1
|
Carr D, Gunari S, Gorostiza G, Mercado M, Pavana L, Duong L, Gomez K, Salinas S, Garcia C, Tsang A, Morisseau C, Hammock BD, Pecic S, Kandasamy R. Synthesis and evaluation of isoquinolinyl and pyridinyl-based dual inhibitors of fatty acid amide hydrolase and soluble epoxide hydrolase to alleviate orofacial hyperalgesia in the rat. Biochem Biophys Rep 2025; 42:102009. [PMID: 40275962 PMCID: PMC12018053 DOI: 10.1016/j.bbrep.2025.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The treatment of orofacial pain disorders is poor. Both opioids and serotonin agonists are commonly used; however, they produce dangerous and unpleasant side effects. Therefore, there is an urgent need to identify new pharmacological treatments that can resolve orofacial pain. Moreover, a treatment that engages multiple mechanisms using one compound may be advantageous. Fatty acid amide hydrolase (FAAH) and soluble epoxide hydrolase (sEH) are two enzymes that can regulate both pain and inflammation via independent pathways. Small molecules that inhibit both enzymes simultaneously were previously synthesized and produced antinociception in vivo. Quinolinyl-based dual inhibitors of FAAH and sEH can inhibit acute inflammatory pain in rats. Here, following on these findings, we generated 7 new isoquinolinyl- and 7 pyridinyl-based analogs and tested their inhibition at both enzymes. Structure-activity relationship study coupled with docking experiments, revealed that the isoquinoline moiety is well-tolerated in the binding pockets of both enzymes, yielding several analogs with nanomolar activity in enzymatic assays. All newly synthesized analogs were assessed in the solubility assay at pH 7.4, and we determined that isoquinolinyl- and substituted pyridinyl-analogs exhibit limited solubility under the experimental conditions. The most potent inhibitor, 4f, with IC50 values in the low nanomolar range for both enzymes, was evaluated in a plasma stability assay in human and rat plasma where it showed a moderate stability. Primary binding assays revealed that 4f does not engage any opioid or serotonin receptors. A high dose (3 mg/kg) of 4f reversed orofacial hyperalgesia following pretreatment with nitroglycerin and orofacial injection of formalin; however, this same dose did not inhibit acute orofacial inflammatory pain or restore pain-depressed wheel running. These findings indicate that simultaneous inhibition of FAAH and sEH using isoquinolinyl-based dual inhibitors may only reverse certain components of orofacial hyperalgesia.
Collapse
Affiliation(s)
- Daniel Carr
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Siena Gunari
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Gabrielle Gorostiza
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Madison Mercado
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Lucy Pavana
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Leah Duong
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Karen Gomez
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Steve Salinas
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Coral Garcia
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Amanda Tsang
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, CA, USA
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| |
Collapse
|
2
|
Meanti R, Bresciani E, Rizzi L, Molteni L, Coco S, Omeljaniuk RJ, Torsello A. Cannabinoid Receptor 2 (CB2R) as potential target for the pharmacological treatment of neurodegenerative diseases. Biomed Pharmacother 2025; 186:118044. [PMID: 40209306 DOI: 10.1016/j.biopha.2025.118044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
The endocannabinoid system (ECS) is a ubiquitous physiological system that plays a crucial role in maintaining CNS homeostasis and regulating its functions. It includes cannabinoid receptors (CBRs), endogenous cannabinoids (eCBs), and the enzymes responsible for their synthesis and degradation. In recent years, growing evidence has highlighted the therapeutic potential of the ECS and CBRs, in a wide range of severe diseases and pathological conditions, including Alzheimer's and Parkinson's diseases, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, Huntington's Disease, HIV-1 associated neurocognitive disorders, neuropathic pain and migraine. Targeting the cannabinoid type 2 receptor (CB2R) has gained attention due to its ability to (i) mitigate neuroinflammatory responses, (ii) regulate mitochondrial function and (iii) provide trophic support, all without eliciting the psychotropic actions associated with CB1R activation. This review aims to explore the potential of CB2R modulation as a strategy for the prevention and treatment of neurologic disorders, exploring both preclinical and clinical findings.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Robert J Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| |
Collapse
|
3
|
Mangutov E, Awad-Igbaria Y, Siegersma K, Gastambide F, Asuni AA, Pradhan AAA. Enhancement of the endocannabinoid system through monoacylglycerol lipase inhibition relieves migraine-associated pain in mice. J Headache Pain 2025; 26:84. [PMID: 40251497 PMCID: PMC12007319 DOI: 10.1186/s10194-025-02029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Migraine affects over 1 billion people worldwide and is a leading cause of disability. Targeting the cannabinoid system offers a promising approach for pain and migraine relief. This study evaluated a novel monoacylglycerol lipase (MAGL) inhibitor to prolong endocannabinoid action in acute and chronic mouse models of migraine. It also examined MAGL and cannabinoid receptor 1 (CB1) mRNA expression in key head pain-processing regions. METHODS C57BL6/J male and female mice received the human migraine trigger nitroglycerin (NTG) acutely or every other day for 9 days. Allodynia was assessed by von Frey hair stimulation of the periorbital area. A single dose of MAGL inhibitor (ABD-1970) was tested in acute and chronic NTG models. Additionally, ABD-1970 was given daily for 5 days to assess tolerance. In situ hybridization measured transcript expression of MAGL, CB1, and neuronal marker Rbfox3 in trigeminal ganglia (TG) and trigeminal nucleus caudalis (TNC). RESULTS A single injection of ABD-1970 blocked cephalic allodynia induced by acute NTG. ABD-1970 also blocked chronic allodynia established by chronic intermittent NTG. Repeated administration did not induce tolerance, and ABD-1970 continued to block NTG-induced allodynia after 5 days of administration. There was high expression of MAGL and CB1 in the TG and TNC, present in Rbfox3 positive and negative cells. CONCLUSION MAGL inhibitor effectively blocked acute and chronic migraine-associated pain, likely through prolonged endocannabinoid action. This effect may be mediated through action at peripheral or central sites considering the high MAGL and CB1 expression in the TG and TNC, respectively. The endocannabinoid system appears to modulate migraine mechanisms, and MAGL may be a promising target for this disorder.
Collapse
Affiliation(s)
- Elizaveta Mangutov
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yaseen Awad-Igbaria
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kendra Siegersma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Amynah A A Pradhan
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Zorrilla E, Della Pietra A, Russo AF. Interplay between cannabinoids and the neuroimmune system in migraine. J Headache Pain 2024; 25:178. [PMID: 39407099 PMCID: PMC11481476 DOI: 10.1186/s10194-024-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Adriana Della Pietra
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Healthcare System, Iowa City, IA, 52246, USA.
| |
Collapse
|
5
|
Greco R, Francavilla M, Demartini C, Zanaboni AM, Facchetti S, Palmisani M, Franco V, Tassorelli C. Activity of FAAH-Inhibitor JZP327A in an Experimental Rat Model of Migraine. Int J Mol Sci 2023; 24:10102. [PMID: 37373250 PMCID: PMC10299064 DOI: 10.3390/ijms241210102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Increased anandamide levels via fatty acid amide hydrolase (FAAH) inhibition can decrease the pronociceptive responses and inflammatory mediators in animal models of migraine. Here, we profile the pharmacological activity of the FAAH inhibitor JZP327A, a chiral 1,3,4-oxadiazol-2(3H)-one compound, in the mediation of spontaneous and nocifensive behaviour in the animal models of migraine based on nitroglycerin (NTG) administration. JZP327A (0.5 mg/kg, i.p.) or vehicle was administered to male rats 3 h after NTG (10 mg/kg, i.p.) or NTG vehicle injection. The rats were then exposed to the open field test and an orofacial formalin test 1 h later. The levels of endocannabinoids and lipid-related substances, and the expression of pain and inflammatory mediators were evaluated in cranial tissues and serum. The findings show that JZP327A did not affect NTG-induced changes in the spontaneous behaviour of rats, while it inhibited NTG-induced hyperalgesia at the orofacial formalin test. Furthermore, JZP327A dramatically decreased the gene expression of calcitonin gene-related peptide (CGRP), tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the trigeminal ganglia and medulla-pons, while it did not change endocannabinoids or lipids levels nor CGRP serum levels in the same tissues. These data suggest an anti-hyperalgesic role for JZP327A in the NTG model, which is mediated by the inhibition of the inflammatory cascade of events. This activity does not seem mediated by a change in the levels of endocannabinoids and lipid amides.
Collapse
Affiliation(s)
- Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
| | - Miriam Francavilla
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Chiara Demartini
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
| | - Michela Palmisani
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9/A, 27100 Pavia, Italy
| | - Valentina Franco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9/A, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
6
|
Della Pietra A, Krivoshein G, Ivanov K, Giniatullina R, Jyrkkänen HK, Leinonen V, Lehtonen M, van den Maagdenberg AMJM, Savinainen J, Giniatullin R. Potent dual MAGL/FAAH inhibitor AKU-005 engages endocannabinoids to diminish meningeal nociception implicated in migraine pain. J Headache Pain 2023; 24:38. [PMID: 37038131 PMCID: PMC10088116 DOI: 10.1186/s10194-023-01568-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Georgii Krivoshein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Konstantin Ivanov
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna-Kaisa Jyrkkänen
- Department of Neurosurgery, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juha Savinainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
7
|
Tanaka M, Zhang Y. Preclinical Studies of Posttraumatic Headache and the Potential Therapeutics. Cells 2022; 12:cells12010155. [PMID: 36611947 PMCID: PMC9818317 DOI: 10.3390/cells12010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Posttraumatic headache (PTH) attributed to traumatic brain injury (TBI) is a secondary headache developed within 7 days after head injury, and in a substantial number of patients PTH becomes chronic and lasts for more than 3 months. Current medications are almost entirely relied on the treatment of primary headache such as migraine, due to its migraine-like phenotype and the limited understanding on the PTH pathogenic mechanisms. To this end, increasing preclinical studies have been conducted in the last decade. We focus in this review on the trigeminovascular system from the animal studies since it provides the primary nociceptive sensory afferents innervating the head and face region, and the pathological changes in the trigeminal pathway are thought to play a key role in the development of PTH. In addition to the pathologies, PTH-like behaviors induced by TBI and further exacerbated by nitroglycerin, a general headache inducer through vasodilation are reviewed. We will overview the current pharmacotherapies including calcitonin gene-related peptide (CGRP) monoclonal antibody and sumatriptan in the PTH animal models. Given that modulation of the endocannabinoid (eCB) system has been well-documented in the treatment of migraine and TBI, the therapeutic potential of eCB in PTH will also be discussed.
