1
|
Isayeva U, Paribello P, Ginelli E, Pisanu C, Comai S, Carpiniello B, Squassina A, Manchia M. Genomics and pharmacogenomics of cluster headache: implications for personalized management? A systematic review. Psychiatr Genet 2025; 35:1-11. [PMID: 39560176 PMCID: PMC11698140 DOI: 10.1097/ypg.0000000000000380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
The role of genetic factors in cluster headache etiology, suggested by familial and twin studies, remains ill-defined, with the exact pathophysiological mechanisms still largely elusive. This systematic review aims to synthesize current knowledge on cluster headache genetics and explore its implications for personalized treatment and prediction of treatment response. Thus, we searched PubMed, Scopus, and the Cochrane Library databases and reference lists of identified research articles, meta-analyses, and reviews to identify relevant studies up to 10 July 2024. The quality of the evidence was assessed using Newcastle-Ottawa Scale for case control studies and NIH Quality Assessment tool for Observational Cohort and Cross-Sectional Studies. The protocol of this study was registered via the Open Science Framework ( https://osf.io/cd4s3 ). Fifty-one studies were selected for the qualitative synthesis: 34 candidate gene studies, 5 GWAS, 7 gene expression studies, 4 pharmacogenetic association studies, and 1 whole genome sequencing study. The bulk of genetic evidence in cluster headache underscores the involvement of genes associated with chronobiological regulation. The most studied gene in cluster headache is the HCRTR2 , which is expressed in the hypothalamus; however, findings across studies continue to be inconclusive. Recent GWAS have uncovered novel risk loci for cluster headache, marking a significant advancement for the field. Nevertheless, there remains a need to investigate various genes involved in specific mechanisms and pathways.
Collapse
Affiliation(s)
- Ulker Isayeva
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari
- Unit of Clinical Psychiatry, Department of Medicine, University Hospital Agency of Cagliari
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari
- Unit of Clinical Psychiatry, Department of Medicine, University Hospital Agency of Cagliari
| | - Enrico Ginelli
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari
- Unit of Clinical Psychiatry, Department of Medicine, University Hospital Agency of Cagliari
| | - Claudia Pisanu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari
| | - Stefano Comai
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari
- Unit of Clinical Psychiatry, Department of Medicine, University Hospital Agency of Cagliari
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari
| | - Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari
- Unit of Clinical Psychiatry, Department of Medicine, University Hospital Agency of Cagliari
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Anderson T, Adams WM, Burns GT, Post EG, Baumann S, Clark E, Cogan K, Finnoff JT. Addressing Circadian Disruptions in Visually Impaired Paralympic Athletes. Int J Sports Physiol Perform 2024; 19:212-218. [PMID: 38168013 DOI: 10.1123/ijspp.2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Transmeridian travel is common for elite athletes participating in competitions and training. However, this travel can lead to circadian misalignment wherein the internal biological clock becomes desynchronized with the light-dark cycle of the new environment, resulting in performance decrement and potential negative health consequences. Existing literature extensively discusses recommendations for managing jet lag, predominantly emphasizing light-based interventions to synchronize the internal clock with the anticipated time at the destination. Nevertheless, visually impaired (VI) athletes may lack photoreceptiveness, diminishing or nullifying the effectiveness of this therapy. Consequently, this invited commentary explores alternative strategies for addressing jet lag in VI athletes. CONCLUSIONS VI athletes with light perception but reduced visual acuity or visual fields may still benefit from light interventions in managing jet lag. However, VI athletes lacking a conscious perception of light should rely on gradual shifts in behavioral factors, such as meal timing and exercise, to facilitate the entrainment of circadian rhythms to the destination time. Furthermore, interventions like melatonin supplementation may prove useful during and after travel. In addition, it is recommended that athlete guides adopt phase-forward or phase-back approaches to synchronize with the athlete, aiding in jet-lag management and optimizing performance.
Collapse
Affiliation(s)
- Travis Anderson
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
| | - William M Adams
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Geoffrey T Burns
- Department of Para & Internal Sports, United States Olympic and Paralympic Committee, Colorado Springs, CO, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Eric G Post
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
| | - Sally Baumann
- Department of Para & Internal Sports, United States Olympic and Paralympic Committee, Colorado Springs, CO, USA
| | - Emily Clark
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
| | - Karen Cogan
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
| | - Jonathan T Finnoff
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO, USA
| |
Collapse
|
5
|
Boyd HM, Frick KM, Kwapis JL. Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. J Biol Rhythms 2023; 38:537-555. [PMID: 37464775 PMCID: PMC10615791 DOI: 10.1177/07487304231184761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Both the circadian clock and sex hormone signaling can strongly influence brain function, yet little is known about how these 2 powerful modulatory systems might interact during complex neural processes like memory consolidation. Individually, the molecular components and action of each of these systems have been fairly well-characterized, but there is a fundamental lack of information about how these systems cooperate. In the circadian system, clock genes function as timekeeping molecules that convey time-of-day information on a well-stereotyped cycle that is governed by the suprachiasmatic nucleus. Keeping time is particularly important to synchronize various physiological processes across the brain and body, including those that regulate memory consolidation. Similarly, sex hormones are powerful modulators of memory, with androgens, estrogens, and progestins, all influencing memory consolidation within memory-relevant brain regions like the hippocampus. Despite clear evidence that each system can influence memory individually, exactly how the circadian and hormonal systems might interact to impact memory consolidation remains unclear. Research investigating either sex hormone action or circadian gene function within memory-relevant brain regions has unveiled several notable places in which the two systems could interact to control memory. Here, we bring attention to known interactions between the circadian clock and sex hormone signaling. We then review sex hormone-mediated control of memory consolidation, highlighting potential nodes through which the circadian system might interact during memory formation. We suggest that the bidirectional relationship between these two systems is essential for proper control of memory formation based on an animal's hormonal and circadian state.
Collapse
Affiliation(s)
- Hannah M. Boyd
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Janine L. Kwapis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
6
|
Xia Y, Yao B, Fu Z, Li L, Jin S, Qu B, Huang Y, Ding H. Clock genes regulate skeletal muscle energy metabolism through NAMPT/NAD +/SIRT1 following heavy-load exercise. Am J Physiol Regul Integr Comp Physiol 2023; 325:R490-R503. [PMID: 37545421 PMCID: PMC11178296 DOI: 10.1152/ajpregu.00261.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The biological clock is an invisible "clock" in the organism, which can regulate behavior, physiology, and biochemical reactions. However, the relationship between clock genes and energy metabolism in postexercise skeletal muscle is not well known. The purpose of this study was to determine the mechanisms through which peripheral clock genes regulate energy metabolism in skeletal muscle. We analyzed the rhythm of mRNA expression of the clock genes Bmal1 and Clock in skeletal muscle following heavy-load exercise and measured related indicators of mitochondrial structure and function. We obtained the following experimental results. First, heavy-load exercise induced loss of circadian rhythm of Bmal1 between ZT0 and ZT24, and the circadian rhythm of Clock was not restored between ZT0 and ZT72. Second, analysis of mitochondrial morphology in group E showed abnormal swelling and ridge structure damage at ZT0, which recovered somewhat at ZT24 and ZT48, and the damage had essentially disappeared by ZT72. Third, the expression of NAMPT/NAD+/SIRT1 signaling axis proteins in group E was abnormal at ZT0, the content of NAMPT and the activity of SIRT1 significantly increased, and the content of NAD+ significantly decreased. Fourth, the expression of BMAL1 and PGC-1α in group E significantly increased, whereas the ATP and ADP content, as well as the activities of COXII and COXIV, were significantly changed. Finally, the colocalization of BMAL1 and SIRT1 in group E was significantly upregulated at ZT0. These results suggest that the skeletal muscle clock gene Bmal1 may regulate the energy metabolism level of skeletal muscle after exercise through the NAMPT/NAD+/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yu Xia
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Binyu Yao
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Zeting Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lunyu Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Songlin Jin
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Bo Qu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ying Huang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Haili Ding
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
7
|
Belin AC, Barloese MC. The genetics and chronobiology of cluster headache. Cephalalgia 2023; 43:3331024231208126. [PMID: 37851671 DOI: 10.1177/03331024231208126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND/HYPOTHESIS Cluster headache displays uniquely rhythmic patterns in its attack manifestation. This strong chronobiological influence suggests that part of the pathophysiology of cluster headache is distinctly different from migraine and has prompted genetic investigations probing these systems. METHODS This is a narrative overview of the cluster headache chronobiological phenotype from the point of view of genetics covering existing knowledge, highlighting the specific challenges in cluster headache and suggesting novel research approaches to overcome these. RESULTS The chronobiological features of cluster headache are a hallmark of the disorder and while discrepancies between study results do exist, the main findings are highly reproducible across populations and time. Particular findings in subgroups indicate that the heritability of the disorder is linked to chronobiological systems. Meanwhile, genetic markers of circadian rhythm genes have been implicated in cluster headache, but with conflicting results. However, in two recently published genome wide association studies two of the identified four loci include genes with an involvement in circadian rhythm, MER proto-oncogene, tyrosine kinase and four and a half LIM domains 5. These findings strengthen the involvement of circadian rhythm in cluster headache pathophysiology. CONCLUSION/INTERPRETATION Studying chronobiology and genetics in cluster headache presents challenges unique to the disorder. Researchers are overcoming these challenges by pooling various data from different cohorts and performing meta-analyses providing novel insights into a classically enigmatic disorder. Further progress can likely be made by combining deep pheno- and genotyping.
