1
|
Duck SA, Nazareth M, Fassinger A, Pinto C, Elmore G, Nugent M, St Pierre M, Vannucci SJ, Chavez-Valdez R. Blood glucose and β-hydroxybutyrate predict significant brain injury after hypoxia-ischemia in neonatal mice. Pediatr Res 2025; 97:798-808. [PMID: 39181984 DOI: 10.1038/s41390-024-03461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The Vannucci procedure is widely used to model cerebral hypoxic-ischemic (HI) injury in neonatal rodents. Identifying minimally invasive biomarkers linked to brain injury would improve stratification of pups to experimental treatments. We hypothesized that extreme blood glucose (BG) and β-hydroxybutyrate (bHB) levels immediately after HI will correlate with severity of brain injury in this model. METHODS C57BL6 mice of both sexes underwent the Vannucci procedure with BG and bHB measured immediately after hypoxia. GFAP and α-fodrin were measured to assess injury severity at 4h, P11, P18 and P40. Open field (OF), Y-maze (YM), and Object-location task (OLT) were tested at P40. RESULTS Clinical seizures-like stereotypies during hypoxia were associated with lower post-hypoxia BG in HI-injured mice. Low BG after HI was related to higher GFAP expression, higher α-fodrin breakdown, lower residual regional volume, and worse working memory. BG was superior to bHB in ROC analysis with BG threshold of <111 mg/dL providing 100% specificity with 72% sensitivity for hippocampal HI-injury. CONCLUSIONS Post-hypoxic BG is a minimally invasive screening tool to identify pups with significant HI brain injury in the Vannucci model modified for mice improving our ability to stratify pups to experimental treatments to assess effectiveness. IMPACT End hypoxic-ischemic blood glucose levels are a reliable and inexpensive biomarker to detect hypoxic-ischemic brain injury in mice. Screening with blood glucose levels post-hypoxia allows appropriate stratification of those mouse pups most likely to be injured to experimental treatments improving validity and translatability of the results. These findings provide biological plausibility to the clinical observation that extreme blood glucose levels relate to worse outcomes after hypoxia-ischemia.
Collapse
Affiliation(s)
- Sarah Ann Duck
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Michelle Nazareth
- Department of Neuroscience, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Abigail Fassinger
- Department of Neuroscience, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Charles Pinto
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Genesis Elmore
- Department of Neuroscience, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Michael Nugent
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Mark St Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Susan J Vannucci
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University - School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zhu L, Wang M, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Supplementation of 3'-Sialyllactose During the Growth Period Improves Learning and Memory Development in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24518-24529. [PMID: 39454104 DOI: 10.1021/acs.jafc.4c06106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
3'-Sialyllactose (3'-SL), a major acidic oligosaccharide found in human milk, has been investigated to improve cognitive-enhancing effects with 3 weeks old C57BL/6 mice by administering 3'-SL orally at a dose of 350 mg/kg/day for 6 weeks. Behavioral tests indicated that supplementation with 3'-SL promoted cognitive and memory development in young mice. Through interaction network and coenrichment analysis, nine differentially expressed genes (DEGs) related to memory and cognition were identified and localized in the hippocampal tissue of mice. The intervention of 3'-SL significantly increased the metabolism of sialic acid in mouse hippocampal tissue and promoted the expression of learning-related genes (p < 0.05). Notably, it increased the expression of genes associated with neural cell adhesion molecule (NCAM, p < 0.05), glutamate receptors, and fibroblast growth factor receptor (FGFR, p < 0.05). This suggests that 3'-SL may elevate polysialylated NCAM (PSA-NCAM) levels, which could subsequently interact with FGFR and glutamate receptors, thereby enhancing synaptic growth and plasticity. Additionally, 3'-SL altered the composition of the mouse intestinal microbiota. The synergistic action of gut microbiota and intestinal sialidase promoted the production of free sialic acid, providing essential nutritional elements for the development of the brain's nervous system. In conclusion, our findings provide new insights into the promoting effect of 3'-SL on cognitive development in growing mice and elucidate its molecular mechanisms.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Minghui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| |