Collapse
|
8
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
9
|
Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int J Mol Sci 2022; 23:ijms232214085. [PMID: 36430567 PMCID: PMC9697613 DOI: 10.3390/ijms232214085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.
Collapse
|
10
|
Demartini C, Greco R, Francavilla M, Zanaboni AM, Tassorelli C. Modelling migraine-related features in the nitroglycerin animal model: trigeminal hyperalgesia is associated with affective status and motor behavior. Physiol Behav 2022; 256:113956. [PMID: 36055415 DOI: 10.1016/j.physbeh.2022.113956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
Migraine is a complex neurovascular disorder characterized by recurrent attacks of pain and other associated symptoms. Emotional-affective aspects are important components of pain, but so far they have been little explored in animal models of migraine. In this study, we aimed to explore the correlation between trigeminal hyperalgesia and affective status or behavioral components in a migraine-specific animal model. Male Sprague-Dawley rats were treated with nitroglycerin (10 mg/kg, i.p.) or its vehicle. Four hours later, anxiety, motor/exploratory behavior and grooming (a nociception index) were evaluated with the open field test. Rats were then exposed to formalin in the orofacial region to evaluate trigeminal hyperalgesia. The data analysis shows an inverse correlation between trigeminal hyperalgesia and motor or exploratory behavior, and a positive association with anxiety-like behavior or self-grooming. These findings further expand on the translational value of the migraine-specific model based on nitroglycerin administration and prompt additional parameters that can be investigated to explore migraine disease in its complexity.
Collapse
Affiliation(s)
- Chiara Demartini
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Rosaria Greco
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Dep. of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy; Translational Neurovascular Research Unit, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
11
|
Sureda-Gibert P, Romero-Reyes M, Akerman S. Nitroglycerin as a model of migraine: Clinical and preclinical review. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100105. [PMID: 36974065 PMCID: PMC10039393 DOI: 10.1016/j.ynpai.2022.100105] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Migraine stands as one of the most disabling neurological conditions worldwide. It is a disorder of great challenge to study given its heterogeneous representation, cyclic nature, and complexity of neural networks involved. Despite this, clinical and preclinical research has greatly benefitted from the use of the nitric oxide donor, nitroglycerin (NTG), to model this disorder, dissect underlying mechanisms, and to facilitate the development and screening of effective therapeutics. NTG is capable of triggering a migraine attack, only in migraineurs or patients with a history of migraine and inducing migraine-like phenotypes in rodent models. It is however unclear to what extent NTG and NO, as its breakdown product, is a determinant factor in the underlying pathophysiology of migraine, and importantly, whether it really does facilitate the translation from the bench to the bedside, and vice-versa. This review provides an insight into the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways.
Collapse
Affiliation(s)
- Paula Sureda-Gibert
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Greco R, Demartini C, Zanaboni AM, Francavilla M, Reggiani A, Realini N, Scarpelli R, Piomelli D, Tassorelli C. Potentiation of endocannabinoids and other lipid amides prevents hyperalgesia and inflammation in a pre-clinical model of migraine. J Headache Pain 2022; 23:79. [PMID: 35799128 PMCID: PMC9264488 DOI: 10.1186/s10194-022-01449-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Targeting fatty acid amide hydrolase (FAAH) is a promising therapeutic strategy to combat certain forms of pain, including migraine headache. FAAH inhibitors, such as the O-biphenyl-3-yl carbamate URB597, have been shown to produce anti-hyperalgesic effects in animal models of migraine. The objective of this study was to investigate the behavioral and biochemical effects of compounds ARN14633 and ARN14280, two URB597 analogs with improved solubility and bioavailability, in a migraine-specific rat model in which trigeminal hyperalgesia is induced by nitroglycerin (NTG) administration. ARN14633 (1 mg/kg, i.p.) and ARN14280 (3 mg/kg, i.p.) were administered to adult male Sprague-Dawley rats 3 hours after NTG injection. One hour after the administration of either compound, rats were subjected to the orofacial formalin test. ARN14633 and ARN14280 attenuated NTG-induced nocifensive behavior and reduced transcription of genes encoding neuronal nitric oxide synthase, pain mediators peptides (calcitonin gene-related peptide, substance P) and pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and 6) in the trigeminal ganglion, cervical spinal cord and medulla. Finally, both compounds strongly elevated levels of endocannabinoids and/or other FAAH substrates in cervical spinal cord and medulla, and, to a lesser extent, in the trigeminal ganglia. The results indicate that the novel global FAAH inhibitors ARN14633 and ARN14280 elicit significant anti-hyperalgesic effects in a migraine-specific animal model and inhibit the associated peptidergic-inflammatory response. Although the precise mechanism underlying these effects remains to be elucidated, our results support further investigational studies of FAAH blockade as a potential therapeutic strategy to treat migraine conditions.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Angelo Reggiani
- Drug Discovery and Development (D3)-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Natalia Realini
- Drug Discovery and Development (D3)-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rita Scarpelli
- Drug Discovery and Development (D3)-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Zubrzycki M, Zubrzycka M, Wysiadecki G, Szemraj J, Jerczynska H, Stasiolek M. Effect of Fatty Acid Amide Hydrolase Inhibitor URB597 on Orofacial Pain Perception in Rats. Int J Mol Sci 2022; 23:4665. [PMID: 35563056 PMCID: PMC9100922 DOI: 10.3390/ijms23094665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Endocannabinoids act as analgesic agents in a number of headache models. However, their effectiveness varies with the route of administration and the type of pain. In this study, we assessed the role of the fatty acid amide hydrolase inhibitor URB597 in an animal model of orofacial pain based on tooth pulp stimulation. More specifically, we assessed the effects of intracerbroventricular (i.c.v.) and intraperitoneal (i.p.) administration of URB597 on the amplitude of evoked tongue jerks (ETJ) in rats. The levels of the investigated mediators anandamide (AEA), 2-arachidonyl glycerol (2-AG), Substance P (SP), calcitonin-gene-related peptide (CGRP), endomorphin-2 (EM-2) and fatty acid amide hydrolase (FAAH) inhibitor by URB597 and receptors cannabinoid type-1 receptors (CB1R), cannabinoid type-2 receptors (CB2R) and µ-opioid receptors (MOR) were determined in the mesencephalon, thalamus and hypothalamus tissues. We have shown that increasing endocannabinoid AEA levels by both central and peripheral inhibition of FAAH inhibitor by URB597 has an antinociceptive effect on the trigemino-hypoglossal reflex mediated by CB1R and influences the activation of the brain areas studied. On the other hand, URB597 had no effect on the concentration of 2-AG in the examined brain structures and caused a significant decrease in CB2R mRNA expression in the hypothalamus only. Tooth pulp stimulation caused in a significant increase in SP, CGRP and EM-2 gene expression in the midbrain, thalamus and hypothalamus. In contrast, URB597 administered peripherally one hour before stimulation decreased the mRNA level of these endogenous neuropeptides in comparison with the control and stimulation in all examined brain structures. Our results show that centrally and peripherally administered URB597 is effective at preventing orofacial pain by inhibiting AEA catabolism and reducing the level of CGRP, SP and EM-2 gene expression and that AEA and 2-AG have different species and model-specific regulatory mechanisms. The data presented in this study may represent a new promising therapeutic target in the treatment of orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Hanna Jerczynska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Mariusz Stasiolek
- Department of Neurology, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland;
| |
Collapse
|
14
|
Inhibiting Endocannabinoid Hydrolysis as Emerging Analgesic Strategy Targeting a Spectrum of Ion Channels Implicated in Migraine Pain. Int J Mol Sci 2022; 23:ijms23084407. [PMID: 35457225 PMCID: PMC9027089 DOI: 10.3390/ijms23084407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Migraine is a disabling neurovascular disorder characterized by severe pain with still limited efficient treatments. Endocannabinoids, the endogenous painkillers, emerged, alternative to plant cannabis, as promising analgesics against migraine pain. In this thematic review, we discuss how inhibition of the main endocannabinoid-degrading enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), could raise the level of endocannabinoids (endoCBs) such as 2-AG and anandamide in order to alleviate migraine pain. We describe here: (i) migraine pain signaling pathways, which could serve as specific targets for antinociception; (ii) a divergent distribution of MAGL and FAAH activities in the key regions of the PNS and CNS implicated in migraine pain signaling; (iii) a complexity of anti-nociceptive effects of endoCBs mediated by cannabinoid receptors and through a direct modulation of ion channels in nociceptive neurons; and (iv) the spectrum of emerging potent MAGL and FAAH inhibitors which efficiently increase endoCBs levels. The specific distribution and homeostasis of endoCBs in the main regions of the nociceptive system and their generation ‘on demand’, along with recent availability of MAGL and FAAH inhibitors suggest new perspectives for endoCBs-mediated analgesia in migraine pain.
