or at least models of the symptoms of MDD and BD. Present antidepressants are all descendants of the serendipitous findings in the 1950s that the monoamine oxidase inhibitor iproniazid and the tricyclic antidepressant imipramine were effective antidepressants. Thus, the need for improved animal models to provide insights into the neuropathology underlying the disease is critical. Such information is in turn crucial for identifying new antidepressants and mood stabilisers. Currently, there is a shift away from traditional animal models to more focused research dealing with an endophenotype-style approach, genetic models, and incorporation of new findings from human neuroimaging and genetic studies. Such approaches are opening up more tractable avenues for understanding the neurobiological and genetic bases of these disorders. Further, such models promise to yield better translational animal models and hence more fruitful therapeutic targets. This overview focuses on such animal models and tests and how they can be used to assess MDD and BD in rodents.
Collapse
|
32
|
Prelimbic Cortical Injections of a GABA Agonist and Antagonist: In Vivo Quantification of the Effect in the Rat Brain Using [18F] FDG MicroPET. Mol Imaging Biol 2015; 17:856-64. [DOI: 10.1007/s11307-015-0859-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Srejic LR, Hamani C, Hutchison WD. High-frequency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe. Eur J Neurosci 2015; 41:1219-26. [PMID: 25712703 DOI: 10.1111/ejn.12856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 12/16/2022]
Abstract
High-frequency deep brain stimulation (HFS-DBS) of the subcallosal cingulate (SCC) region has been investigated as a treatment for refractory forms of depression with a ~50% remission rate in open label studies. However, the therapeutic mechanisms of DBS are still largely unknown. Using anaesthetized Sprague Dawley rats, we recorded neuronal spiking activity in 102 neurons of the dorsal raphe (DR) before, during and after the induction of a 5-min HFS train in the infralimbic region (IL) of the medial prefrontal cortex (mPFC), the rodent homologue of the human SCC. The majority of DR cells (82%) significantly decreased firing rate during HFS (P < 0.01, 55.7 ± 4.5% of baseline, 35 rats). To assess whether mPFC-HFS mediates inhibition of DR cellular firing by stimulating local GABAergic interneurons, the GABAA antagonist bicuculline (Bic, 100 μm) was injected directly into the DR during HFS. Neurons inhibited by HFS recovered their firing rate during Bic+HFS (P < 0.01, n = 15, seven rats) to levels not different from baseline. Cells that were not affected by HFS did not change firing rate during Bic+HFS (P = 0.968, n = 7, three rats). These results indicate that blocking GABAA reverses HFS-mediated inhibition of DR neurons. As the cells that were not inhibited by HFS were also unaffected by HFS+Bic, they are probably not innervated by local GABA. Taken together, our results suggest that mPFC-HFS may exert a preferential effect on DR neurons with GABAA receptors.
Collapse
Affiliation(s)
- Luka R Srejic
- Institute of Medical Science, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
34
|
Chang CH, Chen MC, Lu J. Effect of antidepressant drugs on the vmPFC-limbic circuitry. Neuropharmacology 2015; 92:116-24. [PMID: 25637091 DOI: 10.1016/j.neuropharm.2015.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 11/17/2022]
Abstract
Our recent study indicates that the lesions of the prefrontal cortex in rats result in depressive-like behavior in forced swim test and REM sleep alterations, two well-established biomarkers of depression disorder. We hypothesized that antidepressants may target the PFC to reverse depression. Systemic injections of antidepressants: the tricyclic antidepressant desipramine (DMI), the selective serotonin reuptake inhibitor fluoxetine, and the NMDA-antagonist ketamine selectively increased cFos expression (a marker of neuronal activity) in the deep layers of the ventromedial PFC (vmPFC) in rats. Of the vmPFC's limbic system targets, only the nucleus accumbens (NAc) was also activated by DMI. Using a retrograde tracer and a neuronal toxin, we also found that DMI-activated vmPFC neurons project to the NAc and that NAc activation by DMI was lost following vmPFC lesion. These results suggest that the vmPFC may be an essential target of antidepressant drugs, its projections to the NAc may be a key circuit regulating antidepressant action, and dysfunction of this pathway may contribute to depression.
