1
|
Al-Karagholi MAM, Zhuang ZA, Beich S, Ashina H, Ashina M. PACAP38-induced migraine attacks are independent of CGRP signaling: a randomized controlled trial. J Headache Pain 2025; 26:79. [PMID: 40229719 PMCID: PMC11998216 DOI: 10.1186/s10194-025-02022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) are key pathogenic drivers of migraine. While CGRP has become the target of several mechanism-based therapies, less is known about PACAP38 signaling in migraine pathogenesis. Previous studies suggest that PACAP38 can modulate CGRP release, but it might also induce migraine attacks via CGRP-independent mechanisms. Whether PACAP38 signaling is independent of and parallel to CGRP signaling has implications for future therapeutic strategies. Here, we aimed to ascertain whether PACAP-38 can mediate migraine attacks independently of CGRP signaling by assessing the ability of eptinezumab to prevent PACAP38-induced migraine attacks. METHODS In a double-blind, placebo-controlled, parallel-group study, we randomly allocated adults with migraine without aura to receive either an intravenous infusion of 300-mg eptinezumab or matching placebo (isotonic saline) over 30 min. Two hours post-infusion, all participants were administered PACAP38 intravenously at 10 pmol/kg/min for 20 min. The primary endpoint was the incidence of migraine attacks during the 24-hour observational period post-infusion of eptinezumab or placebo. Key secondary endpoints included between-group differences in incidence of headache, and area under the curve (AUC) for headache intensity scores, diameter of the superficial temporal artery (STA) and facial skin blood flow. RESULTS A total of 38 participants were enrolled and completed the study. No difference was observed in the incidence of PACAP38-induced migraine attacks between the eptinezumab (10 [53%] of 19) and placebo (12 [63%] of 19) groups (Fisher's exact test: P = 0.74). Headache of any intensity was reported by 15 (79%) participants in the eptinezumab group, compared with 16 (84%) participants in the placebo group (Fisher's exact test: P > 0.99). The AUC for headache intensity scores did not differ between the two groups during the first 12 h post-infusion of PACAP38 (Mann-Whitney U-test: P = 0.96). No differences were observed in AUC between the eptinezumab and placebo groups with respect to changes in STA diameter and facial skin blood flow (P > 0.05). No serious adverse events occurred. CONCLUSIONS Our results suggest that PACAP38 may mediate its signaling independently of CGRP in migraine pathogenesis. Therapies targeting PACAP signaling are thus a promising new avenue for treating migraine. TRIAL REGISTRATION ClinicalTrials.gov, NCT05635604. Registered on November 15 2022.
Collapse
Affiliation(s)
| | - Zixuan Alice Zhuang
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Beich
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Hoffmann J, Kaube H, Rimmele F, Jürgens TP, Nissilä M, Gaul C, Kallela M, Keski-Säntti P, Sumelahti ML, Straube A, Lewis D, Hoffmann V, Wirtz L, Rempel A, Böhm O, May A. Kinetic Oscillation Stimulation for the Preventive Treatment of Chronic Migraine: A Randomized, Double-Blind, Sham-Controlled Trial. Neurology 2025; 104:e210220. [PMID: 39787477 PMCID: PMC11720095 DOI: 10.1212/wnl.0000000000210220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The Chordate System administers kinetic oscillation stimulation (K.O.S) into the nasal cavity thereby potentially modulating the activity of trigemino-autonomic reflex. Modulation of this reflex has been proposed as a potential therapeutic target in migraine. The aim of this clinical trial was to evaluate the efficacy of K.O.S for the preventive treatment of chronic migraine (CM). METHODS In this randomized, double-blind, sham-controlled, multicenter clinical trial, patients with CM were treated with K.O.S once per week over a period of 6 weeks. The primary performance endpoint was the mean change in monthly headache days with moderate to severe intensity (MHDs) from the 28-day pretreatment baseline period to the performance assessment period (days 14-42 of treatment). Mean change from baseline in monthly migraine days (MMDs), proportion of participants with 30% and 50% or greater reduction in moderate to severe headache days compared with baseline, and change in the use of abortive medications from baseline were also assessed during the performance assessment period. Headache-related disability and quality-of-life measures were evaluated up to 70-day posttreatment. RESULTS The primary endpoint showed a significantly larger reduction of MHD across the performance assessment period with active treatment (-3.5 days, n = 67) compared with sham (-1.2 days, n = 65) (p = 0.0132). Compared with sham, active treatment consistently also led to significant reduction of MHD during the follow-up period (-2.7 [-4.3; -1.0, p = 0.0014]) as well as of mean MMDs during the assessment (-2.4 [-4.1; -0.7, p = 0.0048]) and follow-up (-2.9 [-4.5; -1.2, p = 0.0008]) periods. 61.8% of participants reported treatment-emergent adverse events (TEAEs) with similar incidences among treatment groups (63.2% [active], 60.3% [sham]), with nasopharyngitis (8.3%), dizziness (6.3%), and epistaxis (6.3%) being the most common TEAEs. Treatment-related serious adverse events were not observed. DISCUSSION The Chordate System provides significant benefits to patients with CM by reducing the number of MHDs. The nonpharmacologic nature of the treatment option positions K.O.S as a valuable addition to the current therapeutic portfolio for the management of CM. TRIAL REGISTRATION INFORMATION The trial was registered on ClinicalTrials.gov (NCT03400059) on January 17, 2018. The first patient was enrolled on March 22, 2018, and the last patient completed the study on October 1, 2022. The trial registration initially described the timing of the secondary endpoints incorrectly due to clerical error, and this was corrected to match the protocol and analysis plan once discovered. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that weekly intranasal K.O.S is associated with a reduced number of headache days per month in patients with CM.
Collapse
Affiliation(s)
- Jan Hoffmann
- Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, United Kingdom
| | - Holger Kaube
- Neurologie und Kopfschmerzzentrum Münchner Freiheit, Germany
| | - Florian Rimmele
- Department of Neurology, Headache Center North-East, University Medical Center Rostock, Germany
| | - Tim P Jürgens
- Department of Neurology, Headache Center North-East, University Medical Center Rostock, Germany
- Department of Neurology, KMG Hospital Güstrow, Germany
| | - Markku Nissilä
- Clinical Research and Biobank, Terveystalo Turku Pulssi, Finland
| | - Charly Gaul
- Headache Center Frankfurt, Frankfurt am Main, Germany
| | - Mikko Kallela
- Department of Neurosciences, University of Helsinki, Finland
| | | | | | - Andreas Straube
- Department of Neurology, University Hospital, LMU Munich, Germany
| | | | | | | | | | - Olaf Böhm
- FGK Clinical Research GmbH, Munich, Germany; and
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
3
|
Ashina H, Christensen RH, Hay DL, Pradhan AA, Hoffmann J, Reglodi D, Russo AF, Ashina M. Pituitary adenylate cyclase-activating polypeptide signalling as a therapeutic target in migraine. Nat Rev Neurol 2024; 20:660-670. [PMID: 39256637 DOI: 10.1038/s41582-024-01011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Migraine is a disabling neurological disorder that affects more than one billion people worldwide. The clinical presentation is characterized by recurrent headache attacks, which are often accompanied by photophobia, phonophobia, nausea and vomiting. Although the pathogenesis of migraine remains incompletely understood, mounting evidence suggests that specific signalling molecules are involved in the initiation and modulation of migraine attacks. These signalling molecules include pituitary adenylate cyclase-activating polypeptide (PACAP), a vasoactive peptide that is known to induce migraine attacks when administered by intravenous infusion to people with migraine. Discoveries linking PACAP to migraine pathogenesis have led to the development of drugs that target PACAP signalling, and a phase II trial has provided evidence that a monoclonal antibody against PACAP is effective for migraine prevention. In this Review, we explore the molecular and cellular mechanisms of PACAP signalling, shedding light on its role in the trigeminovascular system and migraine pathogenesis. We then discuss emerging therapeutic strategies that target PACAP signalling for the treatment of migraine and consider the research needed to translate the current knowledge into a treatment for migraine in the clinic.