Collapse
|
15
|
Greco R, Demartini C, Zanaboni AM, Francavilla M, De Icco R, Ahmad L, Tassorelli C. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain. Headache 2022; 62:227-240. [PMID: 35179780 DOI: 10.1111/head.14267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Migraine is a complex and highly disabling neurological disease whose treatment remains challenging in many patients, even after the recent advent of the first specific-preventive drugs, namely monoclonal antibodies that target calcitonin gene-related peptide. For this reason, headache researchers are actively searching for new therapeutic targets. Cannabis has been proposed for migraine treatment, but controlled clinical studies are lacking. A major advance in cannabinoid research has been the discovery of the endocannabinoid system (ECS), which consists of receptors CB1 and CB2; their endogenous ligands, such as N-arachidonoylethanolamine; and the enzymes that catalyze endocannabinoid biosynthesis or degradation. Preclinical and clinical findings suggest a possible role for endocannabinoids and related lipids, such as palmitoylethanolamide (PEA), in migraine-related pain treatment. In animal models of migraine-related pain, endocannabinoid tone modulation via inhibition of endocannabinoid-catabolizing enzymes has been a particular focus of research. METHODS To conduct a narrative review of available data on the possible effects of cannabis, endocannabinoids, and other lipids in migraine-related pain, relevant key words were used to search the PubMed/MEDLINE database for basic and clinical studies. RESULTS Endocannabinoids and PEA seem to reduce trigeminal nociception by interacting with many pathways associated with migraine, suggesting a potential synergistic or similar effect. CONCLUSIONS Modulation of the metabolic pathways of the ECS may be a basis for new migraine treatments. The multiplicity of options and the wealth of data already obtained in animal models underscore the importance of further advancing research in this area. Multiple molecules related to the ECS or to allosteric modulation of CB1 receptors have emerged as potential therapeutic targets in migraine-related pain. The complexity of the ECS calls for accurate biochemical and pharmacological characterization of any new compounds undergoing testing and development.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Miriam Francavilla
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lara Ahmad
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Zanfirescu A, Nitulescu G, Mihai DP, Nitulescu GM. Identifying FAAH Inhibitors as New Therapeutic Options for the Treatment of Chronic Pain through Drug Repurposing. Pharmaceuticals (Basel) 2021; 15:38. [PMID: 35056095 PMCID: PMC8781999 DOI: 10.3390/ph15010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/29/2023] Open
Abstract
Chronic pain determines a substantial burden on individuals, employers, healthcare systems, and society. Most of the affected patients report dissatisfaction with currently available treatments. There are only a few and poor therapeutic options-some therapeutic agents are an outgrowth of drugs targeting acute pain, while others have several serious side effects. One of the primary degradative enzymes for endocannabinoids, fatty acid amide hydrolase (FAAH) attracted attention as a significant molecular target for developing new therapies for neuropsychiatric and neurological diseases, including chronic pain. Using chemical graph mining, quantitative structure-activity relationship (QSAR) modeling, and molecular docking techniques we developed a multi-step screening protocol to identify repurposable drugs as FAAH inhibitors. After screening the DrugBank database using our protocol, 273 structures were selected, with five already approved drugs, montelukast, repaglinide, revefenacin, raloxifene, and buclizine emerging as the most promising repurposable agents for treating chronic pain. Molecular docking studies indicated that the selected compounds interact with the enzyme mostly non-covalently (except for revefenacin) through shape complementarity to the large substrate-binding pocket in the active site. A molecular dynamics simulation was employed for montelukast and revealed stable interactions with the enzyme. The biological activity of the selected compounds should be further confirmed by employing in vitro and in vivo studies.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Georgiana Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dragos Paul Mihai
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
17
|
Abd El-Halim SM, Mamdouh MA, Eid SM, Ibrahim BMM, Aly Labib DA, Soliman SM. The Potential Synergistic Activity of Zolmitriptan Combined in New Self-Nanoemulsifying Drug Delivery Systems: ATR-FTIR Real-Time Fast Dissolution Monitoring and Pharmacodynamic Assessment. Int J Nanomedicine 2021; 16:6395-6412. [PMID: 34566412 PMCID: PMC8456549 DOI: 10.2147/ijn.s325697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose The current work aimed to overcome the poor permeability and undesirable adverse effects of Zolmitriptan (ZMT) and to increase its efficacy in the treatment of acute migraine by exploiting the synergistic effect of the essential oil, lavender, to fabricate ZMT self-nanoemulsifying drug delivery systems (ZMT-SNEDDS). Methods ZMT-SNEDDS were fabricated based on full factorial design (32) to statistically assess the impact of oil and surfactant concentrations on the nanoemulsion globule size, zeta potential and percentage drug dissolution efficiency. An ATR-FTIR method was developed and validated for continuous real-time monitoring of ZMT dissolution and permeation. The dose of the optimized ZMT-SNEDDS used in the efficacy study was selected according to the acute toxicity study. The efficacy study was performed on migraineous rats induced by nitroglycerin and was evaluated by the activity cage and thermal tests, electroencephalogram, electroconvulsive stimulation, and biochemical analysis of brain tissue. Finally, histopathological and immunohistochemical examinations of the cerebra were carried out. Results Upon dilution, the optimized ZMT-SNEDDS (F5) exhibited nanosized spherical droplets of 19.59±0.17 nm with narrow size distribution, zeta potential (-23.5±1.17mV) and rapid emulsification characteristics. ATR-FTIR spectra elucidated the complete time course of dissolution and permeation, confirming F5 superior performance. Moreover, ZMT-SNEDDS (F5) showed safety in an acute toxicity study. ZMT concentration in rat brain tissues derived from F5 was lower compared to that of ZMT solution, yet its effect was better on the psychological state, algesia, as well as maintaining normal brain electrical activity and delayed convulsions. It counteracted the cerebral biochemical alternations induced by nitroglycerin, which was confirmed by histopathological examination. Conclusion In a nutshell, these findings corroborated the remarkable synergistic efficacy and the high potency of lavender oil-based ZMT-SNEDDS in migraine management compared to the traditional zolmitriptan solution.
Collapse
Affiliation(s)
- Shady M Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Sherif M Eid
- Analytical Chemistry, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research Division, National Research Centre, Giza, 12622, Egypt
| | - Dina A Aly Labib
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, 11559, Egypt
| | - Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| |
Collapse
|
18
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Dual Inhibition of FAAH and MAGL Counteracts Migraine-like Pain and Behavior in an Animal Model of Migraine. Cells 2021; 10:2543. [PMID: 34685523 PMCID: PMC8534238 DOI: 10.3390/cells10102543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system exerts an important role in pain processing and modulation. Modulation of the system with hydrolase inhibitors of anandamide (AEA) or 2-arachidonyl glycerol (2-AG) has proved effective in reducing migraine-like features in animal models of migraine. Here, we investigated the effect of dual inhibition of the AEA and 2-AG catabolic pathways in the nitroglycerin-based animal model of migraine. The dual inhibitor JZL195 was administered to rats 2 h after nitroglycerin or vehicle injection. Rats were then exposed to the open field test and the orofacial formalin test. At the end of the tests, they were sacrificed to evaluate calcitonin gene-related peptide (CGRP) serum levels and gene expression of CGRP and cytokines in the cervical spinal cord and the trigeminal ganglion. The dual inhibitor significantly reduced the nitroglycerin-induced trigeminal hyperalgesia and pain-associated behavior, possibly via cannabinoid 1 receptors-mediated action, but it did not change the hypomotility and the anxiety behaviors induced by nitroglycerin. The decreased hyperalgesia was associated with a reduction in CGRP and cytokine gene expression levels in central and peripheral structures and reduced CGRP serum levels. These data suggest an antinociceptive synergy of the endocannabinoid action in peripheral and central sites, confirming that this system participates in reduction of cephalic pain signals.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
19
|
De Icco R, Greco R, Demartini C, Vergobbi P, Zanaboni A, Tumelero E, Reggiani A, Realini N, Sances G, Grillo V, Allena M, Tassorelli C. Spinal nociceptive sensitization and plasma palmitoylethanolamide levels during experimentally induced migraine attacks. Pain 2021; 162:2376-2385. [PMID: 33587406 PMCID: PMC8374714 DOI: 10.1097/j.pain.0000000000002223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Migraine pathophysiology has been suggested to include dysregulation of the endocannabinoid system (ES). We simultaneously evaluated plasma anandamide (AEA) and palmitoylethanolamide (PEA) levels and spinal sensitization in a validated human model of migraine based on systemic nitroglycerin (NTG) administration. Twenty-four subjects with episodic migraine (MIG) and 19 healthy controls (HC) underwent blood sampling and investigation of nociceptive withdrawal reflex thresholds (RTh: single-stimulus threshold; TST: temporal summation threshold) before and 30 (T30), 60 (T60), and 120 (T120) minutes after sublingual NTG administration (0.9 mg). At baseline, the MIG and HC groups were comparable for plasma AEA (P = 0.822) and PEA (P = 0.182) levels, and for RTh (P = 0.142) and TST values (P = 0.150). Anandamide levels increased after NTG administration (P = 0.022) in both groups, without differences between them (P = 0.779). By contrast, after NTG administration, PEA levels increased in the MIG group at T120 (P = 0.004), while remaining stable in the HC group. Nitroglycerin administration induced central sensitization in the MIG group, which was recorded as reductions in RTh (P = 0.046) at T30 and T120, and in TST (P = 0.001) at all time points. In the HC group, we observed increases in RTh (P = 0.001) and TST (P = 0.008), which suggest the occurrence of habituation. We found no significant correlations between the ES and neurophysiological parameters. Our findings suggest a role for PEA in the ictal phase of episodic migraine. The ES does not seem to be directly involved in the modulation of NTG-induced central sensitization, which suggests that the observed PEA increase and spinal sensitization are parallel, probably unrelated, phenomena.