Collapse
Affiliation(s)
- Celene H Chang
- Department of Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Michael C Chen
- Department of Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jun Lu
- Department of Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Ballard ED, Lally N, Nugent AC, Furey ML, Luckenbaugh DA, Zarate CA. Neural correlates of suicidal ideation and its reduction in depression. Int J Neuropsychopharmacol 2015; 18:pyu069. [PMID: 25550331 PMCID: PMC4307932 DOI: 10.1093/ijnp/pyu069] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The neural correlates of suicidal ideation and its reduction after treatment are unknown. We hypothesized that increased regional cerebral glucose metabolism in the infralimbic cortex (Brodmann area 25), amygdala, and subgenual anterior cingulate cortex would be associated with suicidal ideation and its reduction after ketamine infusion. METHODS Medication-free patients (n=19) with treatment-resistant major depressive disorder underwent positron emission tomography imaging at baseline and 230 minutes after an open-label ketamine infusion (0.5 mg/kg for 40 minutes). RESULTS Baseline suicidal ideation and regional cerebral glucose metabolism in the infralimbic cortex were significantly correlated (r=.59, P=.007); but not overall mood scores (r=-.07, P=.79). Reductions in suicidal ideation after ketamine infusion were correlated with decreased regional cerebral glucose metabolism in the infralimbic cortex (r=.54, P=.02). Metabolism in other areas of interest was not significantly correlated with suicidal ideation or depression. CONCLUSION The infralimbic cortex may be implicated in suicidal ideation.
Collapse
Affiliation(s)
- Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (Dr Ballard, Mr Lally, Dr Nugent, Dr Furey, Mr Luckenbaugh, and Dr Zarate); Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK (Mr Lally).
| | - Níall Lally
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (Dr Ballard, Mr Lally, Dr Nugent, Dr Furey, Mr Luckenbaugh, and Dr Zarate); Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK (Mr Lally)
| | - Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (Dr Ballard, Mr Lally, Dr Nugent, Dr Furey, Mr Luckenbaugh, and Dr Zarate); Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK (Mr Lally)
| | - Maura L Furey
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (Dr Ballard, Mr Lally, Dr Nugent, Dr Furey, Mr Luckenbaugh, and Dr Zarate); Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK (Mr Lally)
| | - David A Luckenbaugh
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (Dr Ballard, Mr Lally, Dr Nugent, Dr Furey, Mr Luckenbaugh, and Dr Zarate); Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK (Mr Lally)
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (Dr Ballard, Mr Lally, Dr Nugent, Dr Furey, Mr Luckenbaugh, and Dr Zarate); Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK (Mr Lally)
| |
Collapse
|
36
|
Riga D, Matos MR, Glas A, Smit AB, Spijker S, Van den Oever MC. Optogenetic dissection of medial prefrontal cortex circuitry. Front Syst Neurosci 2014; 8:230. [PMID: 25538574 PMCID: PMC4260491 DOI: 10.3389/fnsys.2014.00230] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.
Collapse
Affiliation(s)
- Danai Riga
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije University Amsterdam Amsterdam, Netherlands
| | - Mariana R Matos
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije University Amsterdam Amsterdam, Netherlands
| | - Annet Glas
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije University Amsterdam Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije University Amsterdam Amsterdam, Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije University Amsterdam Amsterdam, Netherlands
| | - Michel C Van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
37
|
Abstract
Major depressive disorder is a worldwide disease with debilitating effects on a patient's life. Common treatments include pharmacotherapy, psychotherapy, and electroconvulsive therapy. Many patients do not respond to these treatments; this has led to the investigation of alternative therapeutic modalities. Deep brain stimulation (DBS) is one of these modalities. It was first used with success for treating movement disorders and has since been extended to the treatment of psychiatric disorders. Although DBS is still an emerging treatment, promising efficacy and safety have been demonstrated in preliminary trials in patients with treatment-resistant depression (TRD). Further, neuroimaging has played a pivotal role in identifying some DBS targets and remains an important tool for evaluating the mechanism of action of this novel intervention. Preclinical animal studies have broadened knowledge about the possible mechanisms of action of DBS for TRD, Given that DBS involves neurosurgery in patients with severe psychiatric impairment, ethical questions concerning capacity to consent arise; these issues must continue to be carefully considered.
