1
|
A Critical Aspect of Bioreactor Designing and Its Application for the Generation of Tissue Engineered Construct: Emphasis on Clinical Translation of Bioreactor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Pluta KD, Ciezkowska M, Wisniewska M, Wencel A, Pijanowska DG. Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Abstract
PURPOSE OF REVIEW While liver transplantation is an established treatment for liver failure, the number of patients with liver failure amenable to such intervention far outnumbers the donor supply of livers. Technologies serving to bridge this gap are required. Artificial livers may serve as an alternative. In this review, we discuss the development of artificial liver technologies. RECENT FINDINGS The accrued clinical data suggest that current liver assist devices may serve a role in specific liver diseases, but for the most part no survival benefit has been demonstrated. More clinical trials are expected to elucidate their utilization. Simultaneously, recent advances in materials and tissue engineering are allowing for exciting developments for novel artificial livers. SUMMARY As there continues to be more clinical data regarding the use of current liver devices, new intricate artificial liver technologies, with the use of sophisticated three-dimensional materials, are being developed that may help improve outcomes of liver failure patients.
Collapse
Affiliation(s)
- Asish C Misra
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Li WJ, Zhu XJ, Yuan TJ, Wang ZY, Bian ZQ, Jing HS, Shi X, Chen CY, Fu GB, Huang WJ, Shi YP, Liu Q, Zeng M, Zhang HD, Wu HP, Yu WF, Zhai B, Yan HX. An extracorporeal bioartificial liver embedded with 3D-layered human liver progenitor-like cells relieves acute liver failure in pigs. Sci Transl Med 2021; 12:12/551/eaba5146. [PMID: 32641490 DOI: 10.1126/scitranslmed.aba5146] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Clinical advancement of the bioartificial liver is hampered by the lack of expandable human hepatocytes and appropriate bioreactors and carriers to encourage hepatic cells to function during extracorporeal circulation. We have recently developed an efficient approach for derivation of expandable liver progenitor-like cells from human primary hepatocytes (HepLPCs). Here, we generated immortalized and functionally enhanced HepLPCs by introducing FOXA3, a hepatocyte nuclear factor that enables potentially complete hepatic function. When cultured on macroporous carriers in an air-liquid interactive bioartificial liver (Ali-BAL) support device, the integrated cells were alternately exposed to aeration and nutrition and grew to form high-density three-dimensional constructs. This led to highly efficient mass transfer and supported liver functions such as albumin biosynthesis and ammonia detoxification via ureagenesis. In a porcine model of drug overdose-induced acute liver failure (ALF), extracorporeal Ali-BAL treatment for 3 hours prevented hepatic encephalopathy and led to markedly improved survival (83%, n = 6) compared to ALF control (17%, n = 6, P = 0.02) and device-only (no-cell) therapy (0%, n = 6, P = 0.003). The blood ammonia concentrations, as well as the biochemical and coagulation indices, were reduced in Ali-BAL-treated pigs. Ali-BAL treatment attenuated liver damage, ameliorated inflammation, and enhanced liver regeneration in the ALF porcine model and could be considered as a potential therapeutic avenue for patients with ALF.
Collapse
Affiliation(s)
- Wei-Jian Li
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xue-Jing Zhu
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Tian-Jie Yuan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Zheng-Qian Bian
- Training Center, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Hong-Shu Jing
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xiao Shi
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Jian Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yao-Ping Shi
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Min Zeng
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Hong-Ping Wu
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China. .,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.
| | - He-Xin Yan
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China. .,Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China.,Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.,Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
5
|
|
6
|
Ocak İ, Topaloğlu S, Acarli K. Posthepatectomy liver failure. Turk J Med Sci 2020; 50:1491-1503. [PMID: 32718126 PMCID: PMC7605090 DOI: 10.3906/sag-2006-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/26/2020] [Indexed: 01/02/2023] Open
Abstract
Liver surgery is one of the most complex surgical interventions with high risk and potential for complications. Posthepatectomy liver failure (PHLF) is a serious complication of liver surgery that occurs in about 10% of patients undergoing major liver surgery. It is the main source of morbidity and mortality. Appropriate surgical techniques and intensive care management are important in preventing PHLF. Early start of the liver support systems is very important for the PHLF patient to recover, survive, or be ready for a liver transplant. Nonbiological and biological liver support systems should be used in PHLF to prepare for treatment or organ transplantation. The definition of the state, underlying pathophysiology and treatment strategies will be reviewed here.
Collapse
Affiliation(s)
- İlhan Ocak
- Department of Critical Care Unit, İstanbul Memorial Hospital, İstanbul, Turkey
| | - Serdar Topaloğlu
- Department of Surgery, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Koray Acarli
- Department of Organ Transplantation, Department of Surgery, İstanbul Memorial Hospital, İstanbul, Turkey
| |
Collapse
|
7
|
Papatheodoridi M, Mazza G, Pinzani M. Regenerative hepatology: In the quest for a modern prometheus? Dig Liver Dis 2020; 52:1106-1114. [PMID: 32868215 DOI: 10.1016/j.dld.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As liver-related morbidity and mortality is rising worldwide and orthotopic liver transplantation (OLT) remains the only standard-of-care for end-stage liver disease or acute liver failure, shortage of donor organs is becoming more prominent. Importantly, advances in regenerative Hepatology and liver bioengineering are bringing new hope to the possibility of restoring impaired hepatic functionality in the presence of acute or chronic liver failure. Hepatocyte transplantation and artificial liver-support systems were the first strategies used in regenerative hepatology but have presented various types of efficiency limitations restricting their widespread use. In parallel, liver bioengineering has been a rapidly developing field bringing continuously novel advancements in biomaterials, three dimensional (3D) scaffolds, cell sources and relative methodologies for creating bioengineered liver tissue. The current major task in liver bioengineering is to build small implantable liver mass for treating inherited metabolic disorders, bioengineered bile ducts for congenital biliary defects and large bioengineered liver organs for transplantation, as substitutes to donor-organs, in cases of acute or acute-on-chronic liver failure. This review aims to summarize the state-of-the-art and upcoming technologies of regenerative Hepatology that are emerging as promising alternatives to the current standard-of care in liver disease.
Collapse
Affiliation(s)
- Margarita Papatheodoridi
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Mazza
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Massimo Pinzani
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|
8
|
Pasqua M, Pereira U, Messina A, de Lartigue C, Vigneron P, Dubart-Kupperschmitt A, Legallais C. HepaRG Self-Assembled Spheroids in Alginate Beads Meet the Clinical Needs for Bioartificial Liver. Tissue Eng Part A 2020; 26:613-622. [PMID: 31914890 DOI: 10.1089/ten.tea.2019.0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In liver tissue engineering, cell culture in spheroids is now well recognized to promote the maintenance of hepatic functions. However, the process leading to spheroids formation is time consuming, costly, and not easy to scale-up for further use in human bioartificial liver (BAL) applications. In this study, we encapsulated HepaRG cells (precursors of hepatocyte-like cells) in 1.5% alginate beads without preforming spheroids. Starting from a given hepatic biomass, we analyzed cell differentiation and metabolic performance for further use in a fluidized-bed BAL. We observed that cells self-rearranged as aggregates within the beads and adequately differentiated over time, in the absence of any differentiating factors classically used. On day 14 postencapsulation, cells displayed a wide range of hepatic features necessary for the treatment of a patient in acute liver failure. These activities include albumin synthesis, ammonia and lactate detoxification, and the efficacy of the enzymes involved in the xenobiotic metabolism (such as CYP1A1/2). Impact statement It has been recognized that culturing cells in spheroids (SPHs) is advantageous as they better reproduce the three-dimensional physiological microenvironment. This approach can be exploited in bioartificial liver applications, where obtaining a functional hepatic biomass is the major challenge. Our study describes an original method for culturing hepatic cells in alginate beads that makes possible the autonomous formation of SPHs after 3 days of culture. In turn, the cells differentiate adequately and display a wide range of hepatic features. They are also capable of treating a pathological plasma model. Finally, this setup can easily be scaled-up to treat acute liver failure.
