1
|
Zhou Z, Ma Y, Wu T, Xu T, Wu S, Yang GY, Ding J, Wang X. A Novel Neuroprotective Derived Peptide of Erythropoietin Improved Cognitive Function in Vascular Dementia Mice. Mol Neurobiol 2025; 62:6014-6026. [PMID: 39702833 DOI: 10.1007/s12035-024-04639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
The effective therapeutics for vascular dementia are still lacking. Here, we designed a novel derived peptide of erythropoietin-DEPO and evaluated its safety, erythropoiesis effect, and neuroprotective effects in mice of vascular dementia. For evaluating the safety and erythropoiesis, DEPO was injected into naive C57BL6 mice (n = 5) for 4-8 weeks, and venous blood was collected at 1, 2, and 4 weeks after DEPO treatment. Neuroprotective effects of DEPO were studied in both cultured neurons and bilateral common carotid artery stenosis (BCAS) mice (n = 10/group). After 4-week DEPO administration, neurobehavioral tests and histology were applied to evaluate cognitive function and brain tissue damage of mice, respectively. Molecule docking, western blotting, pharmacological or genetic interference with EPOR, and JAK/STAT/AKT pathway were used to determine the mechanism of neuroprotective effects of DEPO. DEPO did not increase the hemoglobin concentration or red blood cell number in mice after 4-week treatment compared to the Vehicle group (p > 0.05). DEPO treatment alleviated spatial reference memory impairment and the anxiety level in mice (p < 0.05). Both gray and white matter injuries were significantly alleviated by DEPO treatment. DEPO activated JAK/STAT pathway in cultured neurons and protected neurons against chronic ischemia (p < 0.05). Pharmacological or genetic interference with JAK2 signaling or EPOR inhibited the pro-survival effect of DEPO on chronic ischemia neurons (p < 0.05). DEPO is a novel safe erythropoietin-derived peptide and exerted its neuroprotective effects in vascular dementia mice through activating EPOR and its downstream JAK/STAT signaling pathway. DEPO is a potential alternative agent for treatment of vascular dementia or chronic cerebral ischemia.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tongtong Xu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Çalışkan H, Önal D, Nalçacı E. Darbepoetin alpha has an anxiolytic and anti-neuroinflammatory effect in male rats. BMC Immunol 2024; 25:75. [PMID: 39523336 PMCID: PMC11552158 DOI: 10.1186/s12865-024-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS We aimed to investigate the anxiolytic effect of darbepoetin alpha (DEPO), an erythropoietin derivative, in a neuroinflammation model regarding different behaviors and biological pathways. METHODS Forty adult male Wistar albino rats were divided into four groups (control, LPS, DEPO, and DEPO + LPS). The rats were treated with 5 µg /kg DEPO once a week for four weeks, after which neuroinflammation was induced with 2 mg/kg lipopolysaccharide (LPS). The elevated plus maze, open-field, and light‒dark box tests were conducted to assess anxiety levels. Harderian gland secretions were scored via observation. Tumor necrosis factor alpha (TNF-α), Interleukin-1-beta (IL-1β), brain-derived growth factor (BDNF), serotonin, cortisol, total antioxidant/oxidant (TAS/TOS), and total/free thiol levels were measured in the prefrontal cortex, striatum, and serum. RESULTS DEPO had a potent anxiolytic effect on both DEPO and DEPO + LPS groups. Compared to the control group, DEPO administration caused an increase in serotonin and BDNF levels and decreased basal cortisol and TNF-α levels in naive rats. IL-1β did not alter after DEPO administration in naive rats. Prophylactic DEPO treatment remarkably downregulated cortisol, IL-1β, and TNF-α in the DEPO + LPS group. In addition, prophylactic DEPO administration significantly attenuated the decrease in serotonin and BDNF levels in the DEPO + LPS group. Furthermore, DEPO ameliorated excessive harderian gland secretion in the DEPO + LPS group. Compared with those in the control group, the free thiol content in the serum increased after DEPO administration. No similar effect was seen in the DEPO + LPS group receiving prophylactic DEPO. TAS showed no difference among all experimental groups. DEPO administration increased TOS and OSI in the serum and prefrontal cortex but not in the striatum. This effect was not seen in the DEPO + LPS group. CONCLUSION Darbepoetin alpha had an anxiolytic effect on many physiological mechanisms in a neuroinflammation model and naive rats.
Collapse
Affiliation(s)
- Hasan Çalışkan
- Physiology Department, Balıkesir University Medicine Faculty, Balıkesir, Turkey.
| | - Deniz Önal
- Physiology Department, Balıkesir University Medicine Faculty, Balıkesir, Turkey
| | - Erhan Nalçacı
- Physiology Department, Ankara University Medicine Faculty , Ankara, Turkey
| |
Collapse
|
3
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
4
|
Almaguer-Melian W, Mercerón-Martinez D, Alberti-Amador E, Alacán-Ricardo L, de Bardet JC, Orama-Rojo N, Vergara-Piña AE, Herrera-Estrada I, Bergado JA. Learning induces EPO/EPOr expression in memory relevant brain areas, whereas exogenously applied EPO promotes remote memory consolidation. Synapse 2024; 78:e22282. [PMID: 37794768 DOI: 10.1002/syn.22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Memory and learning allow animals to appropriate certain properties of nature with which they can navigate in it successfully. Memory is acquired slowly and consists of two major phases, a fragile early phase (short-term memory, <4 h) and a more robust and long-lasting late one (long-term memory, >4 h). Erythropoietin (EPO) prolongs memory from 24 to 72 h when animals are trained for 5 min in a place recognition task but not when training lasted 3 min (short-term memory). It is not known whether it promotes the formation of remote memory (≥21 days). We address whether the systemic administration of EPO can convert a short-term memory into a long-term remote memory, and the neural plasticity mechanisms involved. We evaluated the effect of training duration (3 or 5 min) on the expression of endogenous EPO and its receptor to shed light on the role of EPO in coordinating mechanisms of neural plasticity using a single-trial spatial learning test. We administered EPO 10 min post-training and evaluated memory after 24 h, 96 h, 15 days, or 21 days. We also determined the effect of EPO administered 10 min after training on the expression of arc and bdnf during retrieval at 24 h and 21 days. Data show that learning induces EPO/EPOr expression increase linked to memory extent, exogenous EPO prolongs memory up to 21 days; and prefrontal cortex bdnf expression at 24 h and in the hippocampus at 21 days, whereas arc expression increases at 21 days in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | - Daymara Mercerón-Martinez
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | - Esteban Alberti-Amador
- Laboratorio de Biología Molecular del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | - Laura Alacán-Ricardo
- Facultad de Medicina Victoria de Girón, Universidad Médica de La Habana, Havana, Cuba
| | - Javier Curi de Bardet
- Laboratorio de Biología Molecular del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | - Norma Orama-Rojo
- Laboratorio de Electrofisiología Experimental del Centro Internacional de Restauración Neurológica, Havana, Cuba
| | | | | | - Jorge A Bergado
- Department of Psychology, Universidad del Sinú "Elías Bechara Zainum, ", Montería, Colombia
| |
Collapse
|
5
|
Naderi S, Motamedi F, Pourbadie HG, Rafiei S, Khodagholi F, Naderi N, Janahmadi M. Neuroprotective Effects of Ferrostatin and Necrostatin Against Entorhinal Amyloidopathy-Induced Electrophysiological Alterations Mediated by voltage-gated Ca 2+ Channels in the Dentate Gyrus Granular Cells. Neurochem Res 2024; 49:99-116. [PMID: 37615884 DOI: 10.1007/s11064-023-04006-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the main form of dementia. Abnormal deposition of amyloid-beta (Aβ) peptides in neurons and synapses cause neuronal loss and cognitive deficits. We have previously reported that ferroptosis and necroptosis were implicated in Aβ25-35 neurotoxicity, and their specific inhibitors had attenuating effects on cognitive impairment induced by Aβ25-35 neurotoxicity. Here, we aimed to examine the impact of ferroptosis and necroptosis inhibition following the Aβ25-35 neurotoxicity on the neuronal excitability of dentate gyrus (DG) and the possible involvement of voltage-gated Ca2+ channels in their effects. After inducing Aβ25-35 neurotoxicity, electrophysiological alterations in the intrinsic properties and excitability were recorded by the whole-cell patch-clamp under current-clamp condition. Voltage-clamp recordings were also performed to shed light on the involvement of calcium channel currents. Aβ25-35 neurotoxicity induced a considerable reduction in input resistance (Rin), accompanied by a profoundly decreased excitability and a reduction in the amplitude of voltage-gated calcium channel currents in the DG granule cells. However, three days of administration of either ferrostatin-1 (Fer-1), a ferroptosis inhibitor, or Necrostatin-1 (Nec-1), a necroptosis inhibitor, in the entorhinal cortex could almost preserve the normal excitability and the Ca2+ currents. In conclusion, these findings suggest that ferroptosis and necroptosis involvement in EC amyloidopathy could be a potential candidate to prevent the suppressive effect of Aβ on the Ca2+ channel current and neuronal function, which might take place in neurons during the development of AD.