Collapse
Affiliation(s)
- Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Rune H Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Amynah A Pradhan
- Center for Clinical Pharmacology, Department of Anaesthesiology, Washington University in St Louis, St Louis, MO, USA
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dora Reglodi
- Department of Anatomy, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Veterans Affairs Healthcare System, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Veterans Affairs Healthcare System, Iowa City, IA, USA
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Guo S, Rasmussen RH, Hay-Schmidt A, Ashina M, Asuni AA, Jensen JM, Holm A, Lauritzen SP, Dorsam G, Hannibal J, Georg B, Kristensen DM, Olesen J, Christensen SL. VPAC1 and VPAC2 receptors mediate tactile hindpaw hypersensitivity and carotid artery dilatation induced by PACAP38 in a migraine relevant mouse model. J Headache Pain 2024; 25:126. [PMID: 39085771 PMCID: PMC11293201 DOI: 10.1186/s10194-024-01830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide pivotal in migraine pathophysiology and is considered a promising new migraine drug target. Although intravenous PACAP triggers migraine attacks and a recent phase II trial with a PACAP-inhibiting antibody showed efficacy in migraine prevention, targeting the PACAP receptor PAC1 alone has been unsuccessful. The present study investigated the role of three PACAP receptors (PAC1, VPAC1 and VPAC2) in inducing migraine-relevant hypersensitivity in mice. METHODS Hindpaw hypersensitivity was induced by repeated PACAP38 injections. Tactile sensitivity responses were quantified using von Frey filaments in three knockout (KO) mouse strains, each lacking one of the PACAP-receptors (Ntotal = 160). Additionally, ex vivo wire myography was used to assess vasoactivity of the carotid artery, and gene expression of PACAP receptors was examined by qPCR. RESULTS PACAP38 induced hypersensitivity in WT controls (p < 0.01) that was diminished in VPAC1 and VPAC2 KO mice (p < 0.05). In contrast, PAC1 KO mice showed similar responses to WT controls (p > 0.05). Myograph experiments supported these findings showing diminished vasoactivity in VPAC1 and VPAC2 KO mice. We found no upregulation of the non-modified PACAP receptors in KO mice. CONCLUSIONS This study assessed all three PACAP receptors in a migraine mouse model and suggests a significant role of VPAC receptors in migraine pathophysiology. The lack of hypersensitivity reduction in PAC1 KO mice suggests the involvement of other PACAP receptors or compensatory mechanisms. The results indicate that targeting only individual PACAP receptors may not be an effective migraine treatment.
Collapse
MESH Headings
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Migraine Disorders/chemically induced
- Migraine Disorders/physiopathology
- Migraine Disorders/metabolism
- Mice, Knockout
- Disease Models, Animal
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Mice
- Carotid Arteries/drug effects
- Carotid Arteries/physiopathology
- Hyperalgesia/physiopathology
- Hyperalgesia/chemically induced
- Hyperalgesia/metabolism
- Male
- Vasodilation/drug effects
- Vasodilation/physiology
- Mice, Inbred C57BL
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Hindlimb/physiopathology
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Holm Rasmussen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Anders Hay-Schmidt
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ayodeji A Asuni
- Department of Preclinical Fluid Biomarkers and Occupancy, H. Lundbeck A/S, Copenhagen, Denmark
| | - Jeppe Møller Jensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Anja Holm
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Experimental Clinical Research, Translational Research Centre, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Sabrina Prehn Lauritzen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Glenn Dorsam
- Department of Microbiological Sciences, North Dakota State University, Fargo, USA
| | - Jens Hannibal
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - David Møbjerg Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark.
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Karsan N, Edvinsson L, Vecsei L, Goadsby PJ. Pituitary cyclase-activating polypeptide targeted treatments for the treatment of primary headache disorders. Ann Clin Transl Neurol 2024; 11:1654-1668. [PMID: 38887982 PMCID: PMC11251486 DOI: 10.1002/acn3.52119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Migraine is a complex and disabling neurological disorder. Recent years have witnessed the development and emergence of novel treatments for the condition, namely those targeting calcitonin gene-related peptide (CGRP). However, there remains a substantial need for further treatments for those unresponsive to current therapies. Targeting pituitary adenylate cyclase-activating polypeptide (PACAP) as a possible therapeutic strategy in the primary headache disorders has gained interest over recent years. METHODS This review will summarize what we know about PACAP to date: its expression, receptors, roles in migraine and cluster headache biology, insights gained from preclinical and clinical models of migraine, and therapeutic scope. RESULTS PACAP shares homology with vasoactive intestinal polypeptide (VIP) and is one of several vasoactive neuropeptides along with CGRP and VIP, which has been implicated in migraine neurobiology. PACAP is widely expressed in areas of interest in migraine pathophysiology, such as the thalamus, trigeminal nucleus caudalis, and sphenopalatine ganglion. Preclinical evidence suggests a role for PACAP in trigeminovascular sensitization, while clinical evidence shows ictal release of PACAP in migraine and intravenous infusion of PACAP triggering attacks in susceptible individuals. PACAP leads to dural vasodilatation and secondary central phenomena via its binding to different G-protein-coupled receptors, and intracellular downstream effects through cyclic adenosine monophosphate (cAMP) and phosphokinase C (PKC). Targeting PACAP as a therapeutic strategy in headache has been explored using monoclonal antibodies developed against PACAP and against the PAC1 receptor, with initial positive results. INTERPRETATION Future clinical trials hold considerable promise for a new therapeutic approach using PACAP-targeted therapies in both migraine and cluster headache.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical SciencesLund University221 84LundSweden
| | - Laszlo Vecsei
- Department of Neurology, Albert Szent‐Györgyi Medical School, and HUN‐REN‐SZTE Neuroscience Research Group, Hungarian Research NetworkUniversity of SzegedSemmelweis u. 6SzegedH‐6725Hungary
| | - Peter J Goadsby
- Headache Group, The Wolfson Sensory, Pain and Regeneration Centre (SPaRC), NIHR King's Clinical Research Facility and SLaM Biomedical Research CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
6
|
Olesen J. Provocation of attacks to discover migraine signaling mechanisms and new drug targets: early history and future perspectives - a narrative review. J Headache Pain 2024; 25:105. [PMID: 38902612 PMCID: PMC11188241 DOI: 10.1186/s10194-024-01796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION The development of several experimental migraine provocation models has significantly contributed to an understanding of the signaling mechanisms of migraine. The early history of this development and a view to the future are presented as viewed by the inventor of the models. METHODS Extensive knowledge of the literature was supplemented by scrutiny of reference lists. RESULTS Early studies used methodologies that were not blinded. They suggested that histamine and nitroglycerin (Glyceryl trinitrate, GTN) could induce headache and perhaps migraine. The development of a double blind, placebo-controlled model, and the use of explicit diagnostic criteria for induced migraine was a major step forward. GTN, donor of nitric oxide (NO), induced headache in people with- and without migraine as well as delayed migraine attacks in those with migraine. Calcitonin gene-related peptide (CGRP) did the same, supporting the development of CGRP antagonists now widely used in patients. Likewise, pituitary adenylate cyclase activating peptide (PACAP) provoked headache and migraine. Recently a PACAP antibody has shown anti migraine activity in a phase 2 trial. Increase of second messengers activated by NO, CGRP and PACAP effectively induced migraine. The experimental models have also been used in other types of headaches and have been combined with imaging and biochemical studies. They have also been used for drug testing and in genetic studies. CONCLUSION Conclusion. Human migraine provocation models have informed about signaling mechanisms of migraine leading to new drugs and drug targets. Future use of these models in imaging-, biochemistry- and genetic studies as well as in the further study of animal models is promising.
