1
|
Padti AC, Bhavi SM, Thokchom B, Singh SR, Bhat SS, Harini BP, Sillanpää M, Yarajarla RB. Nanoparticle Interactions with the Blood Brain Barrier: Insights from Drosophila and Implications for Human Astrocyte Targeted Therapies. Neurochem Res 2025; 50:80. [PMID: 39832031 DOI: 10.1007/s11064-025-04333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport. The ability to engineer nanoparticles with specific physicochemical properties-such as size, surface charge, and functionalization-enhances their targeting capabilities, particularly towards astrocytes, which play a crucial role in maintaining BBB integrity and responding to neuroinflammation. Insights gained from Drosophila studies have informed the design of personalized nanomedicine strategies aimed at treating neurodegenerative diseases, including Alzheimer's, Parkinson's disease etc. As research progresses, the integration of findings from Drosophila models with emerging humanized BBB systems will pave the way for innovative therapeutic approaches that improve drug delivery and patient outcomes in neurological disorders.
Collapse
Affiliation(s)
- Akshata Choudhari Padti
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Santosh Mallikarjun Bhavi
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Bothe Thokchom
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sapam Riches Singh
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Shivanand S Bhat
- Department of Botany, Smt. Indira Gandhi Government First Grade Women's College, Sagar, Karnataka, 577401, India
| | - B P Harini
- Department of Zoology and Centre for Applied Genetics, Bangalore University, Bangaluru, Karnataka, 560056, India
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, Aarhus C, 8000, Denmark
| | - Ramesh Babu Yarajarla
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
2
|
Ahluwalia KK, Thakur K, Ahluwalia AS, Hashem A, Avila-Quezada GD, Abd_Allah EF, Thakur N. Assessment of Genotoxicity of Zinc Oxide Nanoparticles Using Mosquito as Test Model. TOXICS 2023; 11:887. [PMID: 37999539 PMCID: PMC10674525 DOI: 10.3390/toxics11110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
The widespread applications of ZnO NPs in the different areas of science, technology, medicine, agriculture, and commercial products have led to increased chances of their release into the environment. This created a growing public concern about the toxicological and environmental effects of the nanoparticles. The impact of these NPs on the genetic materials of living organisms is documented in some cultured cells and plants, but there are only a few studies regarding this aspect in animals. In view of this, the present work regarding the assessment of the genotoxicity of zinc oxide nanoparticles using the mosquito Culex quinquefaciatus has been taken up. Statistically significant chromosomal aberrations over the control are recorded after the exposure of the fourth instar larvae to a dose of less than LD20 for 24 h. In order to select this dose, LD20 of ZnO NPs for the mosquito is determined by Probit analysis. Lacto-aceto-orcein stained chromosomal preparations are made from gonads of adult treated and control mosquitoes. Both structural aberrations, such as chromosomal breaks, fragments, translocations, and terminal fusions, resulting in the formation of rings and clumped chromosomes, and numerical ones, including hypo- and hyper-aneuploidy at metaphases, bridges, and laggards at the anaphase stage are observed. The percentage frequency of abnormalities in the shape of sperm heads is also found to be statistically significant over the controls. Besides this, zinc oxide nanoparticles are also found to affect the reproductive potential and embryo development as egg rafts obtained from the genetic crosses of ZnO nanoparticle-treated virgin females and normal males are small in size with a far smaller number of eggs per raft. The percentage frequencies of dominant lethal mutations indicated by the frequency of unhatched eggs are also statistically significant (p < 0.05) over the control. The induction of abnormalities in all of the three short-term assays studied during the present piece of work indicates the genotoxic potential of ZnO NPs, which cannot be labeled absolutely safe, and this study pinpoints the need to develop strategies for the protection of the environment and living organisms thriving in it.
Collapse
Affiliation(s)
- Kanwaljit Kaur Ahluwalia
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| | - Kritika Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| | - Amrik Singh Ahluwalia
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| |
Collapse
|
3
|
Shabir S, Sehgal A, Dutta J, Devgon I, Singh SK, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Basalamah MAM, Faidah H, Bantun F, Saati AA, Vamanu E, Singh MP. Therapeutic Potential of Green-Engineered ZnO Nanoparticles on Rotenone-Exposed D. melanogaster (Oregon R +): Unveiling Ameliorated Biochemical, Cellular, and Behavioral Parameters. Antioxidants (Basel) 2023; 12:1679. [PMID: 37759981 PMCID: PMC10525955 DOI: 10.3390/antiox12091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology holds significant ameliorative potential against neurodegenerative diseases, as it can protect the therapeutic substance and allow for its sustained release. In this study, the reducing and capping agents of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya koenigii (MK) extracts were used to synthesize bio-mediated zinc oxide nanoparticles (ZnO-NPs) against bacteria (Staphylococcus aureus and Escherichia coli) and against rotenone-induced toxicities in D. melanogaster for the first time. Their optical and structural properties were analyzed via FT-IR, DLS, XRD, EDS, SEM, UV-Vis, and zeta potential. The antioxidant and antimicrobial properties of the fabricated ZnO-NPs were evaluated employing cell-free models (DPPH and ABTS) and the well diffusion method, respectively. Rotenone (500 µM) was administered to Drosophila third instar larvae and freshly emerged flies for 24-120 h, either alone or in combination with plant extracts (UD, MC, an MK) and their biogenic ZnO-NPs. A comparative study on the protective effects of synthesized NPs was undertaken against rotenone-induced neurotoxic, cytotoxic, and behavioral alterations using an acetylcholinesterase inhibition assay, dye exclusion test, and locomotor parameters. The findings revealed that among the plant-derived ZnO-NPs, MK-ZnO NPs exhibit strong antimicrobial and antioxidant activities, followed by UD-ZnO NPs and MC-ZnO NPs. In this regard, ethno-nano medicinal therapeutic uses mimic similar effects in D. melanogaster by suppressing oxidative stress by restoring biochemical parameters (AchE and proteotoxicity activity) and lower cellular toxicity. These findings suggest that green-engineered ZnO-NPs have the potential to significantly enhance outcomes, with the promise of effective therapies for neurodegeneration, and could be used as a great alternative for clinical development.