Collapse
Affiliation(s)
- Soudabeh Naderi
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrbanoo Rafiei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sosa S, Bringas G, Urrutia N, Peñalver AI, López D, González E, Fernández A, Hernández ZM, Viña A, Peña Y, Batista JF, Valenzuela C, León K, Crombet T, Rodríguez T, Pérez L. NeuroEPO plus (NeuralCIM ®) in mild-to-moderate Alzheimer's clinical syndrome: the ATHENEA randomized clinical trial. Alzheimers Res Ther 2023; 15:215. [PMID: 38093366 PMCID: PMC10716956 DOI: 10.1186/s13195-023-01356-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND NeuroEPO plus is a recombinant human erythropoietin without erythropoietic activity and shorter plasma half-life due to its low sialic acid content. NeuroEPO plus prevents oxidative damage, neuroinflammation, apoptosis and cognitive deficit in an Alzheimer's disease (AD) models. The aim of this study was to assess efficacy and safety of neuroEPO plus. METHODS This was a double-blind, randomized, placebo-controlled, phase 2-3 trial involving participants ≥ 50 years of age with mild-to-moderate AD clinical syndrome. Participants were randomized in a 1:1:1 ratio to receive 0.5 or 1.0 mg of neuroEPO plus or placebo intranasally 3 times/week for 48 weeks. The primary outcome was change in the 11-item cognitive subscale of the AD Assessment Scale (ADAS-Cog11) score from baseline to 48 weeks (range, 0 to 70; higher scores indicate greater impairment). Secondary outcomes included CIBIC+, GDS, MoCA, NPI, Activities of Daily Living Scales, cerebral perfusion, and hippocampal volume. RESULTS A total of 174 participants were enrolled and 170 were treated (57 in neuroEPO plus 0.5 mg, 56 in neuroEPO plus 1.0 mg and 57 in placebo group). Mean age, 74.0 years; 121 (71.2%) women and 85% completed the trial. The median change in ADAS-Cog11 score at 48 weeks was -3.0 (95% CI, -4.3 to -1.7) in the 0.5 mg neuroEPO plus group, -4.0 (95% CI, -5.9 to -2.1) in the 1.0 mg neuroEPO plus group and 4.0 (95% CI, 1.9 to 6.1) in the placebo group. The difference of neuroEPO plus 0.5 mg vs. placebo was 7.0 points (95% CI, 4.5-9.5) P = 0.000 and between the neuroEPO plus 1.0 mg vs. placebo was 8.0 points (95% CI, 5.2-10.8) P = 0.000. NeuroEPO plus treatment induced a statistically significant improvement in some of clinical secondary outcomes vs. placebo including CIBIC+, GDS, MoCA, NPI, and the brain perfusion. CONCLUSIONS Among participants with mild-moderate Alzheimer's disease clinical syndrome, neuroEPO plus improved the cognitive evaluation at 48 weeks, with a very good safety profile. Larger trials are warranted to determine the efficacy and safety of neuroEPO plus in Alzheimer's disease. TRIAL REGISTRATION https://rpcec.sld.cu Identifier: RPCEC00000232.
Collapse
Affiliation(s)
- Saily Sosa
- Hospital Iván Portuondo, Calle 78 e/ Ave. 33 y 37, San Antonio de los Baños, Artemisa, CP 32 500, Cuba
| | - Giosmany Bringas
- National Institute of Neurology (INN), Calle 29 esquina D, Vedado, Havana, CP 10 400, Cuba
| | - Nelky Urrutia
- Hospital Iván Portuondo, Calle 78 e/ Ave. 33 y 37, San Antonio de los Baños, Artemisa, CP 32 500, Cuba
| | - Ana Ivis Peñalver
- National Institute of Neurology (INN), Calle 29 esquina D, Vedado, Havana, CP 10 400, Cuba
| | - Danay López
- Hospital Iván Portuondo, Calle 78 e/ Ave. 33 y 37, San Antonio de los Baños, Artemisa, CP 32 500, Cuba
| | - Evelio González
- Cuban Neurosciences Center (CNEURO), Avenida 25, No. 15 007, Cubanacán, Havana, CP 11 600, Cuba
| | - Ana Fernández
- Cuban Neurosciences Center (CNEURO), Avenida 25, No. 15 007, Cubanacán, Havana, CP 11 600, Cuba
| | - Zenaida Milagros Hernández
- Center of Neurological Restoration (CIREN), Calle 216 esquina 13, Siboney, Playa, Havana, CP 11 600, Cuba
| | - Ariel Viña
- Cuban Neurosciences Center (CNEURO), Avenida 25, No. 15 007, Cubanacán, Havana, CP 11 600, Cuba
| | - Yamile Peña
- Center for Clinical Investigation, CENTIS, Calle 45 No. 4501, esquina a 34, Reparto Kolhy, Havana, CP 11 300, Cuba
| | - Juan Felipe Batista
- Center for Clinical Investigation, CENTIS, Calle 45 No. 4501, esquina a 34, Reparto Kolhy, Havana, CP 11 300, Cuba
| | - Carmen Valenzuela
- Institute of Cybernetics, Mathematics and Physics (ICIMAF), Calle 15 #551 entre C y D, Plaza de la Revolución, Vedado, Havana, CP 10 400, Cuba
| | - Kalet León
- Center of Molecular Immunology (CIM), Calle 216 esquina 15, Siboney, Playa , Havana, CP 11 600, Cuba
| | - Tania Crombet
- Center of Molecular Immunology (CIM), Calle 216 esquina 15, Siboney, Playa , Havana, CP 11 600, Cuba
| | - Teresita Rodríguez
- Center of Molecular Immunology (CIM), Calle 216 esquina 15, Siboney, Playa , Havana, CP 11 600, Cuba
| | - Leslie Pérez
- Center of Molecular Immunology (CIM), Calle 216 esquina 15, Siboney, Playa , Havana, CP 11 600, Cuba.
| |
Collapse
|
7
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
8
|
Wang Y, Chen K, Qiao ZX, Bao XR. Chronic Kidney Disease Induces Cognitive Impairment in the Early Stage. Curr Med Sci 2023; 43:988-997. [PMID: 37755634 DOI: 10.1007/s11596-023-2783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Previous research indicates a link between cognitive impairment and chronic kidney disease (CKD), but the underlying factors are not fully understood. This study aimed to investigate the progression of CKD-induced cognitive impairment and the involvement of cognition-related proteins by developing early- and late-stage CKD models in Sprague-Dawley rats. METHODS The Morris water maze test and the step-down passive avoidance task were performed to evaluate the cognitive abilities of the rats at 24 weeks after surgery. Histopathologic examinations were conducted to examine renal and hippocampal damage. Real-time PCR, Western blotting analysis, and immunohistochemical staining were carried out to determine the hippocampal expression of brain-derived neurotrophic factor (BDNF), choline acetyltransferase (ChAT), and synaptophysin (SYP). RESULTS Compared with the control rats, the rats with early-stage CKD exhibited mild renal damage, while those with late-stage CKD showed significantly increased serum creatinine levels as well as apparent renal and brain damage. The rats with early-stage CKD also demonstrated significantly impaired learning abilities and memory compared with the control rats, with further deterioration observed in the rats with late-stage CKD. Additionally, we observed a significant downregulation of cognition-related proteins in the hippocampus of rats with early-stage CKD, which was further exacerbated with declining renal function as well as worsening brain and renal damage in rats with late-stage CKD. CONCLUSION These results suggest the importance of early screening to identify CKD-induced cognitive dysfunction promptly. In addition, the downregulation of cognition-related proteins may play a role in the progression of cognitive dysfunction.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Kai Chen
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zi-Xuan Qiao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xiao-Rong Bao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
9
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
10
|
Ma K, Zheng ZR, Meng Y. Pathogenesis of Chronic Kidney Disease Is Closely Bound up with Alzheimer's Disease, Especially via the Renin-Angiotensin System. J Clin Med 2023; 12:jcm12041459. [PMID: 36835994 PMCID: PMC9966558 DOI: 10.3390/jcm12041459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Chronic kidney disease (CKD) is a clinical syndrome secondary to the definitive change in function and structure of the kidney, which is characterized by its irreversibility and slow and progressive evolution. Alzheimer's disease (AD) is characterized by the extracellular accumulation of misfolded β-amyloid (Aβ) proteins into senile plaques and the formation of neurofibrillary tangles (NFTs) containing hyperphosphorylated tau. In the aging population, CKD and AD are growing problems. CKD patients are prone to cognitive decline and AD. However, the connection between CKD and AD is still unclear. In this review, we take the lead in showing that the development of the pathophysiology of CKD may also cause or exacerbate AD, especially the renin-angiotensin system (RAS). In vivo studies had already shown that the increased expression of angiotensin-converting enzyme (ACE) produces a positive effect in aggravating AD, but ACE inhibitors (ACEIs) have protective effects against AD. Among the possible association of risk factors in CKD and AD, we mainly discuss the RAS in the systemic circulation and the brain.