Collapse
Affiliation(s)
- Jes Olesen
- Danish Headache Center, Department of neurology, Rigshospitalet- Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, Glostrup, 2600, Denmark.
| |
Collapse
|
7
|
Pellesi L, Ashina M, Martelletti P. Targeting the PACAP-38 pathway is an emerging therapeutic strategy for migraine prevention. Expert Opin Emerg Drugs 2024; 29:57-64. [PMID: 38337150 DOI: 10.1080/14728214.2024.2317778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION The pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) has emerged as a key mediator of migraine pathogenesis. PACAP-38 and its receptors are predominantly distributed in arteries, sensory and parasympathetic neurons of the trigeminovascular system. Phase 2 trials have tested human monoclonal antibodies designed to bind and inhibit PACAP-38 and the pituitary adenylate cyclase-activating polypeptide type I (PAC1) receptor for migraine prevention. AREAS COVERED This review focuses on the significance of the PACAP-38 pathway as a target in migraine prevention. English peer-reviewed articles were searched in PubMed, Scopus and ClinicalTrials.gov electronic databases. EXPERT OPINION A PAC1 receptor monoclonal antibody was not effective for preventing migraine in a proof-of-concept trial, paving the way for alternative strategies to be considered. Lu AG09222 is a humanized monoclonal antibody targeting PACAP-38 that was effective in preventing physiological responses of PACAP38 and reducing monthly migraine days in individuals with migraine. Further studies are necessary to elucidate the clinical utility, long-term safety and cost-effectiveness of therapies targeting the PACAP pathway.
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Martelletti
- School of Health Sciences, Unitelma Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Tanaka M, Szabó Á, Körtési T, Szok D, Tajti J, Vécsei L. From CGRP to PACAP, VIP, and Beyond: Unraveling the Next Chapters in Migraine Treatment. Cells 2023; 12:2649. [PMID: 37998384 PMCID: PMC10670698 DOI: 10.3390/cells12222649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Migraine is a neurovascular disorder that can be debilitating for individuals and society. Current research focuses on finding effective analgesics and management strategies for migraines by targeting specific receptors and neuropeptides. Nonetheless, newly approved calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) have a 50% responder rate ranging from 27 to 71.0%, whereas CGRP receptor inhibitors have a 50% responder rate ranging from 56 to 71%. To address the need for novel therapeutic targets, researchers are exploring the potential of another secretin family peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), as a ground-breaking treatment avenue for migraine. Preclinical models have revealed how PACAP affects the trigeminal system, which is implicated in headache disorders. Clinical studies have demonstrated the significance of PACAP in migraine pathophysiology; however, a few clinical trials remain inconclusive: the pituitary adenylate cyclase-activating peptide 1 receptor mAb, AMG 301 showed no benefit for migraine prevention, while the PACAP ligand mAb, Lu AG09222 significantly reduced the number of monthly migraine days over placebo in a phase 2 clinical trial. Meanwhile, another secretin family peptide vasoactive intestinal peptide (VIP) is gaining interest as a potential new target. In light of recent advances in PACAP research, we emphasize the potential of PACAP as a promising target for migraine treatment, highlighting the significance of exploring PACAP as a member of the antimigraine armamentarium, especially for patients who do not respond to or contraindicated to anti-CGRP therapies. By updating our knowledge of PACAP and its unique contribution to migraine pathophysiology, we can pave the way for reinforcing PACAP and other secretin peptides, including VIP, as a novel treatment option for migraines.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Tamás Körtési
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| | - János Tajti
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| |
Collapse
|
9
|
Silvestro M, Iannone LF, Orologio I, Tessitore A, Tedeschi G, Geppetti P, Russo A. Migraine Treatment: Towards New Pharmacological Targets. Int J Mol Sci 2023; 24:12268. [PMID: 37569648 PMCID: PMC10418850 DOI: 10.3390/ijms241512268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a debilitating neurological condition affecting millions of people worldwide. Until a few years ago, preventive migraine treatments were based on molecules with pleiotropic targets, developed for other indications, and discovered by serendipity to be effective in migraine prevention, although often burdened by tolerability issues leading to low adherence. However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). Nevertheless, despite the revolution brought by CGRP monoclonal antibodies and gepants, a significant percentage of patients still remains burdened by an unsatisfactory response, suggesting that other pathways may play a critical role, with an extent of involvement varying among different migraine patients. Specifically, neuropeptides of the CGRP family, such as adrenomedullin and amylin; molecules of the secretin family, such as pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular downstream determinants, such as potassium channels, but also the opioid system and the purinergic pathway, have been suggested to be involved in migraine pathophysiology. The present review provides an overview of these pathways, highlighting, based on preclinical and clinical evidence, as well as provocative studies, their potential role as future targets for migraine preventive treatment.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Francesco Iannone
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pierangelo Geppetti
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Antonio Russo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
10
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 2023; 24:34. [PMID: 37009867 PMCID: PMC10069045 DOI: 10.1186/s10194-023-01569-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this narrative review, we compare the similarities and differences between the peptides in both their clinical and preclinical migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets to complement and augment the current CGRP-based migraine therapeutics.
Collapse
Affiliation(s)
- Adisa Kuburas
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
12
|
Wu H, Dong Z, Liu Y, Zhang Q, Zhang M, Hu G, Yu S, Han X. Temporal alterations of pituitary adenylate cyclase activating polypeptide and its receptors in a rat model induced by recurrent chemical stimulations: Relevant to chronic migraine. Mol Pain 2023; 19:17448069231152129. [PMID: 36604785 PMCID: PMC9869212 DOI: 10.1177/17448069231152129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Migraine is a common type of primary headache with disabling brain dysfunction. It has been found that pituitary adenylate cyclase activating polypeptide (PACAP) is involved in the pathogenesis of migraine, however, the role of PACAP and its receptors in chronic migraine remains unclear. Therefore, the present study aimed to explore the changes of PACAP and its receptors in different duration after recurrent dural inflammation soup stimulations and to investigate the co-expression between PACAP and calcitonin gene-related peptide (CGRP). Methods: Adult male rats were implanted with cannula surrounding superior sagittal sinus, which was followed by dural infusion of inflammatory soup (IS) or normal saline (NS). The rats were randomly divided into 4 groups (n = 8 for each group): IS stimulation for seven days (IS-7 group), IS stimulation for 14 days (IS-14 group), IS stimulation for 21 days (IS-21 group), and NS control for 21 days (CON group). The facial mechanical withdrawal threshold was daily measured during the whole experiment. The behavioral changes (ipsilateral and bilateral face grooming behavior) in a plastic cage of rats were observed and recorded. The expression of PACAP, its receptors (PAC1, VPAC1, VPAC2), and CGRP in the trigeminal ganglia (TG) and the trigeminal nucleus caudalis (TNC) was examined by immunohistochemistry. Immunofluorescence was used to explore the co-expression of PACAP, PAC1 receptor, and CGRP after repeated IS administration in the TG. Results: The ipsilateral facial grooming time of IS-21 group displayed an apparent increase than CON group after repeated stimulation on day 2, while significant differences were observed on day 14. No differences were found between the IS-21 and CON group in bilateral facial grooming. Dural IS stimulation induced a significantly decrease in facial mechanical withdrawal thresholds. PACAP positive cells in the regions of TNC were gradually decreased with the IS days increasing. PACAP and PAC1 receptor expression in the TG had a trend of increasing first and then decreasing. There was no significant difference in expression of VPAC1 and VPAC2 in the TG and the TNC. Immunofluorescence showed that PACAP was mainly expressed in TG neurons. PACAP and PAC1 receptor co-expression decreased gradually after repetitive IS stimulation. While the co-expression between PACAP and CGRP reached the peak in IS-7 group after repetitive IS stimulation, and then decreased. Conclusions: This study demonstrated that repetitive chemical stimulations induced a gradual decrease of PACAP in the TNC, while the PACAP and PAC1 receptor expression in TG showed dynamical changes of increasing first and then decreasing after repeated IS administration. These results suggested exhaustion of PACAP could be involved in the duration of chronic migraine and implied PACAP may contribute to the pathology of migraine through the PAC1 receptor, which was associated with CGRP.