Collapse
Affiliation(s)
- Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Amit Sehgal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joydeep Dutta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, Uttar Pradesh, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | | | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology and Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, Uttar Pradesh, India
| |
Collapse
|
4
|
Yan S, Li N, Guo Y, Chen Y, Ji C, Yin M, Shen J, Zhang J. Chronic exposure to the star polycation (SPc) nanocarrier in the larval stage adversely impairs life history traits in Drosophila melanogaster. J Nanobiotechnology 2022; 20:515. [PMID: 36482441 PMCID: PMC9730587 DOI: 10.1186/s12951-022-01705-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nanomaterials are widely used as pesticide adjuvants to increase pesticide efficiency and minimize environmental pollution. But it is increasingly recognized that nanocarrier is a double-edged sword, as nanoparticles are emerging as new environmental pollutants. This study aimed to determine the biotoxicity of a widely applied star polycation (SPc) nanocarrier using Drosophila melanogaster, the fruit fly, as an in vivo model. RESULTS The lethal concentration 50 (LC50) value of SPc was identified as 2.14 g/L toward third-instar larvae and 26.33 g/L for adults. Chronic exposure to a sub lethal concentration of SPc (1 g/L) in the larval stage showed long-lasting adverse effects on key life history traits. Exposure to SPc at larval stage adversely impacted the lifespan, fertility, climbing ability as well as stresses resistance of emerged adults. RNA-sequencing analysis found that SPc resulted in aberrant expression of genes involved in metabolism, innate immunity, stress response and hormone production in the larvae. Orally administrated SPc nanoparticles were mainly accumulated in intestine cells, while systemic responses were observed. CONCLUSIONS These findings indicate that SPc nanoparticles are hazardous to fruit flies at multiple levels, which could help us to develop guidelines for further large-scale application.
Collapse
Affiliation(s)
- Shuo Yan
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Na Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Yuankang Guo
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Yao Chen
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Chendong Ji
- grid.48166.3d0000 0000 9931 8406State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meizhen Yin
- grid.48166.3d0000 0000 9931 8406State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Junzheng Zhang
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
5
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
6
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Pitchakarn P, Inthachat W, Karinchai J, Temviriyanukul P. Human Hazard Assessment Using Drosophila Wing Spot Test as an Alternative In Vivo Model for Genotoxicity Testing-A Review. Int J Mol Sci 2021; 22:9932. [PMID: 34576092 PMCID: PMC8472225 DOI: 10.3390/ijms22189932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Genomic instability, one of cancer's hallmarks, is induced by genotoxins from endogenous and exogenous sources, including reactive oxygen species (ROS), diet, and environmental pollutants. A sensitive in vivo genotoxicity test is required for the identification of human hazards to reduce the potential health risk. The somatic mutation and recombination test (SMART) or wing spot test is a genotoxicity assay involving Drosophila melanogaster (fruit fly) as a classical, alternative human model. This review describes the principle of the SMART assay in conjunction with its advantages and disadvantages and discusses applications of the assay covering all segments of health-related industries, including food, dietary supplements, drug industries, pesticides, and herbicides, as well as nanoparticles. Chemopreventive strategies are outlined as a global health trend for the anti-genotoxicity of interesting herbal extract compounds determined by SMART assay. The successful application of Drosophila for high-throughput screening of mutagens is also discussed as a future perspective.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
8
|