Collapse
Affiliation(s)
- Ke Ma
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Zi-Run Zheng
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Yu Meng
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
- Central Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- Institute of Nephrology, Jinan University, Guangzhou 510000, China
- Correspondence:
| |
Collapse
|
11
|
Almaguer-Melian W, Mercerón-Martínez D, Bergado-Rosado J. A unique erythropoietin dosage induces the recovery of long-term synaptic potentiation in fimbria-fornix lesioned rats. Brain Res 2023; 1799:148178. [PMID: 36442648 DOI: 10.1016/j.brainres.2022.148178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Synapses can experience long-term enhancements in its efficacy transmission in an activity-dependent manner (LTP, Long-Term Potentiation). This could contribute to store the living experiences in memory. Consequently, loss of synaptic plasticity can lead to failures in memory encoding and storage. Hence, finding ways to restore synaptic function can help restore learning and memory ability. Erythropoietin (EPO) has shown beneficial effects in the brain as a neuroprotector, improving affected learning, memory, and synaptic plasticity among other. In the present study, using the fimbria-fornix lesion model, we address the question whether the administration of erythropoietin restores the synaptic capacity to produce long-lasting increases in their transmission efficiency. A series of experiments was designed in which a control group of healthy young animals and one of injured young animals were formed. A subgroup of injured animals was injected with EPO or the vehicle in which the EPO is diluted (Veh). EPO or Veh was administered 15 min before LTP induction. Our data show that EPO produces a recovery in LTP in the group of fimbria-fornix lesioned animals, which show a severe impairment in the maintenance of LTP. Furthermore, LTP in the injured animals that received EPO was similar to that of the healthy control animals. LTP is widely accepted as a cellular mechanism of memory. Restoring LTP by EPO might be a potential tool for the treatment of memory disturbing diseases like Alzheimeŕs disease. Ongoing clinical trials are evaluating a potential therapeutic effect of low sialic acid-EPO (NeuroEPO) on degenerative diseases.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba
| | - Jorge Bergado-Rosado
- Universidad del Sinú "Elías Bechara Zainum", Cra. 1w No. 38-153, Barrio Juan XXIII, Montería, Córdoba 4536534, Colombia.
| |
Collapse
|
12
|
Rey F, Messa L, Maghraby E, Casili G, Ottolenghi S, Barzaghini B, Raimondi MT, Cereda C, Cuzzocrea S, Zuccotti G, Esposito E, Paterniti I, Carelli S. Oxygen Sensing in Neurodegenerative Diseases: Current Mechanisms, Implication of Transcriptional Response, and Pharmacological Modulation. Antioxid Redox Signal 2023; 38:160-182. [PMID: 35793106 DOI: 10.1089/ars.2022.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Oxygen (O2) sensing is the fundamental process through which organisms respond to changes in O2 levels. Complex networks exist allowing the maintenance of O2 levels through the perception, capture, binding, transport, and delivery of molecular O2. The brain extreme sensitivity to O2 balance makes the dysregulation of related processes crucial players in the pathogenesis of neurodegenerative diseases (NDs). In this study, we wish to review the most relevant advances in O2 sensing in relation to Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Recent Advances: Over the years, it has been clarified that most NDs share common pathways, a great number of which are in relation to O2 imbalance. These include hypoxia, hyperoxia, reactive oxygen species production, metabolism of metals, protein misfolding, and neuroinflammation. Critical Issues: There is still a gap in knowledge concerning how O2 sensing plays a role in the above indicated neurodegenerations. Specifically, O2 concentrations are perceived in body sites that are not limited to the brain, but primarily reside in other organs. Moreover, the mechanisms of O2 sensing, gene expression, and signal transduction seem to correlate with neurodegeneration, but many aspects are mechanistically still unexplained. Future Directions: Future studies should focus on the precise characterization of O2 level disruption and O2 sensing mechanisms in NDs. Moreover, advances need to be made also concerning the techniques used to assess O2 sensing dysfunctions in these diseases. There is also the need to develop innovative therapies targeting this precise mechanism rather than its secondary effects, as early intervention is necessary. Antioxid. Redox Signal. 38, 160-182.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Letizia Messa
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Erika Maghraby
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milano, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milano, Italy
| | - Cristina Cereda
- Department of Women, Mothers and Neonatal Care, Children's Hospital "V. Buzzi," Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi," Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| |
Collapse
|
13
|
Role of amyloid beta (25-35) neurotoxicity in the ferroptosis and necroptosis as modalities of regulated cell death in Alzheimer's disease. Neurotoxicology 2023; 94:71-86. [PMID: 36347329 DOI: 10.1016/j.neuro.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Neuronal cell death as a prominent pathological feature contributes to cognitive decline and memory loss in Alzheimer's disease. We investigated the role of two forms of cell death pathways, ferroptosis and necroptosis, and their interactions following entorhinal cortex (EC) amyloidopathy. The Aβ25-35 was bilaterally injected into the rat's EC, and Morris Water Maze was applied to determine spatial performance one week after Aβ injection. For evaluation of ferroptosis and necroptosis involvement in Aβ induced pathology, ferroptosis inhibitor, Ferrostatin (Fer-1), and necroptosis inhibitor, Necrostatin (Nec-1), were injected into the EC during training days of behavioral test. Our behavioral and histological assessment showed spatial learning and memory impairment, along with neuropathology changes such as cell survival and intracellular Aβ deposits in response to EC amyloidopathy, which were ameliorated by treatment with Fer-1 or Nec-1. The expression of ferroptosis key factors GPX4 and SLC7A11 were decreased and the level of TfR was increased following Aβ toxicity. Also, Necroptosis pathway related factors RIP1, RIP3, and MLKL were modulated by Aβ neurotoxicity. However, application of Fer-1 or Nec-1 could inhibit the hippocampal ferroptosis and necroptosis pathways due to EC amyloidopathy. Our data also demonstrated that Aβ-induced necroptosis suppressed by Fer-1, although Nec-1 had no effect on ferroptosis, indicating that ferroptosis pathway is upstream of necroptosis process in the Aβ neurotoxicity. Moreover, Aβ induced hippocampal mGLUR5 overexpression and reduced level of STIM1/2 recovered by Fer-1 or Nec-1. According to our findings ferroptosis and necroptosis pathways are involved in Aβ neurotoxicity through modulation of mGLUR5 and STIM1/2 signaling.
Collapse
|
14
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Humpel C. Intranasal neprilysin rapidly eliminates amyloid-beta plaques, but causes plaque compensations: the explanation why the amyloid-beta cascade may fail? Neural Regen Res 2022; 17:1881-1884. [PMID: 35142662 PMCID: PMC8848595 DOI: 10.4103/1673-5374.335138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative brain disorders are a major burden in our society, such as Alzheimer´s disease. In order to repair or prevent such diseases, drugs are designed which enter the brain, but the blood-brain barrier limits their entry and the search for alternative pathways is important. Recently, we reported that intranasal delivery of the amyloid-beta degrading enzyme neprilysin eliminated amyloid-beta plaques in transgenic Alzheimer´s disease mice. This review describes the anatomical structure of the intranasal pathway, explains the intranasal delivery of pure neprilysin, cell-loaded neprilysin (platelets) and collagen-embedded neprilysin to destruct amyloid-beta plaques in Alzheimer´s disease in transgenic APP_SweDI mice and hypothesizes why this may cause compensation and why the amyloid-beta cascade hypothesis may fail.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Shim KH, Ha S, Choung JS, Choi JI, Kim DY, Kim JM, Kim M. Therapeutic Effect of Erythropoietin on Alzheimer's Disease by Activating the Serotonin Pathway. Int J Mol Sci 2022; 23:ijms23158144. [PMID: 35897720 PMCID: PMC9332003 DOI: 10.3390/ijms23158144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by memory impairment in patients. Erythropoietin (EPO) has been reported to stimulate neurogenesis. This study was conducted to determine the regenerative effects of EPO in an AD model and to assess its underlying mechanism. Recombinant human EPO was intraperitoneally administered to AD mice induced by intracerebroventricular Aβ oligomer injection. Behavioral assessments with novel object recognition test and passive avoidance task showed improvement in memory function of the EPO-treated AD mice compared to that of the saline-treated AD mice (p < 0.0001). An in vivo protein assay for the hippocampus and cortex tissue indicated that EPO treatment modulated neurotransmitters, including dopamine, serotonin, and adrenaline. EPO treatment also restored the activity of serotonin receptors, including 5-HT4R, 5-HT7R, and 5-HT1aR (p < 0.01), at mRNA levels. Furthermore, EPO seemed to exert an anti-inflammatory influence by downregulating TLR4 at mRNA and protein levels (p < 0.05). Finally, an immunohistochemical assay revealed increments of Nestin(+) and NeuN(+) neuronal cells in the CA3 region in the EPO-treated AD mice compared to those in the saline-treated AD mice. The conclusion is that EPO administration might be therapeutic for AD by activating the serotonergic pathway, anti-inflammatory action, and neurogenic characteristics.
Collapse
Affiliation(s)
- Kyu-Ho Shim
- Department of Biomedical Science, CHA University School of Medicine, Seongnam 13496, Korea; (K.-H.S.); (S.H.); (J.S.C.)
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam 13496, Korea; (J.I.C.); (J.M.K.)
| | - Sungchan Ha
- Department of Biomedical Science, CHA University School of Medicine, Seongnam 13496, Korea; (K.-H.S.); (S.H.); (J.S.C.)
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam 13496, Korea; (J.I.C.); (J.M.K.)
| | - Jin Seung Choung
- Department of Biomedical Science, CHA University School of Medicine, Seongnam 13496, Korea; (K.-H.S.); (S.H.); (J.S.C.)
