1
|
Tang A, Shu Q, Jia S, Lai Z, Tian J. Adipose Mesenchymal Stem Cell-Derived Exosomes as Nanocarriers for Treating Musculoskeletal Disorders. Int J Nanomedicine 2024; 19:13547-13562. [PMID: 39720215 PMCID: PMC11668248 DOI: 10.2147/ijn.s486622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Musculoskeletal disorders are a series of diseases involving bone, muscle, cartilage, and tendon, mainly caused by chronic strain, degenerative changes, and structural damage due to trauma. The disorders limit the function of patients due to pain and significantly reduce their quality of life. In recent years, adipose-derived mesenchymal stem cells have been extensively applied in regeneration medicine research due to their particular abilities of self-renewal, differentiation, and targeted homing and are more easily accessed compared with other sources. The paracrine effect of ADSCs plays a crucial role in intercellular communication by releasing mass mediators, including cytokines and growth factors, particularly the exosomes they secrete. Not only do these exosomes possess low immunogenicity, low toxicity, and an enhanced ability to penetrate a bio-barrier, but they also inherit their parent cells' characteristics and carry various bioactive molecules to release to targeted cells, modulating their biological process. Meanwhile, these characteristics also make exosomes a natural nanocarrier capable of targeted drug delivery to specific sites, enhancing the bioavailability of drugs within the body and achieving precision therapy with fewer toxic side effects. Furthermore, the integration of exosomes with tissue engineering and chemical modification strategies can also significantly enhance their efficacy in facilitating tissue repair. However, the current research on ADSC-Exos for improving MSDs remains at an early stage and needs further exploration. Therefore, this review summarized the ADSC-Exo as a nanodrug carrier characteristics and mechanism in the treatment of fracture, osteoporosis, osteoarthritis, intervertebral disc degeneration, and tendon injury, which push forward the research progress of ADSC-Exo therapy for MSDs.
Collapse
Affiliation(s)
- Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Shaohui Jia
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Triangga AFR, Asmara W, Magetsari R, Bachtiar I, Fazatamma DA, Saraswati PA, Huwaidi AF, Wirohadidjojo YW. Infrapatellar Fat Pad-Derived Non-Cellular Products in Therapy for Musculoskeletal Diseases: A Scoping Review. Orthop Rev (Pavia) 2024; 16:125841. [PMID: 39686964 PMCID: PMC11646799 DOI: 10.52965/001c.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
Background The complex nature of musculoskeletal diseases and the limitations of existing treatments have driven researchers to explore innovative solutions, particularly those involving stem cells and their derivatives. The utilization of the IPFP as a source of MSC-derived non-cellular products for the treatment of musculoskeletal diseases has gained recognition in recent years. This study aimed to identify the progress of IPFP-derived acellular biologics use in the treatment of orthopedic conditions such as osteoarthritis and ligament and/or tendon injuries. Methods A literature search was conducted through PubMed, Scopus and Google Scholar databases including studies over the past 10 years. This scoping review includes studies discussing the development of intercellular messenger signaling molecules (non-cellular products) in the form of exosomes, secretomes, and conditioned medium derived from the IPFP in the management of musculoskeletal diseases. The PRISMA-ScR guidelines were utilized in this review. Results Six studies met the inclusion criteria. Most studies reported the beneficial anti-inflammatory effects of IPFP-derived noncellular products in musculoskeletal conditions. The effects of IPFP-derived exosomes, secretomes, and conditioned medium administration are mostly reported in microscopic changes through cellular and matrix changes. Additionally, quantitative analyses involved assessing levels of anti-inflammatory and pro-inflammatory markers, proteins, fatty acids, and gene expression. Conclusions The use of IPFP-derived non-cellular products has shown significant promise in the regenerative therapy for musculoskeletal diseases. These agents have demonstrated beneficial effects, particularly in reducing inflammation, promoting cellular changes, and enhancing tissue regeneration. However, further research is needed to fully understand the characteristics and explore the potential applications of IPFP-derived non-cellular products in musculoskeletal cases.
Collapse
Affiliation(s)
- Aditya Fuad Robby Triangga
- Department of Orthopaedics and Traumatology, RSUP Dr. Sardjito, Yogyakarta, Indonesia
- Division of Adult Reconstructive Surgery and Sports Injury, RSUP Dr. Sardjito, Yogyakarta, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Widya Asmara
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rahadyan Magetsari
- Department of Orthopaedics and Traumatology, RSUP Dr. Sardjito, Yogyakarta, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Dandy Ardhan Fazatamma
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Paramita Ayu Saraswati
- Department of Orthopaedics and Traumatology, RSUP Dr. Sardjito, Yogyakarta, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - A Faiz Huwaidi
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yohanes Widodo Wirohadidjojo
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Dermatology and Venereology, RSUP Dr. Sardjito, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Jiang F, Zhao H, Zhang P, Bi Y, Zhang H, Sun S, Yao Y, Zhu X, Yang F, Liu Y, Xu S, Yu T, Xiao X. Challenges in tendon-bone healing: emphasizing inflammatory modulation mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 15:1485876. [PMID: 39568806 PMCID: PMC11576169 DOI: 10.3389/fendo.2024.1485876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Tendons are fibrous connective tissues that transmit force from muscles to bones. Despite their ability to withstand various loads, tendons are susceptible to significant damage. The healing process of tendons and ligaments connected to bone surfaces after injury presents a clinical challenge due to the intricate structure, composition, cellular populations, and mechanics of the interface. Inflammation plays a pivotal role in tendon healing, creating an inflammatory microenvironment through cytokines and immune cells that aid in debris clearance, tendon cell proliferation, and collagen fiber formation. However, uncontrolled inflammation can lead to tissue damage, and adhesions, and impede proper tendon healing, culminating in scar tissue formation. Therefore, precise regulation of inflammation is crucial. This review offers insights into the impact of inflammation on tendon-bone healing and its underlying mechanisms. Understanding the inflammatory microenvironment, cellular interactions, and extracellular matrix dynamics is essential for promoting optimal healing of tendon-bone injuries. The roles of fibroblasts, inflammatory cytokines, chemokines, and growth factors in promoting healing, inhibiting scar formation, and facilitating tissue regeneration are discussed, highlighting the necessity of balancing the suppression of detrimental inflammatory responses with the promotion of beneficial aspects to enhance tendon healing outcomes. Additionally, the review explores the significant implications and translational potential of targeted inflammatory modulation therapies in refining strategies for tendon-bone healing treatments.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Po Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haoyun Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yizhi Yao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuesai Zhu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fenghua Yang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sicong Xu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
4
|
Yang J, Dong H, Yang J, Yu H, Zou G, Peng J. miR-16a-5p antagonizes FGF-2 in ligamentogenic differentiation of MSC: a new therapeutic perspective for tendon regeneration. Sci Rep 2024; 14:23717. [PMID: 39390042 PMCID: PMC11479607 DOI: 10.1038/s41598-024-74385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
With the increasing demand for exercise, the population of patients with ankle sprain to anterior talofibular ligament injury has the characteristics of a large base and high requirements for returning to sports, and how to promote the repair of damaged ligaments from a microscopic perspective is an urgent problem to be solved. In many studies, human amniotic mesenchymal stem cells have strong differentiation ability, and can be induced to continuously differentiate into ligament cells to achieve the purpose of repairing damaged ligaments. Human amniotic stem cells were extracted and cultured from human amniotic tissues, evaluated by cell identification and other techniques, and evaluated into ligament differentiation by toluidine blue, alizarin red, oil red O staining and detection of ligament cell differentiation, protein detection by Western blot, mRNA level by qPCR, and finally, the targeted binding relationship between miR-16a-5p and mRNA FGF2 was verified by double luciferase reporter assay. The expression of collagen type 1 (COL 1), collagen type 3 (COL3), SCX and MKX was increased by overexpression of mRNA FGF2, respectively, and miR-16a-5p had a targeted effect on FGF2 and regulated the ligamentous differentiation of human amniotic mesenchymal stem cells. We found that the regulatory effect of overexpressed mRNA FGF2 on mesenchymal stem cells could be inhibited by up-regulation of miR-16a-5p, while the knockdown of FGF2 could reverse the regulatory effect of miR-16a-5p inhibition on ligament-forming differentiation of human amniotic mesenchymal stem cells. In this study, we discovered the existence of the miR-16a-5p-FGF2 axis in human amniotic mesenchymal stem cells, and the differentiation of human amniotic mesenchymal stem cells into ligamentous cells can be regulated by regulating various links in this axis.
