1
|
Brunetti B, de Biase D, Millanta F, Muscatello LV, Di Oto E, Marchetti R, Laddaga EL, De Leo A, Tallini G, Bacci B. Protein Expression, Amplification, and Mutation of HER2 Gene in Canine Primary Pulmonary Adenocarcinomas: Preliminary Results. Animals (Basel) 2024; 14:2625. [PMID: 39335216 PMCID: PMC11428963 DOI: 10.3390/ani14182625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Recently, human epidermal growth factor receptor 2 (HER2) has emerged as a therapeutic target of interest for non-small-cell lung cancer in humans. The role of HER2 in canine pulmonary adenocarcinomas is poorly documented. To address this gap, this study employed three methodologies: immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS) to investigate the protein expression, gene amplification, and mutation of HER2 in 19 canine primary pulmonary adenocarcinomas. By IHC, 3 out of 19 cases were overexpressed 3+, 6 were 2+, and 10 were negative. With FISH, 2 cases were amplified (12.5%), 3 were inadequate for the analyses, and the others were non-amplified. With NGS, seven cases were inadequate. All other cases were wild-type, except for one IHC 3+ case, which was amplified with FISH and with a specific mutation already described in human pulmonary adenocarcinoma, V659E. This mutation is probably sensitive to tyrosine kinase inhibitory drugs. These results are similar to those in human medicine and to the few data in the literature on canine lung carcinomas; the presence of 12.5% of amplified cases in dogs lays the foundation for future targeted drugs against HER2 alterations.
Collapse
Affiliation(s)
- Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Dario de Biase
- Department of Experimental, Diagnostics and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Francesca Millanta
- Department of Veterinary Sciences, University of Pisa, 56126 Pisa, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | | | - Roberta Marchetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Ester Lidia Laddaga
- Ospedale Veterinario "I Portoni Rossi", Anicura, Zola Predosa, 40069 Bologna, Italy
| | - Antonio De Leo
- Department of Experimental, Diagnostics and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostics and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Muscatello LV, de Biase D, Maloberti T, di Oto E, Tallini G, Pellegrino V, Bacci B, Roccabianca P, Lepri E, Crippa L, Avallone G. Analysis of MDM2 and TP53 genes in canine liposarcoma. Sci Rep 2024; 14:14087. [PMID: 38890407 PMCID: PMC11189432 DOI: 10.1038/s41598-024-64963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Canine liposarcoma is an uncommon tumor that shares morphological similarities with its human counterpart. In dogs, the genetic features of this tumor are unknown and, based on immunohistochemical studies, amplification of the gene MDM2 and the mutation of TP53 are suspected. In this study 51 cases of primary liposarcomas were immunohistochemically stained for MDM2 and p53 and subjected to fluorescent in situ hybridization and next-generation sequencing to detect MDM2 amplification and TP53 mutations, respectively. MDM2 and p53 were expressed in 21 and 6 cases, respectively. MDM2 amplification and TP53 mutations were identified in 10 and 15 cases, respectively. Statistical analysis revealed an association of the myxoid subtype and the mitotic count with p53 expression and TP53 mutation. No association was found between MDM2 amplification and MDM2 expression or tumor subtype. These results suggest that despite morphological similarities, canine liposarcoma differs from its human counterpart, for which MDM2 amplification is diagnostic for well differentiated and de-differentiated variants, and TP53 mutations are more common in pleomorphic liposarcoma rather than the myxoid one as occur in our cases. Furthermore, canine myxoid liposarcoma likely represents a distinct disease rather than a mere morphological variant.