Collapse
|
3
|
Parmar P, Spahic H, Lechner C, St Pierre M, Carlin K, Nugent M, Chavez-Valdez R. Neonatal hypoxia-ischemia alters the events governing the hippocampal critical period of postnatal synaptic plasticity leading to deficits in working memory in mice. Neurobiol Dis 2024; 202:106722. [PMID: 39486775 PMCID: PMC11646096 DOI: 10.1016/j.nbd.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Postnatal critical periods of synaptic plasticity (CPsp) are characterized by profound neural network refinement, which is shaped by synaptic activity and sculpted by maturation of the GABAergic network. Even after therapeutic hypothermia (TH), neonatal hypoxia-ischemia (HI) impairs two triggers for the initiation of the CPsp in the hippocampus: i) PSA-NCAM developmental decline and ii) parvalbumin (PV) + interneuron (IN) maturation. Thus, we investigated whether neonatal HI despite TH disturbs other events governing the onset, consolidation and closure of the postnatal CPsp in the hippocampus. We induced cerebral HI in P10 C57BL6 mice with right carotid ligation and 45 m of hypoxia (FiO2 = 0.08), followed by normothermia (36 °C, NT) or TH (31 °C) for 4 h with anesthesia-exposed shams as controls. ELISA, immunoblotting and immunohistochemistry were performed at 24 h (P11), 5 days (P15), 8 days (P18) and 30 days (P40) after HI injury. We specifically assessed: i) BDNF levels and TrkB activation, controlling the CPsp, ii) Otx2 and NPTX2 immunoreactivity (IR), engaging CPsp onset and iii) NogoR1, Lynx1 IR, PNN formation and myelination (MBP) mediating CPsp closure. Pups aged to P40 also received a battery of tests assessing working memory. Here, we documented deficits in hippocampal BDNF levels and TrkB activation at P18 in response to neonatal HI even with TH. Neonatal HI impaired in the CA1 the developmental increase in PV, Otx2, and NPTX2 between P11 and P18, the colocalization of Otx2 and PV at P18 and P40, the accumulation of NPTX2 in PV+ dendrites at P18 and P40, and the expression of NogoR at P40. Furthermore, neonatal HI decreased BDNF and impaired PNN development and myelination (MBP) at P40. Most of these abnormalities were insensitive to TH and correlated with memory deficits. Neonatal HI appears to disrupt many of the molecular and structural events initiating and consolidating the postnatal hippocampal CPsp, perhaps due to the early and delayed deficits in TrkB activation leading to memory deficits.
Collapse
Affiliation(s)
- Pritika Parmar
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Harisa Spahic
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Lechner
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mark St Pierre
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Nugent
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA; Neuroscience Intensive Care Nursery Program, Johns Hopkins University- School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Nugent M, St Pierre M, Brown A, Nassar S, Parmar P, Kitase Y, Duck SA, Pinto C, Jantzie L, Fung C, Chavez-Valdez R. Sexual Dimorphism in the Closure of the Hippocampal Postnatal Critical Period of Synaptic Plasticity after Intrauterine Growth Restriction: Link to Oligodendrocyte and Glial Dysregulation. Dev Neurosci 2023; 45:234-254. [PMID: 37019088 DOI: 10.1159/000530451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Intrauterine growth restriction (IUGR) resulting from hypertensive disease of pregnancy (HDP) leads to sexually dimorphic hippocampal-dependent cognitive and memory impairment in humans. In our translationally relevant mouse model of IUGR incited by HDP, we have previously shown that the synaptic development in the dorsal hippocampus including GABAergic development, NPTX2+ excitatory synaptic formation, axonal myelination, and perineural net (PNN) formation were perturbed by IUGR at adolescent equivalence in humans (P40). The persistence of these disturbances through early adulthood and the potential upstream mechanisms are currently unknown. Thus, we hypothesized that NPTX2+ expression, PNN formation, axonal myelination, all events closing synaptic development in the hippocampus, will be persistently perturbed, particularly affecting IUGR female mice through P60 given the fact that they had worse short-term recognition memory in this model. We additionally hypothesized that such sexual dimorphism is linked to persistent glial