Collapse
Affiliation(s)
- Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mads Christian Barloese
- Department of Functional and Diagnostic Imaging, Hvidovre Hospital, Hvidovre, Denmark
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
8
|
Wang Y, Beukeboom LW, Wertheim B, Hut RA. Transcriptomic Analysis of Light-Induced Genes in Nasonia vitripennis: Possible Implications for Circadian Light Entrainment Pathways. BIOLOGY 2023; 12:1215. [PMID: 37759614 PMCID: PMC10525998 DOI: 10.3390/biology12091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Circadian entrainment to the environmental day-night cycle is essential for the optimal use of environmental resources. In insects, opsin-based photoreception in the compound eye and ocelli and CRYPTOCHROME1 (CRY1) in circadian clock neurons are thought to be involved in sensing photic information, but the genetic regulation of circadian light entrainment in species without light-sensitive CRY1 remains unclear. To elucidate a possible CRY1-independent light transduction cascade, we analyzed light-induced gene expression through RNA-sequencing in Nasonia vitripennis. Entrained wasps were subjected to a light pulse in the subjective night to reset the circadian clock, and light-induced changes in gene expression were characterized at four different time points in wasp heads. We used co-expression, functional annotation, and transcription factor binding motif analyses to gain insight into the molecular pathways in response to acute light stimulus and to form hypotheses about the circadian light-resetting pathway. Maximal gene induction was found after 2 h of light stimulation (1432 genes), and this included the opsin gene opblue and the core clock genes cry2 and npas2. Pathway and cluster analyses revealed light activation of glutamatergic and GABA-ergic neurotransmission, including CREB and AP-1 transcription pathway signaling. This suggests that circadian photic entrainment in Nasonia may require pathways that are similar to those in mammals. We propose a model for hymenopteran circadian light-resetting that involves opsin-based photoreception, glutamatergic neurotransmission, and gene induction of cry2 and npas2 to reset the circadian clock.
Collapse
Affiliation(s)
- Yifan Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | |
Collapse
|
9
|
Hoyt KR, Li A, Yoon H, Weisenseel Z, Watkins J, Fischer A, Obrietan K. Ribosomal S6 Kinase Regulates the Timing and Entrainment of the Mammalian Circadian Clock Located in the Suprachiasmatic Nucleus. Neuroscience 2023; 516:15-26. [PMID: 36796752 PMCID: PMC10099606 DOI: 10.1016/j.neuroscience.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Previous work in the suprachiasmatic nucleus (SCN), the locus of the principal circadian clock, has shown that the activation state of the ERK/MAPK effector p90 ribosomal S6 kinase (RSK) is responsive to photic stimulation and is modulated across the circadian cycle. These data raise the prospect that RSK signaling contributes to both SCN clock timing and entrainment. Here, we found marked expression of the three main RSK isoforms (RSK1/2/3) within the SCN of C57/Bl6 mice. Further, using a combination of immunolabeling and proximity ligation assays, we show that photic stimulation led to the dissociation of RSK from ERK and the translocation of RSK from the cytoplasm to the nucleus. To test for RSK functionality following light treatment, animals received an intraventricular infusion of the selective RSK inhibitor, SL0101, 30 min prior to light (100 lux) exposure during the early circadian night (circadian time 15). Notably, the disruption of RSK signaling led to a significant reduction (∼45 min) in the phase delaying effects of light, relative to vehicle-infused mice. To test the potential contribution of RSK signaling to SCN pacemaker activity, slice cultures from a per1-Venus circadian reporter mouse line were chronically treated with SL0101. Suppression of RSK signaling led to a significant lengthening of the circadian period (∼40 min), relative to vehicle-treated slices. Together, these data reveal that RSK functions as a signaling intermediate that regulates light-evoked clock entrainment and the inherent time keeping properties of the SCN.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Aiqing Li
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Zachary Weisenseel
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Jacob Watkins
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Alex Fischer
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Lodovichi C, Ratto GM. Control of circadian rhythm on cortical excitability and synaptic plasticity. Front Neural Circuits 2023; 17:1099598. [PMID: 37063387 PMCID: PMC10098176 DOI: 10.3389/fncir.2023.1099598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Living organisms navigate through a cyclic world: activity, feeding, social interactions are all organized along the periodic succession of night and day. At the cellular level, periodic activity is controlled by the molecular machinery driving the circadian regulation of cellular homeostasis. This mechanism adapts cell function to the external environment and its crucial importance is underlined by its robustness and redundancy. The cell autonomous clock regulates cell function by the circadian modulation of mTOR, a master controller of protein synthesis. Importantly, mTOR integrates the circadian modulation with synaptic activity and extracellular signals through a complex signaling network that includes the RAS-ERK pathway. The relationship between mTOR and the circadian clock is bidirectional, since mTOR can feedback on the cellular clock to shift the cycle to maintain the alignment with the environmental conditions. The mTOR and ERK pathways are crucial determinants of synaptic plasticity and function and thus it is not surprising that alterations of the circadian clock cause defective responses to environmental challenges, as witnessed by the bi-directional relationship between brain disorders and impaired circadian regulation. In physiological conditions, the feedback between the intrinsic clock and the mTOR pathway suggests that also synaptic plasticity should undergo circadian regulation.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
| | - Gian Michele Ratto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
11
|
Das U, Gangisetty O, Chaudhary S, Tarale P, Rousseau B, Price J, Frazier I, Sarkar DK. Epigenetic insight into effects of prenatal alcohol exposure on stress axis development: Systematic review with meta-analytic approaches. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:18-35. [PMID: 36341762 DOI: 10.1111/acer.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
We conducted a systematic review with meta-analytic elements using publicly available Gene Expression Omnibus (GEO) datasets to determine the role of epigenetic mechanisms in prenatal alcohol exposure (PAE)-induced hypothalamic-pituitary-adrenal (HPA) axis dysfunctions in offspring. Several studies have demonstrated that PAE has long-term consequences on HPA axis functions in offspring. Some studies determined that alcohol-induced epigenetic alterations during fetal development persist in adulthood. However, additional research is needed to understand the major epigenetic events leading to alcohol-induced teratogenesis of the HPA axis. Our network analysis of GEO datasets identified key pathways relevant to alcohol-mediated histone modifications, DNA methylation, and miRNA involvement associated with PAE-induced alterations of the HPA axis. Our analysis indicated that PAE perturbated the epigenetic machinery to activate corticotrophin-releasing hormone, while it suppressed opioid, glucocorticoid receptor, and circadian clock genes. These results help to further our understanding of the epigenetic basis of alcohol's effects on HPA axis development.