Mishra M, Panda M. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res 2021; 55:671-687. [PMID: 33877010 DOI: 10.1080/10715762.2021.1914335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is a rapidly developing technology in the twenty-first century. Nanomaterials are extensively used in numerous industries including cosmetics, food, medicines, industries, agriculture, etc. Along with its wide application toxicity is also reported from studies of various model organisms including Drosophila. The toxicity reflects cytotoxicity, genotoxicity, and teratogenicity. The current study correlates the toxicity as a consequence of reactive oxygen species (ROS) generated owing to the presence of nanoparticles with the living cell. ROS mainly includes hydroxyl ions, peroxide ions, superoxide anions, singlet oxygen, and hypochlorous acids. An elevated level of ROS can damage the cells by various means. To protect the body from excess ROS, living cells possess a set of antioxidant enzymes which includes peroxidase, glutathione peroxidase, and catalase. If the antioxidant enzymes cannot nullify the elevated ROS level than DNA damage, cell damage, cytotoxicity, apoptosis, and uncontrolled cell regulations occur resulting in abnormal physiological and genotoxic conditions. Herewith, we are reporting various morphological and physiological defects caused after nanoparticle treatment as a function of redox imbalance.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Mrutyunjaya Panda
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
9
|
Liman R, Başbuğ B, Ali MM, Acikbas Y, Ciğerci İH. Cytotoxic and genotoxic assessment of tungsten oxide nanoparticles in Allium cepa cells by Allium ana-telophase and comet assays. J Appl Genet 2021; 62:85-92. [PMID: 33409932 DOI: 10.1007/s13353-020-00608-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Tungsten oxide nanoparticles or nanopowder (WO3NPs) is commonly used in various industries and also in biomedical applications such as additives, pigments, and biomedical sensors. Non-judicious excessive use of these nanoparticles (NPs) could be a serious human health concern. Therefore, the current study aimed to explore the cytotoxic and genotoxic assessment of WO3NPs through Allium cepa anaphase-telophase and comet assays. Nanoparticles were characterized through the scanning and transmission electron microscopy (TEM), zetasizer, and energy-dispersive X-ray spectroscopy. The mean size and the average diameter of WO3NPs were determined as 21.57 ± 2.48 nm and 349.42 ± 80.65 nm using TEM and a Zetasizer measurement system, respectively. Five concentrations (12.5 mg/L, 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L) of WO3NPs were employed on the Allium cepa (A. cepa) roots for 4 h. Significant (p ≤ 0.05) decrease in mitotic index (MI) was shown by WO3NPs at all concentrations. The increase of chromosomal aberrations (CAs) was also observed in a concentration-dependent manner due to the WO3NPs exposure. There was a significant increase (p ≤ 0.05) in DNA damage at all concentrations of WO3NPs on the A. cepa cells. It was concluded that WO3NPs had cytotoxic and genotoxic effects on A. cepa meristematic cells. Moreover, further cytogenetic effects of WO3NPs should be investigated at the molecular level to assess its safety margin.
Collapse
Affiliation(s)
- Recep Liman
- Faculty of Arts and Sciences, Molecular Biology and Genetics Department, Usak University, 64300, Uşak, Turkey
| | - Bermal Başbuğ
- Faculty of Arts and Sciences, Molecular Biology and Genetics Department, Usak University, 64300, Uşak, Turkey
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road (Outfall Road), 54000, Lahore, Pakistan.
| | - Yaser Acikbas
- Faculty of Engineering, Materials Science and Nanotechnology Engineering Department, Usak University, 64200, Usak, Turkey
| | - İbrahim Hakkı Ciğerci
- Faculty of Arts and Sciences, Molecular Biology and Genetics Department, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
10
|
Hamza RZ, Al-Salmi FA, Laban H, El-Shenawy NS. Ameliorative Role of Green Tea and Zinc Oxide Nanoparticles Complex Against Monosodium Glutamate-Induced Testicular Toxicity in Male Rats. Curr Pharm Biotechnol 2020; 21:488-501. [PMID: 31793422 DOI: 10.2174/1389201020666191203095036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE This study was designed to estimate the long-term effects of zinc oxide nanoparticles/green tea (ZnONPs/GTE) complex against monosodium glutamate (MSG). The antioxidant/oxidative status, testosterone levels, DNA damage, and histopathological changes of testis were evaluated. METHODS The rats were divided into eight groups that were treated as follows: saline, the lower dosage of MSG (6.0 mg/kg), the higher dosage of MSG (17.5 mg/Kg), GTE, ZnONPs, ZnONPs/GTE and the last two groups were treated with the lower dosage of MSG or the higher dosage of MSG with ZnONPs/GTE complex. The data showed minimal toxicity in testicular tissue after the administration of ZnONPs. RESULTS The MSG treatment in the adult male rats reduced testosterone levels and disrupted testicular histology, which revealed dose-dependence of MSG. Also, ZnONPs induced testicular dysfunction through the interference of antioxidant/oxidant balance and suppression of testosterone levels as well as induction of cellular damage of testis. The combination of ZnONPs with GTE complex significantly protects against MSG or ZnONPs toxicity by decreasing the DNA damage, oxidative stress, and enhancement of antioxidant as well as histological structure of testis. CONCLUSION We could recommend using ZnONPs/GTE complex to reduce the toxicity of ZnONPs and MSG on the testis at the cellular and oxidative stress levels.