Collapse
Affiliation(s)
- Jibin Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Jin Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Hao Yu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Gang Zou
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Jiachen Peng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China.
| |
Collapse
|
5
|
Qin B, Bao D, Liu Y, Zeng S, Deng K, Liu H, Fu S. Engineered exosomes: a promising strategy for tendon-bone healing. J Adv Res 2024; 64:155-169. [PMID: 37972886 PMCID: PMC11464473 DOI: 10.1016/j.jare.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Due to the spatiotemporal complexity of the composition, structure, and cell population of the tendon-bone interface (TBI), it is difficult to achieve true healing. Recent research is increasingly focusing on engineered exosomes, which are a promising strategy for TBI regeneration. AIM OF REVIEW This review discusses the physiological and pathological characteristics of TBI and the application and limitations of natural exosomes in the field of tendon-bone healing. The definition, loading strategies, and spatiotemporal properties of engineered exosomes were elaborated. We also summarize the application and future research directions of engineered exosomes in the field of tendon-bone healing. KEY SCIENTIFIC CONCEPTS OF REVIEW Engineered exosomes can spatially deliver cargo to targeted sites and temporally realize the sustained release of therapeutic molecules in TBI. This review expounds on the multidifferentiation of engineered exosomes for tendon-bone healing, which effectively improves the biological and biomechanical properties of TBI. Engineered exosomes could be a promising strategy for tendon-bone healing.
Collapse
Affiliation(s)
- Bo Qin
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Yang Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shengqiang Zeng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Kai Deng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China.
| | - Shijie Fu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China.
| |
Collapse
|
6
|
Yue S, Zhai G, Zhao S, Liang X, Liu Y, Zheng J, Chen X, Dong Y. The biphasic role of the infrapatellar fat pad in osteoarthritis. Biomed Pharmacother 2024; 179:117364. [PMID: 39226725 DOI: 10.1016/j.biopha.2024.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. It is a whole organ disease characterized by cartilage degeneration and varying degrees of synovitis, involving pathological changes in all joint tissues, such as cartilage, subchondral bone, ligaments, meniscus, synovium, and infrapatellar fat pad (IPFP). IPFP is the largest adipose tissue structure in the knee joint and is composed of fat cells, immune cells and blood vessels. Moreover, IPFP is located close to the cartilage and bone surface so that it may reduce the impact of loading and absorb forces generated through the knee joint, and may have a protective role in joint health. IPFP has been shown to release various cytokines and adipokines that play pro-inflammatory and pro-catabolic roles in cartilage, promoting OA progression. Intra-articular injections of IPFP-derived mesenchymal stem cells and exosomes have been shown to reduce pain and prevent OA progression in patients with knee OA. Previous studies have shown that IPFP has a biphasic effect on OA progression. This article reviews the latest research progress of IPFP, discusses the role and mechanism of IPFP in OA, provide new intervention strategies for the treatment of OA. This article will also discuss the handling of IPFP during the procedure of total knee arthroplasty.
Collapse
Affiliation(s)
- Songkai Yue
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Ganggang Zhai
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Siyu Zhao
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xiaming Liang
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yunke Liu
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xiaoyang Chen
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yonghui Dong
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
7
|
Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthop Surg 2024; 16:2311-2325. [PMID: 39043618 PMCID: PMC11456719 DOI: 10.1111/os.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
In the field of sports medicine, repair surgery for anterior cruciate ligament (ACL) and rotator cuff (RC) injuries are remarkably common. Despite the availability of relatively effective treatment modalities, outcomes often fall short of expectations. This comprehensive review aims to thoroughly examine current strategies employed to promote tendon-bone healing and analyze pertinent preclinical and clinical research. Amidst ongoing investigations, tendon-derived stem cells (TDSCs), which have comparatively limited prior exploration, have garnered increasing attention in the context of tendon-bone healing, emerging as a promising cell type for regenerative therapies. This review article delves into the potential of combining TDSCs with tissue engineering methods, with ACL reconstruction as the main focus. It comprehensively reviews relevant research on ACL and RC healing to address the issues of graft healing and bone tunnel integration. To optimize tendon-bone healing outcomes, our emphasis lies in not only reconstructing the original microstructure of the tendon-bone interface but also achieving proper bone tunnel integration, encompassing both cartilage and bone formation. In this endeavor, we thoroughly analyze the transcriptional and molecular regulatory variables governing TDSCs differentiation, incorporating a retrospective analysis utilizing single-cell sequencing, with the aim of unearthing relevant signaling pathways and processes. By presenting a novel strategy rooted in TDSCs-driven osteogenic and chondrogenic differentiation for tendon-bone healing, this study paves the way for potential future research avenues and promising therapeutic applications. It is anticipated that the findings herein will contribute to advancing the field of tendon-bone healing and foster the exploration of TDSCs as a viable option for regenerative therapies in the future.