Collapse
Affiliation(s)
- Ujjal Das
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Omkaram Gangisetty
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Shaista Chaudhary
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Prashant Tarale
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Bénédicte Rousseau
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Julianne Price
- Molecular Neuroscience of Alcohol and Drug Abuse Research Training, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Department of Kinesiology & Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Ian Frazier
- Molecular Neuroscience of Alcohol and Drug Abuse Research Training, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Department of Kinesiology & Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Dipak K Sarkar
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Molecular Neuroscience of Alcohol and Drug Abuse Research Training, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Endocrinology Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
12
|
Jang DY, Yang B, You MJ, Rim C, Kim HJ, Sung S, Kwon MS. Fluoxetine Decreases Phagocytic Function via REV-ERBα in Microglia. Neurochem Res 2023; 48:196-209. [PMID: 36048349 DOI: 10.1007/s11064-022-03733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
Although fluoxetine (FLX) is a commonly used drug in psychiatric disorders, such as major depressive disorder, anxiety disorder, panic disorder, and obsessive-compulsive disorder, the mechanism by which FLX exerts its therapeutic effect is not completely understood. In this study, we aimed to determine the possible mechanism by which FLX focuses on microglial phagocytosis. FLX reduced phagocytic function in BV2 cells and increased REV-ERBα without affecting other microglia-related genes, such as inflammation and phagocytosis. Although FLX did not change BMAL1 protein levels, it restricted the nucleocytoplasmic transport (NCT) of BMAL1, leading to its cytosolic accumulation. REV-ERBα antagonist SR8278 rescued the decreased phagocytic activity and restricted NCT of BMAL1. We also found that REV-ERBα mediates the effect of FLX via the inhibition of phospho-ERK (pERK). The ERK inhibitor FR180204 was sufficient to reduce phagocytic function in BV2 cells and restrict the NCT of BMAL1. These results were recapitulated in the primary microglia. In conclusion, we propose that FLX decreases phagocytic function and restricts BMAL1 NCT via REV-ERBα. In addition, ERK inhibition mimics the effects of FLX on microglia.
Collapse
Affiliation(s)
- Da-Yoon Jang
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.,Research Competency Milestones Program (RECOMP) of School of Medicine, CHA University, Seongnam-si, South Korea
| | - Bohyun Yang
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Min-Jung You
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Chan Rim
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Hui-Ju Kim
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Soyoung Sung
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
13
|
Porcu A, Nilsson A, Booreddy S, Barnes SA, Welsh DK, Dulcis D. Seasonal changes in day length induce multisynaptic neurotransmitter switching to regulate hypothalamic network activity and behavior. SCIENCE ADVANCES 2022; 8:eabn9867. [PMID: 36054362 PMCID: PMC10848959 DOI: 10.1126/sciadv.abn9867] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/19/2022] [Indexed: 05/18/2023]
Abstract
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Nilsson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sathwik Booreddy
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David K. Welsh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Heywood HK, Gardner L, Knight MM, Lee DA. Oscillations of the circadian clock protein, BMAL-1, align to daily cycles of mechanical stimuli: a novel means to integrate biological time within predictive in vitro model systems. IN VITRO MODELS 2022; 1:405-412. [PMID: 36570670 PMCID: PMC9767245 DOI: 10.1007/s44164-022-00032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/01/2023]
Abstract
Purpose In vivo, the circadian clock drives 24-h rhythms in human physiology. Isolated cells in vitro retain a functional clockwork but lack necessary timing cues resulting in the rapid loss of tissue-level circadian rhythms. This study tests the hypothesis that repeated daily mechanical stimulation acts as a timing cue for the circadian clockwork. The delineation and integration of circadian timing cues into predictive in vitro model systems, including organ-on-a-chip (OOAC) devices, represent a novel concept that introduces a key component of in vivo physiology into predictive in vitro model systems. Methods Quiescent bovine chondrocytes were entrained for 3 days by daily 12-h bouts of cyclic biaxial tensile strain (10%, 0.33 Hz, Flexcell) before sampling during free-running conditions. The core clock protein, BMAL-1, was quantified from normalised Western Blot signal intensity and the temporal oscillations characterised by Cosinor linear fit with 24-h period. Results Following entrainment, the cell-autonomous oscillations of the molecular clock protein, BMAL-1, exhibited circadian (24 h) periodicity (p < 0.001) which aligned to the diurnal mechanical stimuli. A 6-h phase shift in the mechanical entrainment protocol resulted in an equivalent shift of the circadian clockwork. Thus, repeated daily mechanical stimuli synchronised circadian rhythmicity of chondrocytes in vitro. Conclusion This work demonstrates that daily mechanical stimulation can act as a timing cue that is sufficient to entrain the peripheral circadian clock in vitro. This discovery may be exploited to induce and sustain circadian physiology within into predictive in vitro model systems, including OOAC systems. Integration of the circadian clock within these systems will enhance their potential to accurately recapitulate human diurnal physiology and hence augment their predictive value as drug testing platforms and as realistic models of human (patho)physiology. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00032-x.
Collapse
Affiliation(s)
- Hannah K. Heywood
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Laurence Gardner
- Wirral University Teaching Hospital NHS Foundation Trust, Liverpool, UK
| | - Martin M. Knight
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - David A. Lee
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Chrono-Aerobic Exercise Optimizes Metabolic State in DB/DB Mice through CLOCK–Mitophagy–Apoptosis. Int J Mol Sci 2022; 23:ijms23169308. [PMID: 36012573 PMCID: PMC9408978 DOI: 10.3390/ijms23169308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Although the benefits of aerobic exercise on obesity and type 2 diabetes are well-documented, the pathogenesis of type 2 diabetes and the intervention mechanism of exercise remain ambiguous. The correlation between mitochondrial quality and metabolic diseases has been identified. Disruption of the central or peripheral molecular clock can also induce chronic metabolic diseases. In addition, the interactive effects of the molecular clock and mitochondrial quality have attracted extensive attention in recent years. Exercise and a high-fat diet have been considered external factors that may change the molecular clock and metabolic state. Therefore, we utilized a DB/DB (BSK.Cg-Dock7m +/+ Leprdb/JNju) mouse model to explore the effect of chrono-aerobic exercise on the metabolic state of type 2 diabetic mice and the effect of timing exercise as an external rhythm cue on liver molecular clock-mitochondrial quality. We found that two differently timed exercises reduced the blood glucose and serum cholesterol levels in DB/DB mice, and compared with night exercise (8:00 p.m., the active period of mice), morning exercise (8:00 a.m., the sleeping period of mice) significantly improved the insulin sensitivity in DB/DB mice. In contrast, type 2 diabetes mellitus (T2DM) increased the expression of CLOCK and impaired the mitochondrial quality (mitochondrial networks, OPA1, Fis1, and mitophagy), as well as induced apoptosis. Both morning and night exercise ameliorated impaired mitochondrial quality and apoptosis induced by diabetes. However, compared with morning exercise, night exercise not only decreased the protein expression of CLOCK but also decreased excessive apoptosis. In addition, the expression of CLOCK was negatively correlated with the expression of OPA1 and Fis1. In summary, our research suggests that morning exercise is more beneficial for increasing insulin sensitivity and promoting glucose transport in T2DM, whereas night exercise may improve lipid infiltration and mitochondrial abnormalities through CLOCK–mitophagy–apoptosis in the liver, thereby downregulating glucose and lipid disorders. In addition, CLOCK-OPA1/Fis1–mitophagy might be novel targets for T2DM treatment.