Collapse
Affiliation(s)
- Reham Z Hamza
- Biology Department, Faculty of Science, Taif University, Taif, 888, Saudi Arabia.,Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Fawziah A Al-Salmi
- Biology Department, Faculty of Science, Taif University, Taif, 888, Saudi Arabia
| | - Hebatullah Laban
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
11
|
Liman R, Kursunlu AN, Ciğerci İH, Ozmen M, Acikbas Y. Assessment of the cytotoxic and genotoxic potential of pillar[5]arene derivatives by Allium cepa roots and Drosophila melanogaster haemocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110328. [PMID: 32078840 DOI: 10.1016/j.ecoenv.2020.110328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
In this study pillar[5]arene (P5) and a quinoline-functionalized pillar[5]arene (P5-6Q) which is used for detecting radioactive element, gas adsorption and toxic ions were synthesized. These materials were characterized by Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FTIR), elemental analysis, melting point, Mass Spectroscopy, Scanning Electron Microscopy (SEM) and Zeta Potential. The cytotoxic and genotoxic potential of P5 and P5-6Q at distinct concentrations of 12.5, 25, 50, and 100 μg/mL were also investigated by Allium ana-telophase and comet assays on Allium cepa roots and Drosophila melanogaster haemocytes. P5 and P5-6Q showed dose dependent cytotoxic effect by decreasing mitotic index (MI) and genotoxic effect by increasing chromosomal aberrations (CAs such as disturbed anaphase-telophase, polyploidy, stickiness, chromosome laggards and bridges) and DNA damage at the exposed concentrations. These changes in P5-6Q were lower than P5. Further research is necessary to clarify the cytotoxic and genotoxic action mechanisms of P5 and P5-6Q at molecular levels.
Collapse
Affiliation(s)
- Recep Liman
- Usak University, Faculty of Arts and Sciences, Molecular Biology and Genetics Department, 64300, Uşak, Turkey.
| | - Ahmed Nuri Kursunlu
- Selcuk University, Faculty of Science, Chemistry Department, 42250, Konya, Turkey
| | - İbrahim Hakkı Ciğerci
- Afyon Kocatepe University, Faculty of Arts and Sciences, Molecular Biology and Genetics Department, 03200, Afyonkarahisar, Turkey
| | - Mustafa Ozmen
- Selcuk University, Faculty of Science, Chemistry Department, 42250, Konya, Turkey
| | - Yaser Acikbas
- Usak University, Faculty of Engineering, Materials Science and Nanotechnology Department, 64200, Usak, Turkey
| |
Collapse
|
12
|
Fadoju O, Ogunsuyi O, Akanni O, Alabi O, Alimba C, Adaramoye O, Cambier S, Eswara S, Gutleb AC, Bakare A. Evaluation of cytogenotoxicity and oxidative stress parameters in male Swiss mice co-exposed to titanium dioxide and zinc oxide nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103204. [PMID: 31200344 DOI: 10.1016/j.etap.2019.103204] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/27/2019] [Accepted: 06/02/2019] [Indexed: 05/17/2023]
Abstract
A number of studies have investigated the adverse toxic effects of titanium dioxide (TiO2) nanoparticles (NPs) or zinc oxide (ZnO) NPs. Information on the potential genotoxic effects of the interactions of TiO2 NPs and ZnO NPs in vivo is lacking. Therefore, this study was designed to investigate the cytogenotoxicity of TiO2 NPs or ZnO NPs alone or their mixtures using the bone marrow micronucleus assay, and mechanism of damage through the evaluation of oxidative stress parameters in the liver and kidney tissues of Swiss mice. Intraperitoneal administration of doses between 9.38 and 150.00 mg/kg of TiO2 NPs or ZnO NPs or TiO2 NPs + ZnO NPs was performed for 5 and 10 days, respectively. TiO2 NPs alone induced a significant (P < 0.05) increase in micronucleated (Mn) polychromatic erythrocytes (PCEs) at the applied doses compared with the negative controls, with a significant difference between 5 and 10 days for TiO2 NPs alone and TiO2 NPs + ZnO NPs. Concurrently, TiO2 NPs alone for 5 days and TiO2 NPs and TiO2 NPs + ZnO NPs for 10 days significantly (P < 0.05) decreased the percentage PCE: normochromatic erythrocyte (NCE) indicating cytotoxicity; with a significant difference between the two periods. Significant (P < 0.001) changes in the activities of superoxide dismutase (SOD) and catalase (CAT), and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were observed in the liver and kidney of mice exposed to TiO2 NPs or ZnO NPs alone or their mixtures. These results suggest that TiO2 NPs alone was genotoxic; TiO2 NPs and TiO2 NPs + ZnO NPs were noticeably cytotoxic while ZnO NPs was not cytogenotoxic. The individual NPs or their mixtures induced oxidative stress.