Collapse
Affiliation(s)
- Sibylle Delaloye
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Paul E Holtzheimer
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
38
|
Chang CH, Chen MC, Qiu MH, Lu J. Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat. Neuropharmacology 2014; 86:125-32. [PMID: 25036609 PMCID: PMC4188719 DOI: 10.1016/j.neuropharm.2014.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/09/2023]
Abstract
Major depressive disorder (MDD) is a debilitating disease with symptoms like persistent depressed mood and sleep disturbances. The prefrontal cortex (PFC) has been implicated as an important structure in the neural circuitry of MDD, with pronounced abnormalities in blood flow and metabolic activity in PFC subregions, including the subgenual cingulate cortex (sgACC, or Brodmann area 25). In addition, deep brain stimulation in the sgACC has recently been shown to alleviate treatment-resistant depression. Depressed patients also show characteristic changes in sleep: insomnia, increased rapid-eye-movement (REM) sleep and shortened REM sleep latency. We hypothesized that sleep changes and depressive behavior may be a consequence of the abnormal PFC activity in MDD. The rat ventromedial PFC (vmPFC, prelimbic and infralimbic cortices) is considered to be the homolog of the human sgACC, so we examined the effect of excitotic lesions in the vmPFC on sleep-wake and depressive behavior. We also made lesions in the adjacent dorsal region (dmPFC) to compare the effect of this similar but distinct mPFC region. We found that both dmPFC and vmPFC lesions led to increased REM sleep, but only vmPFC-lesioned animals displayed increased sleep fragmentation, shortened REM latency and increased immobility in the forced swim test. Anatomic tracing suggests that the mPFC projects to the pontine REM-off neurons that interact with REM-on neurons in the dorsal pons. These results support our hypothesis that neuronal loss in the rat vmPFC resembles several characteristics of MDD and may be a critical area for modulating both mood and sleep.
Collapse
Affiliation(s)
- Celene H Chang
- Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Michael C Chen
- Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mei Hong Qiu
- Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; State Key Laboratory of Medical Neurobiology and Department of Neurobiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Jun Lu
- Neurology and Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
39
|
Perez-Caballero L, Pérez-Egea R, Romero-Grimaldi C, Puigdemont D, Molet J, Caso JR, Mico JA, Pérez V, Leza JC, Berrocoso E. Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs. Mol Psychiatry 2014; 19:607-14. [PMID: 23711979 DOI: 10.1038/mp.2013.63] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 04/06/2013] [Accepted: 04/15/2013] [Indexed: 02/03/2023]
Abstract
Deep brain stimulation (DBS) in the subgenual cingulated gyrus (SCG) is a promising new technique that may provide sustained remission in resistant major depressive disorder (MDD). Initial studies reported a significant early improvement in patients, followed by a decline within the first month of treatment, an unexpected phenomenon attributed to potential placebo effects or a physiological response to probe insertion that remains poorly understood. Here we characterized the behavioural antidepressant-like effect of DBS in the rat medial prefrontal cortex, focusing on modifications to rodent SCG correlate (prelimbic and infralimbic (IL) cortex). In addition, we evaluated the early outcome of DBS in the SCG of eight patients with resistant MDD involved in a clinical trial. We found similar antidepressant-like effects in rats implanted with electrodes, irrespective of whether they received electrical brain stimulation or not. This effect was due to regional inflammation, as it was temporally correlated with an increase of glial-fibrillary-acidic-protein immunoreactivity, and it was blocked by anti-inflammatory drugs. Indeed, inflammatory mediators and neuronal p11 expression also changed. Furthermore, a retrospective study indicated that the early response of MDD patients subjected to DBS was poorer when they received anti-inflammatory drugs. Our study demonstrates that electrode implantation up to the IL cortex is sufficient to produce an antidepressant-like effect of a similar magnitude to that observed in rats receiving brain stimulation. Moreover, both preclinical and clinical findings suggest that the use of anti-inflammatory drugs after electrode implantation may attenuate the early anti-depressive response in patients who are subjected to DBS.