Collapse
Affiliation(s)
- Roberto De Icco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Pietro Vergobbi
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Annamaria Zanaboni
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elena Tumelero
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Angelo Reggiani
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Grazia Sances
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Grillo
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Allena
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Abstract
Migraine sciences have witnessed tremendous advances in recent years. Pre-clinical and clinical experimental models have contributed significantly to provide useful insights into the brain structures that mediate migraine attacks. These models have contributed to elucidate the role of neurotransmission pathways and to identify the role of important molecules within the complex network involved in migraine pathogenesis. The contribution and efforts of several research groups from all over the world has ultimately lead to the generation of novel therapeutic approaches, specifically targeted for the prevention of migraine attacks, the monoclonal antibodies directed against calcitonin gene-related peptide or its receptor. These drugs have been validated in randomized placebo-controlled trials and are now ready to improve the lives of a large multitude of migraine sufferers. Others are in the pipeline and will soon be available.
Collapse
|
21
|
Andreou AP, Leese C, Greco R, Demartini C, Corrie E, Simsek D, Zanaboni A, Koroleva K, Lloyd JO, Lambru G, Doran C, Gafurov O, Seward E, Giniatullin R, Tassorelli C, Davletov B. Double-Binding Botulinum Molecule with Reduced Muscle Paralysis: Evaluation in In Vitro and In Vivo Models of Migraine. Neurotherapeutics 2021; 18:556-568. [PMID: 33205382 PMCID: PMC8116399 DOI: 10.1007/s13311-020-00967-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
With a prevalence of 15%, migraine is the most common neurological disorder and among the most disabling diseases, taking into account years lived with disability. Current oral medications for migraine show variable effects and are frequently associated with intolerable side effects, leading to the dissatisfaction of both patients and doctors. Injectable therapeutics, which include calcitonin gene-related peptide-targeting monoclonal antibodies and botulinum neurotoxin A (BoNT/A), provide a new paradigm for treatment of chronic migraine but are effective only in approximately 50% of subjects. Here, we investigated a novel engineered botulinum molecule with markedly reduced muscle paralyzing properties which could be beneficial for the treatment of migraine. This stapled botulinum molecule with duplicated binding domain-binary toxin-AA (BiTox/AA)-cleaves synaptosomal-associated protein 25 with a similar efficacy to BoNT/A in neurons; however, the paralyzing effect of BiTox/AA was 100 times less when compared to native BoNT/A following muscle injection. The performance of BiTox/AA was evaluated in cellular and animal models of migraine. BiTox/AA inhibited electrical nerve fiber activity in rat meningeal preparations while, in the trigeminovascular model, BiTox/AA raised electrical and mechanical stimulation thresholds in Aδ- and C-fiber nociceptors. In the rat glyceryl trinitrate (GTN) model, BiTox/AA proved effective in inhibiting GTN-induced hyperalgesia in the orofacial formalin test. We conclude that the engineered botulinum molecule provides a useful prototype for designing advanced future therapeutics for an improved efficacy in the treatment of migraine.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rosaria Greco
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Eve Corrie
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Deniz Simsek
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Anna Zanaboni
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Joseph O Lloyd
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giorgio Lambru
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Ciara Doran
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan University, Kazan, Russia
| | - Elizabeth Seward
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan University, Kazan, Russia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Cristina Tassorelli
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
22
|
Mansoori M, Zarei MR, Chamani G, Nazeri M, Mohammadi F, Alavi SS, Shabani M. Chronic migraine caused a higher rate of tendency to cannabinoid agonist compared to morphine. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020185. [PMID: 33525279 PMCID: PMC7927472 DOI: 10.23750/abm.v91i4.8799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/06/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM Opioid and cannabinoid systems have considerable roles in modulation of chronic pain as well as regulation reward circuit and addiction responses. This study investigated the effect of nitroglycerin (NTG)-induced migraine attack on the acquisition of morphine and cannabinoid-induced conditioned place preference (CPP) in male rats. METHODS Adult male rats (230-250 gr) were used. Experimental groups were included (n=10): control, opioid receptor agonist morphine (10mg/kg), WIN55,212-2 (1mg/kg) as a cannabinoid receptor agonist, NTG + morphine (10mg/kg) and NTG + WIN55,212-2 (1mg/kg). Nitroglycerin (10 mg/kg) was used to induce migraine attack every other day for 9 days. After migraine induction, conditioning performance was assessed by CPP test. During conditioning days, morphine and WIN55,212-2 were injected subcutaneously and intraperitoneally, respectively. Anxiety and locomotor activity were evaluated using open field test (OFT). RESULTS According to data, conditioning score for morphine-treated rats was significantly decreased following NTG-induced migraine. However, NTG-induced migraine was able to increase the conditioning score in WIN55,212-2 as compared to control group. In OFT, there were no significant differences in locomotor activity and grooming behaviors between experimental groups. However, time spent in the center of OFT box was significantly decreased in NTG plus morphine-treated rats as compared to control. Moreover, rearing response in NTG-treated groups which received either morphine or WIN55,212-2 decreased as compared to control group. CONCLUSION NTG induced migraine prompts a decrease in morphine and an increase in cannabinoid performances. So, these compounds effects on drug dependency during migraine attack may occur at different mechanism or mechanisms.
Collapse
Affiliation(s)
- Mojdeh Mansoori
- Department of Oral Medicine and Orofacial Pain, Kerman School of Dentistry, Kerman Oral and Dental Diseases Research Center, Kerman, Iran.
| | - Mohammad Reza Zarei
- Department of Oral Medicine and Orofacial Pain, Kerman School of Dentistry, Kerman Oral and Dental Diseases Research Center, Kerman, Iran.
| | - Goli Chamani
- Department of Oral Medicine and Orofacial Pain, Kerman School of Dentistry, Kerman Oral and Dental Diseases Research Center, Kerman, Iran.
| | - Masoud Nazeri
- Department of Oral Medicine and Orofacial Pain, Kerman School of Dentistry, Kerman Oral and Dental Diseases Research Center, Kerman, Iran.
| | - Fatemeh Mohammadi
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Samane Sadat Alavi
- 3Afzalipour faculty of Medicine, Kerman University of Medical Science, Kerman, Iran.
| | - Mohammad Shabani
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
23
|
Greco R, Demartini C, Zanaboni A, Casini I, De Icco R, Reggiani A, Misto A, Piomelli D, Tassorelli C. Characterization of the peripheral FAAH inhibitor, URB937, in animal models of acute and chronic migraine. Neurobiol Dis 2020; 147:105157. [PMID: 33129939 DOI: 10.1016/j.nbd.2020.105157] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibiting the activity of fatty-acid amide hydrolase (FAAH), the enzyme that deactivates the endocannabinoid anandamide, enhances anandamide-mediated signaling and holds promise as a molecular target for the treatment of human pathologies such as anxiety and pain. We have previously shown that the peripherally restricted FAAH inhibitor, URB937, prevents nitroglycerin-induced hyperalgesia - an animal model of migraine - and attenuates the activation of brain areas that are relevant for migraine pain, e.g. trigeminal nucleus caudalis and locus coeruleus. The current study is aimed at profiling the behavioral and biochemical effects of URB937 in animal models of acute and chronic migraine. We evaluated the effects of URB937 in two rat models that capture aspects of acute and chronic migraine, and are based on single or repeated administration of the vasodilating drug, nitroglycerin (NTG). In addition to nocifensive behavior, in trigeminal ganglia and medulla, we measured mRNA levels of neuropeptides and pro-inflammatory cytokines along with tissue levels of anandamide and palmitoylethanolamide (PEA), an endogenous agonist of peroxisome proliferator-activated receptor type-a (PPAR-a), which is also a FAAH substrate. In the acute migraine model, we also investigated the effect of subtype-selective antagonist for cannabinoid receptors 1 and 2 (AM251 and AM630, respectively) on nocifensive behavior and on levels of neuropeptides and pro-inflammatory cytokines. In the acute migraine paradigm, URB937 significantly reduced hyperalgesia in the orofacial formalin test when administered either before or after NTG. This effect was accompanied by an increase in anandamide and PEA levels in target neural tissue, depended upon CB1 receptor activation, and was associated with a decrease in calcitonin gene-related peptide (CGRP), substance P and cytokines TNF-alpha and IL-6 mRNA. Similar effects were observed in the chronic migraine paradigm, where URB937 counteracted NTG-induced trigeminal hyperalgesia and prevented the increase in neuropeptide and cytokine transcription. The results show that peripheral FAAH inhibition by URB937 effectively reduces both acute and chronic NTG-induced trigeminal hyperalgesia, likely via augmented anandamide-mediated CB1 receptor activation. These effects are associated with inhibition of neuropeptidergic and inflammatory pathways.