Collapse
Affiliation(s)
- Luisa Vera Muscatello
- Department of Veterinary Medical Sciences (DIMEVET), University di Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Solid Tumor Molecular Pathology Laboratory, 40138, Bologna, Italy
| | - Thais Maloberti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Solid Tumor Molecular Pathology Laboratory, 40138, Bologna, Italy
| | - Enrico di Oto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Solid Tumor Molecular Pathology Laboratory, 40138, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Solid Tumor Molecular Pathology Laboratory, 40138, Bologna, Italy
| | - Valeria Pellegrino
- Department of Veterinary Medical Sciences (DIMEVET), University di Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences (DIMEVET), University di Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Paola Roccabianca
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Giancarlo Avallone
- Department of Veterinary Medical Sciences (DIMEVET), University di Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
3
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
4
|
Žagar Ž, Schmidt JM. A Scoping Review on Tyrosine Kinase Inhibitors in Cats: Current Evidence and Future Directions. Animals (Basel) 2023; 13:3059. [PMID: 37835664 PMCID: PMC10572079 DOI: 10.3390/ani13193059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have become invaluable in the treatment of human and canine malignancies, but their role in feline oncology is less defined. While toceranib phosphate and masitinib mesylate are licensed for use in dogs, no TKI is yet approved for cats. This review systematically maps the research conducted on the expression of tyrosine kinases in neoplastic and non-neoplastic domestic feline tissues, as well as the in vitro/in vivo use of TKIs in domestic cats. We identify and discuss knowledge gaps and speculate on the further research and potential indications for TKI use in cats. A comprehensive search of three electronic databases and relevant paper reference lists identified 139 studies meeting the inclusion criteria. The most commonly identified tumors were mast cell tumors (MCTs), mammary and squamous cell carcinomas and injection-site sarcomas. Based on the current literature, toceranib phosphate appears to be the most efficacious TKI in cats, especially against MCTs. Exploring the clinical use of TKIs in mammary carcinomas holds promise. Despite the progress, currently, the evidence falls short, underscoring the need for further research to discover new indications in feline oncology and to bridge the knowledge gaps between human and feline medicine.
Collapse
Affiliation(s)
- Žiga Žagar
- IVC Evidensia Small Animal Clinic Hofheim, 65719 Hofheim am Taunus, Germany
| | | |
Collapse
|
5
|
Howard J, Browne J, Bollard S, Peters S, Sweeney C, Wynne K, Potter S, McCann A, Kelly P. The protein and miRNA profile of plasma extracellular vesicles (EVs) can distinguish feline mammary adenocarcinoma patients from healthy feline controls. Sci Rep 2023; 13:9178. [PMID: 37280313 DOI: 10.1038/s41598-023-36110-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Feline mammary adenocarcinomas (FMA) are aggressive tumours with metastatic capability and limited treatment options. This study aims to investigate whether miRNAs associated with FMA tumours are secreted in extracellular vesicles (EVs) and whether they can potentially be used as a cancer biomarker in EVs from feline plasma. Tumours and matched tumour free margins from 10 felines with FMA were selected. Following a detailed literature search, RT-qPCR analyses of 90 miRNAs identified 8 miRNAs of interest for further investigation. Tumour tissue, margins and plasma were subsequently collected from a further 10 felines with FMA. EVs were isolated from the plasma. RT-qPCR expression analyses of the 8 miRNAs of interest were carried out in tumour tissue, margins, FMA EVs and control EVs. Additionally, proteomic analysis of both control and FMA plasma derived EVs was undertaken. RT-qPCR revealed significantly increased miR-20a and miR-15b in tumours compared to margins. A significant decrease in miR-15b and miR-20a was detected in EVs from FMAs compared to healthy feline EVs. The proteomic content of EVs distinguished FMAs from controls, with the protein targets of miR-20a and miR-15b also displaying lower levels in the EVs from patients with FMA. This study has demonstrated that miRNAs are readily detectable in both the tissue and plasma derived EVs from patients with FMA. These miRNAs and their protein targets are a detectable panel of markers in circulating plasma EVs that may inform future diagnostic tests for FMA in a non-invasive manner. Moreover, the clinical relevance of miR-20a and miR-15b warrants further investigation.