Collapse
Affiliation(s)
- L Perez-Caballero
- 1] Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cadiz, Cadiz, Spain [2] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - R Pérez-Egea
- 1] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain [2] Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - C Romero-Grimaldi
- 1] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain [2] Neuropsychopharmacology and Psychobiology Research Group, Salus Infirmorum Faculty of Nursing, University of Cadiz, Cadiz, Spain
| | - D Puigdemont
- 1] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain [2] Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - J Molet
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - J-R Caso
- 1] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain [2] Department of Psychiatry, Faculty of Medicine, University Complutense and Instituto de Investigación 12 de octubre, Madrid, Spain
| | - J-A Mico
- 1] Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cadiz, Cadiz, Spain [2] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - V Pérez
- 1] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain [2] Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - J-C Leza
- 1] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain [2] Department of Pharmacology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - E Berrocoso
- 1] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain [2] Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cadiz, Cadiz, Spain
| |
Collapse
|
40
|
Challis C, Beck SG, Berton O. Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front Behav Neurosci 2014; 8:43. [PMID: 24596546 PMCID: PMC3925846 DOI: 10.3389/fnbeh.2014.00043] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/29/2014] [Indexed: 12/31/2022] Open
Abstract
It has been well established that modulating serotonin (5-HT) levels in humans and animals affects perception and response to social threats, however the circuit mechanisms that control 5-HT output during social interaction are not well understood. A better understanding of these systems could provide groundwork for more precise and efficient therapeutic interventions. Here we examined the organization and plasticity of microcircuits implicated in top-down control of 5-HT neurons in the dorsal raphe nucleus (DRN) by excitatory inputs from the ventromedial prefrontal cortex (vmPFC) and their role in social approach-avoidance decisions. We did this in the context of a social defeat model that induces a long lasting form of social aversion that is reversible by antidepressants. We first used viral tracing and Cre-dependent genetic identification of vmPFC glutamatergic synapses in the DRN to determine their topographic distribution in relation to 5-HT and GABAergic subregions and found that excitatory vmPFC projections primarily localized to GABA-rich areas of the DRN. We then used optogenetics in combination with cFos mapping and slice electrophysiology to establish the functional effects of repeatedly driving vmPFC inputs in DRN. We provide the first direct evidence that vmPFC axons drive synaptic activity and immediate early gene expression in genetically identified DRN GABA neurons through an AMPA receptor-dependent mechanism. In contrast, we did not detect vmPFC-driven synaptic activity in 5-HT neurons and cFos induction in 5-HT neurons was limited. Finally we show that optogenetically increasing or decreasing excitatory vmPFC input to the DRN during sensory exposure to an aggressor's cues enhances or diminishes avoidance bias, respectively. These results clarify the functional organization of vmPFC-DRN pathways and identify GABAergic neurons as a key cellular element filtering top-down vmPFC influences on affect-regulating 5-HT output.
Collapse
Affiliation(s)
- Collin Challis
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA ; Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| | - Sheryl G Beck
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA ; Department of Anesthesiology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| | - Olivier Berton
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA ; Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|
41
|
Felice VD, Gibney SM, Gosselin RD, Dinan TG, O'Mahony SM, Cryan JF. Differential activation of the prefrontal cortex and amygdala following psychological stress and colorectal distension in the maternally separated rat. Neuroscience 2014; 267:252-62. [PMID: 24513388 DOI: 10.1016/j.neuroscience.2014.01.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/17/2022]
Abstract
Visceral hypersensitivity is a hallmark of many clinical conditions and remains an ongoing medical challenge. Although the central neural mechanisms that regulate visceral hypersensitivity are incompletely understood, it has been suggested that stress and anxiety often act as initiating or exacerbating factors. Dysfunctional corticolimbic structures have been implicated in disorders of visceral hypersensitivity such as irritable bowel syndrome (IBS). Moreover, the pattern of altered physiological responses to psychological and visceral stressors reported in IBS patients is also observed in the maternally separated (MS) rat model of IBS. However, the relative contribution of various divisions within the cortex to the altered stress responsivity of MS rats remains unknown. The aim of this study was to analyze the cellular activation pattern of the prefrontal cortex and amygdala in response to an acute psychological stressor (open field) and colorectal distension (CRD) using c-fos immunohistochemistry. Several corticoamygdalar structures were analyzed for the presence of c-fos-positive immunoreactivity including the prelimbic cortex, infralimbic cortex, the anterior cingulate cortex (both rostral and caudal) and the amygdala. Our data demonstrate distinct activation patterns within these corticoamygdalar regions including differential activation in basolateral versus central amygdala following exposure to CRD but not the open field stress. The identification of this neuronal activation pattern may provide further insight into the neurochemical pathways through which therapeutic strategies for IBS could be derived.