dysregulation. We induced IUGR by a micro-osmotic pump infusion of a potent vasoconstrictor U-46619, a thromboxane A2-analog, in the last week of the C57BL/6 mouse gestation to precipitate HDP. Sham-operated mice were used as controls. At P60, we assessed hippocampal and hemispheric volumes, NPTX2 expression, PNN formation, as well as myelin basic protein (MBP), Olig2, APC/CC1, and M-NF expression. We also evaluated P60 astrocytic (GFAP) reactivity and microglial (Iba1 and TMEM119) activation using immunofluorescent-immunohistochemistry and Imaris morphological analysis plus cytokine profiling using Meso Scale Discovery platform. IUGR offspring continued to have smaller hippocampal volumes at P60 not related to changes in hemisphere volume. NPTX2+ puncta counts and volumes were decreased in IUGR hippocampal CA subregions of female mice compared to sex-matched shams. Intriguingly, NPTX2+ counts and volumes were concurrently increased in the dentate gyrus (DG) subregion. PNN volumes were smaller in CA1 and CA3 of IUGR female mice along with PNN intensity in CA3 but they had larger volumes in the CA3 of IUGR male mice. The myelinated axon (MBP+) areas, volumes, and lengths were all decreased in the CA1 of IUGR female mice compared to sex-matched shams, which correlated with a decrease in Olig2 nuclear expression. No decrease in the number of APC/CC1+ mature oligodendrocytes was identified. We noted an increase in M-NF expression in the mossy fibers connecting DG to CA3 only in IUGR female mice. Reactive astrocytes denoted by GFAP areas, volumes, lengths, and numbers of branching were increased in IUGR female CA1 but not in IUGR male CA3 compared to sex-matched shams. Lastly, activated microglia were only detected in IUGR female CA1 and CA3 subregions. We detected no difference in the cytokine profile between sham and IUGR adult mice of either sex. Collectively, our data support a sexually dimorphic impaired closure of postnatal critical period of synaptic plasticity in the hippocampus of young adult IUGR mice with greater effects on females. A potential mechanism supporting such dimorphism may include oligodendrocyte dysfunction in IUGR females limiting myelination, allowing axonal overgrowth followed by a reactive glial-mediated synaptic pruning.
Collapse
Affiliation(s)
- Michael Nugent
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mark St Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ashley Brown
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Salma Nassar
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, Maryland, USA
| | - Pritika Parmar
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, Maryland, USA
| | - Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sarah Ann Duck
- Department of Molecular and Cellular Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, Maryland, USA
| | - Charles Pinto
- Department of Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
St. Pierre M, Duck SA, Nazareth M, Fung C, Jantzie LL, Chavez-Valdez R. Unbiased Quantitative Single-Cell Morphometric Analysis to Identify Microglia Reactivity in Developmental Brain Injury. Life (Basel) 2023; 13:899. [PMID: 37109428 PMCID: PMC10147015 DOI: 10.3390/life13040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Microglia morphological studies have been limited to the process of reviewing the most common characteristics of a group of cells to conclude the likelihood of a "pathological" milieu. We have developed an Imaris-software-based analytical pipeline to address selection and operator biases, enabling use of highly reproducible machine-learning algorithms to quantify at single-cell resolution differences between groups. We hypothesized that this analytical pipeline improved our ability to detect subtle yet important differences between groups. Thus, we studied the temporal changes in Iba1+ microglia-like cell (MCL) populations in the CA1 between P10-P11 and P18-P19 in response to intrauterine growth restriction (IUGR) at E12.5 in mice, chorioamnionitis (chorio) at E18 in rats and neonatal hypoxia-ischemia (HI) at P10 in mice. Sholl and convex hull analyses differentiate stages of maturation of Iba1+ MLCs. At P10-P11, IUGR or HI MLCs were more prominently 'ameboid', while chorio MLCs were hyper-ramified compared to sham. At P18-P19, HI MLCs remained persistently 'ameboid' to 'transitional'. Thus, we conclude that this unbiased analytical pipeline, which can be adjusted to other brain cells (i.e., astrocytes), improves sensitivity to detect previously elusive morphological changes known to promote specific inflammatory milieu and lead to worse outcomes and therapeutic responses.