Collapse
Affiliation(s)
- Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Antonietta Messina
- DHU Hépatinov, Villejuif, France.,UMR_S1193 Inserm/Paris-Saclay University, Villejuif, France
| | - Claire de Lartigue
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Pascale Vigneron
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | | | - Cecile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France.,DHU Hépatinov, Villejuif, France
| |
Collapse
|
9
|
Chamuleau RAFM, Hoekstra R. End-stage liver failure: filling the treatment gap at the intensive care unit. J Artif Organs 2019; 23:113-123. [PMID: 31535298 PMCID: PMC7228976 DOI: 10.1007/s10047-019-01133-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
End-stage liver failure is a condition of collapsing liver function with mortality rates up to 80. Liver transplantation is the only lifesaving therapy. There is an unmet need for therapy to extend the waiting time for liver transplantation or regeneration of the native liver. Here we review the state-of-the-art of non-cell based and cell-based artificial liver support systems, cell transplantation and plasma exchange, with the first therapy relying on detoxification, while the others aim to correct also other failing liver functions and/or modulate the immune response. Meta-analyses on the effect of non-cell based systems show contradictory outcomes for different types of albumin purification devices. For bioartificial livers proof of concept has been shown in animals with liver failure. However, large clinical trials with two different systems did not show a survival benefit. Two clinical trials with plasma exchange and one with transplantation of mesenchymal stem cells showed positive outcomes on survival. Detoxification therapies lack adequacy for most patients. Correction of additional liver functions, and also modulation of the immune system hold promise for future therapy of liver failure.
Collapse
Affiliation(s)
- Robert A F M Chamuleau
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Academic Medical Center, Meibergdreef 69-71, S1-176, 1105 BK, Amsterdam, The Netherlands.
| | - Ruurdtje Hoekstra
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Academic Medical Center, Meibergdreef 69-71, S1-176, 1105 BK, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Gerlach JC. Extracorporeal Mass Exchange Technology Platform for Temporary Liver Support: A Clinical Feasibility Study on a Device and the Cell Source Primary Human Liver Cells. Surg Case Rep 2019. [DOI: 10.31487/j.scr.2019.03.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical feasibility phase-I study data are discussed on the use and the safety of a modular mass exchanger for temporary extracorporeal treatment of liver failure; and the use of the cell source primary human liver cells isolated from discarded transplant organs as a metabolic module in this mass exchanger. This technology platform can be compared with the mass exchange functions of a human placenta before giving birth. The "maternal blood side" can be used with various sources/modules of metabolic support including artificial (e.g. absorber) or biological elements (e.g. cells), separated by membrane compartments. These keep the source of metabolic support from contact with the patient, including the immune cells, while allowing exchange of soluble or protein-bound plasma components for therapy. Each of the multiple independent membrane compartments are bundled towards the in/outlets but interwoven to form a decentralized multi-compartment mass exchanger within an effector module compartment. The use of liver cells as a metabolic module in this compartment results in its function as a bioreactor. A combination with further modules outside of the mass exchanger was demonstrated through a continuous SPAD for detoxification. Nine patients (5 m, 4 f) with a median age of 43 years (range 11-55 years) were treated with a total of 11 metabolic modules in 12 sessions, with overall treatment times ranging from 11 to 216 hours. Patients suffered from acute-on-chronic liver failure (AoCLF, n=3), acute liver failure (ALF, n=3) and primary non-function graft after liver transplantation (PNF, n=3). Treatment resulted in a one-year survival of 78%. The results showed a significant decrease in thrombocytes and fibrinogen. No severe adverse effects were found. One patient (AoCLF) recovered without transplantation and remained alive for the one-year follow-up. Six patients (3 ALF, 2 PNF, and 1 AoCLF) were successfully bridged to transplantation, and two (1 AoCLF, 1 PNF) died within ten days after termination of therapy. Total and conjugated bilirubin, ammonia, urea and creatinine were significantly reduced by the end of therapy, compared to baseline. The MELD score decreased significantly, whereas no significant improvements were observed in APACHE-II, APACHE-III, SOFA and Child-Pugh scores.
Conclusion: The mass exchanger technology platform, the Core Module used with primary human liver cells as Metabolic Module, proved to be clinically feasible and safe. Further clinical studies are required to prove the efficacy of such therapies. However, the clinical impact of using human liver cells as a Metabolic Module is limited and a reliable, biocompatible and effective metabolic source is in need.
Collapse
|
11
|
Abstract
Extracorporeal liver support (ECLS) emerged from the need stabilize high-acuity liver failure patients with the highest risk of death. The goal is to optimize the hemodynamic, neurologic, and biochemical parameters in preparation for transplantation or to facilitate spontaneous recovery. Patients with acute liver failure and acute-on-chronic liver failure stand to benefit from these devices, especially because they have lost many of the primary functions of the liver, including detoxifying the blood of various endogenous and exogenous substances, manufacturing circulating proteins, secreting bile, and storing energy. Existing ECLS devices are designed to mimic some of these functions.