Collapse
Affiliation(s)
- Jane Howard
- UCD School of Medicine, College of Health, and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Stephanie Bollard
- UCD School of Medicine, College of Health, and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Plastic and Reconstructive Surgery, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Susan Peters
- College of Health and Agricultural Sciences, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ciara Sweeney
- College of Health and Agricultural Sciences, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shirley Potter
- UCD School of Medicine, College of Health, and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
- Department of Plastic and Reconstructive Surgery, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Amanda McCann
- UCD School of Medicine, College of Health, and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pamela Kelly
- College of Health and Agricultural Sciences, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Morato A, Accornero P, Hovey RC. ERBB Receptors and Their Ligands in the Developing Mammary Glands of Different Species: Fifteen Characters in Search of an Author. J Mammary Gland Biol Neoplasia 2023; 28:10. [PMID: 37219601 DOI: 10.1007/s10911-023-09538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The ERBB tyrosine kinase receptors and their ligands belong to a complex family that has diverse biological effects and expression profiles in the developing mammary glands, where its members play an essential role in translating hormone signals into local effects. While our understanding of these processes stems mostly from mouse models, there is the potential for differences in how this family functions in the mammary glands of other species, particularly in light of their unique histomorphological features. Herein we review the postnatal distribution and function of ERBB receptors and their ligands in the mammary glands of rodents and humans, as well as for livestock and companion animals. Our analysis highlights the diverse biology for this family and its members across species, the regulation of their expression, and how their roles and functions might be modulated by varying stromal composition and hormone interactions. Given that ERBB receptors and their ligands have the potential to influence processes ranging from normal mammary development to diseased states such as cancer and/or mastitis, both in human and veterinary medicine, a more complete understanding of their biological functions should help to direct future research and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Paolo Accornero
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, TO, 10095, Italy
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
7
|
Muscatello LV, Gobbo F, Di Oto E, Sarli G, De Maria R, De Leo A, Tallini G, Brunetti B. HER2 Overexpression and Cytogenetical Patterns in Canine Mammary Carcinomas. Vet Sci 2022; 9:583. [PMID: 36356060 PMCID: PMC9694975 DOI: 10.3390/vetsci9110583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/22/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a tyrosine kinase receptor that promotes tumor cell growth and is implicated in the pathogenesis of human breast cancer. The role of HER2 in canine mammary carcinomas (CMCs) is not clear. Therefore, this study aimed to examine the protein expression and cytogenetic changes of HER2 and their correlation with other clinical-pathological parameters in CMC. We retrospectively selected 112 CMCs. HER2, ER, and Ki67 were assessed by immunohistochemistry. HER2 antibody validation was investigated by immunoblot on mammary tumor cell lines. Fluorescence in situ hybridization (FISH) was performed with probes for HER2 and CRYBA1 (control gene present on CFA9). HER2 protein overexpression was detected in 15 carcinomas (13.5%). A total of 90 carcinomas were considered technically adequate by FISH, and 8 out of 90 CMC (10%) were HER2 amplified, 3 of which showed a cluster-type pattern. HER2 overexpression was correlated with an increased number of HER2 gene copies (p = 0.01; R = 0.24) and overall survival (p = 0.03), but no correlation with ER, Ki67, grade, metastases, and tumor-specific survival was found. Surprisingly, co-amplification or polysomy was identified in three tumors, characterized by an increased copy number of both HER2 and CRYBA1. A morphological translocation-fusion pattern was recognized in 20 carcinomas (22%), with a co-localized signal of HER2 and CRYBA1. HER2 is not associated with clinical-pathological parameters of increased malignancy in canine mammary tumors, but it is suitable for studying different amplification patterns.
Collapse
Affiliation(s)
- L. V. Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - F. Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| | | | - G. Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - R. De Maria
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - A. De Leo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - G. Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - B. Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
8
|
Prevention and Therapy of Metastatic HER-2 + Mammary Carcinoma with a Human Candidate HER-2 Virus-like Particle Vaccine. Biomedicines 2022; 10:biomedicines10102654. [PMID: 36289916 PMCID: PMC9599132 DOI: 10.3390/biomedicines10102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines are a promising therapeutic alternative to monoclonal antibodies against HER-2+ breast cancer. We present the preclinical activity of an ES2B-C001, a VLP-based vaccine being developed for human breast cancer therapy. FVB mice challenged with HER-2+ mammary carcinoma cells QD developed progressive tumors, whereas all mice vaccinated with ES2B-C001+Montanide ISA 51, and 70% of mice vaccinated without adjuvant, remained tumor-free. ES2B-C001 completely inhibited lung metastases in mice challenged intravenously. HER-2 transgenic Delta16 mice developed mammary carcinomas by 4−8 months of age; two administrations of ES2B-C001+Montanide prevented tumor onset for >1 year. Young Delta16 mice challenged intravenously with QD cells developed a mean of 68 lung nodules in 13 weeks, whereas all mice vaccinated with ES2B-C001+Montanide, and 73% of mice vaccinated without adjuvant, remained metastasis-free. ES2B-C001 in adjuvant elicited strong anti-HER-2 antibody responses comprising all Ig isotypes; titers ranging from 1−10 mg/mL persisted for many months. Antibodies inhibited the 3D growth of human HER-2+ trastuzumab-sensitive and -resistant breast cancer cells. Vaccination did not induce cytokine storms; however, it increased the ELISpot frequency of IFN-γ secreting HER-2-specific splenocytes. ES2B-C001 is a promising candidate vaccine for the therapy of tumors expressing HER-2. Preclinical results warrant further development towards human clinical studies.