Collapse
Affiliation(s)
- Mark St. Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Ann Duck
- Department of Molecular and Cellular Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD 21205, USA
| | - Michelle Nazareth
- Department of Molecular and Cellular Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD 21205, USA
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT 84132, USA
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Tarkowska A. Melatonin: A Potential Candidate for the Treatment of Experimental and Clinical Perinatal Asphyxia. Molecules 2023; 28:1105. [PMID: 36770769 PMCID: PMC9919754 DOI: 10.3390/molecules28031105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Perinatal asphyxia is considered to be one of the major causes of brain neurodegeneration in full-term newborns. The worst consequence of perinatal asphyxia is neurodegenerative brain damage, also known as hypoxic-ischemic encephalopathy. Hypoxic-ischemic encephalopathy is the leading cause of mortality in term newborns. To date, due to the complex mechanisms of brain damage, no effective or causal treatment has been developed that would ensure complete neuroprotection. Although hypothermia is the standard of care for hypoxic-ischemic encephalopathy, it does not affect all changes associated with encephalopathy. Therefore, there is a need to develop effective treatment strategies, namely research into new agents and therapies. In recent years, it has been pointed out that natural compounds with neuroprotective properties, such as melatonin, can be used in the treatment of hypoxic-ischemic encephalopathy. This natural substance with anti-inflammatory, antioxidant, anti-apoptotic and neurofunctional properties has been shown to have pleiotropic prophylactic or therapeutic effects, mainly against experimental brain neurodegeneration in hypoxic-ischemic neonates. Melatonin is a natural neuroprotective hormone, which makes it promising for the treatment of neurodegeneration after asphyxia. It is supposed that melatonin alone or in combination with hypothermia may improve neurological outcomes in infants with hypoxic-ischemic encephalopathy. Melatonin has been shown to be effective in the last 20 years of research, mainly in animals with perinatal asphyxia but, so far, no clinical trials have been performed on a sufficient number of newborns. In this review, we summarize the advantages and limitations of melatonin research in the treatment of experimental and clinical perinatal asphyxia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Ecotech-Complex Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Marie Curie-Skłodowska University in Lublin, 20-612 Lublin, Poland
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Spahic H, Parmar P, Miller S, Emerson PC, Lechner C, St. Pierre M, Rastogi N, Nugent M, Duck SA, Kirkwood A, Chavez-Valdez R. Dysregulation of ErbB4 Signaling Pathway in the Dorsal Hippocampus after Neonatal Hypoxia-Ischemia and Late Deficits in PV + Interneurons, Synaptic Plasticity and Working Memory. Int J Mol Sci 2022; 24:ijms24010508. [PMID: 36613949 PMCID: PMC9820818 DOI: 10.3390/ijms24010508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury leads to deficits in hippocampal parvalbumin (PV)+ interneurons (INs) and working memory. Therapeutic hypothermia (TH) does not prevent these deficits. ErbB4 supports maturation and maintenance of PV+ IN. Thus, we hypothesized that neonatal HI leads to persistent deficits in PV+ INs, working memory and synaptic plasticity associated with ErbB4 dysregulation despite TH. P10 HI-injured mice were randomized to normothermia (NT, 36 °C) or TH (31 °C) for 4 h and compared to sham. Hippocampi were studied for α-fodrin, glial fibrillary acidic protein (GFAP), and neuroregulin (Nrg) 1 levels; erb-b2 receptor tyrosine kinase 4 (ErbB4)/ Ak strain transforming (Akt) activation; and PV, synaptotagmin (Syt) 2, vesicular-glutamate transporter (VGlut) 2, Nrg1, and ErbB4 expression in coronal sections. Extracellular field potentials and behavioral testing were performed. At P40, deficits in PV+ INs correlated with impaired memory and coincided with blunted long-term depression (LTD), heightened long-term potentiation (LTP) and increased Vglut2/Syt2 ratio, supporting excitatory-inhibitory (E/I) imbalance. Hippocampal Nrg1 levels were increased in the hippocampus 24 h after neonatal HI, delaying the decline documented in shams. Paradoxically ErbB4 activation decreased 24 h and again 30 days after HI. Neonatal HI leads to persistent deficits in hippocampal PV+ INs, memory, and synaptic plasticity. While acute decreased ErbB4 activation supports impaired maturation and survival after HI, late deficit reemergence may impair PV+ INs maintenance after HI.