Collapse
Affiliation(s)
- Prem A Kandiah
- Division of Neuro Critical Care & co appt. in 5E Surgical/Transplant Critical Care, Department of Neurosurgery, Emory University Hospital, 1364 Clifton Road Northeast, 2nd Floor, 2D ICU- D264, Atlanta, GA 30322, USA; Department of Neurology, Emory University Hospital, 1364 Clifton Road Northeast, 2nd Floor, 2D ICU- D264, Atlanta, GA 30322, USA
| | - Ram M Subramanian
- Critical Care and Hepatology, Emory University, 1364 Clifton Road Northeast, 2nd Floor, 2D ICU- D264, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Wang YM, Li K, Dou XG, Bai H, Zhao XP, Ma X, Li LJ, Chen ZS, Huang YC. Treatment of AECHB and Severe Hepatitis (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498915 DOI: 10.1007/978-94-024-1603-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the general treatment and immune principles and internal management for AECHB and HBV ACLF, including ICU monitoring, general supportive medications/nutrition/nursing, immune therapy, artificial liver supportive systems, hepatocyte/stem cell, and liver transplant, management for special populations, frequently clinical complications and the utilization of Chinese traditional medicines.Early clinical indicators of severe hepatitis B include acratia, gastrointestinal symptoms, a daily increase in serum bilirubin >1 mg/dL, toxic intestinal paralysis, bleeding tendency and mild mind anomaly or character change, and the presence of other diseases inducing severe hepatitis. Laboratory indicators include T-Bil, PTA, cholinesterase, pre-albumin and albumin. The roles of immune indicators (such as IL-6, TNF-α, and fgl2), gene polymorphisms, HBV genotypes, and gene mutations as early clinical indicators. Intensive Care Unit monitor patients with severe hepatitis include intracranial pressure, infection, blood dynamics, respiratory function, renal function, blood coagulation function, nutritional status and blood purification process. Nursing care should not only include routine care, but psychological and special care (complications). Nutrition support and nursing care should be maintained throughout treatment for severe hepatitis. Common methods of evaluating nutritional status include direct human body measurement, creatinine height index (CHI) and subject global assessment of nutrition (SGA). Malnourished patients should receive enteral or parenteral nutrition support. Immune therapies for severe hepatitis include promoting hepatocyte regeneration (e.g. with glucagon, hepatocyte growth factor and prostaglandin E1), glucocorticoid suppressive therapy, and targeting molecular blocking. Corticosteroid treatment should be early and sufficient, and adverse drug reactions monitored. Treatments currently being investigated are those targeting Toll-like receptors, NK cell/NK cell receptors, macrophage/immune coagulation system, CTLA-4/PD-1 and stem cell transplantation. In addition to conventional drugs and radioiodine, corticosteroids and artificial liver treatment can also be considered for severe hepatitis patients with hyperthyreosis. Patients with gestational severe hepatitis require preventive therapy for fetal growth restriction, and it is necessary to choose the timing and method of fetal delivery. For patients with both diabetes and severe hepatitis, insulin is preferred to oral antidiabetic agents to control blood glucose concentration. Liver toxicity of corticosteroids and immune suppressors should be monitored during treatment for severe hepatitis in patients with connective tissue diseases including SLE, RA and sicca syndrome. Patient with connective tissue diseases should preferably be started after the antiviral treatment with nucleos(t)ide analogues. An artificial liver can improve patients’ liver function; remove endotoxins, blood ammonia and other toxins; correct amino acid metabolism and coagulation disorders; and reverse internal environment imbalances. Non-bioartificial livers are suitable for patients with early and middle stage severe hepatitis; for late-stage patients waiting for liver transplantation; and for transplanted patients with rejection reaction or transplant failure. The type of artificial liver should be determined by each patient’s condition and previous treatment purpose, and patients should be closely monitored for adverse reactions and complications. Bio- and hybrid artificial livers are still under development. MELD score is the international standard for choosing liver transplantation. Surgical methods mainly include the in situ classic type and the piggyback type; transplantation includes no liver prophase, no liver phase or new liver phase. Preoperative preparation, management of intraoperative and postoperative complications and postoperative long-term treatment are keys to success. Severe hepatitis belongs to the categories of “acute jaundice”, “scourge jaundice”, and “hot liver” in traditional Chinese medicine. Treatment methods include Chinese traditional medicines, acupuncture and acupoint injection, external application of drugs, umbilical compress therapy, drip, blow nose therapy, earpins, and clysis. Dietary care is also an important part of traditional Chinese medicine treatment.
Collapse
|
13
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
14
|
Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357683 DOI: 10.1007/978-981-13-0947-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.
Collapse
|
15
|
Nardo B, Montalti R, Puviani L, Pacilè V, Beltempo P, Bertelli R, Licursi M, Pariali M, Cianciavicchia D. An experimental pilot study on controlled portal vein arterialization with an extracorporeal device in the swine model of partial liver resection and ischemia. Int J Artif Organs 2018; 29:912-8. [PMID: 17033999 DOI: 10.1177/039139880602900912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM To determine whether the physiologically oxygenated arterial blood reversed in the portal system by means of portal vein arterialization (PVA) through an extracorporeal device which we have called L.E.O2.NARDO (Liver Extracorporeal Oxygen. NARDO) is effective in treating swine with subtotal hepatectomy leading to acute liver failure (ALF). METHODS Ten swine with ALF induced by 85-90% liver resection and five minutes of ischemia-reperfusion injury were randomly divided into two groups: five animals received PVA extracorporeal treatment and five swine were not-treated (control group). Blood was withdrawn from the iliac artery and reversed in the portal venous system. An extracorporeal device was interposed between the outflow and the inflow in order to monitoring the hemodynamic parameters. Each treatment lasted 6 hours. Serum and liver samples were collected in both groups. The survival was assessed at 1 week. RESULTS The PVA-extracorporeal treatment yielded beneficial effects for subtotal hepatectomy-induced ALF swine with decreased serum ammonia, transaminases and total bilirubin as compared with the untreated group. INR recovered rapidly in the PVA-extracorporeal group remaining significantly lower than in untreated animals. The 7-day survival of PVA-extracorporeal group swine was significantly higher than that of untreated animals, with a statistically significant difference (p<0.05). Four swine in the PVA-extracorporeal group survived at 1 week while none of the swine in the control group were alive at that time; an average time of 144h+/-13h and 24.4h+/-5h was observed in the PVA-extracorporeal and control groups, respectively. CONCLUSIONS Arterial blood supply in the portal system through the extracorporeal device is easily applicable, efficacious, safe and may represent a novel approach for ALF swine induced by subtotal liver resection.
Collapse
Affiliation(s)
- B Nardo
- Department of Surgery, Intensive Care Unit and Transplantations, S. Orsola Hospital, University of Bologna, Bologna - Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang YJ, He NH, Wang ZW, Niu RZ, Liu J, Wen HW, Li JJ, Li MD, Wang YM. Assessment of the Combined Effect of Plasma Exchange and Plasma Perfusion on Patients with Severe Hepatitis Awaiting Orthotopic Liver Transplantation. Int J Artif Organs 2018; 27:40-4. [PMID: 14986595 DOI: 10.1177/039139880402700109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To determine if plasma exchange combined with plasma perfusion is a reliable and effective temporary liver support treatment for patients on the waiting list for OLT, we tested this method in 5 patients with end-stage and 3 patients with middle-stage severe hepatitis. Four patients were successfully controlled until a donor liver was available 4 to 13 days later. In contrast, the remaining 4 patients were not adequately controlled by this treatment and experienced aggravated disease progression, dying 3 to 8 days after treatment while still awaiting OLT. Of those 4 patients who received OLT, 2 patients died from multi-organ failure caused by hepatic failure, while the other 2 survived. These findings show that plasma exchange combined with plasma perfusion provides temporary support for some patients on the waiting list for OLT. The ability of patients to successfully bridge to OLT is closely associated with the degree of liver failure, complications, multi-organ failure, and the length of the waiting period for a donor liver.
Collapse
Affiliation(s)
- Y J Wang
- Institute of Infectious Diseases, Artificial Liver Unit, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- J P O'Beirne
- Liver Intensive Care Unit, Kings College Hospital, London, UK
| | | |
Collapse
|
18
|
Selden C, Bundy J, Erro E, Puschmann E, Miller M, Kahn D, Hodgson H, Fuller B, Gonzalez-Molina J, Le Lay A, Gibbons S, Chalmers S, Modi S, Thomas A, Kilbride P, Isaacs A, Ginsburg R, Ilsley H, Thomson D, Chinnery G, Mankahla N, Loo L, Spearman CW. A clinical-scale BioArtificial Liver, developed for GMP, improved clinical parameters of liver function in porcine liver failure. Sci Rep 2017; 7:14518. [PMID: 29109530 PMCID: PMC5674071 DOI: 10.1038/s41598-017-15021-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
Liver failure, whether arising directly from acute liver failure or from decompensated chronic liver disease is an increasing problem worldwide and results in many deaths. In the UK only 10% of individuals requiring a liver transplant receive one. Thus the need for alternative treatments is paramount. A BioArtificial Liver machine could temporarily replace the functions of the liver, buying time for the patient's liver to repair and regenerate. We have designed, implemented and tested a clinical-scale BioArtificial Liver machine containing a biomass derived from a hepatoblastoma cell-line cultured as three dimensional organoids, using a fluidised bed bioreactor, together with single-use bioprocessing equipment, with complete control of nutrient provision with feedback BioXpert recipe processes, and yielding good phenotypic liver functions. The methodology has been designed to meet specifications for GMP production, required for manufacture of advanced therapy medicinal products (ATMPs). In a porcine model of severe liver failure, damage was assured in all animals by surgical ischaemia in pigs with human sized livers (1.2-1.6 kg liver weights). The BioArtificial liver (UCLBAL) improved important prognostic clinical liver-related parameters, eg, a significant improvement in coagulation, reduction in vasopressor requirements, improvement in blood pH and in parameters of intracranial pressure (ICP) and oxygenation.