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam 13496, Korea; (J.I.C.); (J.M.K.)
| | - Jee In Choi
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam 13496, Korea; (J.I.C.); (J.M.K.)
| | - Daniel Youngsuk Kim
- Research Competency Milestones Program (RECOMP) of School of Medicine, CHA University, Seongnam 13496, Korea;
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Korea
| | - Jong Moon Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam 13496, Korea; (J.I.C.); (J.M.K.)
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Korea
| | - MinYoung Kim
- Department of Biomedical Science, CHA University School of Medicine, Seongnam 13496, Korea; (K.-H.S.); (S.H.); (J.S.C.)
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam 13496, Korea; (J.I.C.); (J.M.K.)
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Korea
- Correspondence: ; Tel.: +82-31-780-1872
| |
Collapse
|
17
|
Ma Y, Zhou Z, Yang GY, Ding J, Wang X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front Pharmacol 2022; 13:743926. [PMID: 35250554 PMCID: PMC8892214 DOI: 10.3389/fphar.2022.743926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous studies explored the therapeutic effects of erythropoietin (EPO) on neurodegenerative diseases. Few studies provided comprehensive and latest knowledge of EPO treatment for ischemic stroke. In the present review, we introduced the structure, expression, function of EPO, and its receptors in the central nervous system. Furthermore, we comprehensively discussed EPO treatment in pre-clinical studies, clinical trials, and its therapeutic mechanisms including suppressing inflammation. Finally, advanced studies of the therapy of EPO derivatives in ischemic stroke were also discussed. We wish to provide valuable information on EPO and EPO derivatives’ treatment for ischemic stroke for basic researchers and clinicians to accelerate the process of their clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Maiese K. A Common Link in Neurovascular Regenerative Pathways: Protein Kinase B (Akt). Curr Neurovasc Res 2022; 19:1-4. [PMID: 35139797 DOI: 10.2174/1567202619666220209111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Al-Onaizi MA, Thériault P, Lecordier S, Prefontaine P, Rivest S, ElAli A. Early monocyte modulation by the non-erythropoietic peptide ARA 290 decelerates AD-like pathology progression. Brain Behav Immun 2022; 99:363-382. [PMID: 34343617 DOI: 10.1016/j.bbi.2021.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/06/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) pathology is characterized by amyloid-β (Aβ) deposition and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Monocytes have been recently shown to play a major role in modulating Aβ pathology, and thereby have been pointed as potential therapeutic targets. However, the main challenge remains in identifying clinically relevant interventions that could modulate monocyte immune functions in absence of undesired off-target effects. Erythropoietin (EPO), a key regulator of erythrocyte production, has been shown to possess immunomodulatory potential and to provide beneficial effects in preclinical models of AD. However, the transition to use recombinant human EPO in clinical trials was hindered by unwanted erythropoietic effects that could lead to thrombosis. Here, we used a recently identified non-erythropoietic analogue of EPO, ARA 290, to evaluate its therapeutic potential in AD therapy. We first evaluated the effects of early systemic ARA 290 administration on AD-like pathology in an early-onset model, represented by young APP/PS1 mice. Our findings indicate that ARA 290 early treatment decelerated Aβ pathology progression in APP/PS1 mice while improving cognitive functions. ARA 290 potently increased the levels of total monocytes by specifically stimulating the generation of Ly6CLow patrolling subset, which are implicated in clearing Aβ from the cerebral vasculature, and subsequently reducing overall Aβ burden in the brain. Moreover, ARA 290 increased the levels of monocyte progenitors in the bone marrow. Using chimeric APP/PS1 mice in which Ly6CLow patrolling subset are selectively depleted, ARA 290 was inefficient in attenuating Aβ pathology and ameliorating cognitive functions in young animals. Interestingly, ARA 290 effects were compromised when delivered in a late-onset model, represented by aged APP1/PS1. In aged APP/PS1 mice in which AD-like pathology is at advanced stages, ARA 290 failed to reverse Aβ pathology and to increase the levels of circulating monocytes. Our study suggests that ARA 290 early systemic treatment could prevent AD-like progression via modulation of monocyte functions by specifically increasing the ratio of patrolling monocytes.
Collapse
Affiliation(s)
- Mohammed A Al-Onaizi
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Peter Thériault
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Paul Prefontaine
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
20
|
Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Intraperitoneal Carbamylated erythropoietin improves memory and hippocampal apoptosis in beta amyloid rat model of Alzheimer’s disease through stimulating autophagy and inhibiting necroptosis. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Carbamylated Erythropoietin-Fc (CEPO-Fc) ameliorates Aβ25-35 induced neurotoxicity by modulating autophagy, apoptosis, and necroptosis in Alzheimer's Disease model rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Le Douce J, Delétage N, Bourdès V, Lemarchant S, Godfrin Y. Subcommissural Organ-Spondin-Derived Peptide Restores Memory in a Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:651094. [PMID: 34194293 PMCID: PMC8236707 DOI: 10.3389/fnins.2021.651094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease that affects millions of older people worldwide and is characterized by a progressive deterioration of cognitive functions, including learning and memory. There are currently very few approved treatments (i.e., acetylcholinesterase inhibitors such as donepezil), all of which are limited to the symptomatic control of AD and are associated with side effects that may result in discontinuation of treatment. Therefore, there is an urgent need to develop disease-modifying treatments to prevent AD-induced cognitive deficits. Subcommissural organ (SCO)-spondin is a brain-specific glycoprotein produced during embryogenesis and has a substantial impact on neuronal development. In the current study, we sought to evaluate the protective effects of the linear (NX210) and cyclized (NX210c) forms of a SCO-spondin-derived peptide on learning and memory in a mouse model of AD. Mice received an intracerebroventricular injection of Aβ25–35 oligomers and were subsequently treated with intraperitoneal injections of vehicle, NX210 or NX210c of different doses (ranging from 0.1 to 30 mg/kg) and therapy paradigms (early or late stand-alone treatments, combination with donepezil or second-line treatment). Cognitive function was evaluated using Y-Maze, step-through latency passive avoidance (STPA) and Morris water maze (MWM) tests for up to 4 months. Early stage daily treatment with NX210 and NX210c decreased the levels of common pathological markers and features of AD, including Aβ1–42, phosphorylated-tau, inflammation, astrogliosis and lipid peroxidation. Meanwhile, use of these drugs increased the levels of synaptophysin and postsynaptic density protein 95. Regardless of the experimental paradigm used, NX210 and NX210c prevented Aβ25–35-induced decrease in spontaneous alternations (Y-Maze) and step-through latency into the dark compartment (STPA), and Aβ25–35-induced increase in time needed to locate the immersed platform during the learning phase and decrease in time spent in the target quadrant during the retention phase (MWM). Interestingly, this study provides the novel evidence that the native and oxidized cyclic forms of the SCO-spondin-derived peptide reduce pathological factors associated with AD and restore learning and memory at both early and late disease stages. Overall, this study sheds light on the therapeutic potential of this innovative disease-modifying peptide to restore memory function in patients with AD.
Collapse
Affiliation(s)
| | | | | | | | - Yann Godfrin
- Axoltis Pharma, Lyon, France.,Godfrin Life-Sciences, Caluire-et-Cuire, France
| |
Collapse
|
25
|
Humpel C. Intranasal Delivery of Collagen-Loaded Neprilysin Clears Beta-Amyloid Plaques in a Transgenic Alzheimer Mouse Model. Front Aging Neurosci 2021; 13:649646. [PMID: 33967739 PMCID: PMC8100061 DOI: 10.3389/fnagi.2021.649646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by extracellular beta-amyloid (Aβ) plaques and intraneuronal tau tangles in the brain. A therapeutic strategy aims to prevent or clear these Aβ plaques and the Aβ-degrading enzyme neprilysin is a potent drug to degrade plaques. The major challenge is to deliver bioactive neprilysin into the brain via the blood-brain barrier. The aim of the present study is to explore if intranasal delivery of neprilysin can eliminate plaques in a transgenic AD mouse model (APP_SweDI). We will test if collagen or platelets are useful vehicles to deliver neprilysin into the brain. Using organotypic brain slices from adult transgenic APP_SweDI mice, we show that neprilysin alone or loaded in collagen hydrogels or in platelets cleared cortical plaques. Intransasal delivery of neprilysin alone increased small Aβ depositions in the middle and caudal cortex in transgenic mice. Platelets loaded with neprilysin cleared plaques in the frontal cortex after intranasal application. Intranasal delivery of collagen-loaded neprilysin was very potent to clear plaques especially in the middle and caudal parts of the cortex. Our data support that the Aβ degrading enzyme neprilysin delivered to the mouse brain can clear Aβ plaques and intranasal delivery (especially with collagen as a vehicle) is a fast and easy application. However, it must be considered that intranasal neprilysin may also activate more plaque production in the transgenic mouse brain as a side effect.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13120424. [PMID: 33255969 PMCID: PMC7760199 DOI: 10.3390/ph13120424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence in the literature demonstrates the pleiotropic effects of the administration of recombinant human erythropoietin (rhEPO) and its molecular variants in different tissues and organs, including the brain. Some of these reports suggest that the chemical properties of this molecule by itself or in combination with other agents (e.g., growth factors) could provide the necessary pharmacological characteristics to be considered a potential protective agent in neurological disorders such as Alzheimer’s disease (AD). AD is a degenerative disorder of the brain, characterized by an aberrant accumulation of amyloid β (Aβ) and hyperphosphorylated tau (tau-p) proteins in the extracellular and intracellular space, respectively, leading to inflammation, oxidative stress, excitotoxicity, and other neuronal alterations that compromise cell viability, causing neurodegeneration in the hippocampus and the cerebral cortex. Unfortunately, to date, it lacks an effective therapeutic strategy for its treatment. Therefore, in this review, we analyze the evidence regarding the effects of exogenous EPOs (rhEPO and its molecular variants) in several in vivo and in vitro Aβ and tau-p models of AD-type neurodegeneration, to be considered as an alternative protective treatment to this condition. Particularly, we focus on analyzing the differential effect of molecular variants of rhEPO when changes in doses, route of administration, duration of treatment or application times, are evaluated for the improved cellular alterations generated in this disease. This narrative review shows the evidence of the effectiveness of the exogenous EPOs as potential therapeutic molecules, focused on the mechanisms that establish cellular damage and clinical manifestation in the AD.