Collapse
Affiliation(s)
- Rosaria Greco
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Chiara Demartini
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Annamaria Zanaboni
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Ilenia Casini
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Roberto De Icco
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Angelo Reggiani
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandra Misto
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Cristina Tassorelli
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
24
|
Greco R, Demartini C, Zanaboni AM, Tumelero E, Icco RD, Sances G, Allena M, Tassorelli C. Peripheral changes of endocannabinoid system components in episodic and chronic migraine patients: A pilot study. Cephalalgia 2020; 41:185-196. [PMID: 32967434 DOI: 10.1177/0333102420949201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Preclinical and clinical evidence suggests a role for the dysregulation of the endocannabinoid system in migraine pain, particularly in subjects with chronic migraine. METHODS The gene expression of endocannabinoid system components was assayed in peripheral blood mononuclear cells of 25 subjects with episodic migraine, 26 subjects with chronic migraine with medication overuse (CM-MO) and 24 age-matched healthy controls. We also evaluated the protein expression of cannabinoid receptors 1 and 2 as well as DNA methylation changes in genes involved in endocannabinoid system components. RESULTS Both episodic migraine and CM-MO subjects showed higher cannabinoid receptor 1 and cannabinoid receptor 2 gene and protein expression compared to controls. Fatty acid amide hydrolase gene expression, involved in anandamide degradation, was lower in migraine groups compared to healthy control subjects. N-arachidonoyl phosphatidylethanolamine phospholipase D gene expression was significantly higher in all migraineurs, as were monoacylglycerol lipase and diacylglycerol lipase gene expressions. The above markers significantly correlated with the number of migraine days and with the days of acute drug intake. CONCLUSION The findings point to transcriptional changes in endocannabinoid system components occurring in migraineurs. These changes were detected peripherally, which make them amenable for a wider adoption to further investigate their role and applicability in the clinical field.clinicaltrials.gov NTC04324710.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Anna Maria Zanaboni
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elena Tumelero
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Grazia Sances
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Allena
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Kilinc E, Ankarali S, Torun IE, Dagistan Y. Receptor mechanisms mediating the anti-neuroinflammatory effects of endocannabinoid system modulation in a rat model of migraine. Eur J Neurosci 2020; 55:1015-1031. [PMID: 32639078 DOI: 10.1111/ejn.14897] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/12/2023]
Abstract
Calcitonin gene-related peptide (CGRP), substance P and dural mast cells are main contributors in neurogenic inflammation underlying migraine pathophysiology. Modulation of endocannabinoid system attenuates migraine pain, but its mechanisms of action remain unclear. We investigated receptor mechanisms mediating anti-neuroinflammatory effects of endocannabinoid system modulation in in vivo migraine model and ex vivo hemiskull preparations in rats. To induce acute model of migraine, a single dose of nitroglycerin was intraperitoneally administered to male rats. Moreover, isolated ex vivo rat hemiskulls were prepared to study CGRP and substance P release from meningeal trigeminal afferents. We used methanandamide (cannabinoid agonist), rimonabant (cannabinoid receptor-1 CB1 antagonist), SR144528 (CB2 antagonist) and capsazepine (transient receptor potential vanilloid-1 TRPV1 antagonist) to explore effects of endocannabinoid system modulation on the neurogenic inflammation, and possible involvement of CB1, CB2 and TRPV1 receptors during endocannabinoid effects. Methanandamide attenuated nitroglycerin-induced CGRP increments in in vivo plasma, trigeminal ganglia and brainstem and also in ex vivo hemiskull preparations. Methanandamide also alleviated enhanced number and degranulation of dural mast cells induced by nitroglycerin. Rimonabant, but not capsazepine or SR144528, reversed the attenuating effects of methanandamide on CGRP release in both in vivo and ex vivo experiments. Additionally, SR144528, but not rimonabant or capsazepine, reversed the attenuating effects of methanandamide on dural mast cells. However, neither nitroglycerin nor methanandamide changed substance P levels in both in vivo and ex vivo experiments. Methanandamide modulates CGRP release in migraine-related structures via CB1 receptors and inhibits the degranulation of dural mast cells through CB2 receptors. Selective ligands targeting CB1 and CB2 receptors may provide novel and effective treatment strategies against migraine.
Collapse
Affiliation(s)
- Erkan Kilinc
- Medical Faculty, Department of Physiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Seyit Ankarali
- Medical Faculty, Department of Physiology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ibrahim Ethem Torun
- Medical Faculty, Department of Physiology, Abant Izzet Baysal University, Bolu, Turkey
| | - Yasar Dagistan
- Medical Faculty, Department of Neurosurgery, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
26
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
27
|
Greco R, Demartini C, Zanaboni AM, Tumelero E, Reggiani A, Misto A, Piomelli D, Tassorelli C. FAAH inhibition as a preventive treatment for migraine: A pre-clinical study. Neurobiol Dis 2019; 134:104624. [PMID: 31629892 DOI: 10.1016/j.nbd.2019.104624] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration. AIM To further investigate the relevance of FAAH inhibition in the NTG animal model of migraine by testing the effects of the globally active FAAH inhibitor URB597. METHODS Our experimental approach involved mapping neuronal c-Fos protein expression, measurement of AEA levels in brain areas and in trigeminal ganglia, evaluation of pain-related behavior and quantification of molecular mediators in rats that received URB597 (2 mg/kg i.p.) either before or after NTG administration (10 mg/kg, i.p.). RESULTS Pre-treatment with URB597 significantly reduced c-Fos immunoreactivity in the TNC and inhibited NTG-induced hyperalgesia in the orofacial formalin test. This behavioral response was associated with a decrease in neuronal nitric oxide synthase, calcitonin gene-related peptide and cytokine gene expression levels in central and peripheral structures. Administration of URB597 after NTG had no such effect. CONCLUSIONS The findings suggest that global FAAH inhibition may offer a therapeutic approach to the prevention, but not the abortive treatment, of migraine attacks. Further studies are needed to elucidate the exact cellular and molecular mechanisms underlying the protective effects of FAAH inhibition.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy.
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Elena Tumelero
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy
| | - Angelo Reggiani
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandra Misto
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy
| |
Collapse
|
28
|
Vozella V, Ahmed F, Choobchian P, Merrill CB, Zibardi C, Tarzia G, Mor M, Duranti A, Tontini A, Rivara S, Piomelli D. Pharmacokinetics, pharmacodynamics and safety studies on URB937, a peripherally restricted fatty acid amide hydrolase inhibitor, in rats. ACTA ACUST UNITED AC 2019; 71:1762-1773. [PMID: 31579946 DOI: 10.1111/jphp.13166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES URB937, a peripheral fatty acid amide hydrolase (FAAH) inhibitor, exerts profound analgesic effects in animal models. We examined, in rats, (1) the pharmacokinetic profile of oral URB937; (2) the compound's ability to elevate levels of the representative FAAH substrate, oleoylethanolamide (OEA); and (3) the compound's tolerability after oral administration. METHODS We developed a liquid chromatography/tandem mass spectrometry (LC/MS-MS) method to measure URB937 and used a pre-existing LC/MS-MS assay to quantify OEA. FAAH activity was measured using a radioactive substrate. The tolerability of single or repeated (once daily for 2 weeks) oral administration of supramaximal doses of URB937 (100, 300, 1000 mg/kg) was assessed by monitoring food intake, water intake and body weight, followed by post-mortem evaluation of organ structure. KEY FINDINGS URB937 was orally available in male rats (F = 36%), but remained undetectable in brain when administered at doses that maximally inhibit FAAH activity and elevate OEA in plasma and liver. Acute and subchronic treatment with high doses of URB937 was well-tolerated and resulted in FAAH inhibition in brain. CONCLUSIONS Pain remains a major unmet medical need. The favourable pharmacokinetic and pharmacodynamic properties of URB937, along with its tolerability, encourage further development studies on this compound.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Paoula Choobchian
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Collin B Merrill
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Cristina Zibardi
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Giorgio Tarzia
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Andrea Tontini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.,Center for the Study of Cannabis, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
29
|
Evaluation of protective effects of non-selective cannabinoid receptor agonist WIN 55,212-2 against the nitroglycerine-induced acute and chronic animal models of migraine: A mechanistic study. Life Sci 2019; 232:116670. [DOI: 10.1016/j.lfs.2019.116670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
|
30
|
Thompson JM, Blanton HL, Pietrzak A, Little W, Sherfey C, Guindon J. Front and hind paw differential analgesic effects of amitriptyline, gabapentin, ibuprofen, and URB937 on mechanical and cold sensitivity in cisplatin-induced neuropathy. Mol Pain 2019; 15:1744806919874192. [PMID: 31418316 PMCID: PMC6757502 DOI: 10.1177/1744806919874192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cisplatin is a widely used platinum-derived antineoplastic agent that frequently results in peripheral neuropathy. Therapeutic strategies for neuropathic pain are limited and characterized by variable efficacy and severe adverse effects. Clinical translation of novel analgesics has proven difficult with many agents demonstrating preclinical efficacy failing in clinical trials. Preclinical studies frequently assess pain behaviors in the hind paws; however, the front paws have a greater degree of the fine sensorimotor functions characteristically damaged by chemotherapy-induced neuropathy. This is the first study to assess pain responses in the front paws. Here, we test the hypothesis that mouse front paws exhibit pain-related alterations in mechanical and thermal (cold) sensitivity in a murine model of cisplatin-induced neuropathy and that pharmacological treatment with amitriptyline, gabapentin, ibuprofen, and URB937 normalize pain behaviors in the front and hind paws. Cold (acetone withdrawal latencies) and mechanical (von Frey withdrawal thresholds) sensitivity were significantly increased and decreased respectively in both the front and the hind paws following initiation of weekly systemic (intraperitoneal) cisplatin injections (5 mg/kg). For the hind paws, systemic administration of amitriptyline (30 mg/kg), gabapentin (100 mg/kg), ibuprofen (0–10 mg/kg), or URB937 (0–10 mg/kg) resulted in a decrease in acetone withdrawal latencies and increase in von Frey withdrawal thresholds with return to normal values at the highest doses tested. For the front paws, return to baseline values for the highest doses was found for cold allodynia but not mechanical allodynia, where the highest doses failed to return to baseline values. These results indicate that mouse front paws exhibit pain-related changes in cisplatin-induced neuropathy and that drug effects can vary based on testing stimulus and location. This suggests that front paw responses across multiple modalities provide reliable and accurate information about pain-related drug effects. Future studies should be aimed at elucidating the mechanisms underlying these differential effects.