Collapse
|
9
|
Ludwig L, Dobromylskyj M, Wood GA, van der Weyden L. Feline Oncogenomics: What Do We Know about the Genetics of Cancer in Domestic Cats? Vet Sci 2022; 9:547. [PMID: 36288160 PMCID: PMC9609674 DOI: 10.3390/vetsci9100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer is a significant cause of morbidity and mortality in domestic cats. In humans, an understanding of the oncogenome of different cancer types has proven critical and is deeply interwoven into all aspects of patient care, including diagnostics, prognostics and treatments through the application of targeted therapies. Investigations into understanding the genetics of feline cancers started with cytogenetics and was then expanded to studies at a gene-specific level, looking for mutations and expression level changes of genes that are commonly mutated in human cancers. Methylation studies have also been performed and together with a recently generated high-quality reference genome for cats, next-generation sequencing studies are starting to deliver results. This review summarises what is currently known of the genetics of both common and rare cancer types in cats, including lymphomas, mammary tumours, squamous cell carcinomas, soft tissue tumours, mast cell tumours, haemangiosarcomas, pulmonary carcinomas, pancreatic carcinomas and osteosarcomas. Shining a spotlight on our current understanding of the feline oncogenome will hopefully serve as a springboard for more much-needed research into the genetics of cancer in domestic cats.
Collapse
Affiliation(s)
- Latasha Ludwig
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
10
|
Gameiro A, Urbano AC, Ferreira F. Emerging Biomarkers and Targeted Therapies in Feline Mammary Carcinoma. Vet Sci 2021; 8:164. [PMID: 34437486 PMCID: PMC8402877 DOI: 10.3390/vetsci8080164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common aggressive malignancy with a low survival rate that lacks viable therapeutic options beyond mastectomy. Recently, increasing efforts have been made to understand the molecular mechanisms underlying FMC development, using the knowledge gained from studies on human breast cancer to discover new diagnostic and prognostic biomarkers, thus reinforcing the utility of the cat as a cancer model. In this article, we review the current knowledge on FMC pathogenesis, biomarkers, and prognosis factors and offer new insights into novel therapeutic options for HER2-positive and triple-negative FMC subtypes.
Collapse
Affiliation(s)
| | | | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (A.C.U.)
| |
Collapse
|
11
|
De Biase D, Prisco F, Piegari G, Ilsami A, d'Aquino I, Baldassarre V, Zito Marino F, Franco R, Papparella S, Paciello O. RNAScope in situ Hybridization as a Novel Technique for the Assessment of c-KIT mRNA Expression in Canine Mast Cell Tumor. Front Vet Sci 2021; 8:591961. [PMID: 33665215 PMCID: PMC7921150 DOI: 10.3389/fvets.2021.591961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
RNA is considered as an indicator of the dynamic genetic expression changes in a cell. RNAScope is a commercially available in situ hybridization assay for the detection of RNA in formalin-fixed paraffin-embedded tissue. In this work, we describe the use of RNAScope as a sensitive and specific method for the evaluation of c-KIT messenger RNA (mRNA) in canine mast cell tumor. We investigated the expression of c-KIT mRNA with RNAscope in 60 canine mast cell tumors (MCTs), comparing it with the histological grade and KIT immunohistochemical expression patterns. Our results showed an overall good expression of c-KIT mRNA in neoplastic cells if compared with control probes. We also observed a statistically significant correlation between histological grade and c-KIT mRNA expression. No correlations were found between KIT protein immunohistochemical distribution pattern and c-KIT mRNA expression or histological grade. Our results provide a reference basis to better understand c-KIT mRNA expression in canine MCTs and strongly encourage further studies that may provide useful information about its potential and significant role as a prognostic and predictive biological marker for canine MCTs clinical outcome.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Arianna Ilsami
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Ilaria d'Aquino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Valeria Baldassarre
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Federica Zito Marino