Collapse
Affiliation(s)
- Sinuo Shen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yucheng Lin
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jiachen Sun
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuanhao Liu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuzhi Chen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Lu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
8
|
Wang Z, Yang C, Yan S, Sun J, Zhang J, Qu Z, Sun W, Zang J, Xu D. Emerging Role and Mechanism of Mesenchymal Stem Cells-Derived Extracellular Vesicles in Rheumatic Disease. J Inflamm Res 2024; 17:6827-6846. [PMID: 39372581 PMCID: PMC11451471 DOI: 10.2147/jir.s488201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from mesoderm. Through cell-to-cell contact or paracrine effects, they carry out biological tasks like immunomodulatory, anti-inflammatory, regeneration, and repair. Extracellular vesicles (EVs) are the primary mechanism for the paracrine regulation of MSCs. They deliver proteins, nucleic acids, lipids, and other active compounds to various tissues and organs, thus facilitating intercellular communication. Rheumatic diseases may be treated using MSCs and MSC-derived EVs (MSC-EVs) due to their immunomodulatory capabilities, according to mounting data. Since MSC-EVs have low immunogenicity, high stability, and similar biological effects as to MSCs themselves, they are advantageous over cell therapy for potential therapeutic applications in rheumatoid arthritis, systemic erythematosus lupus, systemic sclerosis, Sjogren's syndrome, and other rheumatoid diseases. This review integrates recent advances in the characteristics, functions, and potential molecular mechanisms of MSC-EVs in rheumatic diseases and provides a new understanding of the pathogenesis of rheumatic diseases and MSC-EV-based treatment strategies.
Collapse
Affiliation(s)
- Zhangxue Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chunjuan Yang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jiamei Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Zhuojian Qu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Wenchang Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jie Zang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Donghua Xu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
9
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
10
|
Zapata-Linares N, Berenbaum F, Houard X. Role of joint adipose tissues in osteoarthritis. ANNALES D'ENDOCRINOLOGIE 2024; 85:214-219. [PMID: 38871517 DOI: 10.1016/j.ando.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, without any curative treatment. Obesity being the main modifiable risk factor for OA, much attention focused on the role of adipose tissues (AT). In addition to the involvement of visceral and subcutaneous AT via systemic ways, many arguments also highlight the involvement of local AT, present in joint tissues. Local AT include intra-articular AT (IAAT), which border the synovium, and bone marrow AT (BMAT) localized within marrow cavities in the bones. This review describes the known features and involvement of IAAT and BMAT in joint homeostasis and OA. Recent findings evidence that alteration in magnetic resonance imaging signal intensity of infrapatellar fat pad can be predictive of the development and progression of knee OA. IAAT and synovium are partners of the same functional unit; IAAT playing an early and pivotal role in synovial inflammation and fibrosis and OA pain. BMAT, whose functions have only recently begun to be studied, is in close functional interaction with its microenvironment. The volume and molecular profile of BMAT change according to the pathophysiological context, enabling fine regulation of haematopoiesis and bone metabolism. Although its role in OA has not yet been studied, the localization of BMAT, its functions and the importance of the bone remodelling processes that occur in OA argue in favour of a role for BMAT in OA.
Collapse
Affiliation(s)
- Natalia Zapata-Linares
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France
| | - Francis Berenbaum
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Xavier Houard
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France.
| |
Collapse
|
11
|
Tang J, Wang X, Lin X, Wu C. Mesenchymal stem cell-derived extracellular vesicles: a regulator and carrier for targeting bone-related diseases. Cell Death Discov 2024; 10:212. [PMID: 38697996 PMCID: PMC11066013 DOI: 10.1038/s41420-024-01973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The escalating threat of bone-related diseases poses a significant challenge to human health. Mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs), as inherent cell-secreted natural products, have emerged as promising treatments for bone-related diseases. Leveraging outstanding features such as high biocompatibility, low immunogenicity, superior biological barrier penetration, and extended circulating half-life, MSC-EVs serve as potent carriers for microRNAs (miRNAs), long no-code RNAs (lncRNAs), and other biomolecules. These cargo molecules play pivotal roles in orchestrating bone metabolism and vascularity through diverse mechanisms, thereby contributing to the amelioration of bone diseases. Additionally, engineering modifications enhance the bone-targeting ability of MSC-EVs, mitigating systemic side effects and bolstering their clinical translational potential. This review comprehensively explores the mechanisms through which MSC-EVs regulate bone-related disease progression. It delves into the therapeutic potential of MSC-EVs as adept drug carriers, augmented by engineered modification strategies tailored for osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis, and osteosarcoma. In conclusion, the exceptional promise exhibited by MSC-EVs positions them as an excellent solution with considerable translational applications in clinical orthopedics.
Collapse
Affiliation(s)
- Jiandong Tang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xiangyu Wang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xu Lin
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Chao Wu
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China.
| |
Collapse
|
12
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
13
|
Wang P, Shao W, Li Z, Wang B, Lv X, Huang Y, Feng Y. Non-bone-derived exosomes: a new perspective on regulators of bone homeostasis. Cell Commun Signal 2024; 22:70. [PMID: 38273356 PMCID: PMC10811851 DOI: 10.1186/s12964-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Accumulating evidence indicates that exosomes help to regulate bone homeostasis. The roles of bone-derived exosomes have been well-described; however, recent studies have shown that some non-bone-derived exosomes have better bone targeting ability than bone-derived exosomes and that their performance as a drug delivery vehicle for regulating bone homeostasis may be better than that of bone-derived exosomes, and the sources of non-bone-derived exosomes are more extensive and can thus be better for clinical needs. Here, we sort non-bone-derived exosomes and describe their composition and biogenesis. Their roles and specific mechanisms in bone homeostasis and bone-related diseases are also discussed. Furthermore, we reveal obstacles to current research and future challenges in the practical application of exosomes, and we provide potential strategies for more effective application of exosomes for the regulation of bone homeostasis and the treatment of bone-related diseases. Video Abstract.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Mahajan A, Bhattacharyya S. Immunomodulation by mesenchymal stem cells during osteogenic differentiation: Clinical implications during bone regeneration. Mol Immunol 2023; 164:143-152. [PMID: 38011783 DOI: 10.1016/j.molimm.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Critical bone defects resulting in delayed and non-union are a major concern in the field of orthopedics. Over the past decade, mesenchymal stem cells (MSCs) have become a promising frontier for bone repair and regeneration owing to their high expansion rate and osteogenic differentiation potential ex vivo. MSCs have also long been associated with their ability to modulate immune response in the recipients. These can even skew the immune response towards pro-inflammatory or anti-inflammatory type by sensing their local microenvironment. MSCs adopt anti-inflammatory phenotype at bone injury site and secrete various immunomodulatory factors such as IDO, NO, TGFβ1 and PGE-2 which have redundant role in osteoblast differentiation and bone formation. As such, several studies have also sought to decipher the immunomodulatory effects of osteogenically differentiated MSCs. The present review discusses the immunomodulatory status of MSCs during their osteogenic differentiation and summarizes few mechanisms that cause immunosuppression by osteogenically differentiated MSCs and its implication during bone healing.