Collapse
Affiliation(s)
- Harisa Spahic
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pritika Parmar
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Miller
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul Casey Emerson
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charles Lechner
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark St. Pierre
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Neetika Rastogi
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Nugent
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Ann Duck
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alfredo Kirkwood
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
8
|
Onda K, Catenaccio E, Chotiyanonta J, Chavez-Valdez R, Meoded A, Soares BP, Tekes A, Spahic H, Miller SC, Parker SJ, Parkinson C, Vaidya DM, Graham EM, Stafstrom CE, Everett AD, Northington FJ, Oishi K. Development of a composite diffusion tensor imaging score correlating with short-term neurological status in neonatal hypoxic-ischemic encephalopathy. Front Neurosci 2022; 16:931360. [PMID: 35983227 PMCID: PMC9379310 DOI: 10.3389/fnins.2022.931360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal acquired brain injury. Although conventional MRI may predict neurodevelopmental outcomes, accurate prognostication remains difficult. As diffusion tensor imaging (DTI) may provide an additional diagnostic and prognostic value over conventional MRI, we aimed to develop a composite DTI (cDTI) score to relate to short-term neurological function. Sixty prospective neonates treated with therapeutic hypothermia (TH) for HIE were evaluated with DTI, with a voxel size of 1 × 1 × 2 mm. Fractional anisotropy (FA) and mean diffusivity (MD) from 100 neuroanatomical regions (FA/MD *100 = 200 DTI parameters in total) were quantified using an atlas-based image parcellation technique. A least absolute shrinkage and selection operator (LASSO) regression was applied to the DTI parameters to generate the cDTI score. Time to full oral nutrition [short-term oral feeding (STO) score] was used as a measure of short-term neurological function and was correlated with extracted DTI features. Seventeen DTI parameters were selected with LASSO and built into the final unbiased regression model. The selected factors included FA or MD values of the limbic structures, the corticospinal tract, and the frontotemporal cortices. While the cDTI score strongly correlated with the STO score (rho = 0.83, p = 2.8 × 10-16), it only weakly correlated with the Sarnat score (rho = 0.27, p = 0.035) and moderately with the NICHD-NRN neuroimaging score (rho = 0.43, p = 6.6 × 10-04). In contrast to the cDTI score, the NICHD-NRN score only moderately correlated with the STO score (rho = 0.37, p = 0.0037). Using a mixed-model analysis, interleukin-10 at admission to the NICU (p = 1.5 × 10-13) and tau protein at the end of TH/rewarming (p = 0.036) and after rewarming (p = 0.0015) were significantly associated with higher cDTI scores, suggesting that high cDTI scores were related to the intensity of the early inflammatory response and the severity of neuronal impairment after TH. In conclusion, a data-driven unbiased approach was applied to identify anatomical structures associated with some aspects of neurological function of HIE neonates after cooling and to build a cDTI score, which was correlated with the severity of short-term neurological functions.
Collapse
Affiliation(s)
- Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eva Catenaccio
- Division of Pediatric Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jill Chotiyanonta
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raul Chavez-Valdez
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avner Meoded
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Bruno P. Soares
- Division of Neuroradiology, Department of Radiology, Larner College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Aylin Tekes
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harisa Spahic
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah C. Miller
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Charlamaine Parkinson
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dhananjay M. Vaidya
- Department of General Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carl E. Stafstrom
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Tarkowska A, Furmaga-Jabłońska W, Bogucki J, Kocki J, Pluta R. Hypothermia after Perinatal Asphyxia Does Not Affect Genes Responsible for Amyloid Production in Neonatal Peripheral Lymphocytes. J Clin Med 2022; 11:3263. [PMID: 35743334 PMCID: PMC9225259 DOI: 10.3390/jcm11123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, the expression of the genes of the amyloid protein precursor, β-secretase, presenilin 1 and 2 by RT-PCR in the lymphocytes of newborns after perinatal asphyxia and perinatal asphyxia treated with hypothermia was analyzed at the age of 15-21 days. The relative quantification of Alzheimer's-disease-related genes was first performed by comparing the peripheral lymphocytes of non-asphyxia control versus those with asphyxia or asphyxia with hypothermia. In the newborns who had perinatal asphyxia, the peripheral lymphocytes presented a decreased expression of the amyloid protein precursor and β-secretase genes. On the other hand, the expression of the presenilin 1 and 2 genes increased in the studied group. The expression of the studied genes in the asphyxia group treated with hypothermia had an identical pattern of changes that were not statistically significant to the asphyxia group. This suggests that the expression of the genes involved in the metabolism of the amyloid protein precursor in the peripheral lymphocytes may be a biomarker of progressive pathological processes in the brain after asphyxia that are not affected by hypothermia. These are the first data in the world showing the role of hypothermia in the gene changes associated with Alzheimer's disease in the peripheral lymphocytes of newborns after asphyxia.
