1
|
Li J, Sun H, Shcharbin D, Mignani S, Majoral JP, Shen M, Shi X. Nano-Enabled Effective Tuberculosis Treatments: A Concise Overview. ACS Biomater Sci Eng 2025; 11:2492-2501. [PMID: 40192819 DOI: 10.1021/acsbiomaterials.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Tuberculosis (TB) is a severe respiratory infectious disease caused by Mycobacterium tuberculosis (M.tb), which puts enormous pressure on public health and economic systems worldwide. Therefore, accurate diagnosis and timely intervention of TB are critical for interrupting disease transmission and reducing mortality among TB patients. However, the low bioavailability, inadequate targeting, and significant adverse side effects of conventional antibiotics and the emergence of the multidrug-resistant M.tb strain result in limited TB treatment efficacy or even the development of multidrug-resistant TB. The development of nanomaterials provides new perspectives to improve the drawbacks of antibiotics for improved TB treatment, while enabling the diagnosis of TB. Herein, we review the conventional and nanotechnology-based diagnosis and intervention strategy of TB and the currently developed novel methods to solve the TB dilemma.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Huxiao Sun
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, 220072, Minsk, Belarus
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Mingwu Shen
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, People's Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
2
|
Jamous YF, Alghamdi BS, Jarrar Y, Hindi EA, Alam MZ, Abd El-Aziz GS, Ibrahim RF, Bakhlgi R, Algarni SM, AboTaleb HA. Nephro- and Cardiotoxic Effects of Etoricoxib: Insights into Arachidonic Acid Metabolism and Beta-Adrenergic Receptor Expression in Experimental Mice. Pharmaceuticals (Basel) 2024; 17:1454. [PMID: 39598366 PMCID: PMC11597224 DOI: 10.3390/ph17111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Etoricoxib is a widely used anti-inflammatory drug, but its safety profile concerning cardiovascular and renal health remains inadequately explored. This study aimed to assess the nephro- and cardiotoxic effects of etoricoxib in a murine model, with a focus on its impact on arachidonic acid-metabolizing enzymes and beta-adrenergic receptors associated with drug-induced toxicity. Methods: Thirty-five BALB/C mice were randomly assigned to five groups: control, low-dose etoricoxib, high-dose etoricoxib, low-dose celecoxib, and high-dose celecoxib (a well-known nephro- and cardiotoxic NSAID). The treatments were administered for 28 days, after which hearts and kidneys were excised for physical and histopathological analysis, and the expression of arachidonic acid-metabolizing enzymes (cytochrome P450s, lipoxygenases, cyclooxygenases) and beta-1 adrenergic receptor (adrb1) and angiotensin-converting enzyme (ace2) genes were quantified using quantitative reverse transcription PCR (qRT-PCR). Results: Etoricoxib administration resulted in dose-dependent nephro- and cardiotoxic effects. Renal histology revealed glomerular atrophy or hypertrophy and significant damage to the proximal and distal convoluted tubules, including epithelial flattening, cytoplasmic vacuolation, and luminal widening. Cardiac analysis showed disorganized muscle fibers and hyaline degeneration. These changes were associated with altered gene expression: the downregulation of cox2, cyp1a1, and cyp2c29 in the kidneys and the upregulation of cyp4a12, cox2, and adrb1, along with the downregulation of cyp2c29 and ace2 in the heart. Conclusions: Etoricoxib induces nephro- and cardiotoxicity, marked by alterations in arachidonic acid metabolism and beta-adrenergic signaling pathways. The drug affects the expression of arachidonic acid-metabolizing enzymes and adrb1 in the heart while downregulating cox2 and other related enzymes in the kidneys. These findings underscore the need for caution when prescribing etoricoxib, particularly in patients with pre-existing renal or cardiac conditions.
Collapse
Affiliation(s)
- Yahya F. Jamous
- Vaccines and Bioprocessing National Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.S.A.); (H.A.A.)
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.Z.A.); (R.B.); (S.M.A.)
| | - Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Emad A. Hindi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.Z.A.); (R.B.); (S.M.A.)
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (G.S.A.E.-A.); (R.F.I.)
| | - Mohammad Z. Alam
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.Z.A.); (R.B.); (S.M.A.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal S. Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (G.S.A.E.-A.); (R.F.I.)
| | - Rabee F. Ibrahim
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (G.S.A.E.-A.); (R.F.I.)
| | - Refal Bakhlgi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.Z.A.); (R.B.); (S.M.A.)
| | - Salha M. Algarni
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.Z.A.); (R.B.); (S.M.A.)
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanin A. AboTaleb
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.S.A.); (H.A.A.)