Collapse
Affiliation(s)
- Aditi Mahajan
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
15
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
16
|
Zhang C, Jiang C, Jin J, Lei P, Cai Y, Wang Y. Cartilage fragments combined with BMSCs-Derived exosomes can promote tendon-bone healing after ACL reconstruction. Mater Today Bio 2023; 23:100819. [PMID: 37810754 PMCID: PMC10550801 DOI: 10.1016/j.mtbio.2023.100819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/11/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023] Open
Abstract
Anterior cruciate ligament reconstruction (ACLR) often fails due to the inability of tendon-bone integration to regenerate normal tissues and formation of fibrous scar tissues in the tendon-bone interface. Cartilage fragments and exosomes derived from bone mesenchymal stromal cells (BMSCs-Exos) can enhance enthesis healing. Nevertheless, the effects on the tendon-bone healing of ACLR remain unknown. This study found that BMSCs-Exos can promote the proliferation of chondrocytes in cartilage fragments, and activated the expression of chondro-related genes SOX9 and Aggrecan. The optimal effect concentration was 1012 events/uL. Besides, BMSCs-Exos could significantly upregulated the expression of BMP7 and Smad5 in cartilage fragments, and further enhanced the expression of chondrogenic genes. Moreover, this study established a rat model of ACLR and implanted the BMSCs-Exos/cartilage fragment complex into the femoral bone tunnel. Results demonstrated that the mean diameters of the femoral bone tunnels were significantly smaller in the BE-CF group than those in the CF group (p = 0.038) and control group (p = 0.007) at 8 weeks after surgery. Besides, more new bone formation was observed in the femoral tunnels in the BE-CF group, as demonstrated by a larger BV/TV ratio based on the reconstructed CT scans. Histological results also revealed the regeneration of tendon-bone structures, especially fibrocartilage. Thus, these findings provide a promising result that BMSCs-Exos/cartilage fragment complex can prevent the enlargement of bone tunnel and promote tendon-bone healing after ACLR, which may have resulted from the regulation of the BMP7/Smad5 signaling axis.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sports Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310008, China
- Institute of Sports Medicine of Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310030, China
| | - Chao Jiang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiale Jin
- Center for Sports Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310008, China
| | - Pengfei Lei
- Center for Sports Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310008, China
| | - Youzhi Cai
- Center for Sports Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310008, China
- Institute of Sports Medicine of Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310030, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Zou M, Wang J, Shao Z. Therapeutic Potential of Exosomes in Tendon and Tendon-Bone Healing: A Systematic Review of Preclinical Studies. J Funct Biomater 2023; 14:299. [PMID: 37367263 PMCID: PMC10299056 DOI: 10.3390/jfb14060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomes have been proven to play a positive role in tendon and tendon-bone healing. Here, we systematically review the literature to evaluate the efficacy of exosomes in tendon and tendon-bone healing. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic and comprehensive review of the literature was performed on 21 January 2023. The electronic databases searched included Medline (through PubMed), Web of Science, Embase, Scopus, Cochrane Library and Ovid. In the end, a total of 1794 articles were systematically reviewed. Furthermore, a "snowball" search was also carried out. Finally, forty-six studies were included for analysis, with the total sample size being 1481 rats, 416 mice, 330 rabbits, 48 dogs, and 12 sheep. In these studies, exosomes promoted tendon and tendon-bone healing and displayed improved histological, biomechanical and morphological outcomes. Some studies also suggested the mechanism of exosomes in promoting tendon and tendon-bone healing, mainly through the following aspects: (1) suppressing inflammatory response and regulating macrophage polarization; (2) regulating gene expression, reshaping cell microenvironment and reconstructing extracellular matrix; (3) promoting angiogenesis. The risk of bias in the included studies was low on the whole. This systematic review provides evidence of the positive effect of exosomes on tendon and tendon-bone healing in preclinical studies. The unclear-to-low risk of bias highlights the significance of standardization of outcome reporting. It should be noted that the most suitable source, isolation methods, concentration and administration frequency of exosomes are still unknown. Additionally, few studies have used large animals as subjects. Further studies may be required on comparing the safety and efficacy of different treatment parameters in large animal models, which would be conducive to the design of clinical trials.
Collapse
Affiliation(s)
- Mingrui Zou
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jingzhou Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Zhenxing Shao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
18
|
Wen Y, Xu F, Liu Y, Zhi K, Tan J, Jiang Y, Li M, Zhang H. Outcome analysis of infrapatellar fat pad partial resection or preservation in patients with anterior cruciate ligament reconstruction. Sci Rep 2023; 13:6945. [PMID: 37117250 PMCID: PMC10147682 DOI: 10.1038/s41598-023-30933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/03/2023] [Indexed: 04/30/2023] Open
Abstract
The infrapatellar fat pad (IPFP) is one of the structures surrounding the knee joint that obscures exposure in minimally arthroscopy anterior cruciate ligament reconstruction (ACLR). Most surgeons excise the partial fat pad for better exposure of the knee. However, whether removal of IPFP in ACLR remained inconclusive. The purpose of this study was to investigate clinical outcomes of IPFP preservation or resection in patients with primary hamstring-graft ACLR. A total of 104 patients were assigned to receive either IPFP-R (n = 55) or IPFP-P (n = 49). There were no significant preoperative differences between the two groups. The anterior knee pain (AKP) and the Knee Injury and Osteoarthritis Outcome Score (KOOS) in the two groups both recovered compared with those at baseline, but the IPFP-P group recovered more significantly at 3-, 6-, 12-month, and 3-, 6-month of follow-up, respectively. When assessing the KOOS subclasses using minimum perceptible clinical improvement (MPCI), patients with IPFP-R failed to make significant improvement at 3 months in the symptoms, pain and sports subsets of the KOOS. Knee-related complications were not significantly different between the two groups, while the resection group had a higher incidence. These results suggested that ACLR with primary hamstring grafts can achieve good effects whether performed with IPFP resection or preservation; however, the improvements in anterior knee pain and knee joint functions are better for the patients with IPFP preservation. Therefore, surgeons should avoid the resection of IPFP as much as possible while fully exposing the wild view to ensure the ACLR.