Collapse
Affiliation(s)
- Hangfei Wu
- Department of Neurology, Shanghai Changhai Hospital, Shanghai, China,Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yinglu Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mingjie Zhang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guanqun Hu
- Department of Neurology, Tianjin Union Medical Center, Tianjin, China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China,Shengyuan Yu and Xun Han, Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China. Emails: @163.com
| | - Xun Han
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
14
|
Calcitonin Gene-Related Peptide (CGRP) and Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Migraine Pathogenesis. Pharmaceuticals (Basel) 2022; 15:ph15101189. [PMID: 36297301 PMCID: PMC9612382 DOI: 10.3390/ph15101189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a prevalent and debilitating neurologic disorder. Advancements in understanding the underlying pathophysiological mechanisms are spearheading the effort to introduce disease-specific treatment options. In recent years this effort has largely focused on alteration of endogenous neuropeptide signaling, namely the peptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Human studies into the pathophysiological underpinnings of CGRP and PACAP in migraine are manifold and here we review the works investigating these neuropeptides in patients suffering from migraine in order to elucidate the background for developing new treatment options for this vastly disabling disorder.
Collapse
|
15
|
Sureda-Gibert P, Romero-Reyes M, Akerman S. Nitroglycerin as a model of migraine: Clinical and preclinical review. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100105. [PMID: 36974065 PMCID: PMC10039393 DOI: 10.1016/j.ynpai.2022.100105] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Migraine stands as one of the most disabling neurological conditions worldwide. It is a disorder of great challenge to study given its heterogeneous representation, cyclic nature, and complexity of neural networks involved. Despite this, clinical and preclinical research has greatly benefitted from the use of the nitric oxide donor, nitroglycerin (NTG), to model this disorder, dissect underlying mechanisms, and to facilitate the development and screening of effective therapeutics. NTG is capable of triggering a migraine attack, only in migraineurs or patients with a history of migraine and inducing migraine-like phenotypes in rodent models. It is however unclear to what extent NTG and NO, as its breakdown product, is a determinant factor in the underlying pathophysiology of migraine, and importantly, whether it really does facilitate the translation from the bench to the bedside, and vice-versa. This review provides an insight into the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways.
Collapse
Affiliation(s)
- Paula Sureda-Gibert
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Ashina M, Terwindt GM, Al-Karagholi MAM, de Boer I, Lee MJ, Hay DL, Schulte LH, Hadjikhani N, Sinclair AJ, Ashina H, Schwedt TJ, Goadsby PJ. Migraine: disease characterisation, biomarkers, and precision medicine. Lancet 2021; 397:1496-1504. [PMID: 33773610 DOI: 10.1016/s0140-6736(20)32162-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/27/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Migraine is a disabling neurological disorder, diagnosis of which is based on clinical criteria. A shortcoming of these criteria is that they do not fully capture the heterogeneity of migraine, including the underlying genetic and neurobiological factors. This complexity has generated momentum for biomarker research to improve disease characterisation and identify novel drug targets. In this Series paper, we present the progress that has been made in the search for biomarkers of migraine within genetics, provocation modelling, biochemistry, and neuroimaging research. Additionally, we outline challenges and future directions for each biomarker modality. We also discuss the advances made in combining and integrating data from multiple biomarker modalities. These efforts contribute to developing precision medicine that can be applied to future patients with migraine.
Collapse
Affiliation(s)
- Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Nervous Diseases of the Institute of Professional Education, IM Sechenov First Moscow State Medical University, Moscow, Russia; Department of Neurology, Azerbaijan Medical University, Baku, Azerbaijan.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Mi Ji Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Debbie L Hay
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Laura H Schulte
- Clinic for Psychiatry and Psychotherapy, University Medical Center Eppendorf, Hamburg, Germany
| | - Nouchine Hadjikhani
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gillberg Neuropsychiatry Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Alexandra J Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter J Goadsby
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
17
|
Pergolizzi JV, Magnusson P, LeQuang JA, Wollmuth C, Taylor R, Breve F. Exploring the Connection Between Sleep and Cluster Headache: A Narrative Review. Pain Ther 2020; 9:359-371. [PMID: 32382871 PMCID: PMC7648820 DOI: 10.1007/s40122-020-00172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Cluster headache is a rare form of headache associated with sleep and even speculated to be a manifestation of a sleep disorder rather than a primary headache. Cluster headache exhibits both circadian and circannual rhythmicity. While attacks often occur during sleep, the implication that cluster headaches might be involved with rapid eye movement (REM) sleep phases has neither been fully established nor refuted. The regulatory mechanisms governing sleep including hypothalamic activity and the autonomic nervous system response may play a role. Hypothalamic activation has been observed in cluster headache patients during positron emission tomography testing, but only during attacks. While sleep apnea is associated with morning headaches in general, the link between sleep-disordered respiration and cluster headache remains elusive. Hypoarousal during sleep and periods of hypoxia are associated with cluster headache, the latter likely involving inflammatory processes rather than apnea. Further study is needed, as cluster headaches represent a serious primary cephalgia that is incompletely understood.
Collapse
Affiliation(s)
| | - Peter Magnusson
- Cardiology Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | | | | | | | - Frank Breve
- Department of Pharmacy Practice, School of Pharmacy, Temple University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Vollesen ALH, Snoer A, Chaudhry B, Petersen AS, Hagedorn A, Hoffmann J, Jensen RH, Ashina M. The effect of pituitary adenylate cyclase-activating peptide-38 and vasoactive intestinal peptide in cluster headache. Cephalalgia 2020; 40:1474-1488. [PMID: 32962406 DOI: 10.1177/0333102420940689] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previously reported increases in serum levels of vasodilating neuropeptides pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) during attacks of cluster headache could indicate their involvement in cluster headache attack initiation. We investigated the attack-inducing effects of PACAP38 and vasoactive intestinal peptide in cluster headache, hypothesising that PACAP38, but not vasoactive intestinal peptide, would induce cluster-like attacks in episodic active phase and chronic cluster headache patients. METHODS In a double-blind crossover study, 14 episodic cluster headache patients in active phase, 15 episodic cluster headache patients in remission phase and 15 chronic cluster headache patients were randomly allocated to receive intravenous infusion of PACAP38 (10 pmol/kg/min) or vasoactive intestinal peptide (8 pmol/kg/min) over 20 min on two study days separated by at least 7 days. We recorded headache intensity, incidence of cluster-like attacks, cranial autonomic symptoms and vital signs using a questionnaire (0-90 min). RESULTS In episodic cluster headache active phase, PACAP38 induced cluster-like attacks in 6/14 patients and vasoactive intestinal peptide induced cluster-like attacks in 5/14 patients (p = 1.000). In chronic cluster headache, PACAP38 and vasoactive intestinal peptide both induced cluster-like attacks in 7/15 patients (p = 0.765). In episodic cluster headache remission phase, neither PACAP38 nor vasoactive intestinal peptide induced cluster-like attacks. CONCLUSIONS Contrary to our hypothesis, attack induction was lower than expected and roughly equal by PACAP38 and vasoactive intestinal peptide in episodic active phase and chronic cluster headache patients, which contradicts the PAC1-receptor as being solely responsible for attack induction.Trial registration: clinicaltrials.gov (identifier NCT03814226).