Collapse
Affiliation(s)
- Clare Selden
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom.
| | - James Bundy
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Eloy Erro
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Eva Puschmann
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Malcolm Miller
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Delawir Kahn
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Humphrey Hodgson
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Barry Fuller
- Dept. of Surgery, UCL Medical School, Royal Free Hospital, London, NW3 2QG, UK
| | - Jordi Gonzalez-Molina
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Aurelie Le Lay
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Stephanie Gibbons
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Sherri Chalmers
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Sunil Modi
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Amy Thomas
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Peter Kilbride
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Agnes Isaacs
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Richard Ginsburg
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Helen Ilsley
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - David Thomson
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Galya Chinnery
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Ncedile Mankahla
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Lizel Loo
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - C Wendy Spearman
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
19
|
van Wenum M, Treskes P, Tang CY, Coppens EJ, Jansen K, Hendriks EJ, Camus S, van Gulik TM, Chamuleau RAFM, Hoekstra R. Scaling-up of a HepaRG progenitor cell based bioartificial liver: optimization for clinical application and transport. Biofabrication 2017; 9:035001. [PMID: 28664876 DOI: 10.1088/1758-5090/aa7657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new generation of bioartificial livers, based on differentiated proliferative hepatocyte sources, has been developed. Several practicable and regulatory demands have to be addressed before these can be clinically evaluated. We identified three main hurdles: (1) expansion and preservation of the biocomponent, (2) development of scaled-up culture conditions and (3) transport of the device to the bedside. In this study we address these three issues for the HepaRG-progenitor cell line-loaded AMC-Bioartificial Liver. (1) HepaRG cells were expanded in large quantities and then cryopreserved or loaded directly into bioreactors. After 3 weeks of culture, key hepatic functions (ammonia/lactate elimination, apolipoprotein A1 synthesis and cytochrome P450 3A4 activity) did not differ significantly between the two groups. (2) Bioartificial livers were scaled up from 9 ml to 540 ml priming volume, with preservation of normalized hepatic functionality. Quantification of amino acid consumption revealed rapid depletion of several amino acids. (3) Whole-device cryopreservation and cooled preservation induced significant loss of hepatic functionality, whereas simulated transport from culture-facility to the bedside in a clinical-grade transport unit with controlled temperature maintenance, medium perfusion and gas supply did not affect functionality. In addition, we assessed tumorigenicity of HepaRG cells in immune-incompetent mice and found no tumor formation of HepaRG cells (n = 12), while HeLa cells induced formation of carcinomas in eight out of 12 mice in 140 days.
Collapse
Affiliation(s)
- Martien van Wenum
- Surgical laboratory, Academic Medical Center, University of Amsterdam, The Netherlands. Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
van de Kerkhove MP, Hoekstra R, van Nooijen FC, Spoelstra FOB, Doorschodt BM, van Wijk ACWA, Poyck PPC, Chamuleau RAFM, van Gulik TM. Subnormothermic Preservation Maintains Viability and Function in a Porcine Hepatocyte Culture Model Simulating Bioreactor Transport. Cell Transplant 2017; 15:161-8. [PMID: 16719049 DOI: 10.3727/000000006783982089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bioartificial liver (BAL) systems have been developed to bridge patients with acute liver failure (ALF) to liver transplantation or liver regeneration. Clinical application of BAL systems is dependent on the supportive quality of cells used and direct availability of the whole system. Reliable transport of BAL systems from the laboratory to remote treatment centers is therefore inevitable. Subsequently, preservation conditions play a crucial role during transport of a BAL, with temperature being one of the most determining factors. In this study, we assessed the effect of subnormothermic preservation on freshly isolated porcine hepatocytes cultured in monolayer under oxygenation. Additionally, the effect of the University of Wisconsin (UW) preservation solution was compared with Williams' E (WE) culture medium at 4°C. The control group was cultured for 3 days at 37°C, whereas the transport groups were cultured at 4°C, 15°C, 21°C, or 28°C for 24 h at day 2. All groups were tested each day for cell damage and hepatic functions. Subnormothermic culture (i.e., 15°C to 28°C) for a period of 24 h did not reduce any hepatic function and did not increase cellular damage. In contrast, culture of hepatocytes in WE medium and preservation in UW solution at 4°C significantly reduced hepatic function. In conclusion, freshly isolated porcine hepatocytes can be preserved for 24 h at subnormothermic temperatures as low as 15°C. Future research will focus on the implementation of the AMC-BAL in an oxygenated culture medium perfusion system for transport between the laboratory and the hospital.
Collapse
Affiliation(s)
- M P van de Kerkhove
- Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Extracorporeal liver support systems (ELSS), encompassing artificial and bioartificial devices, have been used for decades, with the aim of supporting patients with acute liver failure and acute-on chronic liver failure, as a bridge to recovery (acute liver failure only) or liver transplantation, in an era of organ donation shortage. Although biochemical efficacy has been consistently demonstrated by these devices, translation into clinical and survival benefits has been unclear, due to study limitations and lack of reliable prognostic scoring in liver failure. Consequently, extracorporeal devices are not widely accepted as routine therapy in adult liver failure. Recent large multicentre trials using artificial liver systems have not revealed beneficial outcomes associated with albumin dialysis but plasma exchange practices have shown some potential. In paediatric liver failure, data on extracorporeal systems is scarce, comprising few reports on albumin dialysis (namely, Molecular Adsorbent Recirculating System; MARS) and plasma exchange. When extrapolating data from adult studies differences in disease presentation, aetiology, prognosis and the suitability, and safety of such devices in children must be considered. The aim of this review is to critically appraise current practices of extracorporeal liver support systems to help determine efficacy in paediatric liver failure.
Collapse
|
22
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Abstract
Liver disease is a leading cause of morbidity and mortality. Liver transplantation remains the only proven treatment for end-stage liver failure but is limited by the availability of donor organs. Hepatocyte cell therapy, either with bioartificial liver devices or hepatocyte transplantation, may help address this by delaying or preventing liver transplantation. Early clinical studies have shown promising results, however in most cases, the benefit has been short lived and so further research into these therapies is required. Alternative sources of hepatocytes, including stem cell-derived hepatocytes, are being investigated as the isolation of primary human hepatocytes is limited by the same shortage of donor organs. This review summarises the current clinical experience of hepatocyte cell therapy together with an overview of possible alternative sources of hepatocytes. Current and future areas for research that might lead towards the realisation of the full potential of hepatocyte cell therapy are discussed.