Collapse
Affiliation(s)
- José J. Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Martha C. Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM-Juriquilla, Querétaro 76230, Mexico;
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Ciudad de Mexico 07360, Mexico;
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| | - Carlos Beas-Zárate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| |
Collapse
|
27
|
Ureña-Guerrero ME, Castañeda-Cabral JL, Rivera-Cervantes MC, Macias-Velez RJ, Jarero-Basulto JJ, Gudiño-Cabrera G, Beas-Zárate C. Neuroprotective and Neurorestorative Effects of Epo and VEGF: Perspectives for New Therapeutic Approaches to Neurological Diseases. Curr Pharm Des 2020; 26:1263-1276. [PMID: 31942853 DOI: 10.2174/1381612826666200114104342] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Erythropoietin (Epo) and vascular endothelial growth factor (VEGF) are two vasoactive molecules with essential trophic effects for brain development. The expression and secretion of both molecules increase in response to neuronal damage and they exert protective and restorative effects, which may also be accompanied by adverse side effects. OBJECTIVE We review the most relevant evidence on the neuroprotective and neurorestorative effects of Epo and VEGF in three of the most frequent neurological disorders, namely, stroke, epilepsy and Alzheimer's disease, to develop new therapeutic approaches. METHODS Several original scientific manuscripts and reviews that have discussed the evidence in critical way, considering both the beneficial and adverse effects of Epo and VEGF in the selected neurological disorders, were analysed. In addition, throughout this review, we propose several considerations to take into account in the design of therapeutic approaches based on Epo and VEGF signalling. RESULTS Although the three selected disorders are triggered by different mechanisms, they evolve through similar processes: excitotoxicity, oxidative stress, neuroinflammation, neuronal death, glial reactivity and vascular remodelling. Epo and VEGF exert neuroprotective and neurorestorative effects by acting on these processes due to their pleiotropism. In general, the evidence shows that both Epo and VEGF reduce neuronal death but that at the vascular level, their effects are contradictory. CONCLUSION Because the Epo and VEGF signalling pathways are connected in several ways, we conclude that more experimental studies, primarily studies designed to thoroughly assess the functional interactions between Epo and VEGF in the brain under both physiological and pathophysiological conditions, are needed.
Collapse
Affiliation(s)
- Mónica E Ureña-Guerrero
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - José L Castañeda-Cabral
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico.,Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (CINVESTAV sede Sur), IPN, Ciudad de México, México
| | - Martha C Rivera-Cervantes
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Rafael J Macias-Velez
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - José J Jarero-Basulto
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carlos Beas-Zárate
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
28
|
Couly S, Denus M, Bouchet M, Rubinstenn G, Maurice T. Anti-Amnesic and Neuroprotective Effects of Fluoroethylnormemantine in a Pharmacological Mouse Model of Alzheimer's Disease. Int J Neuropsychopharmacol 2020; 24:142-157. [PMID: 32977336 PMCID: PMC7883897 DOI: 10.1093/ijnp/pyaa075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Current therapies in Alzheimer's disease (AD), including Memantine, have proven to be only symptomatic but not curative or disease modifying. Fluoroethylnormemantine (FENM) is a structural analogue of Memantine, functionalized with a fluorine group that allowed its use as a positron emission tomography tracer. We here analyzed FENM neuroprotective potential in a pharmacological model of AD compared with Memantine. METHODS Swiss mice were treated intracerebroventricularly with aggregated Aβ 25-35 peptide and examined after 1 week in a battery of memory tests (spontaneous alternation, passive avoidance, object recognition, place learning in the water-maze, topographic memory in the Hamlet). Toxicity induced in the mouse hippocampus or cortex was analyzed biochemically or morphologically. RESULTS Both Memantine and FENM showed symptomatic anti-amnesic effects in Aβ 25-35-treated mice. Interestingly, FENM was not amnesic when tested alone at 10 mg/kg, contrarily to Memantine. Drugs injected once per day prevented Aβ 25-35-induced memory deficits, oxidative stress (lipid peroxidation, cytochrome c release), inflammation (interleukin-6, tumor necrosis factor-α increases; glial fibrillary acidic protein and Iba1 immunoreactivity in the hippocampus and cortex), and apoptosis and cell loss (Bcl-2-associated X/B-cell lymphoma 2 ratio; cell loss in the hippocampus CA1 area). However, FENM effects were more robust than observed with Memantine, with significant attenuations vs the Aβ 25-35-treated group. CONCLUSIONS FENM therefore appeared as a potent neuroprotective drug in an AD model, with a superior efficacy compared with Memantine and an absence of direct amnesic effect at higher doses. These results open the possibility to use the compound at more relevant dosages than those actually proposed in Memantine treatment for AD.
Collapse
Affiliation(s)
- Simon Couly
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | - Morgane Denus
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | | | | | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France,Correspondence: Dr T. Maurice, PhD, INSERM UMR_S1198, Université de Montpellier, cc 105, Place Eugène Bataillon, 34095 Montpellier cedex 5, France ()
| |
Collapse
|
29
|
Martin L, Garcia Rodriguez JC, Audran M, Ericsson M, Maurice T, Marchand A. Detection of a nonerythropoietic erythropoietin, Neuro‐EPO, in blood after intranasal administration in rat. Drug Test Anal 2020; 12:1605-1613. [DOI: 10.1002/dta.2924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Laurent Martin
- Analysis Department French Anti‑Doping Agency (AFLD) Châtenay‐Malabry France
| | | | - Michel Audran
- Analysis Department French Anti‑Doping Agency (AFLD) Châtenay‐Malabry France
| | - Magnus Ericsson
- Analysis Department French Anti‑Doping Agency (AFLD) Châtenay‐Malabry France
| | | | - Alexandre Marchand
- Analysis Department French Anti‑Doping Agency (AFLD) Châtenay‐Malabry France
| |
Collapse
|
30
|
Zhang CY, He FF, Su H, Zhang C, Meng XF. Association between chronic kidney disease and Alzheimer's disease: an update. Metab Brain Dis 2020; 35:883-894. [PMID: 32246323 DOI: 10.1007/s11011-020-00561-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
It has been accepted that kidney function is connected with brain activity. In clinical studies, chronic kidney disease (CKD) patients have been found to be prone to suffering cognitive decline and Alzheimer's disease (AD). The cognitive function of CKD patients may improve after kidney transplantation. All these indicators show a possible link between kidney function and dementia. However, little is known about the mechanism behind the relation of CKD and AD. This review discusses the associations between CKD and AD from the perspective of the pathophysiology of the kidney and complications and/or concomitants of CKD that may lead to cognitive decline in the progression of CKD and AD. Potential preventive and therapeutic strategies for AD are also presented. Further studies are warranted in order to confirm whether the setting of CKD is a possible new determinant for cognitive impairment in AD.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2020; 11:1759091419871420. [PMID: 31450955 PMCID: PMC6712762 DOI: 10.1177/1759091419871420] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a cytokine mainly induced in hypoxia conditions. Its major production site is the kidney. EPO primarily acts on the erythroid progenitor cells in the bone marrow. More and more studies are highlighting its secondary functions, with a crucial focus on its role in the central nervous system. Here, EPO may interact with up to four distinct isoforms of its receptor (erythropoietin receptor [EPOR]), activating different signaling cascades with roles in neuroprotection and neurogenesis. Indeed, the EPO/EPOR axis has been widely studied in the neurodegenerative diseases field. Its potential therapeutic effects have been evaluated in multiple disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, as well as brain ischemia, hypoxia, and hyperoxia. EPO is showing great promise by counteracting secondary neuroinflammatory processes, reactive oxygen species imbalance, and cell death in these diseases. Multiple studies have been performed both in vitro and in vivo, characterizing the mechanisms through which EPO exerts its neurotrophic action. In some cases, clinical trials involving EPO have been performed, highlighting its therapeutic potential. Together, all these works indicate the potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Federica Rey
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Alice Balsari
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Toniella Giallongo
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Sara Ottolenghi
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Anna M Di Giulio
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| | - Michele Samaja
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Stephana Carelli
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| |
Collapse
|
32
|
CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloid-induced apoptosis: considering Akt/GSK-3β and ERK signaling pathways. Mol Biol Rep 2020; 47:2097-2108. [DOI: 10.1007/s11033-020-05309-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
|
33
|
Sumbria RK. Targeting the transferrin receptor to develop erythropoietin for Alzheimer's disease. Neural Regen Res 2020; 15:2251-2252. [PMID: 32594042 PMCID: PMC7749478 DOI: 10.4103/1673-5374.284994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont; Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
34
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
35
|
Wang Z, Khor S, Cai D. Regulation of muscle and metabolic physiology by hypothalamic erythropoietin independently of its peripheral action. Mol Metab 2019; 32:56-68. [PMID: 32029230 PMCID: PMC6938905 DOI: 10.1016/j.molmet.2019.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective The glycoprotein hormone erythropoietin (EPO) is required for erythropoiesis, and the kidney is the primary site of adult EPO synthesis. Limited evidence has suggested that EPO could be detectable in the brain under certain conditions, but it remains unknown if the brain might have its own EPO system for biological functions that are independent of peripheral EPO production and action. We performed this study to address this question using mice under normal conditions versus pathophysiological conditions including aging and dietary obesity. Methods EPO expression was measured in different brain regions as well as in the cerebrospinal fluid. Hypothalamic ventricular EPO was administered to physiologically examine possible therapeutic effects on the conditions of aging and dietary obesity. Body weight, body composition, insulin tolerance, and glucose tolerance were measured to assess the central effects of EPO on metabolic physiology, and muscle strength and histology were analyzed to assess the central effects of EPO on muscle function. In addition, β2-adrenergic receptor knockout bone marrow transplant was employed to determine the potential role of bone marrow in linking the brain to some of these peripheral functions. Results This study revealed that EPO is expressed in the ventromedial hypothalamus in addition to a few other brain regions and is present in the cerebrospinal fluid. Unlike blood EPO concentration, which increased with aging and dietary obesity, hypothalamic EPO decreased in these disease conditions. Therapeutically, aged mice were chronically treated with EPO in the hypothalamic ventricle, showing an increase in lean mass, while body weight and fat mass decreased as a result of a moderate reduction of food intake. Both muscle and metabolic functions were improved by this central treatment, and mechanistically, adrenergic signals to the bone marrow played a role in conveying hypothalamic EPO to these peripheral actions. Dietary obesity was also studied, showing that hypothalamic EPO treatment caused a reduction in food intake and obesity, leading to improved metabolic functions related to decreased fat as well as increased lean mass. Conclusions Hypothalamic EPO plays a role in the central regulation of muscle and metabolic physiology, while its decline contributes to aging and obesity physiology in a manner that is independent of peripheral EPO. Hypothalamic EPO plays a role in regulating muscle and metabolic physiology independently of its peripheral action. Hypothalamic EPO expression and the cerebrospinal fluid EPO concentration decrease in aging and obesity conditions. Hypothalamic EPO treatment blunts the effects of aging and obesity conditions in impairing muscle and metabolic functions. There exists a connection between the hypothalamus and bone marrow in mediating the physiological effects of central EPO.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
36
|
Sun J, Yang J, Whitman K, Zhu C, Cribbs DH, Boado RJ, Pardridge WM, Sumbria RK. Hematologic safety of chronic brain-penetrating erythropoietin dosing in APP/PS1 mice. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:627-636. [PMID: 31660425 PMCID: PMC6807369 DOI: 10.1016/j.trci.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction Low blood-brain barrier (BBB) penetration and hematopoietic side effects limit the therapeutic development of erythropoietin (EPO) for Alzheimer's disease (AD). A fusion protein of EPO and a chimeric monoclonal antibody targeting the mouse transferrin receptor (cTfRMAb) has been engineered. The latter drives EPO into the brain via receptor-mediated transcytosis across the BBB and increases its peripheral clearance to reduce hematopoietic side effects of EPO. Our previous work shows the protective effects of this BBB-penetrating EPO in AD mice but hematologic effects have not been studied. Herein, we investigate the hematologic safety and therapeutic effects of chronic cTfRMAb-EPO dosing, in comparison to recombinant human EPO (rhu-EPO), in AD mice. Methods Male APPswe PSEN1dE9 (APP/PS1) mice (9.5 months) were treated with saline (n = 11), and equimolar doses of cTfRMAb-EPO (3 mg/kg, n = 7), or rhu-EPO (0.6 mg/kg, n = 9) 2 days/week subcutaneously for 6 weeks, compared to saline-treated wild-type mice (n = 10). At 6 weeks, exploration and memory were assessed, and mice were sacrificed at 8 weeks. Spleens were weighed, and brains were evaluated for amyloid beta (Aβ) load and synaptophysin. Blood was collected at 4, 6 and 8 weeks for a complete blood count and white blood cells differential. Results cTfRMAb-EPO transiently increased reticulocyte counts after 4 weeks, followed by normalization of reticulocytes at 6 and 8 weeks. rhu-EPO transiently increased red blood cell count, hemoglobin and hematocrit, and significantly decreased mean corpuscular volume and reticulocytes at 4 weeks, which remained low at 6 weeks. At 8 weeks, a significant decline in red blood cell indices was observed with rhu-EPO treatment. Exploration and cognitive deficits were significantly worse in APP/PS1-rhu-EPO mice. Both cTfRMAb-EPO and rhu-EPO decreased 6E10-positive brain Aβ load; however, cTfRMAb-EPO and not rhu-EPO selectively reduced brain Aβ1-42 and elevated synaptophysin expression. Discussion Chronic treatment with cTfRMAb-EPO results in better hematologic safety, behavioral, and therapeutic indices compared with rhu-EPO, supporting the development of this BBB-penetrable EPO analog for AD. Chimeric monoclonal antibody against the mouse TfR (cTfRMAb)-erythropoietin (EPO) is a brain-penetrating IgG-EPO fusion protein. Chronic treatment with cTfRMAb-EPO does not alter hematology indices in APP/PS1 mice. Equimolar dose of recombinant human EPO significantly alters hematologic indices in APP/PS1 mice. Both cTfRMAb-EPO and recombinant human EPO reduce amyloid beta load in APP/PS1 mice. cTfRMAb-EPO selectively reduces amyloid beta (1–42) and increases synaptophysin in APP/PS1 mice.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Kathrine Whitman
- Department of Neuroscience, Keck Science Department, Claremont Colleges, Claremont, CA, USA
| | - Charlene Zhu
- Department of Neuroscience, Keck Science Department, Claremont Colleges, Claremont, CA, USA
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | | | | | - Rachita K. Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Corresponding author. Tel.: (909) 607-0319; Fax: (909) 607-9826.
| |
Collapse
|
37
|
Dmytriyeva O, Belmeguenai A, Bezin L, Soud K, Drucker Woldbye DP, Gøtzsche CR, Pankratova S. Short erythropoietin-derived peptide enhances memory, improves long-term potentiation, and counteracts amyloid beta–induced pathology. Neurobiol Aging 2019; 81:88-101. [DOI: 10.1016/j.neurobiolaging.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/27/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
|
38
|
Nasyrov E, Nolan KA, Wenger RH, Marti HH, Kunze R. The neuronal oxygen-sensing pathway controls postnatal vascularization of the murine brain. FASEB J 2019; 33:12812-12824. [PMID: 31469589 DOI: 10.1096/fj.201901385rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The contribution of neurons to growth and refinement of the microvasculature during postnatal brain development is only partially understood. Tissue hypoxia is the physiologic stimulus for angiogenesis by enhancing angiogenic mediators partly through activation of hypoxia-inducible factors (HIFs). Hence, we investigated the HIF oxygen-sensing pathway in postmitotic neurons for physiologic angiogenesis in the murine forebrain during postnatal development by using mice lacking the HIF suppressing enzyme prolyl-4-hydroxylase domain (PHD)2 and/or HIF-1/2α in postmitotic neurons. Perinatal activation or inactivation of the HIF pathway in neurons inversely modulated brain vascularization, including endothelial cell number and proliferation, density of total and perfused microvessels, and vascular branching. Accordingly, several angiogenesis-related genes were up-regulated in vivo and in primary neurons derived from PHD2-deficient mice. Among them, only VEGF and adrenomedullin (Adm) promoted angiogenic sprouting of brain endothelial cells. VEGF and Adm additively enhanced endothelial sprouting through activation of multiple pathways. PHD2 deficiency in neurons caused HIF-α stabilization and increased VEGF mRNA levels not only in neurons but unexpectedly also in astrocytes, suggesting a new mechanism of neuron-to-astrocyte signaling. Collectively, our results identify the PHD-HIF pathway in neurons as an important determinant for vascularization of the brain during postnatal development.-Nasyrov, E., Nolan, K. A., Wenger, R. H., Marti, H. H., Kunze, R. The neuronal oxygen-sensing pathway controls postnatal vascularization of the murine brain.