Collapse
Affiliation(s)
- Anne Luise H Vollesen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agneta Snoer
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Basit Chaudhry
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Sofie Petersen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Hagedorn
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Hoffmann
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rigmor H Jensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Hoffmann J, Miller S, Martins-Oliveira M, Akerman S, Supronsinchai W, Sun H, Shi L, Wang J, Zhu D, Lehto S, Liu H, Yin R, Moyer BD, Xu C, Goadsby PJ. PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache? Pain 2020; 161:1670-1681. [PMID: 32142016 PMCID: PMC7302332 DOI: 10.1097/j.pain.0000000000001858] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/31/2020] [Indexed: 11/26/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) may play an important role in primary headaches. Preclinical evidence suggests that PACAP38 modulates trigeminal nociceptive activity mainly through PAC1 receptors while clinical studies report that plasma concentrations of PACAP38 are elevated in spontaneous attacks of cluster headache and migraine and normalize after treatment with sumatriptan. Intravenous infusion of PACAP38 induces migraine-like attacks in migraineurs and cluster-like attacks in cluster headache patients. A rodent-specific PAC1 receptor antibody Ab181 was developed, and its effect on nociceptive neuronal activity in the trigeminocervical complex was investigated in vivo in an electrophysiological model relevant to primary headaches. Ab181 is potent and selective at the rat PAC1 receptor and provides near-maximum target coverage at 10 mg/kg for more than 48 hours. Without affecting spontaneous neuronal activity, Ab181 effectively inhibits stimulus-evoked activity in the trigeminocervical complex. Immunohistochemical analysis revealed its binding in the trigeminal ganglion and sphenopalatine ganglion but not within the central nervous system suggesting a peripheral site of action. The pharmacological approach using a specific PAC1 receptor antibody could provide a novel mechanism with a potential clinical efficacy in the treatment of primary headaches.
Collapse
Affiliation(s)
- Jan Hoffmann
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Silke Miller
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Margarida Martins-Oliveira
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Simon Akerman
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Weera Supronsinchai
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Hong Sun
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Licheng Shi
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Judy Wang
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Dawn Zhu
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Sonya Lehto
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Hantao Liu
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Ruoyuan Yin
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Bryan D. Moyer
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Cen Xu
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Peter J. Goadsby
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
20
|
Rainero I, Roveta F, Vacca A, Noviello C, Rubino E. Migraine pathways and the identification of novel therapeutic targets. Expert Opin Ther Targets 2020; 24:245-253. [PMID: 32054351 DOI: 10.1080/14728222.2020.1728255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Migraine is a chronic neurovascular disorder characterized by recurrent headache attacks associated with neurological and autonomic symptoms. The pathophysiological mechanisms of the disease are extremely complex, involving hypothalamic and trigeminovascular activation, cortical spreading depression, release of pro-inflammatory peptides, peripheral and central sensitization. The underlying cellular and molecular mechanisms have been scarcely investigated. Recently, genetic studies have suggested that different metabolic pathways could be involved in the pathogenesis of migraine.Areas covered: This review focuses on cellular and molecular mechanisms involved in migraine, suggesting a role for circadian clocks, ion channels, synaptic plasticity, vascular factors, ion metal homeostasis, and impaired glucose metabolism in the pathogenesis of the disease. Accordingly, the article proposes new therapeutic targets that may be of particular relevance for disease prevention.Expert opinion: Several complex molecular mechanisms are involved in setting the genetic threshold for migraine and the pathogenesis of headache attacks. Most promising new therapeutic targets are the modulation of hypothalamic activity and ion channels involved in pain transmission. Further studies in animals and humans are necessary to enhance the elucidation of the molecular mechanisms of migraine and open new avenues for disease prevention.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Fausto Roveta
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Alessandro Vacca
- Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Torino, Italy
| | | | - Elisa Rubino
- Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
21
|
Chen Z, Chen X, Liu M, Ma L, Yu S. Volume of Hypothalamus as a Diagnostic Biomarker of Chronic Migraine. Front Neurol 2019; 10:606. [PMID: 31244765 PMCID: PMC6563769 DOI: 10.3389/fneur.2019.00606] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/22/2019] [Indexed: 12/04/2022] Open
Abstract
It is believed than hypothalamus (HTH) might be involved in generation of migraine, and evidence from high resolution fMRI reported that the more anterior part of HTH seemed to play an important role in migraine chronification. The current study was aimed to identify the alteration of morphology and resting-state functional connectivity (FC) of the hypothalamus (HTH) in interictal episodic migraine (EM) and chronic migraine (CM). High-resolution structural and resting-state functional magnetic resonance images were acquired in 18 EM patients, 16 CM patients, and 21 normal controls (NC). The volume of HTH was calculated and voxel-based morphometry (VBM) was performed over the whole HTH. Receiver operating characteristics (ROC) curve analysis was applied to evaluate the diagnostic efficacy of HTH volume. Correlation analyses with clinical variables were performed and FC maps were generated for positive HTH regions according to VBM comparison. The volume of the HTH significantly decreased in both EM and CM patients compared with NC. The cut-off volume of HTH as 1.429 ml had a good diagnostic accuracy for CM with sensitivity of 81.25% and specificity of 100%. VBM analyses identified volume reduction of posterior HTH in EM vs. NC which was negatively correlated with headache frequency. The posterior HTH presented decreased FC with the left inferior temporal gyrus (Brodmann area 20) in EM. Decreased volume of anterior HTH was identified in CM vs. NC and CM vs. EM which was positively correlated with headache frequency in CM. The anterior HTH presented increased FC with the right anterior orbital gyrus (AOrG) (Brodmann area 11) in CM compared with NC and increased FC with the right medial orbital gyrus (MOrG) (Brodmann area 11) in CM compared with EM. Our study provided evidence of structural plasticity and FC changes of HTH in the pathogensis of migraine generation and chronification, supporting potential therapeutic target toward the HTH and its peptide.