Collapse
Affiliation(s)
- David Christopher Bartlett
- a NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham, Birmingham, UK.,b Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Philip N Newsome
- a NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham, Birmingham, UK.,b Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
24
|
Ghosh S. Human regeneration: An achievable goal or a dream? J Biosci 2016; 41:157-65. [PMID: 26949097 DOI: 10.1007/s12038-016-9589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The main objective of regenerative medicine is to replenish cells or tissues or even to restore different body parts that are lost or damaged due to disease, injury and aging. Several avenues have been explored over many decades to address the fascinating problem of regeneration at the cell, tissue and organ levels. Here we discuss some of the primary approaches adopted by researchers in the context of enhancing the regenerating ability of mammals. Natural regeneration can occur in different animal species, and the underlying mechanism is highly relevant to regenerative medicine-based intervention. Significant progress has been achieved in understanding the endogenous regeneration in urodeles and fishes with the hope that they could help to reach our goal of designing future strategies for human regeneration.
Collapse
Affiliation(s)
- Sukla Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P.C. Road, Kolkata 700 009, India,
| |
Collapse
|
25
|
Aron J, Agarwal B, Davenport A. Extracorporeal support for patients with acute and acute on chronic liver failure. Expert Rev Med Devices 2016; 13:367-80. [PMID: 26894968 DOI: 10.1586/17434440.2016.1154455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of patients developing liver failure; acute on chronic liver failure and acute liver failure continues to increase, along with the demand for donor livers for transplantation. As such there is a clinical need to develop effective extracorporeal devices to support patients with acute liver failure or acute-on-chronic liver failure to allow time for hepatocyte regeneration, and so avoiding the need for liver transplantation, or to bridge the patient to liver transplantation, and also potentially to provide symptomatic relief for patients with cirrhosis not suitable for transplantation. Currently devices can be divided into those designed to remove toxins, including plasma exchange, high permeability dialyzers and adsorption columns or membranes, coupled with replacement of plasma proteins; albumin dialysis systems; and bioartificial devices which may provide some of the biological functions of the liver. In the future we expect combinations of these devices in clinical practice, due to the developments in bioartificial scaffolds.
Collapse
Affiliation(s)
- Jonathan Aron
- a King's College Hospital , London , United Kingdom of Great Britain and Northern Ireland
| | - Banwari Agarwal
- b Intensive Care Unit , Royal Free Hospital , London , United Kingdom of Great Britain and Northern Ireland
| | - Andrew Davenport
- c UCL Centre for Nephrology , Royal free Hospital , London , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
26
|
Shi XL, Gao Y, Yan Y, Ma H, Sun L, Huang P, Ni X, Zhang L, Zhao X, Ren H, Hu D, Zhou Y, Tian F, Ji Y, Cheng X, Pan G, Ding YT, Hui L. Improved survival of porcine acute liver failure by a bioartificial liver device implanted with induced human functional hepatocytes. Cell Res 2016; 26:206-216. [PMID: 26768767 PMCID: PMC4746613 DOI: 10.1038/cr.2016.6] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 02/08/2023] Open
Abstract
Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system.
Collapse
Affiliation(s)
- Xiao-Lei Shi
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yimeng Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Yupeng Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Hucheng Ma
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lulu Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Pengyu Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuan Ni
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dan Hu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Feng Tian
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Guoyu Pan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Tao Ding
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
27
|
Liu XY, Peng F, Pan YJ, Chen J. Advanced therapeutic strategies for HBV-related acute-on-chronic liver failure. Hepatobiliary Pancreat Dis Int 2015; 14:354-60. [PMID: 26256078 DOI: 10.1016/s1499-3872(15)60338-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is increasingly recognized as a distinct clinical entity and is associated with a high short-term mortality. The most common cause of ACLF is chronic hepatitis B worldwide. Currently, there is no standardized approach for the management of ACLF and the efficacy and safety of therapeutic modalities are uncertain. DATA SOURCES PubMed and Web of Science were searched for English-language articles. The search criteria focused on clinical trials and observational studies on the treatment of patients with HBV-related ACLF. RESULTS Therapeutic approaches for ACLF in patients with chronic hepatitis B included nucleos(t)ide analogues, artificial liver support systems, immune regulatory therapy, stem cell therapy and liver transplantation. All of these therapeutic approaches have shown the potential to improve liver function and increase patients' survival rate, but most of the studies were not randomized or controlled. CONCLUSION Substantial challenges for the treatment of HBV-related ACLF remain and further basic research and randomized controlled clinical trials are needed.
Collapse
Affiliation(s)
- Xin-Yu Liu
- Liver Diseases Center, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | | | | | | |
Collapse
|
28
|
Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells 2015; 8:36-47. [PMID: 26019753 PMCID: PMC4445708 DOI: 10.15283/ijsc.2015.8.1.36] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
The liver is the largest organ in the body; it has a complex architecture, wide range of functions and unique regenerative capacity. The growing incidence of liver diseases worldwide requires increased numbers of liver transplant and leads to an ongoing shortage of donor livers. To meet the huge demand, various alternative approaches are being investigated including, hepatic cell transplantation, artificial devices and bioprinting of the organ itself. Adult hepatocytes are the preferred cell sources, but they have limited availability, are difficult to isolate, propagate poor and undergo rapid functional deterioration in vitro. There have been efforts to overcome these drawbacks; by improving culture condition for hepatocytes, providing adequate extracellular matrix, co-culturing with extra-parenchymal cells and identifying other cell sources. Differentiation of human stem cells to hepatocytes has become a major interest in the field of stem cell research and has progressed greatly. At the same time, use of decellularized organ matrices and 3 D printing are emerging cutting-edge technologies for tissue engineering, opening up new paths for liver regenerative medicine. This review provides a compact summary of the issues, and the locations of liver support systems and tissue engineering, with an emphasis on reproducible and useful sources of hepatocytes including various candidates formed by differentiation from stem cells.
Collapse
Affiliation(s)
- Soo Young Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Han Joon Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Portal blood arterialization with an extracorporeal device to treat toxic acute hepatic failure in a swine model. Int J Artif Organs 2014; 37:847-53. [PMID: 25501739 DOI: 10.5301/ijao.5000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to determine whether a controlled portal blood arterialization by a liver extracorporeal device (L.E.O2 NARDO) is effective in treating acute hepatic failure (AHF) induced through CCl4 administration in a swine model. METHODS 20 swine with AHF induced by intraperitoneal injection of carbon tetrachloride (CCl4) in oil solution, were randomly divided into two groups: animals receiving L.E.O2 NARDO treatment 48 h after the intoxication (study group); animals sham operated 48 h after the intoxication (control group). Blood was withdrawn from the iliac artery and reversed in the portal venous system by an interposed extracorporeal device. Each treatment lasted 6 h. The survival was assessed at 5 days after L.E.O2 NARDO treatment or sham operation. In both groups blood samples were collected for biochemical analysis at different time points and liver biopsies were collected 48 h after intoxication and at sacrifice. RESULTS We observed decreased transaminases levels and a more rapid INR recovery in the study group, as compared to the control group. Eight animals of the study group vs. two animals of the control group survived at five days after surgery with a statistically significant difference (p<0.05). Liver biopsies performed at sacrifice showed a reduction of the damaged hepatic areas in the study group as compared to the control group. CONCLUSIONS Arterial blood supply in the portal system through the L.E.O2 NARDO device is easily applicable, efficacious, and safe in a swine model of AHF induced by CCl4 intoxication.