Collapse
Affiliation(s)
- Emil Nasyrov
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Karen A Nolan
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Hugo H Marti
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Reiner Kunze
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
39
|
Garzón F, Coimbra D, Parcerisas A, Rodriguez Y, García JC, Soriano E, Rama R. NeuroEPO Preserves Neurons from Glutamate-Induced Excitotoxicity. J Alzheimers Dis 2019; 65:1469-1483. [PMID: 30175978 DOI: 10.3233/jad-180668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many experimental studies show that erythropoietin (EPO) has a neuroprotective action in the brain. EPO in acute and chronic neurological disorders, particularly in stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, has neuroprotective effects. We previously reported the neuroprotective effect of NeuroEPO, a low sialic form of EPO, against oxidative stress induced by glutamate excitotoxicity. In this paper, we analyze the effect of NeuroEPO against apoptosis induced by glutamate excitotoxicity in primary neuronal cultures obtained from the forebrains of Wistar rat embryos after 17 days of gestation. Excitotoxicity was induced after nine days of in vitro culture by treatment with a culture medium containing 100μM glutamate for 15 min. To withdraw glutamate, a new medium containing 100 ng NeuroEPO/mL was added. Apoptosis was analyzed after 24 h. Images obtained by phase contrast microscopy show that neurons treated with glutamate exhibit cell body shrinkage, loss of dendrites that do not make contact with neighboring cells, and that NeuroEPO was able to preserve the morphological characteristics of the control. Immunocytochemistry images show that the culture is essentially pure in neurons; that glutamate causes cell mortality, and that this is partially avoided when the culture medium is supplemented with NeuroEPO. Activation of intrinsic apoptotic pathways was analyzed. The decreases in Bcl-2/Bax ratio, increase in the release of cytochrome c, and in the expression and activity of caspase-3 observed in cells treated with glutamate, were restored by NeuroEPO. The results from this study show that NeuroEPO protects cortical neurons from glutamate-induced apoptosis via upregulation of Bcl-2 and inhibit glutamate-induced activation of caspase-3.
Collapse
Affiliation(s)
- Fernando Garzón
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Department of Animal Health, University of Nariño, Colombia
| | - Débora Coimbra
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Yamila Rodriguez
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba.,Center of Molecular Immunology (CIM), Havana, Cuba
| | - Julio Cesar García
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba.,National Center for Animals Breeding (Cenpalab), Havana, Cuba
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d'Hebron Institute of Research, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Ramón Rama
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| |
Collapse
|
40
|
Sun J, Martin JM, Vanderpoel V, Sumbria RK. The Promises and Challenges of Erythropoietin for Treatment of Alzheimer's Disease. Neuromolecular Med 2019; 21:12-24. [PMID: 30656553 DOI: 10.1007/s12017-019-08524-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the world, and intracellular neurofibrillary tangles and extracellular amyloid-beta protein deposits represent the major pathological hallmarks of the disease. Currently available treatments provide some symptomatic relief but fail to modify primary pathological processes that underlie the disease. Erythropoietin (EPO), a hematopoietic growth factor, acts primarily to stimulate erythroid cell production, and is clinically used to treat anemia. EPO has evolved as a therapeutic agent for neurodegeneration and has improved neurological outcomes and AD pathology in rodents. However, penetration of the blood-brain barrier (BBB) and negative hematopoietic effects are the two major challenges for the therapeutic development of EPO for chronic neurodegenerative diseases like AD. The transferrin receptors at the BBB, which are responsible for transporting transferrin-bound iron from the blood into the brain parenchyma, can be used to shuttle therapeutic molecules across the BBB. In this review, we discuss the role of EPO as a potential neurotherapeutic for AD, challenges associated with EPO development for AD, and targeting the BBB transferrin receptor for EPO brain delivery.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA
| | - Jan Michelle Martin
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA. .,Department of Neurology, University of California, Irvine, CA, 92868, USA.
| |
Collapse
|
41
|
Rama R, Garzón F, Rodríguez-Cruz Y, Maurice T, García-Rodríguez JC. Neuroprotective effect of Neuro-EPO in neurodegenerative diseases: "Alea jacta est". Neural Regen Res 2019; 14:1519-1521. [PMID: 31089047 PMCID: PMC6557108 DOI: 10.4103/1673-5374.255968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ramón Rama
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Fernando Garzón
- Department of Animal Health, University of Nariño, Pasto, Nariño, Colombia
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | | |
Collapse
|
42
|
Chang R, Al Maghribi A, Vanderpoel V, Vasilevko V, Cribbs DH, Boado R, Pardridge WM, Sumbria RK. Brain Penetrating Bifunctional Erythropoietin-Transferrin Receptor Antibody Fusion Protein for Alzheimer's Disease. Mol Pharm 2018; 15:4963-4973. [PMID: 30252487 DOI: 10.1021/acs.molpharmaceut.8b00594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has neuroprotective effects in rodent models of Alzheimer's disease (AD). However, high therapeutic doses or invasive routes of administration of EPO are required to achieve effective brain concentrations due to low blood-brain barrier (BBB) penetrability, and high EPO doses result in hematopoietic side effects. These obstacles can be overcome by engineering a BBB-penetrable analog of EPO, which is rapidly cleared from the blood, by fusing EPO to a chimeric monoclonal antibody targeting the transferrin receptor (cTfRMAb), which acts as a molecular Trojan horse to ferry the EPO into the brain via the transvascular route. In the current study, we investigated the effects of the BBB-penetrable analog of EPO on AD pathology in a double transgenic mouse model of AD. Five and a half month old male APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with saline ( n = 10) or the BBB-penetrable EPO ( n = 10) 3 days/week intraperitoneally for 8 weeks, compared to same-aged C57BL/6J wild-type mice treated with saline ( n = 8) with identical regiment. At 9 weeks following treatment initiation, exploration and spatial memory were assessed with the open-field and Y-maze test, mice were sacrificed, and brains were evaluated for Aβ peptide load, synaptic loss, BBB disruption, microglial activation, and microhemorrhages. APP/PS1 mice treated with the BBB-penetrable cTfRMAb-EPO fusion protein had significantly lower cortical and hippocampal Aβ peptide number ( p < 0.05) and immune-positive area ( p < 0.05), a decrease in hippocampal synaptic loss ( p < 0.05) and cortical microglial activation ( p < 0.001), and improved spatial memory ( p < 0.05) compared with APP/PS1 saline controls. BBB-penetrating EPO was not associated with microhemorrhage development. The cTfRMAb-EPO fusion protein offers therapeutic benefits by targeting multiple targets of AD pathogenesis and progression (Aβ load, synaptic loss, microglial activation) and improving spatial memory in the APP/PS1 mouse model of AD.
Collapse
Affiliation(s)
- Rudy Chang
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences , Keck Graduate Institute , Claremont , California 91711 , United States
| | - Abrar Al Maghribi
- Henry E. Riggs School of Applied Life Sciences , Keck Graduate Institute , Claremont , California 91711 , United States
| | - Victoria Vanderpoel
- Department of Neuroscience , Pomona College , Claremont , California 91711 , United States
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders , University of California , Irvine , California 92697 , United States
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders , University of California , Irvine , California 92697 , United States
| | - Ruben Boado
- ArmaGen, Inc. , Calabasas , California 91302 , United States
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences , Keck Graduate Institute , Claremont , California 91711 , United States.,Institute for Memory Impairments and Neurological Disorders , University of California , Irvine , California 92697 , United States
| |
Collapse
|
43
|
Hooshmandi E, Motamedi F, Moosavi M, Katinger H, Zakeri Z, Zaringhalam J, Maghsoudi A, Ghasemi R, Maghsoudi N. CEPO-Fc (An EPO Derivative) Protects Hippocampus Against Aβ-induced Memory Deterioration: A Behavioral and Molecular Study in a Rat Model of Aβ Toxicity. Neuroscience 2018; 388:405-417. [DOI: 10.1016/j.neuroscience.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
|
44
|
Dik A, Saffari R, Zhang M, Zhang W. Contradictory effects of erythropoietin on inhibitory synaptic transmission in left and right prelimbic cortex of mice. Neurobiol Stress 2018; 9:113-123. [PMID: 30450377 PMCID: PMC6234276 DOI: 10.1016/j.ynstr.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022] Open
Abstract
Erythropoietin (EPO) has been shown to improve cognitive function in mammals as well as in patients of psychiatric diseases by directly acting on the brain. In addition, EPO attenuates the synaptic transmission and enhances short- and long-term synaptic plasticity in hippocampus of mice, although there are still many discrepancies between different studies. It has been suggested that the divergences of different studies take root in different in-vivo application schemata or in long-term trophic effects of EPO. In the current study, we investigated the direct effects of EPO in slices of prelimbic cortex (PrL) by acute ex-vivo application of EPO, so that the erythropoietic or other trophic effects could be entirely excluded. Our results showed that the EPO effects were contradictory between the left and the right PrL. It enhanced the inhibitory transmission in the left and depressed the inhibitory transmission in the right PrL. Strikingly, this lateralized effect of EPO could be consistently found in individual bi-lateral PrL of all tested mice. Thus, our data suggest that EPO differentially modulates the inhibitory synaptic transmission of neuronal networks in the left and the right PrL. We hypothesize that such lateralized effects of EPO contribute to the development of the lateralization of stress reaction in PFC and underlie the altered bilateral GAGAergic synaptic transmission and oscillation patterns under stress that impact the central emotional and cognitive control in physiology as well as in pathophysiology. EPO showed fast effects on inhibitory transmission in the prefrontal cortex of mice. EPO enhanced the inhibitory transmission in the left and depressed it in the right prelimbic cortex of mice. The expression of EPOR in GAD+-neurons is different between the left and right PFC.