Collapse
Affiliation(s)
- Opeoluwa Fadoju
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Olusegun Ogunsuyi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Olubukola Akanni
- Drug metabolism and Toxicology Research Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Okunola Alabi
- Department of Biology, Federal University of Technology, Akure, Nigeria
| | - Chibuisi Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Oluwatosin Adaramoye
- Drug metabolism and Toxicology Research Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Sebastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Santhana Eswara
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Adekunle Bakare
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
13
|
Cui Y, Zha Y, Li T, Bai J, Tang L, Deng J, He R, Dong F, Zhang Q. Oxidative effects of lungs in Wistar rats caused by long-term exposure to four kinds of China representative chrysotile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18708-18718. [PMID: 31055741 DOI: 10.1007/s11356-019-04978-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 05/24/2023]
Abstract
Chrysotile accounts for some 90% to 95% of all the asbestos used worldwide. Scientific evidences have shown that asbestos (including chrysotile) exposure is associated with increased rates of lung cancer, asbestosis, and mesothelioma. However, molecular mechanisms underlying the toxicity effects of chrysotile are not clear. This study evaluated the oxidative stress in chronic lung toxicity caused by the intratracheal instillation (IT) of four kinds China representative chrysotile once a month for 12 months in Wistar rats. These results indicated that chrysotile exposure led to an obvious increase in lung mass and slowed the growth of body mass. Inflammation and fibrosis were observed by hematoxylin-eosin (HE) staining. Exposure to chrysotile significantly increased the accumulation of reactive oxygen species (ROS) and the level of lipid peroxidation and decreased antioxidant capacity in lung tissues. Furthermore, 1-6-month chrysotile exposure activated heme oxygenase-1 (HO-1) and heat shock protein 70 (HSP70) expression, whereas 12-month exposure caused significant decreases of two-factor expression levels in XK and MN groups when compared to negative control group. Therefore, our results suggested that chronic chrysotile pulmonary injury in Wistar rats is triggered by oxidative damage. Meanwhile, the oxidative damage of MN and XK was stronger than that of SSX and AKS, and the difference of oxidative damage in four chrysotile could have been brought by its properties, morphology, chemical composition, and particle size. With all the above mentioned in view, we hope that the revealed data in the experiment could contribute to the progress of further researches on the toxicity and mechanism of chrysotile.
Collapse
Affiliation(s)
- Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuxin Zha
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Center For Disease Control and Prevention, Institute of Chronic Non-communicable Diseases, Chengdu, 610041, Sichuan, China
| | - Tao Li
- Key Laboratory of Ministry of Education, Myocardial electrical laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lanlan Tang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianjun Deng
- Department of Clinical Laboratory, 404 Hospitals of Mianyang, Mianyang, 621000, Sichuan, China
| | - Renjiang He
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
14
|
Anand AS, Gahlot U, Prasad DN, Amitabh, Kohli E. Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 2019; 13:977-989. [DOI: 10.1080/17435390.2019.1602680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Avnika Singh Anand
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Urmila Gahlot
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Dipti N. Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Amitabh
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Ekta Kohli
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
15
|
Ertuğrul H, Yalçın B, Güneş M, Kaya B. Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug Chem Toxicol 2019; 43:279-286. [DOI: 10.1080/01480545.2019.1585444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Havva Ertuğrul
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Bülent Kaya
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
16
|
Singh S. Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 2019; 29:300-311. [DOI: 10.1080/15376516.2018.1553221] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Science and Education, Raebareli, India
| |
Collapse
|
17
|
Carmona ER, García-Rodríguez A, Marcos R. Genotoxicity of Copper and Nickel Nanoparticles in Somatic Cells of Drosophila melanogaster. J Toxicol 2018; 2018:7278036. [PMID: 30111998 PMCID: PMC6077325 DOI: 10.1155/2018/7278036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Copper and nickel nanoparticles (Cu-NPs and Ni-NPs, respectively) are used in a variety of industrial applications, such as semiconductors, catalysts, sensors, and antimicrobial agents. Although studies on its potential genotoxicity already exist, few of them report in vivo data. In the present study we have used the wing-spot assay in Drosophila melanogaster to determine the genotoxic activity of Cu-NPs and Ni-NPs, and these data have been compared with those obtained with their microparticle forms (MPs). Additionally, a complete physical characterization of NPs using transmission electronic microscopy (TEM), dynamic light scattering (DLS), and laser Doppler velocimetry (LDV) techniques was also performed. Results obtained with Cu-NPs and Cu-MPs indicate that both failed to induce an increase in the frequency of mutant spots formation in the wings of the adults, suggesting a lack of genotoxicity in somatic cells of D. melanogaster. However, when Ni-NPs and Ni-MPs were evaluated, a significant increase of small single spots and total mutant spots was observed only for Ni-NPs (P<0.05) at the highest dose assessed. Thus, the genotoxicity of Ni-NPs seem to be related to their nanoscale size, because no genotoxic effects have been reported with their microparticles and ions. This study is the first assessing the in vivo genotoxic potential of Cu-NPs and Ni-NPs in the Drosophila model.
Collapse
Affiliation(s)
- Erico R. Carmona
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Facultad de Ingeniería, Universidad Católica de Temuco, Chile
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Chile
| | - Alba García-Rodríguez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Sario S, Silva AM, Gaivão I. Titanium dioxide nanoparticles: Toxicity and genotoxicity in Drosophila melanogaster (SMART eye-spot test and comet assay in neuroblasts). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:19-23. [PMID: 29875073 DOI: 10.1016/j.mrgentox.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NP) are used in the food, drug, and cosmetics industries and evaluation of their human and environmental toxicity is required. We have tested the toxicity of TiO2NP (anatase) with respect to developmental effects and DNA damage in Drosophila melanogaster strain Ok, using the eye-spot Somatic Mutation and Recombination Test (SMART) and the comet assay (neuroblasts). For the survival assay, TiO2NP were supplied to adult flies for 72 h and no adverse effects were seen. TiO2NP were supplied chronically for the prolificacy, SMART, and comet assays. TiO2NP increased fly prolificacy. With regard to genotoxicity, an increase was observed in the eye-spot SMART assay at 8 μg/mL dose, but not in the neuroblast comet assay for DNA damage.