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Körtési T, Tuka B, Nyári A, Vécsei L, Tajti J. The effect of orofacial complete Freund's adjuvant treatment on the expression of migraine-related molecules. J Headache Pain 2019; 20:43. [PMID: 31035923 PMCID: PMC6734445 DOI: 10.1186/s10194-019-0999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Background Migraine is a neurovascular primary headache disorder, which causes significant socioeconomic problems worldwide. The pathomechanism of disease is enigmatic, but activation of the trigeminovascular system (TS) appears to be essential during the attack. Migraine research of recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide 1–38 (PACAP1–38) as potential pathogenic factors and possible therapeutic offensives. The goal of present study was to investigate the simultaneous expression of CGRP and precursor of PACAP1–38 (preproPACAP) in the central region of the TS in a time-dependent manner following TS activation in rats. Methods The right whisker pad of rats was injected with 50 μl Complete Freund’s Adjuvant (CFA) or saline. A mechanical allodynia test was performed with von Frey filaments before and after treatment. Transcardial perfusion of the animals was initiated 24, 48, 72 and 120 h after injection, followed by the dissection of the nucleus trigeminus caudalis (TNC). After preparation, the samples were stored at − 80 °C until further use. The relative optical density of CGRP and preproPACAP was analyzed by Western blot. One-way ANOVA and Kruskal-Wallis followed by Tukey post hoc test were used to evaluate the data. Regression analysis was applied to explore the correlation between neuropeptides expression and hyperalgesia. Results Orofacial CFA injection resulted in significant CGRP and preproPACAP release in the TNC 24, 48, 72 and 120 h after the treatment. The level of neuropeptides reached its maximum at 72 h after CFA injection, corresponding to the peak of facial allodynia. Negative, linear correlation was detected between the expression level of neuropeptides and value of mechanonociceptive threshold. Conclusion This is the first study which suggests that the expression of CGRP and preproPACAP simultaneously increases in the central region of activated TS and it influences the formation of mechanical hyperalgesia. Our results contribute to a better understanding of migraine pathogenesis and thereby to the development of more effective therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Körtési
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H 6725, Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H 6725, Hungary.,Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
| |
Collapse
|
23
|
Lambru G, Andreou AP, Guglielmetti M, Martelletti P. Emerging drugs for migraine treatment: an update. Expert Opin Emerg Drugs 2018; 23:301-318. [PMID: 30484333 DOI: 10.1080/14728214.2018.1552939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Migraine is a very frequent and disabling neurological disorder. The current treatment options are old, generally poorly tolerated and not migraine-specific, reflecting the low priority of migraine research and highlighting the vast unmet need in its management. Areas covered: Advancement in the understanding of migraine pathophysiological mechanisms and identification of novel potentially meaningful targets have resulted in a multitude of emerging acute and preventive treatments. Here we review the known putative migraine pathophysiological mechanisms in order to understand the rationale of the most promising novel treatments targeting the Calcitonin-Gene-Related Peptide receptor and ligand and the 5 hydroxytryptamine (5-HT)1F receptor. Key findings on the phase II and phase III clinical trials on these treatments will be summarized. Furthermore, a critical analysis on failed trials of potentially meaningful targets such the nitric oxide and the orexinergic pathways will be conducted. Future perspective will be outlined. Expert opinion: The recent approval of Erenumab and Fremanezumab is a major milestone in the therapy of migraine since the approval of triptans. Several more studies are needed to fully understand the clinical potential, long-term safety and cost-effectiveness of these therapies. This paramount achievement should stimulate the development of further research in the migraine field.
Collapse
Affiliation(s)
- Giorgio Lambru
- a The Headache Centre, Pain Management and Neuromodulation , Guy's and St Thomas NHS Foundation Trust , London , UK.,b The Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience , King's College London , London , UK
| | - Anna P Andreou
- a The Headache Centre, Pain Management and Neuromodulation , Guy's and St Thomas NHS Foundation Trust , London , UK.,b The Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience , King's College London , London , UK
| | - Martina Guglielmetti
- c Department of Clinical and Molecular Medicine , Sapienza" University, "Sant'Andrea" Hospital, Regional Referral Headache Centre , Rome , Italy
| | - Paolo Martelletti
- c Department of Clinical and Molecular Medicine , Sapienza" University, "Sant'Andrea" Hospital, Regional Referral Headache Centre , Rome , Italy
| |
Collapse
|
24
|
Vollesen LH, Guo S, Andersen MR, Ashina M. Effect of the H1-antihistamine clemastine on PACAP38 induced migraine. Cephalalgia 2018; 39:597-607. [DOI: 10.1177/0333102418798611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To investigate the effect of the H1-antihistamine clemastine on the migraine-inducing abilities of pituitary adenylate cyclase activating peptide-38. Methods We conducted a double-blind, randomized, placebo controlled two-way cross-over study. Twenty migraine without aura patients were randomly allocated to receive bolus clemastine 2 mg (1 mg/ml) or bolus saline 2 ml intravenously over 2 min on two study days. Following each bolus injection, 10 pmol/kg/min of pituitary adenylate cyclase activating peptide-38 was administered intravenously over 20 min. We recorded migraine/headache characteristics every 10 min until 90 min after the start of infusion, and collected blood to investigate mast cell degranulation and the inflammation markers tryptase and tumor necrosis factor-alpha before and after infusion of pituitary adenylate cyclase activating peptide-38. Results After clemastine pretreatment, five out of 20 participants developed a migraine-like attack in response to a pituitary adenylate cyclase activating peptide-38 infusion compared to nine out of 20 after placebo pretreatment ( p = 0.288). Following clemastine pretreatment, 15 out of 20 participants reported headache in response to a pituitary adenylate cyclase activating peptide-38 infusion, whereas 19 out of 20 participants did so following placebo pretreatment ( p = 0.221). We found no difference in area under the curve 12 h for headache intensity between the two experimental days ( p = 0.481). We found no difference in area under the curve 180 min for tryptase ( p = 0.525) or tumor necrosis factor-alpha ( p = 0.487) between clemastine and placebo pretreatment days. Conclusion H1-antihistamine, clemastine, failed to prevent migraine or headache after pituitary adenylate cyclase activating peptide-38 infusion, thus making a role for histamine release or mast cell degranulation in pituitary adenylate cyclase activating peptide-38-induced migraine less likely.
Collapse
Affiliation(s)
- Luise Haulund Vollesen
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Song Guo
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Malene Rohr Andersen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Messoud Ashina
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Amin FM, Schytz HW. Transport of the pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier: implications for migraine. J Headache Pain 2018; 19:35. [PMID: 29785578 PMCID: PMC5962479 DOI: 10.1186/s10194-018-0861-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/02/2018] [Indexed: 11/11/2022] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) is widely distributed in the nervous system and is involved in migraine pathophysiology. Understanding the function of the blood-brain barrier (BBB) in relation to PACAP is important to the understand the mechanisms behind PACAP-induced migraine attacks, but also to develop antimigraine drugs targeting the PACAP receptors Here, we aim to review the transport ability of PACAP across the BBB. Methods We performed a systematic literature search on PubMed to identify studies reporting original data on PACAP and BBB. The search was finalized in July 2017. Results The literature search identified 96 papers of which 11 contained relevant data. In addition, two papers were known to be relevant and were included. A total of 13 papers studies were included in the final analysis. Preclinical studies (n = 10) suggest the existence of specific PACAP transport systems across the BBB, while human PACAP studies failed to show vasodilator effect of PACAP on the cerebral arteries from the lumen (n = 3). Conclusion PACAP38 is transported over the BBB actively, while PACAP27 cross the BBB by diffusion over the membrane, but after crossing the endothelial membrane both isoforms are either rapidly degraded or efflux back from brain to blood. Thus, a direct central action of the PACAPs is unlikely. This is supported by studies showing selective PACAP effect on extra-cerebral arteries.
Collapse
Affiliation(s)
- Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 1A, 2600, Glostrup, Denmark.