- Department of Mental and Physical Health and Preventive Medicine, University of Study of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, University of Study of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Truchot Y, Dagher E, Abadie J, Nguyen F. Unfavorable Prognostic Effects of the Stem Cell Pluripotency Factor Sox2 in Feline Invasive Mammary Carcinomas. Front Vet Sci 2021; 7:622019. [PMID: 33553286 PMCID: PMC7862120 DOI: 10.3389/fvets.2020.622019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Sex-determining Region Y (SRY)-box transcription factor-2 (Sox2) belongs to the "Yamanaka's factors," necessary and sufficient to convert somatic cells into pluripotent stem cells. In breast cancers, Sox2 expression has been associated with poor prognosis, and resistance to therapy. The aims of this study were to determine the frequency of Sox2 positivity in feline invasive mammary carcinomas (FMCs), its relationships with other clinical-pathologic variables, and with patient outcomes. Materials and Methods: This study relies on a previously described retrospective cohort of 180 FMCs, diagnosed in female cats treated by mastectomy alone, with 2-year follow-up. Sox2 (clone SP76), Estrogen Receptor alpha (ER), Progesterone Receptor (PR), Ki-67, Human Epidermal growth factor Receptor 2 (HER2), Androgen Receptor (AR), Bcl-2, Forkhead box protein A1 (FOXA1), basal markers and FoxP3-positive regulatory T cells (Tregs) were detected by automated immunohistochemistry. Sox2 expression was quantitated as an index (percentage of neoplastic cells demonstrating a positive nuclear signal). The FMCs were considered Sox2-positive at threshold >42%. Results: Sox2 was not expressed in the normal mammary gland or in mammary hyperplasia without atypia, but was occasionally detected in atypical hyperplasia. In FMCs, the mean Sox2 index was 38 ± 30%, and 79/180 FMCs (44%) were Sox2-positive. Sox2 expression was associated with older age at diagnosis, lymphovascular invasion, high Ki-67 proliferation indexes, low PR and FOXA1 expression, and increased numbers of tumor-associated Tregs, but was not significantly associated with the clinical stage, histological types, and histological grade. By multivariate survival analysis, Sox2 was associated with poor cancer-specific survival (Hazard Ratio = 1.48, 95% confidence interval 1.04-2.11, p = 0.0292), independently of the pathologic tumor size, pathologic nodal stage, distant metastasis, and AR expression. A rare subgroup of FMCs characterized by an AR+Sox2-phenotype (19/180 cases, 11%) was associated with very favorable outcomes. Conclusion: Sox2 expression was associated with poor cancer-specific survival of female cats with invasive mammary carcinomas, as previously reported in human breast cancer, but was more commonly expressed in cats than reported in breast cancers. Sox2 showed complementarity with AR in FMC prognostication.
Collapse
Affiliation(s)
- Yohan Truchot
- AMaROC (Animal Cancers, Models for Research in Comparative Oncology), Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Elie Dagher
- AMaROC (Animal Cancers, Models for Research in Comparative Oncology), Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Jérôme Abadie
- AMaROC (Animal Cancers, Models for Research in Comparative Oncology), Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
- Université de Nantes, Inserm, CRCINA, Nantes, France
| | - Frédérique Nguyen
- AMaROC (Animal Cancers, Models for Research in Comparative Oncology), Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
- Université de Nantes, Inserm, CRCINA, Nantes, France
- Integrated Center for Oncology Nantes/Angers, Nantes, France
| |
Collapse
|
13
|
Muscatello LV, Oto ED, Dignazzi M, Murphy WJ, Porcellato I, De Maria R, Raudsepp T, Foschini MP, Sforna M, Benazzi C, Brunetti B. HER2 Overexpression and Amplification in Feline Pulmonary Carcinoma. Vet Pathol 2021; 58:527-530. [PMID: 33461438 DOI: 10.1177/0300985820988147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
HER2 is overexpressed, amplified, and mutated in a subset of human lung cancer. The aim of this study was to investigate HER2 protein overexpression and gene amplification in feline pulmonary carcinomas. Thirteen pulmonary carcinomas were selected and TTF-1 and HER2 expression was evaluated by immunohistochemistry. Fluorescence in situ hybridization (FISH) was performed with a HER2 probe and a BAC probe for the feline chromosome E1p1.12-p1.11 region. Twelve adenocarcinomas and 1 squamous cell carcinoma were diagnosed. TTF-1 was positive in 7 carcinomas (58%). HER2 was overexpressed in 2 (15%), equivocal in 5 (38%), and negative in 6 cases (46%). FISH analysis of HER2 was indeterminate in 2 cases. Three pulmonary carcinomas (27%) had HER2 amplification and 8 cases were not amplified (73%). The significant correlation between HER2 protein overexpression and gene amplification are promising preliminary data, but study of additional cases is needed to confirm HER2 as a target for possible innovative treatments.