Collapse
Affiliation(s)
- Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland; (A.T.); (W.F.-J.)
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland; (A.T.); (W.F.-J.)
| | - Jacek Bogucki
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Wielgat P, Narejko K, Car H. SARS-CoV-2 Attacks in the Brain: Focus on the Sialome. Cells 2022; 11:1458. [PMID: 35563764 PMCID: PMC9104523 DOI: 10.3390/cells11091458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
The epidemiological observations suggest that respiratory and gastrointestinal symptoms caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) are accompanied by short- and long-term neurological manifestations. There is increasing evidence that the neuroinvasive potential of SARS-CoV-2 is closely related to its capacity to interact with cell membrane sialome. Given the wide expression of sialylated compounds of cell membranes in the brain, the interplay between cell membrane sialoglycans and the virus is crucial for its attachment and cell entry, transport, neuronal damage and brain immunity. Here, we focus on the significance of the brain sialome in the progress of coronavirus disease 2019 (COVID-19) and SARS-CoV-2-induced neuropathology.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-265 Bialystok, Poland
| |
Collapse
|
11
|
Zhou H, Chen T. An integrated analysis of hypoxic-ischemic encephalopathy-related cell sequencing outcomes via genes network construction. IBRAIN 2022; 8:78-92. [PMID: 37786415 PMCID: PMC10529176 DOI: 10.1002/ibra.12025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 10/04/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main causes of morbidity and severe neurological deficits in neonates. This study aimed to find core genes and their potential roles in HIE with the help of single-cell sequencing (SCS) technology and genes network construction. We collected and screened an HIE genes data set from the Pubmed database to analyze differential expression, and the differential values of genes were ≥3 or ≤-3 in gene expression. We constructed a protein-protein interaction (PPI) network by the string, which was also verified by Cytoscape 3.8.2. Functional enrichment analysis was performed to determine the characteristics and pathways of the core genes. We examined two meaningful papers and integrated all genes by SCS, which were classified into 12,093 genes without duplicates, 217 shared genes, and 11,876 distinct genes. Among 217 genes, the signal transducer and activator of transcription (STAT) family was the most targeted gene in the PPI network. Moreover, Gene Ontology and Kyoto encyclopedia of genes and genome analysis showed that the process in response to virus and the JAK-STAT signaling pathway play significant roles in HIE. We also found that 54 screened genes were highly expressed, while three genes (B2M, VIM, and MRPS30) were different in the heat map and differential genes expression exhibition. VIM, as an essential portion of the brain's cytoskeleton, is closely linked to STAT and neurologic development. From the findings of SCS and bioinformatics predictive analytics model, our outcomes provided a better understanding of the roles of STAT, the JAK-STAT signaling pathway, and VIM, which can pave an alternative avenue for further studies on HIE progression.
Collapse
Affiliation(s)
- Hong‐Su Zhou
- Department of Laboratory ZoologyKunming Medical UniversityKunmingYunnanChina
| | - Ting‐Bao Chen
- Department of Laboratory ZoologyKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
12
|
St. Pierre M, Rastogi N, Brown A, Parmar P, Lechner C, Fung C, Chavez-Valdez R. Intrauterine Growth Restriction Disrupts the Postnatal Critical Period of Synaptic Plasticity in the Mouse Dorsal Hippocampus in a Model of Hypertensive Disease of Pregnancy. Dev Neurosci 2022; 44:214-232. [PMID: 34933306 PMCID: PMC9209574 DOI: 10.1159/000521611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Intrauterine growth restriction (IUGR) from hypertensive disease of pregnancy complicates up to 10% of all pregnancies. Significant hippocampal-dependent cognitive and memory impairments as well as neuropsychiatric disorders have been linked to IUGR. Because disturbance of the hippocampal critical period (CPd) of synaptic plasticity leads to impairments similar to those described in IUGR human offspring, we hypothesized that IUGR would perturb the CPd of synaptic plasticity in the mouse hippocampus in our model. METHODS IUGR was produced by a micro-osmotic pump infusion of the potent vasoconstrictor U-46619, a thromboxane A2-agonist, at embryonic day 12.5 in C57BL/6J mouse dams to precipitate hypertensive disease of pregnancy and IUGR. Sham-operated mice acted as controls. At