Collapse
Affiliation(s)
- V D Felice
- Department of Anatomy and Neuroscience, University College Cork, Ireland; Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - S M Gibney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - R D Gosselin
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - T G Dinan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; Department of Psychiatry, University College Cork, Ireland
| | - S M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland.
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland
| |
Collapse
|
42
|
Stevens JS, Jovanovic T, Fani N, Ely TD, Glover EM, Bradley B, Ressler KJ. Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J Psychiatr Res 2013; 47:1469-78. [PMID: 23827769 PMCID: PMC3743923 DOI: 10.1016/j.jpsychires.2013.05.031] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 11/24/2022]
Abstract
Many features of posttraumatic stress disorder (PTSD) can be linked to exaggerated and dysregulated emotional responses. Central to the neurocircuitry regulating emotion are functional interactions between the amygdala and the ventromedial prefrontal cortex (vmPFC). Findings from human and animal studies suggest that disruption of this circuit predicts individual differences in emotion regulation. However, only a few studies have examined amygdala-vmPFC connectivity in the context of emotional processing in PTSD. The aim of the present research was to investigate the hypothesis that PTSD is associated with disrupted functional connectivity of the amygdala and vmPFC in response to emotional stimuli, extending previous findings by demonstrating such links in an understudied, highly traumatized, civilian population. 40 African-American women with civilian trauma (20 with PTSD and 20 non-PTSD controls) were recruited from a large urban hospital. Participants viewed fearful and neutral face stimuli during functional magnetic resonance imaging (fMRI). Relative to controls, participants with PTSD showed an increased right amygdala response to fearful stimuli (p(corr) < .05). Right amygdala activation correlated positively with the severity of hyperarousal symptoms in the PTSD group. Participants with PTSD showed decreased functional connectivity between the right amygdala and left vmPFC (p(corr) < .05). The findings are consistent with previous findings showing PTSD is associated with an exaggerated response of amygdala-mediated emotional arousal systems. This is the first study to show that the amygdala response may be accompanied by disruption of an amygdala-vmPFC functional circuit that is hypothesized to be involved in prefrontal cortical regulation of amygdala responsivity.
Collapse
Affiliation(s)
- Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA,Corresponding author. Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Dr., Atlanta, GA 30329, USA. (J.S. Stevens)
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ebony M. Glover
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA,Atlanta VA Medical Center, Decatur, GA, USA
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
43
|
Lammel S, Tye KM, Warden MR. Progress in understanding mood disorders: optogenetic dissection of neural circuits. GENES BRAIN AND BEHAVIOR 2013; 13:38-51. [PMID: 23682971 DOI: 10.1111/gbb.12049] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/22/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022]
Abstract
Major depression is characterized by a cluster of symptoms that includes hopelessness, low mood, feelings of worthlessness and inability to experience pleasure. The lifetime prevalence of major depression approaches 20%, yet current treatments are often inadequate both because of associated side effects and because they are ineffective for many people. In basic research, animal models are often used to study depression. Typically, experimental animals are exposed to acute or chronic stress to generate a variety of depression-like symptoms. Despite its clinical importance, very little is known about the cellular and neural circuits that mediate these symptoms. Recent advances in circuit-targeted approaches have provided new opportunities to study the neuropathology of mood disorders such as depression and anxiety. We review recent progress and highlight some studies that have begun tracing a functional neuronal circuit diagram that may prove essential in establishing novel treatment strategies in mood disorders. First, we shed light on the complexity of mesocorticolimbic dopamine (DA) responses to stress by discussing two recent studies reporting that optogenetic activation of midbrain DA neurons can induce or reverse depression-related behaviors. Second, we describe the role of the lateral habenula circuitry in the pathophysiology of depression. Finally, we discuss how the prefrontal cortex controls limbic and neuromodulatory circuits in mood disorders.