Collapse
Affiliation(s)
- Sara Sario
- Department of Genetics and Biotechnology (DGB - ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal; Department of Biology and Environment (DeBA - ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal.
| | - Amélia M Silva
- Department of Biology and Environment (DeBA - ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), P-5001-801 Vila Real, Portugal
| | - Isabel Gaivão
- Department of Genetics and Biotechnology (DGB - ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal; Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, Portugal.
| |
Collapse
|
19
|
Scherzad A, Meyer T, Kleinsasser N, Hackenberg S. Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs. MATERIALS 2017; 10:ma10121427. [PMID: 29240707 PMCID: PMC5744362 DOI: 10.3390/ma10121427] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 01/18/2023]
Abstract
Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.
Collapse
Affiliation(s)
- Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Till Meyer
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Norbert Kleinsasser
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany.
| |
Collapse
|
20
|
Wu VM, Uskoković V. Population Effects of Calcium Phosphate Nanoparticles in Drosophila melanogaster: The Effects of Phase Composition, Crystallinity, and the Pathway of Formation. ACS Biomater Sci Eng 2017; 3:2348-2357. [PMID: 29862315 PMCID: PMC5978735 DOI: 10.1021/acsbiomaterials.7b00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unpredictable biological response due to the finest nanostructural variations is one of the hallmarks of nanoparticles. Because of this erratic behavior of nanoparticles in living systems, thorough analyses of biosafety must precede the analyses of the pharmacotherapeutic efficacy and simple animal models are ideal for such purposes. Drosophila melanogaster, the common fruit fly, is an animal model capable of giving a fast, high-throughput response as to the safety and efficacy of drug delivery carriers and other pharmacological agents, while minimizing the suffering imposed onto animals in more complex in vivo models. Here we studied the effects on the viability and fertility of D. melanogaster due to variations in phase composition, crystallinity, and the pathway of formation of four different calcium phosphate (CP) nanopowders consumed orally. To minimize the effect of other nanostructural variables, CP nanopowders were made to possess highly similar particle sizes and morphologies. The composition of CP affected the fecundity of flies, but so did crystallinity and the pathway of formation. Both the total number of eclosed viable flies and pupae in populations challenged with hydroxyapatite (HAP) greatly exceeded those in control populations. Viability was adversely affected by the only pyrophosphate tested (CPP) and by the metastable and the most active of all CP nanopowders analyzed: the amorphous CP (ACP). The pupation peak was delayed and the viable fly to-pupa ratio increased in all the CP-challenged populations. F1 CPP population, whose viability was most adversely affected by the CP consumption, when crossed, produced the largest number of F2 progeny under regular conditions, possibly pointing to stress as a positive evolutionary drive. The positive effect of HAP on fertility of fruit flies may be due to its slow absorption and the activation of calmodulin during the transit of oocytes through the reproductive tract of fertilized females. Exerted in the prepupation stage, the effect of CP is thus traceable beyond the instar larval stage and to the oogenesis stage of the Drosophila lifecycle.
Collapse
Affiliation(s)
- Victoria M. Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
| |
Collapse
|
21
|
Srivastav AK, Kumar A, Prakash J, Singh D, Jagdale P, Shankar J, Kumar M. Genotoxicity evaluation of zinc oxide nanoparticles in Swiss mice after oral administration using chromosomal aberration, micronuclei, semen analysis, and RAPD profile. Toxicol Ind Health 2017; 33:821-834. [PMID: 28950792 DOI: 10.1177/0748233717717842] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The expanded uses of zinc oxide nanoparticles (ZnO NPs) have grown rapidly in the field of nanotechnology. Thus, rising production of nanoparticles (NPs) increases the possible risks to the environment and occupationally exposed humans. Hence, it is indispensable to appraise the safety toxicity including genotoxicity for these NPs. In the present study, we have evaluated the genotoxic effect of ZnO NPs after oral administration to Swiss mice at dose levels of 300 and 2000 mg/kg body weight. These doses were administered for 2 days at 24 h apart. Chromosomal aberration (CA) and micronucleus tests were conducted following Organization for Economic Co-operation and Development guidelines. DNA damage was evaluated at 0, 24, 48, and 72 h posttreatment using a randomly amplified polymorphic DNA (RAPD) assay; additionally, semen analyses were also performed at 34.5 days post oral exposure. The reactive oxygen species (ROS), 8-oxo-2'-deoxyguanosine and CAs were increased ( p < 0.05) at the highest dosage (2000 mg/kg) of ZnO NPs compared to controls. Aberrant sperm morphology with reduced sperm count and motility were also present ( p < 0.05) in the high-dose group. Based on the RAPD assay, the genomic template stability within the high-dose group (<90%) was less than the controls (100%). The results suggested that ZnO NPs are mildly genotoxic in a dose-related manner and this toxicity were induced by generation of ROS.