P10, P18, and P40, we assessed astrogliosis using GFAP-IHC. In dorsal CA1 and CA3 subfields, we assessed the immunoreactivities (IR) (IF-IHC) to (i) parvalbumin (PV) and glutamate decarboxylase (GAD) 65/67, involved in CPd onset; (ii) PSA-NCAM that antagonizes CPd onset; (iii) NPTX2, necessary for excitatory synapse formation and engagement of CPd; and (iv) MBP and WFA, staining perineural nets (PNNs), marking CPd closure. ImageJ/Fiji and IMARIS were used for image processing and SPSS v24 for statistical analysis. RESULTS Although PV+ interneuron numbers and IR intensity were unchanged, development of GAD65/67+ synaptic boutons was accelerated at P18 IUGR mice and inversely correlated with decreased expression of PSA-NCAM in the CA of P18 IUGR mice at P18. NPTX2+ puncta and total volume were persistently decreased in the CA3 pyramidal and radiatum layers of IUGR mice from P18 to P40. At P40, axonal myelination (MBP+) in CA3 of IUGR mice was decreased and correlated with NPTX2 deficits. Lastly, the volume and integrity of the PNNs in the dorsal CA was disrupted in IUGR mice at P40. DISCUSSION/CONCLUSION IUGR disrupts the molecular and structural initiation, consolidation, and closure of the CPd of synaptic plasticity in the mouse hippocampus in our model, which may explain the learning and memory deficits observed in juvenile IUGR mice and the cognitive disorders seen in human IUGR offspring. The mechanistic links warrant further investigation, to identify therapeutic targets to prevent neurodevelopmental deficits in patients affected by IUGR.
Collapse
Affiliation(s)
- Mark St. Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine. Baltimore, MD
| | - Neetika Rastogi
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD
| | - Ashley Brown
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Pritika Parmar
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD
| | - Charles Lechner
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine. Baltimore, MD
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine. Baltimore, MD,Corresponding author: Dr. Raul Chavez-Valdez. Associate Professor. Department of Pediatrics, Division of Neonatology, Johns Hopkins Hospital, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA. Telephone: (410) 955-7156,
| |
Collapse
|
13
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia/ischemia impairs CD33 (Siglec-3)/TREM2 signaling: Potential role in Alzheimer's pathogenesis. Neurochem Int 2021; 150:105186. [PMID: 34530055 DOI: 10.1016/j.neuint.2021.105186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/22/2022]
Abstract
Recent genetic and molecular studies have indicated that the innate immune system, especially microglia, have a crucial role in the accumulation of β-amyloid plaques in Alzheimer's disease (AD). In particular, the CD33 receptor, also called Siglec-3, inhibits the TREM2 receptor-induced phagocytic activity of microglia. CD33 receptors recognize the α2,3 and α2,6-linked sialic groups in tissue glycocalyx, especially sialylated gangliosides in human brain. The CD33 receptor triggers cell-type specific responses, e.g., in microglia, CD33 inhibits phagocytosis, whereas in natural killer cells, it inhibits the cytotoxic activity of the NKG2D receptor. Nonetheless, the regulation of the activity of CD33 receptor needs to be clarified. For example, it seems that hypoxia/ischemia, a potential cause of AD pathology, increases the expression of CD33 and its downstream target SHP-1, a tyrosine phosphatase which suppresses the phagocytosis driven by TREM2. Moreover, hypoxia/ischemia increases the deposition of sialylated gangliosides, e.g., GM1, GM2, GM3, and GD1, which are ligands for inhibitory CD33/Siglec-3 receptors. In addition, β-amyloid peptides bind to the sialylated gangliosides in raft-like clusters and subsequently these gangliosides act as seeds for the formation of β-amyloid plaques in AD pathology. It is known that senile plaques contain sialylated GM1, GM2, and GM3 gangliosides, i.e., the same species induced by hypoxia/ischemia treatment. Sialylated gangliosides in plaques might stimulate the CD33/Siglec-3 receptors of microglia and thus impede TREM2-driven phagocytosis. We propose that hypoxia/ischemia, e.g., via the accumulation of sialylated gangliosides, prevents the phagocytosis of β-amyloid deposits by inhibiting CD33/TREM2 signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
14
|