Collapse
|
30
|
Michel SG, Madariaga MLL, Villani V, Shanmugarajah K. Current progress in xenotransplantation and organ bioengineering. Int J Surg 2014; 13:239-244. [PMID: 25496853 DOI: 10.1016/j.ijsu.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/30/2014] [Accepted: 12/07/2014] [Indexed: 12/25/2022]
Abstract
Organ transplantation represents a unique method of treatment to cure people with end-stage organ failure. Since the first successful organ transplant in 1954, the field of transplantation has made great strides forward. However, despite the ability to transform and save lives, transplant surgery is still faced with a fundamental problem the number of people requiring organ transplants is simply higher than the number of organs available. To put this in stark perspective, because of this critical organ shortage 18 people every day in the United States alone die on a transplant waiting list (U.S. Department of Health & Human Services, http://organdonor.gov/about/data.html). To address this problem, attempts have been made to increase the organ supply through xenotransplantation and more recently, bioengineering. Here we trace the development of both fields, discuss their current status and highlight limitations going forward. Ultimately, lessons learned in each field may prove widely applicable and lead to the successful development of xenografts, bioengineered constructs, and bioengineered xeno-organs, thereby increasing the supply of organs for transplantation.
Collapse
Affiliation(s)
- Sebastian G Michel
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Department of Cardiac Surgery, Ludwig-Maximilians-Universität München, Munich D-81377, Germany.
| | - Maria Lucia L Madariaga
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02129, USA
| | - Vincenzo Villani
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA
| | - Kumaran Shanmugarajah
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Division of Surgery, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
31
|
Abstract
Despite the tremendous hurdles presented by the complexity of the liver's structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.
Collapse
Affiliation(s)
- Sangeeta N Bhatia
- Institute for Medical Engineering & Science at MIT, Department of Electrical Engineering and Computer Science, David H. Koch Institute at MIT, and the Howard Hughes Medical Institute, Cambridge, MA 02139, USA. Division of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, and McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
32
|
Abstract
The treatment of end-stage liver disease and acute liver failure remains a clinically relevant issue. Although orthotopic liver transplantation is a well-established procedure, whole-organ transplantation is invasive and increasingly limited by the unavailability of suitable donor organs. Artificial and bioartificial liver support systems have been developed to provide an alternative to whole organ transplantation, but despite three decades of scientific efforts, the results are still not convincing with respect to clinical outcome. In this Review, conceptual limitations of clinically available liver support therapy systems are discussed. Furthermore, alternative concepts, such as hepatocyte transplantation, and cutting-edge developments in the field of liver support strategies, including the repopulation of decellularized organs and the biofabrication of entirely new organs by printing techniques or induced organogenesis are analysed with respect to clinical relevance. Whereas hepatocyte transplantation shows promising clinical results, at least for the temporary treatment of inborn metabolic diseases, so far data regarding implantation of engineered hepatic tissue have only emerged from preclinical experiments. However, the evolving techniques presented here raise hope for bioengineered liver support therapies in the future.
Collapse
|
33
|
Zhang S, Chen L, Liu T, Wang Z, Wang Y. Integration of single-layer skin hollow fibers and scaffolds develops a three-dimensional hybrid bioreactor for bioartificial livers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:207-216. [PMID: 23963686 DOI: 10.1007/s10856-013-5033-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
Bioartificial liver support systems are expected to be an effective therapy as a "bridge" for liver transplantation or reversible acute liver disease. A major roadblock in the application of bioartificial livers is the need for a bioreactor that fully meets the requirements of hepatocyte culture, mass transfer and immunobarriers. In this study, we developed a three-dimensional hybrid bioreactor (3DHB) on a base of single-layer skin polyethersulfone hollow fibers by integrating with polyurethane scaffolds. The mass transfer of bilirubin and albumin from the intracapillary space to the extracapillary space of the hollow fibers was not significantly different between 3DHBs and hollow fiber bioreactors (HFBs). Cell viability staining showed that high-density hepatocytes were uniformly found in different regions of the 3DHB after 7 days of culture. Liver-specific functions of human mature hepatocytes cultured in the 3DHB, such as albumin secretion, urea production, ammonia removal rate and cytochrome P450 activity, were maintained stably and were significantly higher compared with the HFB. These results indicated that the 3DHB has good mass transfer and improves cell distribution and liver-specific functions. Meanwhile, the ammonia and unconjugated bilirubin concentrations in plasma from patients with liver failure were significantly decreased during 6 h of circulation by hepatocytes cultured in the 3DHB. Most hepatocytes in the 3DHB were viable after 6 h exposure to the patient plasma. We further demonstrated that bioartificial liver systems with 3DHB can remove toxins from and endure the deleterious effects of the patient plasma. Therefore, the 3DHB has the potential to accomplish different actions for the clinical application of bioartificial livers.
Collapse
Affiliation(s)
- Shichang Zhang
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China,
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Doo-Hoon Lee
- Biomedical Research Institute, Lifeliver Co. Ltd., Yongin, Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Selden C, Spearman CW, Kahn D, Miller M, Figaji A, Erro E, Bundy J, Massie I, Chalmers SA, Arendse H, Gautier A, Sharratt P, Fuller B, Hodgson H. Evaluation of encapsulated liver cell spheroids in a fluidised-bed bioartificial liver for treatment of ischaemic acute liver failure in pigs in a translational setting. PLoS One 2013; 8:e82312. [PMID: 24367515 PMCID: PMC3867376 DOI: 10.1371/journal.pone.0082312] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Liver failure is an increasing problem. Donor-organ shortage results in patients dying before receiving a transplant. Since the liver can regenerate, alternative therapies providing temporary liver-support are sought. A bioartificial-liver would temporarily substitute function in liver failure buying time for liver regeneration/organ-procurement. Our aim: to develop a prototype bioartificial-liver-machine (BAL) comprising a human liver-derived cell-line, cultured to phenotypic competence and deliverable in a clinical setting to sites distant from its preparation. The objective of this study was to determine whether its use would improve functional parameters of liver failure in pigs with acute liver failure, to provide proof-of-principle. HepG2 cells encapsulated in alginate-beads, proliferated in a fluidised-bed-bioreactor providing a biomass of 4-6 × 10(10)cells, were transported from preparation-laboratory to point-of-use operating theatre (6000 miles) under perfluorodecalin at ambient temperature. Irreversible ischaemic liver failure was induced in anaesthetised pigs, after portal-systemic-shunt, by hepatic-artery-ligation. Biochemical parameters, intracranial pressure, and functional-clotting were measured in animals connected in an extracorporeal bioartificial-liver circuit. Efficacy was demonstrated comparing outcomes between animals connected to a circuit containing alginate-encapsulated cells (Cell-bead BAL), and those connected to circuit containing alginate capsules without cells (Empty-bead BAL). Cells of the biomass met regulatory standards for sterility and provenance. All animals developed progressive liver-failure after ischaemia induction. Efficacy of BAL was demonstrated since animals connected to a functional biomass (+ cells) had significantly smaller rises in intracranial pressure, lower ammonia levels, more bilirubin conjugation, improved acidosis and clotting restoration compared to animals connected to the circuit without cells. In the +cell group, human proteins accumulated in pigs' plasma. Delivery of biomass using a short-term cold-chain enabled transport and use without loss of function over 3 days. Thus, a fluidised-bed bioreactor containing alginate-encapsulated HepG2 cell-spheroids improved important parameters of acute liver failure in pigs. The system can readily be up-scaled and transported to point-of-use justifying development at clinical scale.