Collapse
|
16
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Wang QJ, Guo Y, Zhang KH, Zhang L, Geng SX, Shan CH, Liu P, Zhu MQ, Jin QY, Liu ZY, Wang MZ, Li MY, Liu M, An L, Tian JH, Wu ZH. Night-Restricted Feeding Improves Gut Health by Synchronizing Microbe-Driven Serotonin Rhythm and Eating Activity-Driven Body Temperature Oscillations in Growing Rabbits. Front Cell Infect Microbiol 2022; 11:771088. [PMID: 34976857 PMCID: PMC8718905 DOI: 10.3389/fcimb.2021.771088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
The circadian misalignment of the gut microbiota caused by unusual eating times in adult animals is related to disease development. However, whether the composition and diurnal rhythm of gut microbiota can be optimized by synchronizing the window period of eating with natural eating habits to reduce the risk of diarrhea remains unclear, especially in growing animals. In this study, 108 5-week-old weaned rabbits (nocturnal animals) were randomly subjected to daytime feeding (DF) and night-restricted feeding (NRF). At age 12 weeks, six rabbits were selected from each group, and caecum and cecal contents, as well as serum samples were collected at 4-h intervals during 24 h. Overall, NRF was found to reduce the risk of diarrhea in growing rabbits, improved the diurnal rhythm and abundance of beneficial microorganisms, along with the production of beneficial metabolites, whereas reduced the abundance of potential pathogens (Synergistes, Desulfovibrio, and Alistipes). Moreover, NRF improved diurnal rhythm of tryptophan hydroxylase isoform 1 and serotonin. Furthermore, NRF strengthened the diurnal amplitude of body core temperature, and promoted the diurnal expression of intestinal clock genes (BMAL1, CLOCK, REV-ERBα, and PER1), and genes related to the regulation of the intestinal barrier (CLAUDIN-1), and intestinal epithelial cell self-proliferation and renewal (BMI1). In vitro simulation experiments further revealed that synchronization of microbial-driven serotonin rhythm and eating activity-driven body temperature oscillations, which are important zeitgebers, could promote the diurnal expression of clock genes and CLAUDIN-1 in rabbit intestinal epithelial cells (RIEC), and enhance RIEC proliferation. This is the first study to reveal that NRF reprograms the diurnal rhythm of the gut microbiome, promotes the diurnal expression of clock genes and tight junction genes via synchronization of microbial-driven serotonin rhythm and eating activity-driven body temperature oscillations, thereby improving intestinal health and reducing the risk of diarrhea in growing rabbits. Collectively, these results provide a new perspective for the healthy feeding and management of growing animals.
Collapse
Affiliation(s)
- Qiang-Jun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ke-Hao Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shi-Xia Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chun-Hua Shan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meng-Qi Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiong-Yu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong-Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei-Zhi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Yong Li
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao, China
| | - Man Liu
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Hui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong-Hong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Abstract
In mammals, molecular circadian clocks not only exist in the suprachiasmatic nucleus (SCN) but in almost all organ systems. Intriguingly, tissue clocks can operate in both isolated tissues and cell lines with endocrine signals mediating the circadian expression of local transcriptomes. This can be demonstrated by treating tissue explants with endocrine cues in a phase- and dose-dependent manner. In this chapter we provide an overview of methods to study the effects of candidate hormonal time cues on tissue clock resetting. We propose an experimental procedure based on an in vitro setup consisting of several consecutive steps in which organotypic tissue cultures or cells can be used. Our approach targets the potential resetting mechanism at three levels: the hormone, the direct clock gene target, and the tissue clock response.
Collapse
Affiliation(s)
- Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Iwona Olejniczak
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
19
|
PER Gene Family Polymorphisms in Relation to Cluster Headache and Circadian Rhythm in Sweden. Brain Sci 2021; 11:brainsci11081108. [PMID: 34439727 PMCID: PMC8393578 DOI: 10.3390/brainsci11081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The trigeminal autonomic cephalalgia, cluster headache (CH), is one of the most painful disorders known to man. One of the disorder's most striking features is the reported diurnal rhythmicity of the attacks. For a majority of patients, the headache attacks occur at approximately the same time every day. Genetic variants of genes involved in the circadian rhythm such as Period Circadian Regulator 1, 2, and 3 (PER1, 2 and 3) are hypothesized to have an effect on the rhythmicity of the attacks. Six PER1, 2 and 3 genetic markers; the indel rs57875989 and five single nucleotide polymorphisms (SNPs), rs2735611, rs2304672, rs934945, rs10462020, and rs228697, were genotyped, using TaqMan® or regular polymerase chain reaction (PCR), in a Swedish CH case control material. Logistic regression showed no association between CH and any of the six genetic variants; rs57875989, p = 0.523; rs2735611, p = 0.416; rs2304672, p = 0.732; rs934945, p = 0.907; rs10462020, p = 0.726; and rs228697, p = 0.717. Furthermore, no difference in allele frequency was found for patients reporting diurnal rhythmicity of attacks, nor were any of the variants linked to diurnal preference. The results of this study indicate no involvement of these PER genetic variants in CH or diurnal phenotype in Sweden.
Collapse
|
20
|
Addison R, Weatherhead SC, Pawitri A, Smith GR, Rider A, Grantham HJ, Cockell SJ, Reynolds NJ. Therapeutic wavelengths of ultraviolet B radiation activate apoptotic, circadian rhythm, redox signalling and key canonical pathways in psoriatic epidermis. Redox Biol 2021; 41:101924. [PMID: 33812333 PMCID: PMC8050411 DOI: 10.1016/j.redox.2021.101924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
Ultraviolet B radiation (UVB) exerts pleiotropic effects on human skin. DNA damage response and repair pathways are activated by UVB; if damage cannot be repaired, apoptosis ensues. Although cumulative UVB exposure predisposes to skin cancer, UVB phototherapy is widely used as an effective treatment for psoriasis. Previous studies defined the therapeutic action spectrum of UVB and showed that psoriasis is resistant to apoptosis. This study aimed to investigate early molecular responses within psoriasis plaques following irradiation with single equi-erythemogenic doses of clinically-effective (311 nm, narrow-band) compared to clinically-ineffective (290 nm) UVB. Forty-eight micro-dissected epidermal samples from 20 psoriatic patients were analyzed using microarrays. Our bioinformatic analysis compared gene expression between 311 nm irradiated, 290 nm irradiated and control psoriasis epidermis to specifically identify 311 nm UVB differentially expressed genes (DEGs) and their upstream regulatory pathways. Key DEGs and pathways were validated by immunohistochemical analysis. There was a dynamic induction and repression of 311 nm UVB DEGs between 6 h and 18 h, only a limited number of DEGs maintained their designated expression status between time-points. Key disease and function pathways included apoptosis, cell death, cell migration and leucocyte chemotaxis. DNA damage response pathways, NRF2-mediated oxidative stress response and P53 signalling were key nodes, interconnecting apoptosis and cell cycle arrest. Interferon signalling, dendritic cell maturation, granulocyte adhesion and atherosclerotic pathways were also differentially regulated. Consistent with these findings, top transcriptional regulators of 311 nm UVB DEGs related to: a) apoptosis, DNA damage response and cell cycle control; b) innate/acquired immune regulation and inflammation; c) hypoxia/redox response and angiogenesis; d) circadian rhythmicity; f) EGR/AP1 signalling and keratinocyte differentiation; and g) mitochondrial biogenesis. This research provides important insights into the molecular targets of 311 nm UVB, underscoring key roles for apoptosis and cell death. These and the other key pathways delineated may be central to the therapeutic effects of 311 nm in psoriasis.
Collapse
Affiliation(s)
- Rachel Addison
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie C Weatherhead
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Anandika Pawitri
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Ashley Rider
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Henry J Grantham
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Nick J Reynolds
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| |
Collapse
|
21
|
Lorsung E, Karthikeyan R, Cao R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front Neurosci 2021; 15:642745. [PMID: 33776640 PMCID: PMC7994532 DOI: 10.3389/fnins.2021.642745] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.
Collapse
Affiliation(s)
- Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
22
|
Rojas M, Chávez-Castillo M, Pírela D, Ortega Á, Salazar J, Cano C, Chacín M, Riaño M, Batista MJ, Díaz EA, Rojas-Quintero J, Bermúdez V. Chronobiology and Chronotherapy in Depression: Current Knowledge and Chronotherapeutic Promises. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999201124152432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Depression is a heavily prevalent mental disorder. Symptoms of depression
extend beyond mood, cognition, and behavior to include a spectrum of somatic manifestations in all
organic systems. Changes in sleep and neuroendocrine rhythms are especially prominent, and disruptions
of circadian rhythms have been closely related to the neurobiology of depression. With the
advent of increased research in chronobiology, various pathophysiologic mechanisms have been
proposed, including anomalies of sleep architecture, the effects of clock gene polymorphisms in
monoamine metabolism, and the deleterious impact of social zeitgebers. The identification of these
chronodisruptions has propelled the emergence of several chronotherapeutic strategies, both pharmacological
and non-pharmacological, with varying degrees of clinical evidence.