Collapse
Affiliation(s)
- Yixin Wen
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Feng Xu
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Yang Liu
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Kaining Zhi
- Blood Transfusion Department, Wuhan Hankou Hospital, Wuhan, China
| | - Junfeng Tan
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Yong Jiang
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Minghui Li
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China.
| | - Hui Zhang
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China.
| |
Collapse
|
19
|
Xu L, Sima Y, Xiao C, Chen Y. Exosomes derived from mesenchymal stromal cells: a promising treatment for pelvic floor dysfunction. Hum Cell 2023; 36:937-949. [PMID: 36940057 DOI: 10.1007/s13577-023-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Pelvic floor dysfunction (PFDs), which include pelvic organ prolapse (POP), stress urinary incontinence (SUI) and anal incontinence (AI), are common degenerative diseases in women that have dramatic effects on quality of life. The pathology of PFDs is based on impaired pelvic connective tissue supportive strength due to an imbalance in extracellular matrix (ECM) metabolism, the loss of a variety of cell types, such as fibroblasts, muscle cells, peripheral nerve cells, and oxidative stress and inflammation in the pelvic environment. Fortunately, exosomes, which are one of the major secretions of mesenchymal stromal cells (MSCs), are involved in intercellular communication and the modulation of molecular activities in recipient cells via their contents, which are bioactive proteins and genetic factors such as mRNAs and miRNAs. These components modify fibroblast activation and secretion, facilitate ECM modelling, and promote cell proliferation to enhance pelvic tissue regeneration. In this review, we focus on the molecular mechanisms and future directions of exosomes derived from MSCs that are of great value in the treatment of PFD.
Collapse
Affiliation(s)
- Leimei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yizhen Sima
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Chengzhen Xiao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China
| | - Yisong Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| |
Collapse
|
20
|
Cai J, Xu J, Ye Z, Wang L, Zheng T, Zhang T, Li Y, Jiang J, Zhao J. Exosomes Derived From Kartogenin-Preconditioned Mesenchymal Stem Cells Promote Cartilage Formation and Collagen Maturation for Enthesis Regeneration in a Rat Model of Chronic Rotator Cuff Tear. Am J Sports Med 2023; 51:1267-1276. [PMID: 36917828 DOI: 10.1177/03635465231155927] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Poor tendon-to-bone healing in chronic rotator cuff tears (RCTs) is related to unsatisfactory outcomes. Exosomes derived from mesenchymal stem cells reportedly enhance rotator cuff healing. However, the difficulty in producing exosomes with a stronger effect on enthesis regeneration must be resolved. PURPOSE To study the effect of exosomes derived from kartogenin (KGN)-preconditioned human bone marrow mesenchymal stem cells (KGN-Exos) on tendon-to-bone healing in a rat model of chronic RCT. STUDY DESIGN Controlled laboratory study. METHODS Exosome-loaded sodium alginate hydrogel (SAH) was prepared. Moreover, exosomes were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) or 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (Dil) for in vivo tracking. Bilateral rotator cuff repair (RCR) was conducted in an established chronic RCT rat model. A total of 66 rats were randomized to control, untreated exosome (un-Exos), and KGN-Exos groups to receive local injections of pure SAH, un-Exos, or KGN-Exos SAH at the repaired site. The presence of DiR/Dil-labeled exosomes was assessed at 1 day and 1 week, and tendon-to-bone healing was evaluated histologically, immunohistochemically, and biomechanically at 4 and 8 weeks. RESULTS Both un-Exos and KGN-Exos exhibited sustained release from SAH for up to 96 hours. In vivo study revealed that un-Exos and KGN-Exos were localized to the repaired site at 1 week. Moreover, the KGN-Exos group showed a higher histological score and increased glycosaminoglycan and collagen II expression at 4 and 8 weeks. In addition, more mature and better-organized collagen fibers with higher ratios of collagen I to collagen III were observed at 8 weeks in the tendon-to-bone interface compared with those in the control and un-Exos groups. Biomechanically, the KGN-Exos group had the highest failure load (28.12 ± 2.40 N) and stiffness (28.57 ± 2.49 N/mm) among the 3 groups at 8 weeks. CONCLUSION Local injection of SAH with sustained KGN-Exos release could effectively promote cartilage formation as well as collagen maturation and organization for enthesis regeneration, contributing to enhanced biomechanical properties after RCR. CLINICAL RELEVANCE KGN-Exos injection may be used as a cell-free therapeutic option to accelerate tendon-to-bone healing in chronic RCT.
Collapse
Affiliation(s)
- Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zheng
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufeng Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Tian B, Zhang M, Kang X. Strategies to promote tendon-bone healing after anterior cruciate ligament reconstruction: Present and future. Front Bioeng Biotechnol 2023; 11:1104214. [PMID: 36994361 PMCID: PMC10040767 DOI: 10.3389/fbioe.2023.1104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
At present, anterior cruciate ligament (ACL) reconstruction still has a high failure rate. Tendon graft and bone tunnel surface angiogenesis and bony ingrowth are the main physiological processes of tendon-bone healing, and also the main reasons for the postoperative efficacy of ACL reconstruction. Poor tendon-bone healing has been also identified as one of the main causes of unsatisfactory treatment outcomes. The physiological process of tendon-bone healing is complicated because the tendon-bone junction requires the organic fusion of the tendon graft with the bone tissue. The failure of the operation is often caused by tendon dislocation or scar healing. Therefore, it is important to study the possible risk factors for tendon-bone healing and strategies to promote it. This review comprehensively analyzed the risk factors contributing to tendon-bone healing failure after ACL reconstruction. Additionally, we discuss the current strategies used to promote tendon-bone healing following ACL reconstruction.