Collapse
Affiliation(s)
- S Lammel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
44
|
Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav 2013; 118:227-39. [PMID: 23685235 DOI: 10.1016/j.physbeh.2013.05.012] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/31/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
The forced swim test (FST) is a behavioral test in rodents which was developed in 1978 by Porsolt and colleagues as a model for predicting the clinical efficacy of antidepressant drugs. A modified version of the FST added the classification of active behaviors into swimming and climbing, in order to facilitate the differentiation between serotonergic and noradrenergic classes of antidepressant drugs. The FST is now widely used in basic research and the pharmaceutical screening of potential antidepressant treatments. It is also one of the most commonly used tests to assess depressive-like behavior in animal models. Despite the simplicity and sensitivity of the FST procedure, important differences even in baseline immobility rates have been reported between different groups, which complicate the comparison of results across studies. In spite of several methodological papers and reviews published on the FST, the need still exists for clarification of factors which can influence the procedure. While most recent reviews have focused on antidepressant effects observed with the FST, this one considers the methodological aspects of the procedure, aiming to summarize issues beyond antidepressant action in the FST. The previously published literature is analyzed for factors which are known to influence animal behavior in the FST. These include biological factors, such as strain, age, body weight, gender and individual differences between animals; influence of preconditioning before the FST: handling, social isolation or enriched environment, food manipulations, various kinds of stress, endocrine manipulations and surgery; schedule and routes of treatment, dosage and type of the drugs as well as experimental design and laboratory environmental effects. Consideration of these factors in planning experiments may result in more consistent FST results.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT84108, USA.
| | | | | | | |
Collapse
|
45
|
O'Leary OF, Cryan JF. Towards translational rodent models of depression. Cell Tissue Res 2013; 354:141-53. [PMID: 23525777 DOI: 10.1007/s00441-013-1587-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/11/2013] [Indexed: 02/02/2023]
Abstract
Rodent models of depression have been developed in an effort to identify novel antidepressant compounds and to further our understanding of the pathophysiology of depression. Various rodent models of depression and antidepressant-like behaviour are currently used but, clearly, none of these current models fully recapitulate all features of depression. Moreover, these models have not resulted in the development of novel non-monoaminergic-based antidepressants with clinical efficacy. Thus, a refinement of the current models of depression is required. The present review outlines the most commonly used models of depression and antidepressant drug-like activity and suggests several factors that should be considered when refining these models.
Collapse
Affiliation(s)
- Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,
| | | |
Collapse
|
46
|
Abstract
The neurosurgical treatment of treatment-resistant depression (TRD) has entered a new era with more and more patients being treated with deep brain stimulation (DBS) via surgically implanted intracerebral electrodes. Although the mechanisms of action of DBS are still not fully understood, preclinical studies are being conducted to elucidate how the treatment might work. DBS in its present form can be considered as a relatively new neurosurgical treatment for TRD. However, the use of neurosurgery in the management of depression has a much longer history particularly with ablative procedures but also vagal nerve stimulation. Here, we provide a review of the clinical neurosurgical treatments for TRD, with a main emphasis on DBS. In addition, we discuss relevant preclinical data that are revealing new information about DBS mechanisms.
Collapse
Affiliation(s)
- Yasin Temel
- Department of Neurosurgery and Neuroscience, Maastricht University Medical Center, The Netherlands.
| | | |
Collapse
|
47
|
Hamani C, Nobrega JN. Preclinical studies modeling deep brain stimulation for depression. Biol Psychiatry 2012; 72:916-23. [PMID: 22748616 PMCID: PMC5633367 DOI: 10.1016/j.biopsych.2012.05.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 01/15/2023]
Abstract
Deep brain stimulation (DBS) is currently being investigated for the treatment of depression. Results of early clinical trials have been very promising, but the mechanisms responsible for the effects of DBS are still unknown. This article reviews behavioral findings of stimulation applied to different brain targets in rodents, with a particular focus on the ventromedial prefrontal cortex. Mechanisms and substrates involved in the antidepressant-like effects of DBS, including the role of local tissue inactivation, the modulation of fiber pathways in the vicinity of the electrodes, as well as the importance of the serotonergic system and brain derived neurotrophic factor are discussed.