Collapse
|
14
|
Brunetti B, Bacci B, Angeli C, Benazzi C, Muscatello LV. p53, ER, and Ki67 Expression in Canine Mammary Carcinomas and Correlation With Pathological Variables and Prognosis. Vet Pathol 2020; 58:325-331. [PMID: 33208018 DOI: 10.1177/0300985820973462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using immunohistochemistry, 170 canine mammary carcinomas were evaluated for p53, ER (estrogen receptor), and Ki67. Of the 170 tumors, 89 were grade I (52.3%), 36 were grade II (21.2%), and 45 were grade III (26.4%). Eight cases (0.5%) were positive for p53 and 69/170 cases (40.5%) were positive for ER. Ki67 values were 24 ± 18% (mean ± SD). Using a cutoff value of 33.3% Ki67-positive neoplastic nuclei, 38/159 (23.8%) were classified as high proliferative and 121/159 (76.2%) as low proliferative. p53-positive cases had significantly higher Ki67 expression and higher histological grade. ER expression was not correlated with p53 expression but was significantly related to low Ki67 values and low histological grade. Moreover, ER-positive cases had significantly longer survival compared to ER-negative tumors, and ER expression had better correlation with tumor-related survival than histological grade. In summary, p53 accumulated in a small subset of canine mammary tumors and was associated with higher proliferative activity and higher histological grade. ER expression was confirmed as a differentiation marker associated with more favorable prognosis and biological behavior. The combined use of these 3 markers could be used in addition to histological grade to predict the biological behavior of canine mammary carcinomas.
Collapse
|
15
|
Granados-Soler JL, Bornemann-Kolatzki K, Beck J, Brenig B, Schütz E, Betz D, Junginger J, Hewicker-Trautwein M, Murua Escobar H, Nolte I. Analysis of Copy-Number Variations and Feline Mammary Carcinoma Survival. Sci Rep 2020; 10:1003. [PMID: 31969654 PMCID: PMC6976565 DOI: 10.1038/s41598-020-57942-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Feline mammary carcinomas (FMCs) are highly malignant. As the disease-free survival (DFS) and overall survival (OS) are short, prognostication is crucial. Copy-number variations (CNVs) analysis by next-generation sequencing serves to identify critical cancer-related genomic regions. Thirty-three female cats with FMCs were followed during two years after surgery. Tumours represented tubulopapillary and solid carcinomas encompassing six molecular subtypes. Regardless of the histopathological diagnosis, molecular subtypes showed important differences in survival. Luminal A tumours exhibited the highest DFS (p = 0.002) and cancer-specific OS (p = 0.001), and the lowest amount of CNVs (p = 0.0001). In contrast, basal-like triple-negative FMCs had the worst outcome (DFS, p < 0.0001; and OS, p < 0.00001) and were the most aberrant (p = 0.05). In the multivariate analysis, copy-number losses (CNLs) in chromosome B1 (1-23 Mb) harbouring several tumour-repressors (e.g. CSMD1, MTUS1, MSR1, DBC2, and TUSC3) negatively influenced DFS. Whereas, copy-number gains (CNGs) in B4 (1-29 Mb) and F2 (64-82.3 Mb) comprising epithelial to mesenchymal transition genes and metastasis-promoting transcription factors (e.g. GATA3, VIM, ZEB1, and MYC) negatively influenced DFS and cancer-specific OS. These data evidence an association between specific CNVs in chromosomes B1, B4 and F2, and poor prognosis in FMCs.
Collapse
Affiliation(s)
- José Luis Granados-Soler
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Haematology, Oncology and Palliative Medicine, Clinic III, University of Rostock, Rostock, Germany
| | | | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | | | - Daniela Betz
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | | | - Hugo Murua Escobar
- Haematology, Oncology and Palliative Medicine, Clinic III, University of Rostock, Rostock, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Hannover, Germany.
| |
Collapse
|