Collapse
Affiliation(s)
- Andre Dik
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany.,Department of Neurology, University of Muenster, Germany
| | - Roja Saffari
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Germany
| |
Collapse
|
45
|
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, Alexander A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281:139-177. [DOI: 10.1016/j.jconrel.2018.05.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
46
|
Castillo C, Zaror S, Gonzalez M, Hidalgo A, Burgos CF, Cabezas OI, Hugues F, Jiménez SP, González-Horta E, González-Chavarría I, Gavilán J, Montesino R, Sánchez O, Lopez MG, Fuentealba J, Toledo JR. Neuroprotective effect of a new variant of Epo nonhematopoietic against oxidative stress. Redox Biol 2018; 14:285-294. [PMID: 28987867 PMCID: PMC5975214 DOI: 10.1016/j.redox.2017.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
Human erythropoietin is mainly recognized for its hematopoietic function; however, by binding to its receptor (EpoR), it can activate different signaling pathways as STAT, PI3K, MAPK and RAS to increase cellular differentiation or provide neuroprotective effects, among others. A recombinant human erythropoietin variant with low glycosylation and without hematopoietic effect (EpoL) was purified from skimmed goat milk. Recombinant human erythropoietin (Epo) was obtained from CHO cell line and used as control to compare EpoL effects. Neuroprotection studies were performed in PC12 cells and rat hippocampal slices. Cells were pretreated during 1h with EpoL or Epo and exposed to oxidative agents (H2O2 or FCCP); cell viability was assayed at the end of the experiment by the MTT method. Hippocampal slices were exposed to 15min of oxygen and glucose deprivation (OGD) and the neuroprotective drugs EpoL or Epo were incubated for 2h post-OGD in re-oxygenated medium. Cell cultures stressed with oxidative agents, and pretreated with EpoL, showed neuroprotective effects of 30% at a concentration 10 times lower than that of Epo. Moreover, similar differences were observed in OGD ex vivo assays. Neuroprotection elicited by EpoL was lost when an antibody against EpoR was present, indicating that its effect is EpoR-dependent. In conclusion, our results suggest that EpoL has a more potent neuroprotective profile than Epo against oxidative stress, mediated by activation of EpoR, thus EpoL represents an important target to develop a potential biopharmaceutical to treat different central nervous system pathologies related to oxidative stress such as stroke or neurodegenerative diseases.
Collapse
Affiliation(s)
- C Castillo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - S Zaror
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - M Gonzalez
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - A Hidalgo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - C F Burgos
- Laboratory of Screening of Neuroactive Compound, Physiology Department. School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - O I Cabezas
- Clinical Sciences Department, School of Veterinary Sciences, Universidad de Concepción, Avenida Vicente Méndez 595, Chillan, Chile
| | - F Hugues
- Clinical Sciences Department, School of Veterinary Sciences, Universidad de Concepción, Avenida Vicente Méndez 595, Chillan, Chile
| | - S P Jiménez
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - E González-Horta
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - I González-Chavarría
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - J Gavilán
- Laboratory of Screening of Neuroactive Compound, Physiology Department. School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - R Montesino
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - O Sánchez
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Manuela G Lopez
- Department of Pharmacology and Therapeutics, "Instituo Teófilo Hernando", Universidad Autónoma de Madrid, Spain
| | - J Fuentealba
- Laboratory of Screening of Neuroactive Compound, Physiology Department. School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - J R Toledo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
47
|
Naert G, Ferré V, Keller E, Slender A, Gibbins D, Fisher EMC, Tybulewicz VLJ, Maurice T. In vivo and ex vivo analyses of amyloid toxicity in the Tc1 mouse model of Down syndrome. J Psychopharmacol 2018; 32:174-190. [PMID: 29215943 PMCID: PMC5815426 DOI: 10.1177/0269881117743484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RATIONALE The prevalence of Alzheimer's disease is increased in people with Down syndrome. The pathology appears much earlier than in the general population, suggesting a predisposition to develop Alzheimer's disease. Down syndrome results from trisomy of human chromosome 21, leading to overexpression of possible Alzheimer's disease candidate genes, such as amyloid precursor protein gene. To better understand how the Down syndrome context results in increased vulnerability to Alzheimer's disease, we analysed amyloid-β [25-35] peptide toxicity in the Tc1 mouse model of Down syndrome, in which ~75% of protein coding genes are functionally trisomic but, importantly, not amyloid precursor protein. RESULTS Intracerebroventricular injection of oligomeric amyloid-β [25-35] peptide in three-month-old wildtype mice induced learning deficits, oxidative stress, synaptic marker alterations, activation of glycogen synthase kinase-3β, inhibition of protein kinase B (AKT), and apoptotic pathways as compared to scrambled peptide-treated wildtype mice. Scrambled peptide-treated Tc1 mice presented high levels of toxicity markers as compared to wildtype mice. Amyloid-β [25-35] peptide injection in Tc1 mice induced significant learning deficits and enhanced glycogen synthase kinase-3β activity in the cortex and expression of apoptotic markers in the hippocampus and cortex. Interestingly, several markers, including oxidative stress, synaptic markers, glycogen synthase kinase-3β activity in the hippocampus and AKT activity in the hippocampus and cortex, were unaffected by amyloid-β [25-35] peptide injection in Tc1 mice. CONCLUSIONS Tc1 mice present several toxicity markers similar to those observed in amyloid-β [25-35] peptide-treated wildtype mice, suggesting that developmental modifications in these mice modify their response to amyloid peptide. However, amyloid toxicity led to severe memory deficits in this Down syndrome mouse model.
Collapse
Affiliation(s)
- Gaëlle Naert
- INSERM U1198, Montpellier, France
- EPHE, Paris, France
| | | | | | | | | | | | | | - Tangui Maurice
- INSERM U1198, Montpellier, France
- EPHE, Paris, France
- Tangui Maurice, INSERM U1198, University of Montpellier, CC105, Place Eugene Bataillon, Montpellier Cedex 5, 34095, France.
| |
Collapse
|
48
|
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2017; 26:2888-2905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
49
|
Hernández CC, Burgos CF, Gajardo AH, Silva-Grecchi T, Gavilan J, Toledo JR, Fuentealba J. Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: the role of erythropoietin receptor. Neural Regen Res 2017; 12:1381-1389. [PMID: 29089974 PMCID: PMC5649449 DOI: 10.4103/1673-5374.215240] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2017] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (Epo) is a fundamental hormone in the regulation of hematopoiesis, and other secondary roles mediated by the binding of the hormone to its specific receptor (EpoR), which leads to an activation of key signaling pathways that induce an increase in cell differentiation, apoptosis control and neuroprotection. It has been suggested that their function depends on final conformation of glycosylations, related with affinity to the receptor and its half-life. The presence of EpoR has been reported in different tissues including central nervous system, where it has been demonstrated to exert a neuroprotective function against oxidative stress conditions, such as ischemic injury and neurodegenerative diseases. There is also evidence of an increase in EpoR expression in brain cell lysates of Alzheimer's patients with respect to healthy patients. These results are related with extensive in vitro experimental data of neuroprotection obtained from cell lines, primary cell cultures and hippocampal slices. Additionally, this data is correlated with in vivo experiments (water maze test) in mouse models of Alzheimer's disease where Epo treatment improved cognitive function. These studies support the idea that receptor activation induces a neuroprotective effect in neurodegenerative disorders including dementias, and especially Alzheimer's disease. Taken together, available evidence suggests that Epo appears to be a central element for EpoR activation and neuroprotective properties in the central nervous system. In this review, we will describe the mechanisms associated with neuroprotection and its relation with the activation of EpoR in order with identify new targets to develop pharmacological strategies.
Collapse
Affiliation(s)
- Carolina Castillo Hernández
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Biopharmaceutical, Department of Pathophysiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Carlos Felipe Burgos
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Angela Hidalgo Gajardo
- Laboratory of Biotechnology and Biopharmaceutical, Department of Pathophysiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Tiare Silva-Grecchi
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Javiera Gavilan
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jorge Roberto Toledo
- Laboratory of Biotechnology and Biopharmaceutical, Department of Pathophysiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
50
|
Erythropoietin ameliorates diabetes-associated cognitive dysfunction in vitro and in vivo. Sci Rep 2017; 7:2801. [PMID: 28584284 PMCID: PMC5459814 DOI: 10.1038/s41598-017-03137-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/20/2017] [Indexed: 01/15/2023] Open
Abstract
Several studies indicate that erythropoietin (EPO) has remarkable neuroprotective effects in various central nervous system disorders, while little is known about the effects of EPO in diabetes-associated cognitive dysfunction. Therefore, the present study aimed to investigate whether EPO ameliorates diabetes-associated cognitive dysfunction in vivo and in vitro. We investigated the protective effects of EPO on high-glucose (HG)-induced PC12 cell death and oxidative stress. The effects of EPO (300 U/kg administered three times a week for 4 weeks) on diabetes-associated cognitive decline were investigated in diabetic rats. EPO significantly increased cell viability, increased the activity of superoxide dismutase, decreased the production of malondialdehyde and reactive oxygen species, and decreased the apoptosis rate. Additionally, LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, abolished the protective effects of EPO in HG-treated PC12 cells. In diabetic rats, EPO prevented deficits in spatial learning and memory in the Morris water maze test. The results of real-time PCR and Western blotting showed that EPO upregulated EPO receptor, PI3K, and phosphorylated Akt2 relative to unphosphorylated Akt2 (p-Akt2/Akt2) and downregulated glycogen synthase kinase-3β (GSK-3β). These studies demonstrate that EPO is an effective neuroprotective agent in the context of diabetes-associated cognitive dysfunction and show that this effect involves the PI3K/Akt/GSK-3β pathway.
Collapse
|