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Agata Pietrzak
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - William Little
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Caitlyn Sherfey
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
31
|
Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, Tassorelli C. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog Neurobiol 2019; 177:15-32. [DOI: 10.1016/j.pneurobio.2019.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/19/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
|
32
|
Tassorelli C, Greco R, Silberstein SD. The endocannabinoid system in migraine: from bench to pharmacy and back. Curr Opin Neurol 2019; 32:405-412. [DOI: 10.1097/wco.0000000000000688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Lafreniere J, Kelly M. Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options. Neuronal Signal 2018; 2:NS20170144. [PMID: 32714590 PMCID: PMC7373237 DOI: 10.1042/ns20170144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Challenges in the management of ocular pain are an underappreciated topic. Currently available therapeutics lack both efficacy and clear guidelines for their use, with many also possessing unacceptable side effects. Promising novel agents would offer analgesic, anti-inflammatory, and possibly neuroprotective actions; have favorable ocular safety profiles; and show potential in managing neuropathic pain. Growing evidence supports a link between the endocannabinoid system (ECS) and a range of physiological and disease processes, notably those involving inflammation and pain. Both preclinical and clinical data suggest analgesic and anti-inflammatory actions of cannabinoids and ECS-modifying drugs in chronic pain conditions, including those of neuropathic origin. This review will examine existing evidence for the anatomical and physiological basis of ocular pain, specifically, ocular surface disease and the development of chronic ocular pain. The mechanism of action, efficacy, and limitations of currently available treatments will be discussed, and current knowledge related to ECS-modulation of ocular pain and inflammatory disease will be summarized. A perspective will be provided on the future directions of ECS research in terms of developing cannabinoid therapeutics for ocular pain.
Collapse
Affiliation(s)
| | - Melanie E.M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
34
|
Elliott MB, Ward SJ, Abood ME, Tuma RF, Jallo JI. Understanding the endocannabinoid system as a modulator of the trigeminal pain response to concussion. Concussion 2018; 2:CNC49. [PMID: 30202590 PMCID: PMC6122691 DOI: 10.2217/cnc-2017-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Post-traumatic headache is the most common symptom of postconcussion syndrome and becomes a chronic neurological disorder in a substantial proportion of patients. This review provides a brief overview of the epidemiology of postconcussion headache, research models used to study this disorder, as well as the proposed mechanisms. An objective of this review is to enhance the understanding of how the endogenous cannabinoid system is essential for maintaining the balance of the CNS and regulating inflammation after injury, and in turn making the endocannabinoid system a potential modulator of the trigeminal response to concussion. The review describes the role of endocannabinoid modulation of pain and the potential for use of phytocannabinoids to treat pain, migraine and concussion.
Collapse
Affiliation(s)
- Melanie B Elliott
- Department of Neurosurgery, Vickie & Jack Farber Institute for Neuroscience Thomas Jefferson University, PA 19107, USA.,Department of Neurosurgery, Vickie & Jack Farber Institute for Neuroscience Thomas Jefferson University, PA 19107, USA
| | - Sara J Ward
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, PA 19140, USA
| | - Mary E Abood
- Department of Anatomy & Cell Biology, Lewis Katz School of Medicine, Temple University, PA 19140, USA.,Department of Anatomy & Cell Biology, Lewis Katz School of Medicine, Temple University, PA 19140, USA
| | - Ronald F Tuma
- Department of Physiology Lewis Katz School of Medicine, Temple University, PA 19140, USA.,Department of Physiology Lewis Katz School of Medicine, Temple University, PA 19140, USA
| | - Jack I Jallo
- Department of Neurosurgery, Vickie & Jack Farber Institute for Neuroscience Thomas Jefferson University, PA 19107, USA.,Department of Neurosurgery, Vickie & Jack Farber Institute for Neuroscience Thomas Jefferson University, PA 19107, USA
| |
Collapse
|
35
|
Greco R, Demartini C, Zanaboni AM, Tassorelli C. Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain 2018; 19:51. [PMID: 30003352 PMCID: PMC6043463 DOI: 10.1186/s10194-018-0879-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Calcitonin gene related peptide (CGRP) is a key neuropeptide involved in the activation of the trigeminovascular system and it is likely related to migraine chronification. Here, we investigated the role of CGRP in an animal model that mimics the chronic migraine condition via repeated and intermittent nitroglycerin (NTG) administration. We also evaluated the modulatory effect of topiramate on this experimental paradigm. Male Sprague-Dawley rats were injected with NTG (5 mg/kg, i.p.) or vehicle, every 2 days over a 9-day period (5 total injections). A group of animals was injected with topiramate (30 mg/kg, i.p.) or saline every day for 9 days. Twenty-four hours after the last administration of NTG or vehicle, animals underwent tail flick test and orofacial Von Frey test. Rats were subsequently sacrificed to evaluate c-Fos and CGRP gene expression in medulla-pons region, cervical spinal cord and trigeminal ganglia. Results NTG administration induced spinal hyperalgesia and orofacial allodynia, together with a significant increase in the expression of CGRP and c-Fos genes in trigeminal ganglia and central areas. Topiramate treatment prevented NTG-induced changes by reversing NTG-induced hyperalgesia and allodynia, and inhibiting CGRP and c-Fos gene expression in all areas evaluated. Conclusions These findings point to the role of CGRP in the processes underlying migraine chronification and suggest a possible interaction with gamma-aminobutyrate (GABA) and glutamate transmission to induce/maintain central sensitization and to contribute to the dysregulation of descending pain system involved in chronic migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Leimuranta P, Khiroug L, Giniatullin R. Emerging Role of (Endo)Cannabinoids in Migraine. Front Pharmacol 2018; 9:420. [PMID: 29740328 PMCID: PMC5928495 DOI: 10.3389/fphar.2018.00420] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/10/2018] [Indexed: 01/03/2023] Open
Abstract
In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment.
Collapse
Affiliation(s)
- Pinja Leimuranta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leonard Khiroug
- Neurotar Ltd., Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
37
|
Greco R, Demartini C, Zanaboni AM, Piomelli D, Tassorelli C. Endocannabinoid System and Migraine Pain: An Update. Front Neurosci 2018; 12:172. [PMID: 29615860 PMCID: PMC5867306 DOI: 10.3389/fnins.2018.00172] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS. Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache. Clinical observations, in particular, show that the levels of anandamide (AEA)—one of the two primary endocannabinoid lipids—are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord. AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors. Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna M Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Kilinc E, Dagistan Y, Kukner A, Yilmaz B, Agus S, Soyler G, Tore F. Salmon calcitonin ameliorates migraine pain through modulation of CGRP release and dural mast cell degranulation in rats. Clin Exp Pharmacol Physiol 2018; 45:536-546. [PMID: 29344989 DOI: 10.1111/1440-1681.12915] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
The exact mechanism of migraine pathophysiology still remains unclear due to the complex nature of migraine pain. Salmon calcitonin (SC) exhibits antinociceptive effects in the treatment of various pain conditions. In this study, we explored the mechanisms underlying the analgesic effect of salmon calcitonin on migrane pain using glyceryltrinitrate (GTN)-induced model of migraine and ex vivo meningeal preparations in rats. Rats were intraperitoneally administered saline, GTN (10 mg/kg), vehicle, saline + GTN, SC (50 μg/kg) + GTN, and SC alone. Also, ex vivo meningeal preparations were applied topically 100 μmol/L GTN, 50 μmol/L SC, and SC + GTN. Calcitonin gene-related peptide (CGRP) contents of plasma, trigeminal neurons and superfusates were measured using enzyme-immunoassays. Dural mast cells were stained with toluidine blue. c-fos neuronal activity in trigeminal nucleus caudalis (TNC) sections were determined by immunohistochemical staining. The results showed that GTN triggered the increase in CGRP levels in plasma, trigeminal ganglion neurons and ex vivo meningeal preparations. Likewise, GTN-induced c-fos expression in TNC. In in vivo experiments, GTN caused dural mast cell degranulation, but similar effects were not seen in ex vivo experiments. Salmon calcitonin administration ameliorated GTN-induced migraine pain by reversing the increases induced by GTN. Our findings suggested that salmon calcitonin could alleviate the migraine-like pain by modulating CGRP release at different levels including the generation and conduction sites of migraine pain and mast cell behaviour in the dura mater. Therefore salmon calcitonin may be a new therapeutic choice in migraine pain relief.
Collapse
Affiliation(s)
- Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Yasar Dagistan
- Department of Neurosurgery, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Aysel Kukner
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Sami Agus
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Gizem Soyler
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Fatma Tore
- Department of Physiology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| |
Collapse
|
39
|
Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, Lichtman AH. The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology 2018; 43:52-79. [PMID: 28857069 PMCID: PMC5719110 DOI: 10.1038/npp.2017.204] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023]
Abstract
A great need exists for the development of new medications to treat pain resulting from various disease states and types of injury. Given that the endogenous cannabinoid (that is, endocannabinoid) system modulates neuronal and immune cell function, both of which play key roles in pain, therapeutics targeting this system hold promise as novel analgesics. Potential therapeutic targets include the cannabinoid receptors, type 1 and 2, as well as biosynthetic and catabolic enzymes of the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol. Notably, cannabinoid receptor agonists as well as inhibitors of endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase produce reliable antinociceptive effects, and offer opioid-sparing antinociceptive effects in myriad preclinical inflammatory and neuropathic pain models. Emerging clinical studies show that 'medicinal' cannabis or cannabinoid-based medications relieve pain in human diseases such as cancer, multiple sclerosis, and fibromyalgia. However, clinical data have yet to demonstrate the analgesic efficacy of inhibitors of endocannabinoid-regulating enzymes. Likewise, the question of whether pharmacotherapies aimed at the endocannabinoid system promote opioid-sparing effects in the treatment of pain reflects an important area of research. Here we examine the preclinical and clinical evidence of various endocannabinoid system targets as potential therapeutic strategies for inflammatory and neuropathic pain conditions.