Methods:
The fundamental objective of this review is to integrate current knowledge about the role
of chronobiology and depression and to summarize the interventions developed to resynchronize
biorhythms both within an individual and with geophysical time.
Results:
We have found that among the non-pharmacological alternatives, triple chronotherapywhich
encompasses bright light therapy, sleep deprivation therapy, and consecutive sleep phase
advance therapy-has garnered the most considerable scientific interest. On the other hand,
agomelatine appears to be the most promising pharmacological option, given its unique melatonergic
pharmacodynamics.
Conclusions:
Research in chronotherapy as a treatment for depression is currently booming. Novel
interventions could play a significant role in adopting new options for the treatment of depression,
with Tripe Cronotherapy standing out as the most promising treatment.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pírela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Riaño
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - María Judith Batista
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - Edgar Alexis Díaz
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Valmore Bermúdez
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
23
|
Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine. Pharmacol Ther 2020; 221:107741. [PMID: 33189715 DOI: 10.1016/j.pharmthera.2020.107741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.
Collapse
|
24
|
Namgyal D, Ali S, Mehta R, Sarwat M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology 2020; 442:152542. [PMID: 32735850 DOI: 10.1016/j.tox.2020.152542] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Heavy metal neurotoxicity is one of the major challenges in today's era due to the large scale and widespread mechanisation of the production. However, the causative factors responsible for neurotoxicity are neither known nor do we have the availability of therapeutic approaches to deal with it. One of the major causative agents of neurotoxicity is a non-essential transition heavy metal, Cadmium (Cd), that reaches the central nervous system (CNS) through the nasal mucosa and olfactory pathway causing adverse structural and functional effects. In this study, we explored the neuroprotective efficacy of plant derived Curcumin which is reported to have pleiotropic biological activity including anti-oxidant, anti-inflammatory, anti-apoptotic, anti-carcinogenic and anti-angiogenic effects. Four different concentrations of curcumin (20, 40, 80 and 160 mg/kg of the body weight) were used to assess the behavioural, biochemical, hippocampal proteins (BDNF, CREB, DCX and Synapsin II) and histological changes in Swiss Albino mice that were pre-treated with Cd (2.5 mg/kg). The findings showed that Cd exposure led to the behavioural impairment through oxidative stress, reduction of hippocampal neurogenesis associated proteins, and degeneration of CA3 and cortical neurons. However, treatment of different curcumin concentrations had effectively restored the behavioural changes in Cd-exposed mice through regulation of oxidative stress and up-regulation of hippocampal proteins in a dose-dependent manner. Significantly, a dose of 160 mg/kg body weight was found to be glaringly effective. From this study, we infer that curcumin reverses the adverse effects of neurotoxicity induced by Cd and promotes neurogenesis.
Collapse
Affiliation(s)
- Dhondup Namgyal
- Amity Institute of Neuropsychology and Neuroscience, Amity University, Noida, UP, 201303, India; Amity Institute of Pharmacy, Amity University, Noida, UP, 201303, India
| | - Sher Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rachna Mehta
- Amity Institute of Neuropsychology and Neuroscience, Amity University, Noida, UP, 201303, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, UP, 201303, India.
| |
Collapse
|
25
|
Pathak SS, Liu D, Li T, de Zavalia N, Zhu L, Li J, Karthikeyan R, Alain T, Liu AC, Storch KF, Kaufman RJ, Jin VX, Amir S, Sonenberg N, Cao R. The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4. Neuron 2019; 104:724-735.e6. [PMID: 31522764 PMCID: PMC6872934 DOI: 10.1016/j.neuron.2019.08.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022]
Abstract
The integrated stress response (ISR) is activated in response to diverse stress stimuli to maintain homeostasis in neurons. Central to this process is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Here, we report a critical role for ISR in regulating the mammalian circadian clock. The eIF2α kinase GCN2 rhythmically phosphorylates eIF2α in the suprachiasmatic circadian clock. Increased eIF2α phosphorylation shortens the circadian period in both fibroblasts and mice, whereas reduced eIF2α phosphorylation lengthens the circadian period and impairs circadian rhythmicity in animals. Mechanistically, phosphorylation of eIF2α promotes mRNA translation of Atf4. ATF4 binding motifs are identified in multiple clock genes, including Per2, Per3, Cry1, Cry2, and Clock. ATF4 binds to the TTGCAGCA motif in the Per2 promoter and activates its transcription. Together, these results demonstrate a significant role for ISR in circadian physiology and provide a potential link between dysregulated ISR and circadian dysfunction in brain diseases.
Collapse
Affiliation(s)
- Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nuria de Zavalia
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Lei Zhu
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Jin Li
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kai-Florian Storch
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shimon Amir
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Garg A, Orru R, Ye W, Distler U, Chojnacki JE, Köhn M, Tenzer S, Sönnichsen C, Wolf E. Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein. J Biol Chem 2019; 294:16604-16619. [PMID: 31515273 DOI: 10.1074/jbc.ra119.009845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
The mammalian CLOCK:BMAL1 transcription factor complex and its coactivators CREB-binding protein (CBP)/p300 and mixed-lineage leukemia 1 (MLL1) critically regulate circadian transcription and chromatin modification. Circadian oscillations are regulated by interactions of BMAL1's C-terminal transactivation domain (TAD) with the KIX domain of CBP/p300 (activating) and with the clock protein CRY1 (repressing) as well as by the BMAL1 G-region preceding the TAD. Circadian acetylation of Lys537 within the G-region enhances repressive BMAL1-TAD-CRY1 interactions. Here, we characterized the interaction of the CBP-KIX domain with BMAL1 proteins, including the BMAL1-TAD, parts of the G-region, and Lys537 Tethering the small compound 1-10 in the MLL-binding pocket of the CBP-KIX domain weakened BMAL1 binding, and MLL1-bound KIX did not form a ternary complex with BMAL1, indicating that the MLL-binding pocket is important for KIX-BMAL1 interactions. Small-angle X-ray scattering (SAXS) models of BMAL1 and BMAL1:KIX complexes revealed that the N-terminal BMAL1 G-region including Lys537 forms elongated extensions emerging from the bulkier BMAL1-TAD:KIX core complex. Fitting high-resolution KIX domain structures into the SAXS-derived envelopes suggested that the G-region emerges near the MLL-binding pocket, further supporting a role of this pocket in BMAL1 binding. Additionally, mutations in the second CREB-pKID/c-Myb-binding pocket of the KIX domain moderately impacted BMAL1 binding. The BMAL1(K537Q) mutation mimicking Lys537 acetylation, however, did not affect the KIX-binding affinity, in contrast to its enhancing effect on CRY1 binding. Our results significantly advance the mechanistic understanding of the protein interaction networks controlling CLOCK:BMAL1- and CBP-dependent gene regulation in the mammalian circadian clock.
Collapse
Affiliation(s)
- Archit Garg
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany.,Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Roberto Orru
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Weixiang Ye
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Maja Köhn
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | - Carsten Sönnichsen
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany .,Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| |
Collapse
|
27
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Ri H, Lee J, Sonn JY, Yoo E, Lim C, Choe J. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Mol Cells 2019; 42:301-312. [PMID: 31091556 PMCID: PMC6530642 DOI: 10.14348/molcells.2019.2451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.