Collapse
Affiliation(s)
- Anurag Kumar Srivastav
- 1 Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,2 Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Akhilesh Kumar
- 3 Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Jyoti Prakash
- 2 Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- 3 Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Pankaj Jagdale
- 3 Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Jai Shankar
- 4 Electron Microscopy Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Mahadeo Kumar
- 1 Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Panda KK, Golari D, Venugopal A, Achary VMM, Phaomei G, Parinandi NL, Sahu HK, Panda BB. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System. Antioxidants (Basel) 2017; 6:antiox6020035. [PMID: 28524089 PMCID: PMC5488015 DOI: 10.3390/antiox6020035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 01/24/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH3COO)2) through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn2+ from Zn(CH3COO)2 were tested in a dose range of 0–100 mg·L−1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone.
Collapse
Affiliation(s)
- Kamal K Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - Dambaru Golari
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - A Venugopal
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - V Mohan M Achary
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Ganngam Phaomei
- Material Chemistry Laboratory, Department of Chemistry, Berhampur University, Berhampur 760007, Odisha, India.
| | - Narasimham L Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Hrushi K Sahu
- Condensed Matter Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakum, Tamil Nadu 603102, India.
| | - Brahma B Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| |
Collapse
|
23
|
Carmona ER, Reyes-Díaz M, Parodi J, Inostroza-Blancheteau C. Antimutagenic evaluation of traditional medicinal plants from South America Peumus boldus and Cryptocarya alba using Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:208-217. [PMID: 28304234 DOI: 10.1080/15287394.2017.1279574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peumus boldus Mol. ("Boldo") and Cryptocarya alba Mol. Looser ("Peumo") are medicinal shrubs with wide geographical distribution in South America. Their leaves and fruits are commonly used in traditional medicine because they exhibit natural medicinal properties for treatment of liver disorders and rheumatism. However, there are no apparent data regarding potential protective effects on cellular genetic components. In order to examine potential mutagenic and/or antimutagenic effects of these medicinal plants, the Drosophila melanogaster (D. melanogaster) wing-spot test was employed. This assay detects a wide range of mutational events, including point mutations, deletions, certain types of chromosomal aberrations (nondisjunction), and mitotic recombination. Qualitative and quantitative analyses of phenolic and anthocyanin compounds were carried out using biochemical and high-performance liquid chromatography methodologies. In addition, the antioxidant capacity of P. boldus and C. alba leaf extracts was also analyzed. P. boldus and C. alba extracts did not induce significant mutagenic effects in the D. melanogaster model. However, simultaneous treatment of extracts concurrently with the mutagen ethyl methane sulphonate showed a decrease of mutant spots in somatic cells of D. melanogaster, indicating desmutagenic effects in this in vivo model. Flavonoids and anthocyanins were detected predominantly in the extracts, and these compounds exerted significant antioxidant capacity. The observed antimutagenic effects may be related to the presence of phytochemicals with high antioxidant capacity, such as flavonoids and antohocyanins, in the extracts.
Collapse
Affiliation(s)
- Erico R Carmona
- a Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Facultad de Ingeniería , Universidad Católica de Temuco , Temuco , Chile
| | - Marjorie Reyes-Díaz
- b Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería, Ciencias y Administración , Universidad de La Frontera , Temuco , Chile
- c Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN) , Universidad de La Frontera , Temuco , Chile
| | - Jorge Parodi
- d Laboratorio InmunoParasitología Molecular, Centro de Excelencia en Medicina Traslacional, Departamento Ciencias Preclínicas , Universidad de La Frontera , Temuco , Chile
| | - Claudio Inostroza-Blancheteau
- e Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Agronomía , Universidad Católica de Temuco , Temuco , Chile
| |
Collapse
|
24
|
Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine 2017; 12:1621-1637. [PMID: 28280330 PMCID: PMC5339013 DOI: 10.2147/ijn.s124403] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. Methods In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. Results For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. Conclusion The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers.