Collapse
Affiliation(s)
- Clare Selden
- University College London Institute for Liver & Digestive Health, University College London Medical School, Royal Free Hospital Campus, Hampstead, London, United Kingdom
| | - Catherine Wendy Spearman
- Division of Hepatology, Department of Medicine, University of Cape Town, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Delawir Kahn
- Department of Surgery, University of Cape Town, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Malcolm Miller
- Department of Anaesthetics, University of Cape Town, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Anthony Figaji
- Department Neurosurgery, Red Cross Children's Hospital, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Eloy Erro
- University College London Institute for Liver & Digestive Health, University College London Medical School, Royal Free Hospital Campus, Hampstead, London, United Kingdom
| | - James Bundy
- University College London Institute for Liver & Digestive Health, University College London Medical School, Royal Free Hospital Campus, Hampstead, London, United Kingdom
| | - Isobel Massie
- University College London Institute for Liver & Digestive Health, University College London Medical School, Royal Free Hospital Campus, Hampstead, London, United Kingdom
| | - Sherri-Ann Chalmers
- University College London Institute for Liver & Digestive Health, University College London Medical School, Royal Free Hospital Campus, Hampstead, London, United Kingdom
| | - Hiram Arendse
- Department of Surgery, University of Cape Town, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Aude Gautier
- University College London Institute for Liver & Digestive Health, University College London Medical School, Royal Free Hospital Campus, Hampstead, London, United Kingdom
| | - Peter Sharratt
- Biochemistry Department, University of Cambridge, Cambridge, United Kingdom
| | - Barry Fuller
- Division of Surgery and Interventional Science, University College London Medical School, Royal Free Hospital Campus, Hampstead, London, United Kingdom
| | - Humphrey Hodgson
- University College London Institute for Liver & Digestive Health, University College London Medical School, Royal Free Hospital Campus, Hampstead, London, United Kingdom
| |
Collapse
|
36
|
Liu H, You S, Rong Y, Wu Y, Zhu B, Wan Z, Liu W, Mao P, Xin S. Newly established human liver cell line: a potential cell source for the bioartificial liver in the future. Hum Cell 2013; 26:155-61. [PMID: 23797278 DOI: 10.1007/s13577-013-0068-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 05/29/2013] [Indexed: 12/26/2022]
Abstract
The clinical use of a bioartificial liver (BAL) device strongly depends on the development of human liver cell lines. The aim of this study was to establish and assess the potential use of the stable HepG2 cell line expressing human augmenter of liver regeneration (hALR). The cDNA encoding hALR protein was inserted into pcDNA3.1 to generate pcDNA3.1/hALR, following which pcDNA3.1/hALR was transfected to HepG2 to establish a cell line that stably expressed hALR (HepG2 hALR). A total of 800 million HepG2 hALR cells were loaded into laboratory-scale BAL bioreactors and cultured for 4 days, during which time the parameters of hepatocyte-specific function and general metabolism were determined. The cell line that stably expressed human ALR was successfully established. The expression of recombinant hALR was higher in the HepG2 hALR cell line than in the HepG2 cell line based on immunofluorescence and immunoblot assays. In samples removed from the BAL bioreactor on day 4, compared to HepG2 cells, HepG2 hALR cells produced significantly more alpha-fetoprotein (127.3 %; P < 0.05) and urea (128.8 %; P < 0.05) and eliminated more glucose (135.7 %; P < 0.05); the level of human albumin was also higher (117 %) in HepG2 hALR cells, but the difference was not significant (P > 0.05). After 24 h of culture, the mean lidocaine removal rate was 65.1 and 57.3 % in culture supernatants of HepG2 hALR and HepG2 cell lines, respectively (P < 0.01). Based on these results, we conclude that HepG2 hALR cells showed liver-specific functionality when cultured inside the bioreactor and would therefore be a potential cell source for BAL.
Collapse
|
37
|
Lewandowska-Szumiel M, Kalaszczynska I. Promising perspectives towards regrowing a human arm. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2651-2657. [PMID: 24077995 PMCID: PMC3825636 DOI: 10.1007/s10856-013-5048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Despite the great enthusiasm about tissue engineering during the 1980s and the many significant basic observations made since then, the clinical application of tissue-engineered products has been limited. However, the prospect of creating new human tissues and organs is still exciting and continues to be a significant challenge for scientists and clinicians. A human arm is an extremely complicated biological construction. Considering regrowing a human arm requires asking about the current state-of-the-art of tissue engineering and the real capabilities that it may offer within a realistic time horizon. This work briefly addresses the state-of-the-art in the fields of cells and scaffolds that have high regenerative potential. Additional tools that are required to reconstruct more complex parts of the body, such as a human arm, seem achievable with the already available more sophisticated culture systems including three-dimensional organization, dynamic conditions and co-cultures. Finally, we present results on cell differentiation and cell and tissue maturation in culture when cells are exposed to mechanical forces. We postulate that in the foreseeable future even such complicated structures such as a human arm will be regrown in full in vitro under the conditions of a mechanically controlled co-culture system.
Collapse
Affiliation(s)
- Malgorzata Lewandowska-Szumiel
- Tissue Engineering Lab, Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Ilona Kalaszczynska
- Tissue Engineering Lab, Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
38
|
Abstract
Liver failure is associated with a high morbidity and mortality rate and is the seventh leading cause of death worldwide. Orthotopic liver transplantation remains the definitive treatment; however, because of the limited number of available organs many patients expire while on the transplant list. Currently, there are no established means for providing liver support as a means of bridging patients to transplantation or allowing for recovery from liver injury. Analogous to the clinical situation of renal failure, there is great interest in developing liver support systems that replace the metabolic and waste removal functions of the liver. These support systems are of two general types: artificial and bioartificial livers. In this review, based on a presentation from the 57th American Society of Artificial Internal Organs Annual Meeting (Washington, D.C., June 2011), we review the current status of liver support systems.
Collapse
|
39
|
Sharma AD, Iacob R, Cantz T, Manns MP, Ott M. Liver. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
40
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
41
|
Abstract
The fact that liver failure constitutes a life-threatening condition and can, in most cases, only be overcome by orthotopic liver transplantation, lead to the development of various artificial and bioartificial liver support devices. While artificial systems are based on the principles of adsorption and filtration, the more complex concept of bioartificial devices includes the provision of liver cells. Instead of solely focussing on detoxification, these concepts also support the failing organ concerning synthetic and regulative functions.The systems were evaluated in a variety of clinical studies, demonstrating their safety and investigating the impact on the patient's clinical condition. This review gives an overview over the most common artificial and bioartificial liver support devices and summarizes the results of the clinical studies.