Collapse
Affiliation(s)
- Hwajung Ri
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jongbin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jun Young Sonn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
29
|
Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling. Nat Commun 2019; 10:542. [PMID: 30710088 PMCID: PMC6358603 DOI: 10.1038/s41467-019-08427-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) co-ordinates circadian behaviour and physiology in mammals. Its cell-autonomous circadian oscillations pivot around a well characterised transcriptional/translational feedback loop (TTFL), whilst the SCN circuit as a whole is synchronised to solar time by its retinorecipient cells that express and release vasoactive intestinal peptide (VIP). The cell-autonomous and circuit-level mechanisms whereby VIP synchronises the SCN are poorly understood. We show that SCN slices in organotypic culture demonstrate rapid and sustained circuit-level circadian responses to VIP that are mediated at a cell-autonomous level. This is accompanied by changes across a broad transcriptional network and by significant VIP-directed plasticity in the internal phasing of the cell-autonomous TTFL. Signalling via ERK1/2 and tuning by its negative regulator DUSP4 are critical elements of the VIP-directed circadian re-programming. In summary, we provide detailed mechanistic insight into VIP signal transduction in the SCN at the level of genes, cells and neural circuit. The suprachiasmatic nucleus (SCN) synchronises daily rhythms of behaviour and physiology to the light-dark cycle. Vasoactive intestinal peptide (VIP) is important for mediating SCN entrainment; however, the underlying mechanisms are incompletely understood. Here, the authors show that the effects of VIP on the SCN are mediated by ERK1/2 and DUSP4.
Collapse
|
30
|
Zsuga J, More CE, Erdei T, Papp C, Harsanyi S, Gesztelyi R. Blind Spot for Sedentarism: Redefining the Diseasome of Physical Inactivity in View of Circadian System and the Irisin/BDNF Axis. Front Neurol 2018; 9:818. [PMID: 30333788 PMCID: PMC6176117 DOI: 10.3389/fneur.2018.00818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction: The term "diseasome of physical inactivity" was coined by Pedersen to explain clustering of chronic diseases linked to physical inactivity. Accordingly, physical inactivity per se contributes to the accumulation of visceral fat, which, generates chronic low-grade systemic inflammation, contributes to emergence of chronic, non-communicable diseases. Diversity of these disorders posits the possible involvement of a supraphysiological system. Methods: Hypothesis driven literature search and deductive reasoning was used to review relevant literature and formulate a novel theory. Results: We have identified the circadian system, omnipresent in virtually every cell, as a possible vehicle for brain muscle crosstalk, explaining some aspects of the diseasome of physical inactivity This system is hierarchically organized, with the suprachiasmatic nucleus (SCN) being the master clock that entrains to the dark/light cycle and synchronizes subsidiary molecular clocks in the periphery. Insufficient photic entrainment also causes chronic disease evolution. The recently identified irisin, was shown to induce brain-derived neurotrophic factor (BDNF) production in several brain areas. BDNF assumes significant role in gating light's influence in the retinohypothalamic synapse, by having a permissive effect on glutamate signal transduction underlying photic entrainment. Conclusions: Here we provide theoretical evidence to support the hypothesis that irisin may facilitate photic entrainment of the SCN, via BDNF. By this irisin opens up possible pathways for peripheral non-photic entrainment signals to exert influence on the master clock that is otherwise resistant to these. Furthermore, we suggest that intertwining processes of circadian, redox, inflammatory, and myokine systems lay underneath the diseasome of physical inactivity.
Collapse
Affiliation(s)
- Judit Zsuga
- Department of Health System Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Csaba E. More
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Erdei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Papp
- Department of Health System Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Szilvia Harsanyi
- Department of Health System Management and Quality Management in Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
31
|
Wheaton KL, Hansen KF, Aten S, Sullivan KA, Yoon H, Hoyt KR, Obrietan K. The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. J Biol Rhythms 2018; 33:497-514. [PMID: 30175684 DOI: 10.1177/0748730418791713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Within the suprachiasmatic nucleus (SCN)-the locus of the master circadian clock- transcriptional regulation via the CREB/CRE pathway is implicated in the functioning of the molecular clock timing process, and is a key conduit through which photic input entrains the oscillator. One event driving CRE-mediated transcription is the phosphorylation of CREB at serine 133 (Ser133). Indeed, numerous reporter gene assays have shown that an alanine point mutation in Ser133 reduces CREB-mediated transcription. Here, we sought to examine the contribution of Ser133 phosphorylation to the functional role of CREB in SCN clock physiology in vivo. To this end, we used a CREB knock-in mouse strain, in which Ser133 was mutated to alanine (S/A CREB). Under a standard 12 h light-dark cycle, S/A CREB mice exhibited a marked alteration in clock-regulated wheel running activity. Relative to WT mice, S/A CREB mice had highly fragmented bouts of locomotor activity during the night phase, elevated daytime activity, and a delayed phase angle of entrainment. Further, under free-running conditions, S/A CREB mice had a significantly longer tau than WT mice and reduced activity amplitude. In S/A CREB mice, light-evoked clock entrainment, using both Aschoff type 1 and 6 h "jet lag" paradigms, was markedly reduced relative to WT mice. S/A CREB mice exhibited attenuated transcriptional drive, as assessed by examining both clock-gated and light-evoked gene expression. Finally, SCN slice culture imaging detected a marked disruption in cellular clock phase synchrony following a phase-resetting stimulus in S/A CREB mice. Together, these data indicate that signaling through CREB phosphorylation at Ser133 is critical for the functional fidelity of both SCN timing and entrainment.
Collapse
Affiliation(s)
- Kelin L Wheaton
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH
| | | | - Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Kyle A Sullivan
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH
| |
Collapse
|
32
|
Ramos-Lopez O, Samblas M, Milagro FI, Riezu-Boj JI, Crujeiras AB, Martinez JA, Project M. Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake. Chronobiol Int 2018; 35:969-981. [PMID: 29580070 DOI: 10.1080/07420528.2018.1446021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 12/30/2022]
Abstract
The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes. DNA methylation profiling was determined by microarray in white blood cells from 474 adults from the Methyl Epigenome Network Association (MENA) project. Kyoto Encyclopedia of Genes and Genomes database was used to identify the genes integrating the circadian rhythm pathway. Network enrichment analyses were performed with the PathDIP platform. Associations between circadian methylation patterns with anthropometric measurements, the metabolic profile, clinical data and dietary intakes were analyzed. DNA methylation patterns of nine CpG sites at six circadian rhythm pathway genes were strongly correlated with BMI (false discovery rates <0.0001). These CpGs encompassed cg09578018 (RORA), cg20406576 (PRKAG2), cg10059324 (PER3), cg01180628 (BHLHE40), cg23871860 (FBXL3), cg16964728 (RORA), cg14129040 (CREB1), cg07012178 (PRKAG2) and cg24061580 (PRKAG2). Interestingly, network enrichment analyses revealed that the six BMI-associated genes statistically contributed to the regulation of the circadian rhythm pathway (p = 1.9E-10). In addition, methylation signatures at cg09578018 (RORA), cg24061580 (PRKAG2), cg01180628 (BHLHE40) and cg10059324 (PER3) also correlated with insulin resistance (p < 0.0001) and mean arterial blood pressure (p < 0.0001). Furthermore, relevant correlations (p < 0.05) between methylation at cg09578018 (RORA) and cg01180628 (BHLHE40) with total energy and carbohydrate intakes were found. This investigation revealed potential associations of DNA methylation profiles at circadian genes with obesity, metabolic disturbances and carbohydrate intake, with potential impact on weight homeostasis.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Mirian Samblas
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Fermin I Milagro
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- b CIBERobn , Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health INstitute , Madrid , Spain
| | - Jose I Riezu-Boj
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- c Navarra Institute for Health Research (IdiSNA) , Pamplona , Spain
| | - A B Crujeiras
- b CIBERobn , Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health INstitute , Madrid , Spain
- d Laboratory of Molecular and Cellular Endocrinology , Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC) , Santiago de Compostela , Spain
| | - J Alfredo Martinez
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- b CIBERobn , Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health INstitute , Madrid , Spain
- c Navarra Institute for Health Research (IdiSNA) , Pamplona , Spain
- e IMDEA Food , Research Institute on Food & Health Sciences , Madrid , Spain
| | - Mena Project
- f Other Members of the MENA Project in Alphabetical Order Are: Abete I, Cuervo M, Goni L, Marti A, Martinez-Gonzalez MA, Moreno-Aliaga MJ, Navas-Carretero S, San-Cristobal R, Santos JL and Zulet MA
| |
Collapse
|
33
|
Yeom M, Lee H, Shin S, Park D, Jung E. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP. Molecules 2018; 23:molecules23040745. [PMID: 29570674 PMCID: PMC6017963 DOI: 10.3390/molecules23040745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.