Collapse
|
22
|
Xu J, Wu C, Han K, Zhang X, Ye Z, Jiang J, Yan X, Su W, Zhao J. Radiological and Histological Analyses of Nonrigid Versus Rigid Fixation for Free Bone Block Procedures in a Rabbit Model of Glenoid Defects. Am J Sports Med 2023; 51:743-757. [PMID: 36752692 DOI: 10.1177/03635465221145695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Nonrigid fixation techniques have been recently introduced in free bone block (FBB) procedures to treat substantial glenoid bone loss in patients with anterior shoulder instability. However, the radiological and histological effectiveness of nonrigid fixation versus conventional rigid fixation have not been comprehensively understood in vivo. PURPOSE To (1) explore the radiological and histological characteristics of nonrigid fixation for FBB procedures in a rabbit model of glenoid defects and (2) further compare them with those of conventional rigid fixation. STUDY DESIGN Controlled laboratory study. METHODS Unilateral shoulder glenoid defects were created in 36 mature New Zealand White rabbits, of which 24 underwent FBB procedures using allogenic iliac crest bone and were randomly divided into rigid fixation (RF) and nonrigid fixation (N-RF) groups, with the remaining divided into 2 control groups: 6 with sham surgery for glenoid defects (GD group) and 6 native glenoids (normal group). In the RF and N-RF groups, 6 rabbits were sacrificed at 6 or 12 weeks postoperatively for radiological and histological analyses of the reconstructed glenoid, and all rabbits in the GD and normal groups were sacrificed at 12 weeks. The radiological glenoid morphology was evaluated via micro-computed tomography. Moreover, the graft-glenoid healing and graft remodeling processes were determined using histological staining. RESULTS At 6 weeks, both the N-RF and RF groups had similarly improved radiological axial radian and en face area of the glenoid compared with the GD group, but the N-RF group showed superiority in restoration of the glenoid radian and area compared with the RF group at 12 weeks, with the native glenoid as the baseline. Histologically, the bone graft in both groups was substantively integrated into the deficient glenoid neck at 6 and 12 weeks, showing similar osseous healing processes at the graft-glenoid junction. Moreover, the bone graft histologically presented similar regenerated vascular density, total graft bone, and integrated graft bone in both groups. In contrast, the N-RF group had a different remodeling profile on radiological and histological analyses regarding regional bone resorption, mineralization, and fibrous tissue replacement during osseointegration. CONCLUSION Compared with rigid fixation, nonrigid fixation resulted in superior reconstructed glenoid morphology radiologically and similar graft-glenoid osseous healing histologically, showing different graft remodeling profiles of regional bone resorption, mineralization, and fibrous tissue replacement. CLINICAL RELEVANCE The nonrigid fixation technique can be feasible for FBB procedures to treat glenoid bone loss in anterior shoulder instability. More clinical evidence is required to determine its pros and cons compared with conventional rigid fixation.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenliang Wu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueying Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing. J Orthop Translat 2023; 39:63-73. [PMID: 37188000 PMCID: PMC10175706 DOI: 10.1016/j.jot.2022.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Tendon-bone insertion injuries (TBI), such as anterior cruciate ligament (ACL) and rotator cuff injuries, are common degenerative or traumatic pathologies with a negative impact on the patient's daily life, and they cause huge economic losses every year. The healing process after an injury is complex and is dependent on the surrounding environment. Macrophages accumulate during the entire process of tendon and bone healing and their phenotypes progressively transform as they regenerate. As the "sensor and switch of the immune system", mesenchymal stem cells (MSCs) respond to the inflammatory environment and exert immunomodulatory effects during the tendon-bone healing process. When exposed to appropriate stimuli, they can differentiate into different tissues, including chondrocytes, osteocytes, and epithelial cells, promoting reconstruction of the complex transitional structure of the enthesis. It is well known that MSCs and macrophages communicate with each other during tissue repair. In this review, we discuss the roles of macrophages and MSCs in TBI injury and healing. Reciprocal interactions between MSCs and macrophages and some biological processes utilizing their mutual relations in tendon-bone healing are also described. Additionally, we discuss the limitations in our understanding of tendon-bone healing and propose feasible ways to exploit MSC-macrophage interplay to develop an effective therapeutic strategy for TBI injuries. The Translational potential of this article This paper reviewed the important functions of macrophages and mesenchymal stem cells in tendon-bone healing and described the reciprocal interactions between them during the healing process. By managing macrophage phenotypes, mesenchymal stem cells and the interactions between them, some possible novel therapies for tendon-bone injury may be proposed to promote tendon-bone healing after restoration surgery.
Collapse
|
24
|
Yang C, Teng Y, Geng B, Xiao H, Chen C, Chen R, Yang F, Xia Y. Strategies for promoting tendon-bone healing: Current status and prospects. Front Bioeng Biotechnol 2023; 11:1118468. [PMID: 36777256 PMCID: PMC9911882 DOI: 10.3389/fbioe.2023.1118468] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries are common, primarily involving the rotator cuff (RC) and anterior cruciate ligament (ACL). At present, repair surgery and reconstructive surgery are the main treatments, and the main factor determining the curative effect of surgery is postoperative tendon-bone healing, which requires the stable combination of the transplanted tendon and the bone tunnel to ensure the stability of the joint. Fibrocartilage and bone formation are the main physiological processes in the bone marrow tract. Therefore, therapeutic measures conducive to these processes are likely to be applied clinically to promote tendon-bone healing. In recent years, biomaterials and compounds, stem cells, cell factors, platelet-rich plasma, exosomes, physical therapy, and other technologies have been widely used in the study of promoting tendon-bone healing. This review provides a comprehensive summary of strategies used to promote tendon-bone healing and analyses relevant preclinical and clinical studies. The potential application value of these strategies in promoting tendon-bone healing was also discussed.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Yuanjun Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,*Correspondence: Yayi Xia,
| |
Collapse
|
25
|
Cai J, Liu J, Xu J, Li Y, Zheng T, Zhang T, Han K, Chen S, Jiang J, Wu S, Zhao J. Constructing high-strength nano-micro fibrous woven scaffolds with native-like anisotropic structure and immunoregulatory function for tendon repair and regeneration. Biofabrication 2023; 15:025002. [PMID: 36608336 DOI: 10.1088/1758-5090/acb106] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
Tendon injuries are common debilitating musculoskeletal diseases with high treatment expenditure in sports medicine. The development of tendon-biomimetic scaffolds may be promising for improving the unsatisfactory clinical outcomes of traditional therapies. In this study, we combined an advanced electrospun nanofiber yarn-generating technique with a traditional textile manufacturing strategy to fabricate innovative nano-micro fibrous woven scaffolds with tendon-like anisotropic structure and high-strength mechanical properties for the treatment of large-size tendon injury. Electrospun nanofiber yarns made from pure poly L-lactic acid (PLLA) or silk fibroin (SF)/PLLA blend were fabricated, and their mechanical properties matched and even exceeded those of commercial PLLA microfiber yarns. The PLLA or SF/PLLA nanofiber yarns were then employed as weft yarns interlaced with commercial PLLA microfiber yarns as warp yarns to generate two new types of nanofibrous scaffolds (nmPLLA and nmSF/PLLA) with a plain-weaving structure. Woven scaffolds made from pure PLLA microfiber yarns (both weft and warp directions) (mmPLLA) were used as controls.In vitroexperiments showed that the nmSF/PLLA woven scaffold with aligned fibrous topography significantly promoted cell adhesion, elongation, proliferation, and phenotypic maintenance of tenocytes compared with mmPLLA and nmPLLA woven scaffolds. Moreover, the nmSF/PLLA woven scaffold exhibited the strongest immunoregulatory functions and effectively modulated macrophages towards the M2 phenotype.In vivoexperiments revealed that the nmSF/PLLA woven scaffold notably facilitated Achilles tendon regeneration with improved structure by macroscopic, histological, and ultrastructural observations six months after surgery, compared with the other two groups. More importantly, the regenerated tissue in the nmSF/PLLA group had excellent biomechanical properties comparable to those of the native tendon. Overall, our study provides an innovative biological-free strategy with ready-to-use features, which presents great potential for clinical translation for damaged tendon repair.