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.H.); (M.Z.A.); (R.B.); (S.M.A.)
| |
Collapse
|
3
|
Fatemi F, Vaezi G, Sharafi S, Rahbarian R. 6-gingerol effect on rat liver following exposure to gold nanoparticles: From histopathologic findings to inflammatory and oxidative stress biomarkers. J Biochem Mol Toxicol 2024; 38:e23793. [PMID: 39234939 DOI: 10.1002/jbt.23793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/03/2024] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
Gold nanoparticles (AuNPs) have unique features which could be beneficial to various aspects of clinics and industry. Long-term exposure to AuNPs damages the physiologic functions and tissue structure of organs. Gingerol has anti-inflammatory and antioxidant properties. This study explored the effect of 6-gingerol on alleviation of AuNPs exposure effects in rats' liver. Thirty-two male Wistar rats were randomly assigned to four groups of negative control (received no AuNPs or treatment), positive control (received AuNPs but not treatment), and two study arms (both received AuNPs and one group 50 and the other 100 mg/Kg body weight 6-gingerol). All injections were performed intraperitoneally. After 30 days, serum levels of ALP, AST, ALT were assessed through ELISA method by an autoanalyzer while GGT, SOD, GPx, CAT, IL-6, IL-1β, TNF-α, CRP, 8-OHdG, MDA, and Bax/Bcl2 were measured using an ELISA reader. Paraffin-embedded tissue sections of the livers from all groups were also prepared and H&E staining was performed on them for investigation of tissue changes. Statistical analyses were performed using SPSS version 26 and p = 0.05 was considered as the level of significancy. AuNPs exposure significantly increased the levels of ALP, AST, ALT, GGT, CRP, IL-6, IL-1β, TNF-α, Bax/Bcl2, 8-OHdG, MDA (p < 0.001) in positive control groups compared to negative controls, while treatment with 6-gingerol significantly decreased the mentioned enzyme levels (p < 0.001). The level of antioxidant enzymes of SOD, GPx, and CAT, on the other hand, was found to be highest and lowest in negative and positive controls, respectively (p < 0.001). Treatment with 6-gingerol significantly decreased the mentioned enzyme levels (p < 0.001). Histology results showed no signs of degeneration, necrosis, or immune cell infiltration in negative controls, while positive controls showed dilated central veins and hyperemia along with infiltration of mononuclear immune cells to the portal area, tissue degeneration, and necrosis. The study arms showed improved signs as they showed normal trabecular structures with no clear portal space. Treatment with 6-gingerol seems to significantly and efficiently reduce the hepatic side effects of AuNPs exposure in Wistar rats.
Collapse
Affiliation(s)
- Fatemeh Fatemi
- Department of Animal Physiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Shahram Sharafi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
4
|
Tian T, Pang H, Li X, Ma K, Liu T, Li J, Luo Z, Li M, Hou Q, Hao H, Dong J, Du H, Liu X, Sun Z, Zhao C, Song X, Jin M. The role of DRP1 mediated mitophagy in HT22 cells apoptosis induced by silica nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116050. [PMID: 38325272 DOI: 10.1016/j.ecoenv.2024.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca2+) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot. The results showed that cell survival rate, SOD, CAT, GSH-Px, ATP and MMP gradually decreased with the increase of SiNPs concentration, while intracellular ROS, Ca2+, LDH and apoptosis rate increased with the increase of SiNPs concentration. In total cellular proteins,the expressions of mitochondrial functional proteins VDAC and UCP2 gradually increased, the expression of mitochondrial dynamic related protein DRP1 increased while the expressions of OPA1 and Mfn2 decreased. The expressions of mitophagy related proteins PINK1, Parkin and LC3Ⅱ/LC3Ⅰ increased and P62 gradually decreased, as well as the expressions of apoptosis related proteins Apaf-1, Cleaved-Caspase-3, Caspase-3, Caspase-9, Bax and Cyt-C. In mitochondrial proteins, the expressions of mitochondrial dynamic related proteins DRP1 and p-DRP1 were increased, while the expressions of OPA1 and Mfn2 were decreased. Expressions of mitochondrial autophagy associated proteins PINK1, Parkin, LC3II/LC3I increased, P62 decreased gradually, as well as the expressions of apoptosis related proteins Cleaved-Caspase-3, Caspase-3, and Caspase-9 increased, and Cyt-C expressions decreased. To further demonstrate the role of ROS and DRP1 in HT22 cell apoptosis induced by SiNPs, we selected the ROS inhibitor N-Acetylcysteine (NAC) and Dynamin-related protein 1 (DRP1) inhibitor Mdivi-1. The experimental results indicated that the above effects were remarkably improved after the use of inhibitors, further confirming that SiNPs induce the production of ROS in cells, activate DRP1, cause excessive mitochondrial division, induce mitophagy, destroy mitochondrial function and eventually lead to apoptosis.