Collapse
Affiliation(s)
- Miji Yeom
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - HansongI Lee
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Seoungwoo Shin
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Deokhoon Park
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Eunsun Jung
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| |
Collapse
|
34
|
O'Keeffe SM, Beynon AL, Davies JS, Moynagh PN, Coogan AN. NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock. Eur J Neurosci 2017; 45:1111-1123. [PMID: 28245070 DOI: 10.1111/ejn.13553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- S. M. O'Keeffe
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| | - A. L. Beynon
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - J. S. Davies
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - P. N. Moynagh
- Department of Biology; Maynooth University; National University of Ireland; Maynooth Ireland
| | - A. N. Coogan
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| |
Collapse
|
35
|
Mendoza-Viveros L, Bouchard-Cannon P, Hegazi S, Cheng AH, Pastore S, Cheng HYM. Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol Life Sci 2017; 74:1035-1059. [PMID: 27689221 PMCID: PMC11107503 DOI: 10.1007/s00018-016-2378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/03/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping is a ubiquitous mechanism that enables organisms to maintain temporal coordination between internal biological processes and time of the local environment. The molecular basis of circadian rhythms lies in a set of transcription-translation feedback loops (TTFLs) that drives the rhythmic transcription of core clock genes, whose level and phase of expression serve as the marker of circadian time. However, it has become increasingly evident that additional regulatory mechanisms impinge upon the TTFLs to govern the properties and behavior of the circadian clock. Such mechanisms include changes in chromatin architecture, interactions with other transcription factor networks, post-transcriptional control by RNA modifications, alternative splicing and microRNAs, and post-translational regulation of subcellular trafficking and protein degradation. In this review, we will summarize the current knowledge of circadian clock regulation-from transcriptional to post-translational-drawing from literature pertaining to the Drosophila and murine circadian systems.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Stephen Pastore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
36
|
Kim M, Lee H, Hur JH, Choe J, Lim C. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila. Sci Rep 2016; 6:32113. [PMID: 27577611 PMCID: PMC5005998 DOI: 10.1038/srep32113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Olympus Biomed Imaging Center (UOBC), UNIST, Ulsan 44919, Republic of Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
37
|
Yoo SH, Eckel-Mahan K. Hippocampal PER1: a circadian sentinel controlling RSKy activity during memory formation. J Neurochem 2016; 138:650-2. [DOI: 10.1111/jnc.13727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology; The University of Texas Health Science Center at Houston; McGovern Medical School; Houston Texas USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine; The University of Texas Health Science Center at Houston; McGovern Medical School; Houston Texas USA
| |
Collapse
|
38
|
Rawashdeh O, Jilg A, Maronde E, Fahrenkrug J, Stehle JH. Period1gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. J Neurochem 2016; 138:731-45. [DOI: 10.1111/jnc.13689] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Oliver Rawashdeh
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
- School of Biomedical Sciences; University of Queensland; St Lucia Qld Australia
| | - Antje Jilg
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Erik Maronde
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Jan Fahrenkrug
- Department of Clinical Chemistry; Bispebjerg Hospital, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jörg H. Stehle
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| |
Collapse
|
39
|
Mendoza-Viveros L, Cheng AH, Cheng HYM. GRK2: putting the brakes on the circadian clock. ACTA ACUST UNITED AC 2016; 3. [PMID: 27088110 DOI: 10.14800/rci.1175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are a family of serine/threonine protein kinases that terminate G protein-coupled receptor (GPCR) signaling by phosphorylating the receptor and inducing its internalization. In addition to their canonical function, some GRKs can phosphorylate non-GPCR substrates and regulate GPCR signaling in a kinase-independent manner. GPCRs are abundantly expressed in the suprachiasmatic nucleus (SCN), a structure in the mammalian brain that serves as the central circadian pacemaker. Various facets of circadian timekeeping are under the influence of GPCR signaling, and thus are potential targets for GRK regulation. Despite this, little attention has been given to the role of GRKs in circadian rhythms. In this research highlight, we discuss our latest findings on the functional involvement of GRK2 in mammalian circadian timekeeping in the SCN. Using grk2 knockout mice, we demonstrate that GRK2 is critical for maintaining proper clock speed and ensuring that the clock is appropriately synchronized to environmental light cycles. Although grk2 deficiency expectedly alters the expression of a key GPCR in the SCN, our study also reveals that GRK2 has a more direct function that touches the heart of the circadian clock.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Hai-Ying M Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
40
|
Ray S, Reddy AB. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness. Bioessays 2016; 38:394-405. [PMID: 26866932 PMCID: PMC4817226 DOI: 10.1002/bies.201500056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep‐wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non‐transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24‐hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems‐level investigations implementing integrated multi‐omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Akhilesh B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
41
|
Gubin DG, Weinert D. Deterioration of temporal order and circadian disruption with age 2: Systemic mechanisms of aging-related circadian disruption and approaches to its correction. ADVANCES IN GERONTOLOGY 2016; 6:10-20. [DOI: 10.1134/s2079057016010057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
42
|
Achilly NP. Properties of VIP+ synapses in the suprachiasmatic nucleus highlight their role in circadian rhythm. J Neurophysiol 2015; 115:2701-4. [PMID: 26581865 DOI: 10.1152/jn.00393.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/17/2015] [Indexed: 01/19/2023] Open
Abstract
Circadian rhythms coordinate cyclical behavioral and physiological changes in most organisms. In humans, this biological clock is located within the suprachiasmatic nucleus (SCN) of the hypothalamus and consists of a heterogeneous neuron population characterized by their enriched expression of various neuropeptides. As highlighted here, Fan et al. (J Neurosci 35: 1905-1029, 2015) developed an elegant experimental system to investigate the synaptic properties of vasoactive intestinal peptide (VIP)-expressing neurons between day and night, and further delineate their broader architecture and function within the SCN.
Collapse
Affiliation(s)
- Nathan P Achilly
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
43
|
Laing EE, Johnston JD, Möller-Levet CS, Bucca G, Smith CP, Dijk DJ, Archer SN. Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing health. Bioessays 2015; 37:544-56. [PMID: 25772847 PMCID: PMC5031210 DOI: 10.1002/bies.201400193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The power of the application of bioinformatics across multiple publicly available transcriptomic data sets was explored. Using 19 human and mouse circadian transcriptomic data sets, we found that NR1D1 and NR1D2 which encode heme‐responsive nuclear receptors are the most rhythmic transcripts across sleep conditions and tissues suggesting that they are at the core of circadian rhythm generation. Analyzes of human transcriptomic data show that a core set of transcripts related to processes including immune function, glucocorticoid signalling, and lipid metabolism is rhythmically expressed independently of the sleep‐wake cycle. We also identify key transcripts associated with transcription and translation that are disrupted by sleep manipulations, and through network analysis identify putative mechanisms underlying the adverse health outcomes associated with sleep disruption, such as diabetes and cancer. Comparative bioinformatics applied to existing and future data sets will be a powerful tool for the identification of core circadian‐ and sleep‐dependent molecules.
Collapse
Affiliation(s)
- Emma E Laing
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. J Biol Rhythms 2014; 30:84-94. [PMID: 25512305 DOI: 10.1177/0748730414561638] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle.