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 1A, 2600, Glostrup, Denmark
| |
Collapse
|
26
|
Abstract
The hypothalamus is involved in the regulation of homeostatic mechanisms and migraine-related trigeminal nociception and as such has been hypothesized to play a central role in the migraine syndrome from the earliest stages of the attack. The hypothalamus hosts many key neuropeptide systems that have been postulated to play a role in this pathophysiology. Such neuropeptides include but are not exclusive too orexins, oxytocin, neuropeptide Y, and pituitary adenylate cyclase activating protein, which will be the focus of this review. Each of these peptides has its own unique physiological role and as such many preclinical studies have been conducted targeting these peptide systems with evidence supporting their role in migraine pathophysiology. Preclinical studies have also begun to explore potential therapeutic compounds targeting these systems with some success in all cases. Clinical efficacy of dual orexin receptor antagonists and intranasal oxytocin have been tested; however, both have yet to demonstrate clinical effect. Despite this, there were limitations in these cases and strong arguments can be made for the further development of intranasal oxytocin for migraine prophylaxis. Regarding neuropeptide Y, work has yet to begun in a clinical setting, and clinical trials for pituitary adenylate cyclase activating protein are just beginning to be established with much optimism. Regardless, it is becoming increasingly clear the prominent role that the hypothalamus and its peptide systems have in migraine pathophysiology. Much work is required to better understand this system and the early stages of the attack to develop more targeted and effective therapies aimed at reducing attack susceptibility with the potential to prevent the attack all together.
Collapse
Affiliation(s)
- Lauren C Strother
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anan Srikiatkhachorn
- International Medical College, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Weera Supronsinchai
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
27
|
Vollesen ALH, Amin FM, Ashina M. Targeted Pituitary Adenylate Cyclase-Activating Peptide Therapies for Migraine. Neurotherapeutics 2018; 15:371-376. [PMID: 29464574 PMCID: PMC5935633 DOI: 10.1007/s13311-017-0596-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Here, we review the role of pituitary adenylate cyclase-activating peptide-38 (PACAP38) in migraine pathophysiology and data implicating PAC1 receptor as a future drug target in migraine. Much remains to be fully elucidated about migraine pathophysiology, but recent attention has focused on signaling molecule PACAP38, a vasodilator able to induce migraine attacks in patients who experience migraine without aura. PACAP38, with marked and sustained effect, dilates extracerebral arteries but not the middle cerebral artery. The selective affinity of PACAP38 to the PAC1 receptor makes this receptor a highly interesting and potential novel target for migraine treatment. Efficacy of antagonism of this receptor should be investigated in randomized clinical trials.
Collapse
Affiliation(s)
- Anne Luise Haulund Vollesen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2600, Glostrup, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2600, Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2600, Glostrup, Copenhagen, Denmark.
| |
Collapse
|
28
|
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide implicated in a wide range of functions, such as nociception and in primary headaches. Regarding its localization, PACAP has been observed in the sensory trigeminal ganglion (TG), in the parasympathetic sphenopalatine (SPG) and otic ganglia (OTG), and in the brainstem trigeminocervical complex. Immunohistochemistry has shown PACAP-38 in numerous cell bodies of SPG/OTG, co-stored with vasoactive intestinal peptide (VIP), nitric oxide synthase (NOS) and, to a minor degree, with choline acetyltransferase. PACAP has in addition been found in a subpopulation of calcitonin gene-related peptide (CGRP)-immunoreactive cells in the trigeminal system. The PACAP/VIP receptors (PAC1, VPAC1, and VPAC2) are present in sensory neurons and in vascular smooth muscle related to the trigeminovascular system. It is postulated that PACAP is involved in nociception. In support, abolishment of PACAP synthesis or reception leads to diminished pain responses, whereas systemic PACAP-38 infusion triggers pain behavior in animals and delayed migraine-like attacks in migraine patients without marked vasodilatory effects. In addition, increased plasma levels have been documented in acute migraine attacks and in cluster headache, in accordance with findings in experimental models of trigeminal activation. This suggest that the activation of the trigeminal system may result in elevated venous levels of PACAP, a change that can be reduced when headache is treated. The data presented in this review indicate that PACAP and its receptors may be promising targets for migraine therapeutics.
Collapse
|
29
|
Holland PR, Barloese M, Fahrenkrug J. PACAP in hypothalamic regulation of sleep and circadian rhythm: importance for headache. J Headache Pain 2018; 19:20. [PMID: 29508090 PMCID: PMC5838029 DOI: 10.1186/s10194-018-0844-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction between sleep and primary headaches has gained considerable interest due to their strong, bidirectional, clinical relationship. Several primary headaches demonstrate either a circadian/circannual rhythmicity in attack onset or are directly associated with sleep itself. Migraine and cluster headache both show distinct attack patterns and while the underlying mechanisms of this circadian variation in attack onset remain to be fully explored, recent evidence points to clear physiological, anatomical and genetic points of convergence. The hypothalamus has emerged as a key brain area in several headache disorders including migraine and cluster headache. It is involved in homeostatic regulation, including pain processing and sleep regulation, enabling appropriate physiological responses to diverse stimuli. It is also a key integrator of circadian entrainment to light, in part regulated by pituitary adenylate cyclase-activating peptide (PACAP). With its established role in experimental headache research the peptide has been extensively studied in relation to headache in both humans and animals, however, there are only few studies investigating its effect on sleep in humans. Given its prominent role in circadian entrainment, established in preclinical research, and the ability of exogenous PACAP to trigger attacks experimentally, further research is very much warranted. The current review will focus on the role of the hypothalamus in the regulation of sleep-wake and circadian rhythms and provide suggestions for the future direction of such research, with a particular focus on PACAP.
Collapse
Affiliation(s)
- Philip R Holland
- Department of Basic and Clinical Neuroscience, Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Mads Barloese
- Department of Clinical Physiology, Nuclear Medicine and PET, 70590 Rigshospitalet, Copenhagen, Denmark.
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health and Medical Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Vollesen ALH, Ashina M. PACAP38: Emerging Drug Target in Migraine and Cluster Headache. Headache 2018; 57 Suppl 2:56-63. [PMID: 28485845 DOI: 10.1111/head.13076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
Here, we review the role of pituitary adenylate cyclase-activating peptide-38 (PACAP38) in migraine and cluster headache (CH). Mounting evidence implicates signaling molecule PACAP38 in the pathophysiology of migraine. Human provocation studies show PACAP38 induces migraine attacks in migraine patients without aura and marked and sustained dilation of extracerebral arteries. PACAP38 selectively targets the PAC1 receptor making this receptor a promising candidate for targeted migraine therapy. Randomized clinical trials are warranted to pursue this possible treatment pathway. PACAP38 provocation studies in CH could elucidate possible involvement of PACAP38 in CH pathophysiology and predict efficacy of PACAP38 antagonists in this primary headache.
Collapse
Affiliation(s)
- Anne Luise Haulund Vollesen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Copenhagen, 2600, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Copenhagen, 2600, Denmark
| |
Collapse
|
31
|
Körtési T, Tuka B, Tajti J, Bagoly T, Fülöp F, Helyes Z, Vécsei L. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the TNC. Front Neurol 2018; 8:745. [PMID: 29387039 PMCID: PMC5775965 DOI: 10.3389/fneur.2017.00745] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background Migraine is a primary headache of imprecisely known mechanism, but activation of the trigeminovascular system (TS) appears to be essential during the attack. Intensive research has recently focused on pituitary adenylate cyclase-activating polypeptide (PACAP) and the kynurenine systems as potential pathogenic factors. Aim We investigated the link between these important mediators and the effects of kynurenic acid (KYNA) and its synthetic analog (KYNA-a) on PACAP expression in the rat trigeminal nucleus caudalis (TNC) in a TS stimulation model related to migraine mechanisms. Methods Adult male Sprague-Dawley rats were pretreated with KYNA, KYNA-a, the NMDA receptor antagonist MK-801, or saline (vehicle). Next, the trigeminal ganglion (TRG) was electrically stimulated, the animals were transcardially perfused following 180 min, and the TNC was removed. In the TNC samples, 38 amino acid form of PACAP (PACAP1–38)-like radioimmunoactivity was measured by radioimmunoassay, the relative optical density of preproPACAP was assessed by Western blot analysis, and PACAP1–38 mRNA was detected by real-time PCR. Results and conclusion Electrical TRG stimulation resulted in significant increases of PACAP1–38-LI, preproPACAP, and PACAP1–38 mRNA in the TNC. These increases were prevented by the pretreatments with KYNA, KYNA-a, and MK-801. This is the first study to provide evidence for a direct link between PACAP and the kynurenine system during TS activation.