Collapse
Affiliation(s)
- Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Environmental Research Institute, National University of Singapore, Singapore
| | - Liang Qing Yong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Choon Nam Ong
- Environmental Research Institute, National University of Singapore, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Han Z, Yan Q, Ge W, Liu ZG, Gurunathan S, De Felici M, Shen W, Zhang XF. Cytotoxic effects of ZnO nanoparticles on mouse testicular cells. Int J Nanomedicine 2016; 11:5187-5203. [PMID: 27785022 PMCID: PMC5066861 DOI: 10.2147/ijn.s111447] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Nanoscience and nanotechnology are developing rapidly, and the applications of nanoparticles (NPs) have been found in several fields. At present, NPs are widely used in traditional consumer and industrial products, however, the properties and safety of NPs are still unclear and there are concerns about their potential environmental and health effects. The aim of the present study was to investigate the potential toxicity of ZnO NPs on testicular cells using both in vitro and in vivo systems in a mouse experimental model. Methods ZnO NPs with a crystalline size of 70 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The cytotoxicity of the ZnO NPs was examined in vitro on Leydig cell and Sertoli cell lines, and in vivo on the testes of CD1 mice injected with single doses of ZnO NPs. Results ZnO NPs were internalized by Leydig cells and Sertoli cells, and this resulted in cytotoxicity in a time- and dose-dependent manner through the induction of apoptosis. Apoptosis likely occurred as a consequence of DNA damage (detected as γ-H2AX and RAD51 foci) caused by increase in reactive oxygen species associated with loss of mitochondrial membrane potential. In addition, injection of ZnO NPs in male mice caused structural alterations in the seminiferous epithelium and sperm abnormalities. Conclusion These results demonstrate that ZnO NPs have the potential to induce apoptosis in testicular cells likely through DNA damage caused by reactive oxygen species, with possible adverse consequences for spermatogenesis and therefore, male fertility. This suggests that evaluating the potential impacts of engineered NPs is essential prior to their mass production, to address both the environmental and human health concerns and also to develop sustainable and safer nanomaterials.
Collapse
Affiliation(s)
- Zhe Han
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Qi Yan
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Zhi-Guo Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA. Drosophotoxicology: An Emerging Research Area for Assessing Nanoparticles Interaction with Living Organisms. Int J Mol Sci 2016; 17:36. [PMID: 26907252 PMCID: PMC4783871 DOI: 10.3390/ijms17020036] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/22/2022] Open
Abstract
The rapid development of nanotechnology allowed the fabrication of a wide range of different nanomaterials, raising many questions about their safety and potential risks for the human health and environment. Most of the current nanotoxicology research is not standardized, hampering any comparison or reproducibility of the obtained results. Drosophotoxicology encompasses the plethora of methodological approaches addressing the use of Drosophila melanogaster as a choice organism in toxicology studies. Drosophila melanogaster model offers several important advantages, such as a relatively simple genome structure, short lifespan, low maintenance cost, readiness of experimental manipulation comparative to vertebrate models from both ethical and technical points of view, relevant gene homology with higher organisms, and ease of obtaining mutant phenotypes. The molecular pathways, as well as multiple behavioral and developmental parameters, can be evaluated using this model in lower, medium or high throughput type assays, allowing a systematic classification of the toxicity levels of different nanomaterials. The purpose of this paper is to review the current research on the applications of Drosophila melanogaster model for the in vivo assessment of nanoparticles toxicity and to reveal the huge potential of this model system to provide results that could enable a proper selection of different nanostructures for a certain biomedical application.
Collapse
Affiliation(s)
- Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor, Sector 5, Bucharest 060101, Romania.
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 1-3 Portocalelor, Sector 5, Bucharest 060101, Romania.
| | - Marcela Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor, Sector 5, Bucharest 060101, Romania.
| | - Alexandru Al Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 1-3 Portocalelor, Sector 5, Bucharest 060101, Romania.
| |
Collapse
|
27
|
Alaraby M, Annangi B, Marcos R, Hernández A. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:65-104. [PMID: 27128498 DOI: 10.1080/10937404.2016.1166466] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Despite being a relatively new field, nanoscience has been in the forefront among many scientific areas. Nanoparticle materials (NM) present interesting physicochemical characteristics not necessarily found in their bulky forms, and alterations in their size or coating markedly modify their physical, chemical, and biological properties. Due to these novel properties there is a general trend to exploit these NM in several fields of science, particularly in medicine and industry. The increased presence of NM in the environment warrants evaluation of potential harmful effects in order to protect both environment and human exposed populations. Although in vitro approaches are commonly used to determine potential adverse effects of NM, in vivo studies generate data expected to be more relevant for risk assessment. As an in vivo model Drosophila melanogaster was previously found to possess reliable utility in determining the biological effects of NM, and thus its usage increased markedly over the last few years. The aims of this review are to present a comprehensive overview of all apparent studies carried out with NM and Drosophila, to attain a clear and comprehensive picture of the potential risk of NM exposure to health, and to demonstrate the advantages of using Drosophila in nanotoxicological investigations.
Collapse
Affiliation(s)
- Mohamed Alaraby
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències , Universitat Autònoma de Barcelona , Campus de Bellaterra , Cerdanyola del Vallès , Spain
- b Zoology Department, Faculty of Sciences , Sohag University , Sohag , Egypt
| | - Balasubramanyam Annangi
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències , Universitat Autònoma de Barcelona , Campus de Bellaterra , Cerdanyola del Vallès , Spain
| | - Ricard Marcos
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències , Universitat Autònoma de Barcelona , Campus de Bellaterra , Cerdanyola del Vallès , Spain
- c CIBER Epidemiología y Salud Pública , ISCIII , Madrid , Spain
| | - Alba Hernández
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències , Universitat Autònoma de Barcelona , Campus de Bellaterra , Cerdanyola del Vallès , Spain
- c CIBER Epidemiología y Salud Pública , ISCIII , Madrid , Spain
| |
Collapse
|