Collapse
Affiliation(s)
- Tiantian Tian
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Huan Pang
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Xinyue Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Kai Ma
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Tianxiang Liu
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Jiali Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Zhixuan Luo
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Meng Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Qiaohong Hou
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Huifang Hao
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Jianfei Dong
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Haiying Du
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Xiaomei Liu
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Chao Zhao
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| | - Xiuling Song
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| |
Collapse
|
5
|
Perez-Araluce M, Jüngst T, Sanmartin C, Prosper F, Plano D, Mazo MM. Biomaterials-Based Antioxidant Strategies for the Treatment of Oxidative Stress Diseases. Biomimetics (Basel) 2024; 9:23. [PMID: 38248597 PMCID: PMC10813727 DOI: 10.3390/biomimetics9010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural and cardiovascular systems, or the bone, amongst others. However, supplying compounds with antioxidant activity is hampered by their low bioavailability. The development of biomaterials with antioxidant capacity is poised to overcome this roadblock. Moreover, in the treatment of chronic inflammation, material-based strategies would allow the controlled and targeted release of antioxidants into the affected tissue. In this review, we revise the main causes and effects of oxidative stress, and survey antioxidant biomaterials used for the treatment of chronic wounds, neurodegenerative diseases, cardiovascular diseases (focusing on cardiac infarction, myocardial ischemia-reperfusion injury and atherosclerosis) and osteoporosis. We anticipate that these developments will lead to the emergence of new technologies for tissue engineering, control of oxidative stress and prevention of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Maria Perez-Araluce
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, D-97070 Würzburg, Germany
- Bavarian Polymer Institute, University of Bayreuth, 95447 Bayreuth, Germany
| | - Carmen Sanmartin
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Felipe Prosper
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC) CB16/12/00489, 28029 Madrid, Spain
- Hemato-Oncology Program, Cancer Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Manuel M. Mazo
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| |
Collapse
|
6
|
Vanharen M, Girard D. Impact of gold nanoparticles (AuNPs) on eosinophils isolated from male and female individuals. Immunobiology 2023; 228:152762. [PMID: 38006680 DOI: 10.1016/j.imbio.2023.152762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
It is well established that some differences exist between the male and female immune systems. Despites this, a sex-based analysis is not frequently performed in most scientific published reports. Knowing that inflammation is a common undesired effect observed resulting from nanoparticle (NP) exposure, we investigate here how in vitro treatment of gold NPs with a primary size of 20 and 70 nm (AuNP20 and AuNP70, respectively) will alter the biology of human eosinophils isolated from men and women blood. We found that treatment of AuNP70, but not AuNP20, significantly delay apoptosis only in eosinophils isolated from women. AuNPs were found to decrease eosinophil phagocytosis, however, significance was only observed in AuNP20-induced eosinophils isolated from women. The production of IL-8 was significantly increased in response to both AuNPs but only in eosinophils isolated from men and the production of IL-1β was increased in AuNPs-induced eosinophils, although significance was observed only in AuNP70-induced eosinophils isolated from women. We conclude that future studies investigating the toxicity of AuNPs (or other NPs) should include a sex-based analysis, especially if the tested NPs have potential medical applications knowing the increased interest in the development of personalized precision medicine.
Collapse
Affiliation(s)
- Marion Vanharen
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
7
|
Vanharen M, Mahbeer T, Léveillé A, Méthot A, Samountry P, Girard D. Impact of gold nanoparticles (AuNPs) in human neutrophils in vitro and in leukocytes attraction in vivo: A sex-based analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104319. [PMID: 37984677 DOI: 10.1016/j.etap.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Some differences exist between the male and female immune systems. Despite this, a sex-based analysis is not frequently performed in most studies. Knowing that inflammation is a common undesired effect observed resulting from nanoparticle (NP) exposure, we investigate here how gold NPs with a primary size of 20 (AuNP20) and 70 nm (AuNP70) will alter the biology of polymorphonuclear neutrophil cells (PMNs) isolated from men and women as well as their potential pro-inflammatory effect in vivo in male and female mice. We found that AuNP20 significantly delay apoptosis only in PMN isolated from men. The production of interleukin (IL)- 8 by PMNs was increased by both AuNPs regardless of sex although significance was only observed in AuNP20-induced PMNs. Using the murine air pouch model of inflammation, AuNPs did not induce a neutrophilic infiltration regardless of sex. In conclusion, AuNPs could differently alter the biology of PMNs according to sex.
Collapse
Affiliation(s)
- Marion Vanharen
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Thomas Mahbeer
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Alexanne Léveillé
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Audrey Méthot
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Phonsiri Samountry
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|