Collapse
Affiliation(s)
- Clement Hamani
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | |
Collapse
|
48
|
Browne CA, Clarke G, Hanke J, Dinan TG, Schwegler H, Yilmazer-Hanke DM, Cryan JF. Alterations in prefrontal cortical serotonin and antidepressant-like behavior in a novel C3H/HeJxDBA/2J recombinant inbred mouse strain. Behav Brain Res 2012; 236:283-288. [PMID: 22960457 DOI: 10.1016/j.bbr.2012.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/10/2012] [Indexed: 12/12/2022]
Abstract
In the present study, two genetically related inbred mouse strains selectively bred for high and low fear-sensitized acoustic startle reflex (FSS) were assessed in the forced swim test model of anti-depressant action and central monoamine concentrations in several brain regions were investigated. These mice were generated through backcrossing C3H/HeJ mice on DBA/2J mice, followed by inbreeding for several generations. The high-FSS and low-FSS strains are known to differ in their acquisition and extinction of fear following auditory fear conditioning. Significantly increased concentrations of 5-HT and its metabolite 5-HIAA were observed in the medial prefrontal cortex (mPFC) but not in the hypothalamus, striatum, hippocampus, amygdala, or midbrain of high-FSS mice compared to low-FSS mice. In addition the concentration of DOPAC, the major metabolite of dopamine was also significantly increased in the mPFC. Furthermore, the high-FSS mice displayed significantly higher levels of immobility in the forced swim test but not the tail suspension test in comparison to the low-FSS group. The mPFC is not only important in the regulation of fear extinction, but also a key region of interest in the study of depression and maintenance of depressive-like behaviors. These data implicate serotonergic modulation in the mPFC in the maintenance of antidepressant-like behavior in a highly fearful mouse strain.
Collapse
Affiliation(s)
- Caroline A Browne
- Neuropharmacology Research Group, Department of Pharmacology and Therapeutics, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - Joachim Hanke
- Institut für Anatomie, Medizinische Fakultät, Otto-von-Guerike Universität, Magdeburg, Germany
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - Herbert Schwegler
- Institut für Anatomie, Medizinische Fakultät, Otto-von-Guerike Universität, Magdeburg, Germany
| | | | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
49
|
Hamani C, Temel Y. Deep Brain Stimulation for Psychiatric Disease: Contributions and Validity of Animal Models. Sci Transl Med 2012; 4:142rv8. [DOI: 10.1126/scitranslmed.3003722] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Anderson RJ, Frye MA, Abulseoud OA, Lee KH, McGillivray JA, Berk M, Tye SJ. Deep brain stimulation for treatment-resistant depression: efficacy, safety and mechanisms of action. Neurosci Biobehav Rev 2012; 36:1920-33. [PMID: 22721950 DOI: 10.1016/j.neubiorev.2012.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 06/06/2012] [Accepted: 06/10/2012] [Indexed: 12/22/2022]
Abstract
Deep brain stimulation (DBS), a neuromodulation therapy that has been used successfully in the treatment of symptoms associated with movement disorders, has recently undergone clinical trials for individuals suffering from treatment-resistant depression (TRD). Although the small patient numbers and open label study design limit our ability to identify optimum targets and make definitive conclusions about treatment efficacy, a review of the published research demonstrates significant reductions in depressive symptomatology and high rates of remission in a severely treatment-resistant patient group. Despite these encouraging results, an incomplete understanding of the mechanisms of action underlying the therapeutic effects of DBS for TRD is highlighted, paralleling the incomplete understanding of the neuroanatomy of mood regulation and treatment resistance. Proposed mechanisms of action include short and long-term local effects of stimulation at the neuronal level, to modulation of neural network activity.
Collapse
|