Alzheimer's Disease Associated Presenilin 1 and 2 Genes Dysregulation in Neonatal Lymphocytes Following Perinatal Asphyxia. Int J Mol Sci 2021; 22:ijms22105140. [PMID: 34067945 PMCID: PMC8152038 DOI: 10.3390/ijms22105140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Perinatal asphyxia is mainly a brain disease leading to the development of neurodegeneration, in which a number of peripheral lesions have been identified; however, little is known about the expression of key genes involved in amyloid production by peripheral cells, such as lymphocytes, during the development of hypoxic-ischemic encephalopathy. We analyzed the gene expression of the amyloid protein precursor, β-secretase, presenilin 1 and 2 and hypoxia-inducible factor 1-α by RT-PCR in the lymphocytes of post-asphyxia and control neonates. In all examined periods after asphyxia, decreased expression of the genes of the amyloid protein precursor, β-secretase and hypoxia-inducible factor 1-α was noted in lymphocytes. Conversely, expression of presenilin 1 and 2 genes decreased on days 1–7 and 8–14 but increased after survival for more than 15 days. We believe that the expression of presenilin genes in lymphocytes could be a potential biomarker to determine the severity of the post-asphyxia neurodegeneration or to identify the underlying factors for brain neurodegeneration and get information about the time they occurred. This appears to be the first worldwide data on the role of the presenilin 1 and 2 genes associated with Alzheimer’s disease in the dysregulation of neonatal lymphocytes after perinatal asphyxia.
Collapse
|
15
|
Lechner CR, McNally MA, St Pierre M, Felling RJ, Northington FJ, Stafstrom CE, Chavez-Valdez R. Sex specific correlation between GABAergic disruption in the dorsal hippocampus and flurothyl seizure susceptibility after neonatal hypoxic-ischemic brain injury. Neurobiol Dis 2020; 148:105222. [PMID: 33309937 PMCID: PMC7864119 DOI: 10.1016/j.nbd.2020.105222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 01/12/2023] Open
Abstract
Since neonatal hypoxia-ischemia (HI) disrupts the hippocampal (Hp) GABAergic network in the mouse and Hp injury in this model correlates with flurothyl seizure susceptibility only in male mice, we hypothesized that GABAergic disruption correlates with flurothyl seizure susceptibility in a sex-specific manner. C57BL6 mice were exposed to HI (Vannucci model) versus sham procedures at P10, randomized to normothermia (NT) or therapeutic hypothermia (TH), and subsequently underwent flurothyl seizure testing at P18. Only in male mice, Hp atrophy correlated with seizure susceptibility. The number of Hp parvalbumin positive interneurons (PV+INs) decreased after HI in both sexes, but TH attenuated this deficit only in females. In males only, seizure susceptibility directly correlated with the number of PV+INs, but not somatostatin or calretinin expressing INs. Hp GABAB receptor subunit levels were decreased after HI, but unrelated to later seizure susceptibility. In contrast, Hp GABAA receptor α1 subunit (GABAARα1) levels were increased after HI. Adjusting the number of PV+ INs for their GABAARα1 expression strengthened the correlation with seizure susceptibility in male mice. Thus, we identified a novel Hp sex-specific GABA-mediated mechanism of compensation after HI that correlates with flurothyl seizure susceptibility warranting further study to better understand potential clinical translation.
Collapse
Affiliation(s)
- Charles R Lechner
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolf Street, Baltimore, MD 21287, USA
| | - Melanie A McNally
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolf Street, Baltimore, MD 21287, USA
| | - Mark St Pierre
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolf Street, Baltimore, MD 21287, USA
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolf Street, Baltimore, MD 21287, USA
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolf Street, Baltimore, MD 21287, USA
| | - Carl E Stafstrom
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolf Street, Baltimore, MD 21287, USA
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolf Street, Baltimore, MD 21287, USA.
| |
Collapse
|
16
|
Zhang X, Peng K, Zhang X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front Neurosci 2020; 14:567665. [PMID: 33117117 PMCID: PMC7573650 DOI: 10.3389/fnins.2020.567665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain injury which could lead to neonatal disability or even cause neonatal death. Therefore, HIE strongly affects the health of newborns and brings heavy burden to the family and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has been shown that the NMDA receptor also plays important roles in HIE. In the present review, we made a summary of the molecular mechanism of NMDA receptor in the pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-containing NMDA receptor subtypes and aiming to provide some insights into the clinical treatment and drug development of HIE.
Collapse
|