Collapse
|
42
|
Gu J, Shi X, Ren H, Xu Q, Wang J, Xiao J, Ding Y. Systematic review: extracorporeal bio-artificial liver-support system for liver failure. Hepatol Int 2012; 6:670-683. [PMID: 26201519 DOI: 10.1007/s12072-012-9352-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 02/21/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only effective long-term treatment for liver failure by now. However, it is not yet a perfect choice due to donor-organ shortage and the need of a lifelong immunosuppressive therapy. Therefore, it is necessary to find a new approach to fighting the disease. Several published clinical trials have reported the therapeutic effect of bio-artificial liver (BAL) for liver failure. OBJECTIVE To overview and evaluate the current clinical application and outcomes of extracorporeal BAL support system during the past 15 years. METHODS Relevant studies were retrieved from PubMed and Cochrane Library databases. Independent assessments and the final consensus decision were performed by three independent reviewers. Acceptable study designs included randomized controlled trials, controlled clinical trials, and case reports. A total of 31 studies were tabulated and critically appraised in terms of characteristics, methods, and outcomes. RESULTS There was a trend of falling into the normal ranges with the clinical and biochemical parameters after the BAL treatment. The neurological status of most patients was improved or stabilized during BAL treatment as well. No significant effect on survival could be seen after the BAL treatment. CONCLUSIONS Although BAL system proved to be a success in some clinical cases reported, it still needs to be improved greatly.
Collapse
Affiliation(s)
- Jinyang Gu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Jun Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jiangqiang Xiao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China.
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China.
| |
Collapse
|
43
|
Zhao LF, Pan XP, Li LJ. Key challenges to the development of extracorporeal bioartificial liver support systems. Hepatobiliary Pancreat Dis Int 2012; 11:243-9. [PMID: 22672816 DOI: 10.1016/s1499-3872(12)60155-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND For nearly three decades, extracorporeal bioartificial liver (BAL) support systems have been anticipated as promising tools for the treatment of liver failure. However, these systems are still far from clinical application. This review aimed to analyze the key challenges to the development of BALs. DATA SOURCE We carried out a PubMed search of English-language articles relevant to extracorporeal BAL support systems and liver failure. RESULTS Extracorporeal BALs face a series of challenges. First, an appropriate cell source for BAL is not readily available. Second, existing bioreactors do not provide in vivo-like oxygenation and bile secretion. Third, emergency needs cannot be met by current BALs. Finally, the effectiveness of BALs, either in animals or in patients, has been difficult to document. CONCLUSIONS Extracorporeal BAL support systems are mainly challenged by incompetent cell sources and flawed bioreactors. To advance this technology, future research is needed to provide more insights into interpreting the conditions for hepatocyte differentiation and liver microstructure formation.
Collapse
Affiliation(s)
- Li-Fu Zhao
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
44
|
|
45
|
Sundaram V, Shaikh OS. Acute liver failure: current practice and recent advances. Gastroenterol Clin North Am 2011; 40:523-39. [PMID: 21893272 DOI: 10.1016/j.gtc.2011.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ALF is an important cause of liver-related morbidity and mortality. Advances in the management of ICH and SIRS, and cardiorespiratory, metabolic, and renal support have improved the outlook of such patients. Early transfer to a liver transplant center is essential. Routine use of NAC is recommended for patients with early hepatic encephalopathy, irrespective of the etiology. The role of hypothermia remains to be determined. Liver transplantation plays a critical role, particularly for those with advanced encephalopathy. Several detoxification and BAL support systems have been developed to serve as a bridge to transplantation or to spontaneous recovery. However, such systems lack sufficient reliability and efficacy to be applied routinely in clinical practice. Hepatocyte and stem cell transplantation may provide valuable adjunctive therapy in the future.
Collapse
Affiliation(s)
- Vinay Sundaram
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Acute-on-chronic liver failure (ACLF), a syndrome precipitated by acute liver injury in patients with advanced cirrhosis, is associated with multiorgan dysfunction and high rates of mortality. Liver support systems have been developed in an attempt to improve survival of patients with ACLF by providing a bridge until recovery of the native liver function. RECENT FINDINGS Nonbiological devices such as molecular adsorbent recirculating system (MARS) and fractionated plasma separation and adsorption (Prometheus) are effective in improving severe hepatic encephalopathy and cholestasis, have good safety and tolerability profiles and are frequently employed in patients with ACLD; however, randomized controlled trials (RCTs) failed to show improvement in survival. Biologic devices that incorporate hepatic cells in bioreactors are also under development. Recent data from pilot studies suggested improvement in survival rates in some groups of patients with ACLF; however, their effect on patient survival in RCT is still unknown. SUMMARY Liver support systems are safe and well tolerated when used in management of patients with ACLF. Their use should continue in controlled clinical trials to explore their role in bridging patients to liver transplantation or recovery in well defined patient groups.
Collapse
|
47
|
Zhang SC, Liu T, Wang YJ. Porous and single-skinned polyethersulfone membranes support the growth of HepG2 cells: A potential biomaterial for bioartificial liver systems. J Biomater Appl 2011; 27:359-66. [PMID: 21750186 DOI: 10.1177/0885328211406299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we evaluated a porous and single-layer skin polyethersulfone (PES) membrane as a material for use in hybrid bioartificial liver support systems. The PES membrane has been characterized as a single-layer skin structure, with a rough porous surface. Specifically, we studied the ability of the human hepatoblastoma cell lines (HepG2) to adhere, grow, and spread on the PES membrane. Furthermore, we examined albumin secretion, low-density lipoprotein uptake, and CYP450 activity of HepG2 cells that grew on the membrane. HepG2 cells readily adhered onto the outer surfaces of PES membranes. Over time, HepG2 cells proliferated actively, and confluent monolayer of cells covered the available surface area of the membrane, eventually forming cell clusters and three-dimensional aggregates. Furthermore, HepG2 cells grown on PES membranes maintained highly specific functions, including uptake capability, biosynthesis and biotransformation. These results indicate that PES membranes are potential substrates for the growth of human liver cells and may be useful in the construction of hollow fiber bioreactors. Porous and single-layer skin PES membranes and HepG2 cells may be potential biomaterials for the development of biohybrid liver devices.
Collapse
Affiliation(s)
- Shi-Chang Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Tao Liu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ying-Jie Wang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
48
|
Nussler AK, Zeilinger K, Schyschka L, Ehnert S, Gerlach JC, Yan X, Lee SML, Ilowski M, Thasler WE, Weiss TS. Cell therapeutic options in liver diseases: cell types, medical devices and regulatory issues. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1087-1099. [PMID: 21461918 DOI: 10.1007/s10856-011-4306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Although significant progress has been made in the field of orthotopic liver transplantation, cell-based therapies seem to be a promising alternative to whole-organ transplantation. The reasons are manifold but organ shortage is the main cause for this approach. However, many problems such as the question which cell type should be used or which application site is best for transplantation have been raised. In addition, some clinicians have had success by cultivating liver cells in bioreactors for temporary life support. Besides answering the question which cell type, which injection site or even which culture form should be used for liver support recent international harmonization of legal requirements is needed to be addressed by clinicians, scientists and companies dealing with cellular therapies. We here briefly summarize the possible cell types used to partially or temporarily correct liver diseases, the most recent development of bioreactor technology and important regulatory issues.
Collapse
Affiliation(s)
- Andreas K Nussler
- Department of Traumatology, MRI, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cerdá J, Tolwani A, Gibney N, Tiranathanagul K. Renal Replacement Therapy in Special Settings: Extracorporeal Support Devices in Liver Failure. Semin Dial 2011; 24:197-202. [DOI: 10.1111/j.1525-139x.2011.00827.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Mueller D, Tascher G, Müller-Vieira U, Knobeloch D, Nuessler AK, Zeilinger K, Heinzle E, Noor F. In-depth physiological characterization of primary human hepatocytes in a 3D hollow-fiber bioreactor. J Tissue Eng Regen Med 2011; 5:e207-18. [PMID: 21442764 DOI: 10.1002/term.418] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/21/2011] [Indexed: 01/12/2023]
|