Collapse
Affiliation(s)
- Giulia Donvito
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary A Curry
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lesley D Schurman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
40
|
Demartini C, Tassorelli C, Zanaboni AM, Tonsi G, Francesconi O, Nativi C, Greco R. The role of the transient receptor potential ankyrin type-1 (TRPA1) channel in migraine pain: evaluation in an animal model. J Headache Pain 2017; 18:94. [PMID: 28884307 PMCID: PMC5589714 DOI: 10.1186/s10194-017-0804-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022] Open
Abstract
Background Clinical and experimental studies have pointed to the possible involvement of the transient receptor potential ankyrin type-1 (TRPA1) channels in migraine pain. In this study, we aimed to further investigate the role of these channels in an animal model of migraine using a novel TRPA1 antagonist, ADM_12, as a probe. Methods The effects of ADM_12 on nitroglycerin-induced hyperalgesia at the trigeminal level were investigated in male rats using the quantification of nocifensive behavior in the orofacial formalin test. The expression levels of the genes coding for c-Fos, TRPA1, calcitonin gene-related peptide (CGRP) and substance P (SP) in peripheral and central areas relevant for migraine pain were analyzed. CGRP and SP protein immunoreactivity was also evaluated in trigeminal nucleus caudalis (TNC). Results In rats bearing nitroglycerin-induced hyperalgesia, ADM_12 showed an anti-hyperalgesic effect in the second phase of the orofacial formalin test. This effect was associated to a significant inhibition of nitroglycerin-induced increase in c-Fos, TRPA1 and neuropeptides mRNA levels in medulla-pons area, in the cervical spinal cord and in the trigeminal ganglion. No differences between groups were seen as regards CGRP and SP protein expression in the TNC. Conclusions These findings support a critical involvement of TRPA1 channels in the pathophysiology of migraine, and show their active role in counteracting hyperalgesia at the trigeminal level.
Collapse
Affiliation(s)
- Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Germana Tonsi
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Oscar Francesconi
- Department of Chemistry 'Ugo Schiff', University of Florence, Florence, Italy
| | - Cristina Nativi
- Department of Chemistry 'Ugo Schiff', University of Florence, Florence, Italy.,FiorGen, University of Florence, Florence, Italy
| | - Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy. .,IRCCS "National Neurological Institute C. Mondino" Foundation, Via Mondino, 2, 27100, Pavia, Italy.
| |
Collapse
|
41
|
Greco R, Demartini C, Zanaboni AM, Berliocchi L, Piomelli D, Tassorelli C. Inhibition of monoacylglycerol lipase: Another signalling pathway for potential therapeutic targets in migraine? Cephalalgia 2017; 38:1138-1147. [DOI: 10.1177/0333102417727537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Drugs that modulate endocannabinoid signalling are effective in reducing nociception in animal models of pain and may be of value in the treatment of migraine. Methods We investigated the anti-nociceptive effects of inhibition of monoacylglycerol lipase (MGL), a key enzyme in the hydrolysis of the 2-arachidonoylglycerol, in a rat model of migraine based on nitroglycerin (NTG) administration. We evaluated c-fos expression in specific brain areas and nociceptive behavior in trigeminal and extra-trigeminal body areas. Results URB602, a reversible MGL inhibitor, did not show any analgesic effect in the tail flick test, but it inhibited NTG-induced hyperalgesia in both the tail flick test and the formalin test applied to the hind paw or to the orofacial area. Quite unexpectedly, URB602 potentiated formalin-induced hyperalgesia in the trigeminal area when used alone. The latter result was also confirmed using a structurally distinct, irreversible MGL inhibitor, JZL184. URB602 did not induce neuronal activation in the area of interest, but significantly reduced the NTG-induced neuronal activation in the ventrolateral column of the periaqueductal grey and the nucleus trigeminalis caudalis. Conclusions These findings support the hypothesis that modulation of the endocannabinoid system may be a valuable approach for the treatment of migraine. The topographically segregated effect of MGL inhibition in trigeminal/extra-trigeminal areas calls for further mechanistic research.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Laura Berliocchi
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, USA
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| |
Collapse
|
42
|
Liu YY, Jiao ZY, Li W, Tian Q. PI3K/AKT signaling pathway activation in a rat model of migraine. Mol Med Rep 2017; 16:4849-4854. [PMID: 28791398 DOI: 10.3892/mmr.2017.7191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate phosphatidylinositol 4,5-bisphosphate 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathway activation in a rat model of migraine. A total of 60 male Sprague‑Dawley rats were randomly divided into three groups: Blank control; suspension control; and migraine model. The model group was subcutaneously injected with a glyceryl trinitrate suspension, using an optimized Tassorelli method to establish a rat model of migraine. The activation status of the PI3K/AKT signaling pathway was assessed via measurement of the phosphorylated (p)‑AKT level. The level of serum 5‑hydroxytryptamine was detected using an ELISA. The mRNA and protein expression levels of PI3K and AKT, and protein levels of p‑AKT were detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. Expression of the PI3K gene was significantly increased (P<0.01) 6‑24 h following the glyceryl trinitrate injection. There was no significant difference in the expression of AKT between any of the groups at any time. Expression of p‑AKT (S473) was significantly increased in the migraine model group (P<0.01) compared with the controls groups. Immunohistochemical analysis indicated that phosphatase and tensin homolog (PTEN) continuously decreased in the migraine model group during 1‑12 h, however this was only significant in the 12 h group. Levels of PTEN had increased again by 24 h. Glycogen synthase kinase (GSK)‑3β expression exhibited a similar expression pattern to PTEN. The results indicated that the PI3K/AKT signal pathway may be activated in the brain tissue of the rat migraine models. The inhibition of PTEN, which is an upstream modulator of the PI3K/AKT signaling pathway, may enhance the activation of phosphatidylinositol‑3,4,5‑triphosphate, thus inhibiting the expression of GSK-3β.
Collapse
Affiliation(s)
- Yun-Yong Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zi-Yao Jiao
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Wei Li
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Qian Tian
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
43
|
Dallel R, Descheemaeker A, Luccarini P. Recurrent administration of the nitric oxide donor, isosorbide dinitrate, induces a persistent cephalic cutaneous hypersensitivity: A model for migraine progression. Cephalalgia 2017; 38:776-785. [DOI: 10.1177/0333102417714032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background A subgroup of migraineurs experience an increase in attack frequency leading to chronic migraine. Methods We assessed in rats the roles of dose and repeat administration of systemic isosorbide dinitrate (ISDN), a nitric oxide donor, on the occurrence and development of cephalic/face and extracephalic/hindpaw mechanical allodynia as a surrogate of migraine pain, and the effect of acute systemic sumatriptan and olcegepant and chronic systemic propranolol on these behavioral changes. Results A single high (H-ISDN) but not low (L-ISDN) dose of ISDN induces a reversible cephalic and extracephalic mechanical allodynia. However, with repeat administration, L-ISDN produces reversible cephalic but never extracephalic allodynia, whereas H-ISDN induces cephalic and extracephalic allodynia that are both potentiated. H-ISDN-induced cephalic allodynia thus gains persistency. Sumatriptan and olcegepant block single H-ISDN-induced behavioral changes, but only olcegepant reduces these acute changes when potentiated by repeat administration. Neither sumatriptan nor olcegepant prevent chronic cephalic hypersensitivity. Conversely, propranolol blocks repeat H-ISDN-induced chronic, but not acute, behavioral changes. Conclusions Repeated ISDN administration appears to be a naturalistic rat model for migraine progression, suitable for screening acute and preventive migraine therapies. It suggests frequent and severe migraine attacks associated with allodynia may be a risk factor for disease progression.
Collapse
Affiliation(s)
- Radhouane Dallel
- Université Clermont Auvergne, Clermont-Ferrand, France
- Centre Hospitalier Universitaire (CHU) de Clermont-Ferrand, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Amélie Descheemaeker
- Université Clermont Auvergne, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Philippe Luccarini
- Université Clermont Auvergne, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| |
Collapse
|
44
|
Zhang XF, Zhang WJ, Dong CL, Hu WL, Sun YY, Bao Y, Zhang CF, Guo CR, Wang CZ, Yuan CS. Analgesia effect of baicalein against NTG-induced migraine in rats. Biomed Pharmacother 2017; 90:116-121. [PMID: 28343071 DOI: 10.1016/j.biopha.2017.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Migraine is a complex nervous system disease characterized by typical throbbing and unilateral headache, which causes severe healthy and social issues worldwide. The purpose of this study was to investigate the effect of baicalein (BAI) on the treatment of migraine. MATERIAL AND METHODS Twenty-four rats were randomly divided equally into four groups, including a blank group, model group, positive group (ibuprofen tablets 82mg/kg), and BAI group (60mg/kg). All rats were intragastrically treated with the corresponding treatment for 10 consecutive days, and they were subcutaneously injected with NTG (10mg/kg) 1h after the last treatment, except in the blank group. After model establishment, the behaviors of all rats, including scratching head and shaking body were observed continuously for 100min. Four hours after NTG treatment, all rats were anaesthetized and the blood was collected. Thereafter, nitric oxide (NO) in plasma was determined by colorimetric method, the level of calcitonin gene-related peptide (CGRP) and endothelin (ET) were detected by radioimmunoassay method. In addition, immunohistochemistry was applied to detect c-Fos neuronal activity in trigeminal nucleus caudalis (TNC). RESULTS Behavioral research showed that BAI administration alleviated the hyperalgesia in migraine rats. Compared with the model group, the levels of NO and CGRP in BAI administration groups were markedly decreased (p<0.01), and the levels of ET was significantly increased (p<0.01). Meanwhile, immunohistochemistry results showed that NTG treatment significantly activated c-Fos neurons while BAI treatment inhibited the expression of c-Fos. CONCLUSIONS BAI could alleviate the migraine-like headache induced by NTG, which is related to the regulation of vasoactive substances. These findings may contribute to the further study of BAI as a potential drug for migraine pharmacotherapy.
Collapse
Affiliation(s)
- Xiao-Fan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Wen-Jun Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Cui-Lan Dong
- The People's Hospital of Zhangqiu, Zhangqiu 250200, China
| | - Wan-Li Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Yu-Yao Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Yarigui Bao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Chun-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China; Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Chang-Run Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China.