Collapse
Affiliation(s)
- Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiao Liu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Yufeng Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Ting Zheng
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| |
Collapse
|
26
|
Zou J, Yang W, Cui W, Li C, Ma C, Ji X, Hong J, Qu Z, Chen J, Liu A, Wu H. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology 2023; 21:14. [PMID: 36642728 PMCID: PMC9841717 DOI: 10.1186/s12951-023-01778-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries, such as anterior cruciate ligament injury and rotator cuff injury, are the most common soft tissue injuries. In most situations, surgical tendon/ligament reconstruction is necessary for treating such injuries. However, a significant number of cases failed because healing of the enthesis occurs through scar tissue formation rather than the regeneration of transitional tissue. In recent years, the therapeutic potential of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies, such as chronic paraplegia, non-ischemic heart failure, and osteoarthritis of the knee. MSCs are multipotent stem cells, which have self-renewability and the ability to differentiate into a wide variety of cells such as chondrocytes, osteoblasts, and adipocytes. Numerous studies have suggested that MSCs could promote angiogenesis and cell proliferation, reduce inflammation, and produce a large number of bioactive molecules involved in the repair. These effects are likely mediated by the paracrine mechanisms of MSCs, particularly through the release of exosomes. Exosomes, nano-sized extracellular vesicles (EVs) with a lipid bilayer and a membrane structure, are naturally released by various cell types. They play an essential role in intercellular communication by transferring bioactive lipids, proteins, and nucleic acids, such as mRNAs and miRNAs, between cells to influence the physiological and pathological processes of recipient cells. Exosomes have been shown to facilitate tissue repair and regeneration. Herein, we discuss the prospective applications of MSC-derived exosomes in TBI injuries. We also review the roles of MSC-EVs and the underlying mechanisms of their effects on promoting tendon-bone healing. At last, we discuss the present challenges and future research directions.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Xiaoxiao Ji
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Jianqiao Hong
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Zihao Qu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Jing Chen
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China.
| |
Collapse
|
27
|
Wu G, Su Q, Li J, Xue C, Zhu J, Cai Q, Huang J, Ji S, Cheng B, Ge H. NAMPT encapsulated by extracellular vesicles from young adipose-derived mesenchymal stem cells treated tendinopathy in a "One-Stone-Two-Birds" manner. J Nanobiotechnology 2023; 21:7. [PMID: 36604715 PMCID: PMC9814467 DOI: 10.1186/s12951-022-01763-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Tendinopathy is the leading sports-related injury and will cause severe weakness and tenderness. Effective therapy for tendinopathy remains limited, and extracellular vesicles (EVs) derived from adipose tissue-derived mesenchymal stem cells (ADMSCs) have demonstrated great potential in tendinopathy treatment; however, the influence of aging status on EV treatment has not been previously described. RESULTS In this study, it was found that ADMSCs derived from old mice (ADMSCold) demonstrated remarkable cellular senescence and impaired NAD+ metabolism compared with ADMSCs derived from young mice (ADMSCyoung). Lower NAMPT contents were detected in both ADMSCold and its secreted EVs (ADMSCold-EVs). Advanced animal experiments demonstrated that ADMSCyoung-EVs, but not ADMSCold-EVs, alleviated the pathological structural, functional and biomechanical properties in tendinopathy mice. Mechanistic analyses demonstrated that ADMSCyoung-EVs improved cell viability and relieved cellular senescence of tenocytes through the NAMPT/SIRT1/PPARγ/PGC-1α pathway. ADMSCyoung-EVs, but not ADMSCold-EVs, promoted phagocytosis and M2 polarization in macrophages through the NAMPT/SIRT1/Nf-κb p65/NLRP3 pathway. The macrophage/tenocyte crosstalk in tendinopathy was influenced by ADMSCyoung-EV treatment and thus it demonstrated "One-Stone-Two-Birds" effects in tendinopathy treatment. CONCLUSIONS This study demonstrates an effective novel therapy for tendinopathy and uncovers the influence of donor age on curative effects by clarifying the detailed biological mechanism.
Collapse
Affiliation(s)
- Guanghao Wu
- grid.43555.320000 0000 8841 6246School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Qihang Su
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jie Li
- Department of Orthopedics, Zhabei Central Hospital of Jing’an District, Shanghai, 200070 China
| | - Chao Xue
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jie Zhu
- grid.9227.e0000000119573309National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Qiuchen Cai
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jingbiao Huang
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Shaoyang Ji
- grid.9227.e0000000119573309National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Biao Cheng
- grid.24516.340000000123704535Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065 China
| | - Hengan Ge
- grid.24516.340000000123704535Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065 China
| |
Collapse
|
28
|
Cho E, Qiao Y, Chen C, Xu J, Cai J, Li Y, Zhao J. Injectable FHE+BP composites hydrogel with enhanced regenerative capacity of tendon-bone interface for anterior cruciate ligament reconstruction. Front Bioeng Biotechnol 2023; 11:1117090. [PMID: 36911205 PMCID: PMC9996450 DOI: 10.3389/fbioe.2023.1117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Features of black phosphorous (BP) nano sheets such as enhancing mineralization and reducing cytotoxicity in bone regeneration field have been reported. Thermo-responsive FHE hydrogel (mainly composed of oxidized hyaluronic acid (OHA), poly-ε-L-lysine (ε-EPL) and F127) also showed a desired outcome in skin regeneration due to its stability and antibacterial benefits. This study investigated the application of BP-FHE hydrogel in anterior cruciate ligament reconstruction (ACLR) both in in vitro and in vivo, and addressed its effects on tendon and bone healing. This BP-FHE hydrogel is expected to bring the benefits of both components (thermo-sensitivity, induced osteogenesis and easy delivery) to optimize the clinical application of ACLR and enhance the recovery. Our in vitro results confirmed the potential role of BP-FHE via significantly increased rBMSC attachment, proliferation and osteogenic differentiation with ARS and PCR analysis. Moreover, In vivo results indicated that BP-FHE hydrogels can successfully optimize the recovery of ACLR through enhancing osteogenesis and improving the integration of tendon and bone interface. Further results of Biomechanical testing and Micro-CT analysis [bone tunnel area (mm2) and bone volume/total volume (%)] demonstrated that BP can indeed accelerate bone ingrowth. Additionally, histological staining (H&E, Masson and Safranin O/fast green) and immunohistochemical analysis (COL I, COL III and BMP-2) strongly supported the ability of BP to promote tendon-bone healing after ACLR in murine animal models.