Collapse
Affiliation(s)
- Tamás Körtési
- Faculty of Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - János Tajti
- Faculty of Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Teréz Bagoly
- Faculty of Medicine, Department of Pharmacology and Pharmacotherapy, University of Pécs, Pécs, Hungary
| | - Ferenc Fülöp
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Helyes
- Faculty of Medicine, Department of Pharmacology and Pharmacotherapy, University of Pécs, Pécs, Hungary.,János Szentágothai Research Center, University of Pécs, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - László Vécsei
- Faculty of Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
32
|
Ashina H, Guo S, Vollesen ALH, Ashina M. PACAP38 in human models of primary headaches. J Headache Pain 2017; 18:110. [PMID: 29453754 PMCID: PMC5815979 DOI: 10.1186/s10194-017-0821-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023] Open
Abstract
Background To review the role of PACAP38 in human models of primary headaches, discuss possible mechanisms of PACAP38-induced migraine, and outline future directions. Discussion Experimental studies have established PACAP38 as a potent pharmacological “trigger” molecule of migraine-like attacks. These studies have also revealed a heterogeneous PACAP38 migraine response in migraine without aura patients. In addition, findings from brain imaging studies have demonstrated neuronal and vascular changes in migraine patients both ictally and interictally after PACAP38 infusion. Conclusion Human migraine models have shed light on the importance of PACAP38 in the pathophysiology of primary headaches. These studies have also pointed to the PAC1 receptor and the PACAP38 molecule itself as target sites for drug testing. Future research should seek to understand the mechanisms underlying PACAP38-induced migraine. The results from an ongoing proof of concept randomized clinical trial may reveal the therapeutic potential of anti-PAC1 receptor antibodies for migraine prevention.
Collapse
Affiliation(s)
- Håkan Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne L H Vollesen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Abstract
Migraine is a complex disorder characterized by recurrent episodes of headache, and is one of the most prevalent and disabling neurological disorders. A key feature of migraine is that various factors can trigger an attack, and this phenomenon provides a unique opportunity to investigate disease mechanisms by experimentally inducing migraine attacks. In this Review, we summarize the existing experimental models of migraine in humans, including those that exploit nitric oxide, histamine, neuropeptide and prostaglandin signalling. We describe the development and use of these models in the discovery of molecular pathways that are responsible for initiation of migraine attacks. Combining experimental human models with advanced imaging techniques might help to identify biomarkers of migraine, and in the ongoing search for new and better migraine treatments, human models will have a key role in the discovery of future targets for more-specific and more-effective mechanism-based antimigraine drugs.
Collapse
|
34
|
Mikhailov N, V. Mamontov O, A. Kamshilin A, Giniatullin R. Parasympathetic Cholinergic and Neuropeptide Mechanisms of Migraine. Anesth Pain Med 2017; 7:e42210. [PMID: 28920040 PMCID: PMC5554415 DOI: 10.5812/aapm.42210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/19/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Migraine mechanisms remain largely uncovered for various reasons including a very high complexity of the neurophysiological mechanisms implicated in this disorder and a plethora of endogenous biologically active compounds involved in the pathological process. The functional role of parasympathetic innervation of meninges and cholinergic mechanisms of migraine are among little explored issues despite multiple evidence indirectly indicating the role of acetylcholine (ACh) and its analogues in migraine and other types of headache. In the current short review, we discuss morphological, functional, and clinical issues related to the role of ACh and its analogues such as carbachol and nicotine in this most common neurological disorder. EVIDENCE ACQUISITION In the present work, studies published from 1953 to 2016 were investigated. Literature was searched with following keywords: acetylcholine (ACh), carbachol, nicotine, parasympathetic, mast cells, vasoactive intestinal polypeptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP). RESULTS Parasympathetic fibers originated from SPG and trigeminal nerves can interact at the level of meninges which is considered to be the origin site of migraine pain. Here, in dura mater, ACh, VIP, and PACAP released by parasympathetic afferents can both affect mast cells provoking its degranulation and additional release of neurotransmitters, or they can directly affect trigeminal nerves inducing nociception. CONCLUSIONS In summary, cholinergic mechanisms in migraine and other types of headache remain little elucidated and future studies should clarify the role of parasympathetic nerves and molecular mechanisms of cholinergic modulation within the nociceptive system.
Collapse
Affiliation(s)
- Nikita Mikhailov
- Department of Neurobiology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Oleg V. Mamontov
- Department of Circulation Physiology, Federal Almazov North-West Medical Research Centre, St. Petersburg, 197341, Russia
- Department of Computer Photonics and Videomatics, ITMO University, St. Petersburg, 197101, Russia
| | - Alexei A. Kamshilin
- Department of Computer Photonics and Videomatics, ITMO University, St. Petersburg, 197101, Russia
| | - Rashid Giniatullin
- Department of Neurobiology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Computer Photonics and Videomatics, ITMO University, St. Petersburg, 197101, Russia
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
35
|
Bacchelli E, Cainazzo MM, Cameli C, Guerzoni S, Martinelli A, Zoli M, Maestrini E, Pini LA. A genome-wide analysis in cluster headache points to neprilysin and PACAP receptor gene variants. J Headache Pain 2016; 17:114. [PMID: 27957625 PMCID: PMC5153392 DOI: 10.1186/s10194-016-0705-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 01/03/2023] Open
Abstract
Background Cluster Headache (CH) is a severe primary headache, with a poorly understood pathophysiology. Complex genetic factors are likely to play a role in CH etiology; however, no confirmed gene associations have been identified. The aim of this study is to identify genetic variants influencing risk to CH and to explore the potential pathogenic mechanisms. Methods We have performed a genome-wide association study (GWAS) in a clinically well-defined cohort of 99 Italian patients with CH and in a control sample of 360 age-matched sigarette smoking healthy individuals, using the Infinium PsychArray (Illumina), which combines common highly-informative genome-wide tag SNPs and exonic SNPs. Genotype data were used to carry out a genome-wide single marker case-control association analysis using common SNPs, and a gene-based association analysis focussing on rare protein altering variants in 745 candidate genes with a putative role in CH. Results Although no single variant showed statistically significant association at the genome-wide threshold, we identified an interesting suggestive association (P = 9.1 × 10−6) with a common variant of the PACAP receptor gene (ADCYAP1R1). Furthermore, gene-based analysis provided significant evidence of association (P = 2.5 × 10−5) for a rare potentially damaging missense variant in the MME gene, encoding for the membrane metallo-endopeptidase neprilysin. Conclusions Our study represents the first genome-wide association study of common SNPs and rare exonic variants influencing risk for CH. The most interesting results implicate ADCYAP1R1 and MME gene variants in CH susceptibility and point to a role for genes involved in pain processing. These findings provide new insights into the pathogenesis of CH that need further investigation and replication in larger CH samples. Electronic supplementary material The online version of this article (doi:10.1186/s10194-016-0705-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Maria Michela Cainazzo
- Headache and Drug Abuse Unit, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Simona Guerzoni
- Headache and Drug Abuse Unit, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Martinelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.,Present address: School of Medicine, University of St Andrews, St Andrews, UK
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Luigi Alberto Pini
- Center for Neuroscience and Neurotechnology, Policlinico Hospital, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy.
| |
Collapse
|