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
45
|
Flores Ramos JM, Devoize L, Descheemaeker A, Molat JL, Luccarini P, Dallel R. The nitric oxide donor, isosorbide dinitrate, induces a cephalic cutaneous hypersensitivity, associated with sensitization of the medullary dorsal horn. Neuroscience 2017; 344:157-166. [DOI: 10.1016/j.neuroscience.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022]
|
46
|
Juhasz G, Csepany E, Magyar M, Edes AE, Eszlari N, Hullam G, Antal P, Kokonyei G, Anderson IM, Deakin JFW, Bagdy G. Variants in the CNR1 gene predispose to headache with nausea in the presence of life stress. GENES, BRAIN, AND BEHAVIOR 2017; 16:384-393. [PMID: 27762084 PMCID: PMC5347942 DOI: 10.1111/gbb.12352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022]
Abstract
One of the main effects of the endocannabinoid system in the brain is stress adaptation with presynaptic endocannabinoid receptor 1 (CB1 receptors) playing a major role. In the present study, we investigated whether the effect of the CB1 receptor coding CNR1 gene on migraine and its symptoms is conditional on life stress. In a cross-sectional European population (n = 2426), recruited from Manchester and Budapest, we used the ID-Migraine questionnaire for migraine screening, the Life Threatening Experiences questionnaire to measure recent negative life events (RLE), and covered the CNR1 gene with 11 SNPs. The main genetic effects and the CNR1 × RLE interaction with age and sex as covariates were tested. None of the SNPs showed main genetic effects on possible migraine or its symptoms, but 5 SNPs showed nominally significant interaction with RLE on headache with nausea using logistic regression models. The effect of rs806366 remained significant after correction for multiple testing and replicated in the subpopulations. This effect was independent from depression- and anxiety-related phenotypes. In addition, a Bayesian systems-based analysis demonstrated that in the development of headache with nausea all SNPs were more relevant with higher a posteriori probability in those who experienced recent life stress. In summary, the CNR1 gene in interaction with life stress increased the risk of headache with nausea suggesting a specific pathological mechanism to develop migraine, and indicating that a subgroup of migraine patients, who suffer from life stress triggered migraine with frequent nausea, may benefit from therapies that increase the endocannabinoid tone.
Collapse
Affiliation(s)
- G. Juhasz
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Department of Pharmacodynamics, Faculty of PharmacySemmelweis UniversityBudapestHungary
- Neuroscience and Psychiatry UnitThe University of Manchester and Manchester Academic Health Sciences CentreManchesterUnited Kingdom
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| | - E. Csepany
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Department of Neurology, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - M. Magyar
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Department of Neurology, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - A. E. Edes
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
| | - N. Eszlari
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| | - G. Hullam
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
- Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| | - P. Antal
- Neuroscience and Psychiatry UnitThe University of Manchester and Manchester Academic Health Sciences CentreManchesterUnited Kingdom
- Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| | - G. Kokonyei
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Institute of PsychologyEötvös Loránd UniversityBudapestHungary
| | - I. M. Anderson
- Neuroscience and Psychiatry UnitThe University of Manchester and Manchester Academic Health Sciences CentreManchesterUnited Kingdom
| | - J. F. W. Deakin
- Neuroscience and Psychiatry UnitThe University of Manchester and Manchester Academic Health Sciences CentreManchesterUnited Kingdom
| | - G. Bagdy
- MTA‐SE‐NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of SciencesBudapestHungary
- Department of Pharmacodynamics, Faculty of PharmacySemmelweis UniversityBudapestHungary
- MTA‐SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences
- NAP‐A‐SE Research GroupSemmelweis UniversityBudapestHungary
| |
Collapse
|
47
|
Greco R, Siani F, Demartini C, Zanaboni A, Nappi G, Davinelli S, Scapagnini G, Tassorelli C. Andrographis Paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine. FUNCTIONAL NEUROLOGY 2016; 31:53-60. [PMID: 27027895 DOI: 10.11138/fneur/2016.31.1.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Administration of nitroglycerin (NTG) to rats induces a hyperalgesic condition and neuronal activation of central structures involved in migraine pain. In order to identify therapeutic strategies for migraine pain, we evaluated the anti-nociceptive activity of Andrographis Paniculata (AP), a herbaceous plant, in the hyperalgesia induced by NTG administration in the formalin test. We also analyzed mRNA expression of cytokines in specific brain areas after AP treatment. Male Sprague-Dawley rats were pre-treated with AP extract 30 minutes before NTG or vehicle injection. The data show that AP extract significantly reduced NTG-induced hyperalgesia in phase II of the test, 4 hours after NTG injection. In addition, AP extract reduced IL-6 mRNA expression in the medulla and mesencephalon and also mRNA levels of TNFalpha in the mesencephalic region. These findings suggest that AP extract may be a potential therapeutic approach in the treatment of general pain, and possibly of migraine.
Collapse
|
48
|
Farkas S, Bölcskei K, Markovics A, Varga A, Kis-Varga Á, Kormos V, Gaszner B, Horváth C, Tuka B, Tajti J, Helyes Z. Utility of different outcome measures for the nitroglycerin model of migraine in mice. J Pharmacol Toxicol Methods 2015; 77:33-44. [PMID: 26456070 DOI: 10.1016/j.vascn.2015.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Majority of the work for establishing nitroglycerin (NTG)-induced migraine models in animals was done in rats, though recently some studies in mice were also reported. Different special formulations of NTG were investigated in various studies; however, NTG treated groups were often compared to simple saline treated control groups. The aim of the present studies was to critically assess the utility of a panel of potential outcome measures in mice by revisiting previous findings and investigating endpoints that have not been tested in mice yet. METHODS We investigated two NTG formulations, Nitrolingual and Nitro Pohl, at an intraperitoneal dose of 10mg/kg, in comparison with relevant vehicle controls, and evaluated the following outcome measures: light aversive behaviour, cranial blood perfusion by laser Doppler imaging, number of c-Fos- and neuronal nitrogen monoxide synthase (nNOS)-immunoreactive neurons in the trigeminal nucleus caudalis (TNC) and trigeminal ganglia, thermal hyperalgesia and tactile allodynia of the hind paw and orofacial pain hypersensitivity. RESULTS We could not confirm previous reports of significant NTG-induced changes in light aversion and cranial blood perfusion of mice but we observed considerable effects elicited by the vehicle of Nitrolingual. In contrast, the vehicle of Nitro Pohl was apparently inert. Increased c-Fos expression in the TNC, thermal hyperalgesia, tactile allodynia and orofacial hypersensitivity were apparently good endpoints in mice that were increased by NTG-administration. The NTG-induced increase in c-Fos expression was prevented by topiramate but not by sumatriptan treatment. However, the NTG-induced orofacial hypersensitivity was dose dependently attenuated by sumatriptan. DISCUSSION Our results pointed to utilisable NTG formulations and outcome measures for NTG-induced migraine models in mice. Pending further cross-validation with positive and negative control drugs in these mouse models and in the human NTG models of migraine, these tests might be valuable translational research tools for development of new anti-migraine drugs.
Collapse
Affiliation(s)
- Sándor Farkas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Research Division, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary.
| | - Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary.
| | - Anita Varga
- Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Ágnes Kis-Varga
- Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | - Balázs Gaszner
- Department of Anatomy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | - Csilla Horváth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Bernadett Tuka
- Neurology Department, University of Szeged, Faculty of Medicine, H-6725 Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - János Tajti
- Neurology Department, University of Szeged, Faculty of Medicine, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| |
Collapse
|
49
|
Greco R, Ferrigno A, Demartini C, Zanaboni A, Mangione AS, Blandini F, Nappi G, Vairetti M, Tassorelli C. Evaluation of ADMA-DDAH-NOS axis in specific brain areas following nitroglycerin administration: study in an animal model of migraine. J Headache Pain 2015; 16:560. [PMID: 26272684 PMCID: PMC4536246 DOI: 10.1186/s10194-015-0560-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is known to play a key role in migraine pathogenesis, but modulation of NO synthesis has failed so far to show efficacy in migraine treatment. Asymmetric dimethylarginine (ADMA) is a NO synthase (NOS) inhibitor, whose levels are regulated by dimethylarginine dimethylaminohydrolase (DDAH). Systemic administration of nitroglycerin (or glyceryl trinitrate, GTN) is a NO donor that consistently induces spontaneous-like headache attacks in migraneurs. GTN administration induces an increase in neuronal NOS (nNOS) that is simultaneous with a hyperalgesic condition. GTN administration has been used for years as an experimental animal model of migraine. In order to gain further insights in the precise mechanisms involved in the relationships between NO synthesis and migraine, we analyzed changes induced by GTN administration in ADMA levels, DDHA-1 mRNA expression and the expression of neuronal and endothelial NOS (nNOS and eNOS) in the brain. We also evaluated ADMA levels in the serum. METHODS Male Sprague-Dawley rats were injected with GTN (10 mg/kg, i.p.) or vehicle and sacrificed 4 h later. Brain areas known to be activated by GTN administration were dissected out and utilized for the evaluation of nNOS and eNOS expression by means of western blotting. Cerebral and serum ADMA levels were measured by means of ELISA immunoassay. Cerebral DDAH-1 mRNA expression was measured by means of RT-PCR. Comparisons between experimental groups were performed using the Mann Whitney test. RESULTS ADMA levels and nNOS expression increased in the hypothalamus and medulla following GTN administration. Conversely, a significant decrease in DDAH-1 mRNA expression was observed in the same areas. By contrast, no significant change was reported in eNOS expression. GTN administration did not induce any significant change in serum levels of ADMA. CONCLUSION The present data suggest that ADMA accumulates in the brain after GTN administration via the inhibition of DDAH-1. This latter may represent a compensatory response to the excessive local availability of NO, released directly by GTN or synthetized by nNOS. These findings prompt an additional mediator (ADMA) in the modulation of NO axis following GTN administration and offer new insights in the pathophysiology of migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|