Collapse
Affiliation(s)
- Eunshinae Cho
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Changan Chen
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yamin Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| |
Collapse
|
29
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
30
|
Gao H, Wang L, Jin H, Lin Z, Li Z, Kang Y, Lyu Y, Dong W, Liu Y, Shi D, Jiang J, Zhao J. Regulating Macrophages through Immunomodulatory Biomaterials Is a Promising Strategy for Promoting Tendon-Bone Healing. J Funct Biomater 2022; 13:243. [PMID: 36412884 PMCID: PMC9703966 DOI: 10.3390/jfb13040243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 08/08/2023] Open
Abstract
The tendon-to-bone interface is a special structure connecting the tendon and bone and is crucial for mechanical load transfer between dissimilar tissues. After an injury, fibrous scar tissues replace the native tendon-to-bone interface, creating a weak spot that needs to endure extra loading, significantly decreasing the mechanical properties of the motor system. Macrophages play a critical role in tendon-bone healing and can be divided into various phenotypes, according to their inducing stimuli and function. During the early stages of tendon-bone healing, M1 macrophages are predominant, while during the later stages, M2 macrophages replace the M1 macrophages. The two macrophage phenotypes play a significant, yet distinct, role in tendon-bone healing. Growing evidence shows that regulating the macrophage phenotypes is able to promote tendon-bone healing. This review aims to summarize the impact of different macrophages on tendon-bone healing and the current immunomodulatory biomaterials for regulating macrophages, which are used to promote tendon-bone healing. Although macrophages are a promising target for tendon-bone healing, the challenges and limitations of macrophages in tendon-bone healing research are discussed, along with directions for further research.
Collapse
Affiliation(s)
- Haihan Gao
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haocheng Jin
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhiqi Lin
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yangbao Lyu
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wenqian Dong
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yefeng Liu
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dingyi Shi
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
31
|
Xu J, Han K, Ye Z, Wu C, Wu X, Li Z, Zhang T, Xu C, Su W, Zhao J. Biomechanical and Histological Results of Dual-Suspensory Reconstruction Using Banded Tendon Graft to Bridge Massive Rotator Cuff Tears in a Chronic Rabbit Model. Am J Sports Med 2022; 50:2767-2781. [PMID: 35853168 DOI: 10.1177/03635465221102744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bridging rotator cuff tendon defects with a patch is a reasonable treatment for massive rotator cuff tears (MRCTs). However, the poor outcomes associated with routine patch repair have prompted exploration into superior bridging techniques and graft structures. PURPOSE To detect whether dual-suspensory reconstruction using a banded graft would be superior to routine bridging using a patch graft to treat MRCTs and to detect the comparative effectiveness of patellar tendon (PT) and fascia lata (FL) grafts in dual-suspensory reconstruction. STUDY DESIGN Controlled laboratory study. METHODS Unilateral chronic MRCTs were created in 72 mature male New Zealand White rabbits, which were randomly divided into 3 groups: (1) patch bridging repair using rectangular FL autograft (PR-FL), (2) dual-suspensory bridging reconstruction using banded FL autograft (DSR-FL), and (3) dual-suspensory bridging reconstruction using banded PT autograft (DSR-PT). In each group, the mean failure load and stiffness of the cuff-graft-humerus (C-G-H) complexes of 6-week and 12-week specimens were recorded, with the failure modes and sites noted. Moreover, cuff-to-graft and graft-to-bone interface healing and graft substance remodeling of the complexes were histologically evaluated (via hematoxylin and eosin, Picrosirius red, Masson trichrome, and Safranin O/fast green staining) at 6 and 12 weeks to assess integrations between the bridging constructs and the native bone or rotator cuff tendons. RESULTS The DSR-PT group had the greatest mean failure loads and stiffness of the C-G-H complexes at 6 and 12 weeks (41.81 ± 7.00 N, 10.34 ± 2.68 N/mm; 87.62 ± 9.20 N, 17.98 ± 1.57 N/mm, respectively), followed by the DSR-FL group (32.04 ± 5.49 N, 8.20 ± 2.27 N/mm; 75.30 ± 7.31 N, 14.39 ± 3.29 N/mm, respectively). In the DSR-PT and DSR-FL groups, fewer specimens failed at the graft-to-bone junction and more failed at the cuff-to-graft junction, but both groups had higher median failure loads at 6 and 12 weeks (DSR-PT: cuff-to-graft junction, 37.80 and 83.76 N; graft-to-bone junction, 45.46 and 95.86 N) (DSR-FL: cuff-to-graft junction, 28.52 and 67.68 N; graft-to-bone junction, 37.92 and 82.18 N) compared with PR-FL (cuff-to-graft junction, 27.17 and 60.04 N; graft-to-bone junction, 30.12 and 55.95 N). At 12 weeks, the DSR-FL group had higher median failure loads at graft substance (72.26 N) than the PR-FL group (61.27 N). Moreover, the PR-FL group showed more inflammatory responses at the 2 healing interfaces and the graft substance in the 6-week specimens and subsequently displayed poorer interface healing (assessed via collagen organization, collagen maturity, and fibrocartilage regeneration) and graft substance remodeling (assessed via collagen organization and maturity) in 12-week specimens compared with the DSR-PT and DSR-FL groups. Superior interface healing and substance remodeling processes were observed in the DSR-PT group compared with the DSR-FL group. CONCLUSION When compared with routine patch repair, the dual-suspensory reconstructions optimized biomechanical properties and improved interface healing and graft substance remodeling for bridging MRCTs. Furthermore, the dual-suspensory technique using the PT graft presented superior histological and biomechanical characteristics than that using FL. CLINICAL RELEVANCE The dual-suspensory reconstruction technique using banded tendon grafts may enhance bridging constructs for MRCTs in humans, warranting further investigations of clinical outcomes.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenliang Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiulin Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Caiqi Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|