Collapse
Affiliation(s)
- Brianna D Harfmann
- Center for Muscle Biology, Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Elizabeth A Schroder
- Center for Muscle Biology, Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Karyn A Esser
- Center for Muscle Biology, Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
45
|
Jayanthy A, Setaluri V. Light-regulated microRNAs. Photochem Photobiol 2014; 91:163-72. [PMID: 25389067 DOI: 10.1111/php.12386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023]
Abstract
In addition to exposure to passive diurnal cycles of sunlight, humans are also subjected to intentional acute exposure to other types of electromagnetic radiation (EM). Understanding the molecular mechanisms involved in the physiological, pathological and therapeutic responses to exposure to radiation is an active area of research. With the advent of methods to readily catalog and identify patterns of changes in gene expression, many studies have reported changes in gene expression upon exposure of various human and mouse cells in vitro, whole experimental organisms such as mice and parts of human body. However, the molecular mechanisms underlying these broad ranging changes in gene expression are not yet fully understood. MicroRNAs, which are short, noncoding RNAs that regulate gene expression by targeting many messenger RNAs, are also emerging as important mediators of radiation-induced changes in gene expression and hence critical for the manifestation of light-induced cellular phenotypes and physiological responses. In this article, we review available knowledge on microRNAs implicated in responses to various forms of solar and other EM radiation. Based on this knowledge, we elaborate some unifying themes in the regulation and functions of some of these miRNAs.
Collapse
Affiliation(s)
- Ashika Jayanthy
- Department of Dermatology and Graduate Program in Comparative Biomedical Sciences, School of Medicine and Public Health & School of Veterinary Medicine, University of Wisconsin, Madison, WI
| | | |
Collapse
|
46
|
Curran KL, Allen L, Porter BB, Dodge J, Lope C, Willadsen G, Fisher R, Johnson N, Campbell E, VonBergen B, Winfrey D, Hadley M, Kerndt T. Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis. PLoS One 2014; 9:e108266. [PMID: 25238599 PMCID: PMC4169625 DOI: 10.1371/journal.pone.0108266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/20/2014] [Indexed: 02/06/2023] Open
Abstract
We have been investigating whether xBmal1 and xNocturnin play a role in somitogenesis, a cyclic developmental process with an ultradian period. Previous work from our lab shows that circadian genes (xPeriod1, xPeriod2, xBmal1, and xNocturnin) are expressed in developing somites. Somites eventually form the vertebrae, muscles of the back, and dermis. In Xenopus, a pair of somites is formed about every 50 minutes from anterior to posterior. We were intrigued by the co-localization of circadian genes in an embryonic tissue known to be regulated by an ultradian clock. Cyclic expression of genes involved in Notch signaling has been implicated in the somite clock. Disruption of Notch signaling in humans has been linked to skeletal defects in the vertebral column. We found that both depletion (morpholino) and overexpression (mRNA) of xBMAL1 protein (bHLH transcription factor) or xNOCTURNIN protein (deadenylase) on one side of the developing embryo led to a significant decrease in somite number with respect to the untreated side (p<0.001). These manipulations also significantly affect expression of a somite clock component (xESR9; p<0.05). We observed opposing effects on somite size. Depletion of xBMAL1 or xNOCTURNIN caused a statistically significant decrease in somite area (quantified using NIH ImageJ; p<0.002), while overexpression of these proteins caused a significant dose dependent increase in somite area (p<0.02; p<0.001, respectively). We speculate that circadian genes may play two separate roles during somitogenesis. Depletion and overexpression of xBMAL1 and NOCTURNIN both decrease somite number and influence expression of a somite clock component, suggesting that these proteins may modulate the timing of the somite clock in the undifferentiated presomitic mesoderm. The dosage dependent effects on somite area suggest that xBMAL1 and xNOCTURNIN may also act during somite differentiation to promote myogenesis.
Collapse
Affiliation(s)
- Kristen L. Curran
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Latoya Allen
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Brittany Bronson Porter
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Joseph Dodge
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Chelsea Lope
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Gail Willadsen
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Rachel Fisher
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Nicole Johnson
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Elizabeth Campbell
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Brett VonBergen
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Devon Winfrey
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Morgan Hadley
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| | - Thomas Kerndt
- University of Wisconsin-Whitewater, Department of Biological Sciences, Whitewater, Wisconsin, United States of America
| |
Collapse
|
47
|
Schendzielorz J, Schendzielorz T, Arendt A, Stengl M. Bimodal oscillations of cyclic nucleotide concentrations in the circadian system of the Madeira cockroach Rhyparobia maderae. J Biol Rhythms 2014; 29:318-31. [PMID: 25231947 DOI: 10.1177/0748730414546133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigment-dispersing factor (PDF) is the most important coupling factor of the circadian system in insects, comparable to its functional ortholog vasoactive intestinal polypeptide of the mammalian circadian clock. In Drosophila melanogaster, PDF signals via activation of adenylyl cyclases, controlling circadian locomotor activity rhythms at dusk and dawn. In addition, PDF mediates circadian rhythms of the visual system and is involved in entrainment to different photoperiods. We examined whether PDF daytime-dependently elevates cAMP levels in the Madeira cockroach Rhyparobia maderae and whether cAMP mimics PDF effects on locomotor activity rhythms. To determine time windows of PDF release, we searched for circadian rhythms in concentrations of cAMP and its functional opponent cGMP in the accessory medulla (AMe), the insect circadian pacemaker controlling locomotor activity rhythms, and in the optic lobes, as the major input and output area of the circadian clock. Enzyme-linked immunosorbent assays detected PDF-dependent increases of cAMP in optic lobes and daytime-dependent oscillations of cAMP and cGMP baseline levels in the AMe, both with maxima at dusk and dawn. Although these rhythms disappeared at the first day in constant conditions (DD1), cAMP but not cGMP oscillations returned at the second day in constant conditions (DD2). Whereas in light-dark cycles the cAMP baseline level remained constant in other optic lobe neuropils, it oscillated in phase with the AMe at DD2. To determine whether cAMP and cGMP mimic PDF-dependent control of locomotor activity rhythms, both cyclic nucleotides were injected at different times of the circadian day using running-wheel assays. Whereas cAMP injections generated delays at dusk and advances at dawn, cGMP only delayed locomotor activity at dusk. For the first time we found PDF-dependent phase advances at dawn in addition to previously described phase delays at dusk. Thus, we hypothesize that PDF release at dusk and dawn controls locomotor activity rhythms and visual system processing cAMP-dependently.
Collapse
Affiliation(s)
- Julia Schendzielorz
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | | | - Andreas Arendt
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| |
Collapse
|
48
|
Highland JA, Weiser MJ, Hinds LR, Spencer RL. CRTC2 activation in the suprachiasmatic nucleus, but not paraventricular nucleus, varies in a diurnal fashion and increases with nighttime light exposure. Am J Physiol Cell Physiol 2014; 307:C611-21. [PMID: 25080490 DOI: 10.1152/ajpcell.00319.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Entrainment of the intrinsic suprachiasmatic nucleus (SCN) molecular clock to the light-dark cycle depends on photic-driven intracellular signal transduction responses of SCN neurons that converge on cAMP response element-binding protein (CREB)-mediated regulation of gene transcription. Characterization of the CREB coactivator proteins CREB-regulated transcriptional coactivators (CRTCs) has revealed a greater degree of differential activity-dependent modulation of CREB transactivational function than previously appreciated. In confirmation of recent reports, we found an enrichment of crtc2 mRNA and prominent CRTC2 protein expression within the SCN of adult male rats. With use of a hypothalamic organotypic culture preparation for initial CRTC2-reactive antibody characterization, we found that CRTC2 immunoreactivity in hypothalamic neurons shifted from a predominantly cytoplasmic profile under basal culture conditions to a primarily nuclear localization (CRTC2 activation) 30 min after adenylate cyclase stimulation. In adult rat SCN, we found a diurnal variation in CRTC2 activation (peak at zeitgeber time of 4 h and trough at zeitgeber time of 16-20 h) but no variation in the total number of CRTC2-immunoreactive cells. There was no diurnal variation of CRTC2 activation in the hypothalamic paraventricular nucleus, another site of enriched CRTC2 expression. Exposure of rats to light (50 lux) for 30 min during the second half of their dark (nighttime) phase produced CRTC2 activation. We observed in the SCN a parallel change in the expression of a CREB-regulated gene (FOS). In contrast, nighttime light exposure had no effect on CRTC2 activation or FOS expression in the paraventricular nucleus, nor did it affect corticosterone hormone levels. These results suggest that CRTC2 participates in CREB-dependent photic entrainment of SCN function.
Collapse
Affiliation(s)
- Julie A Highland
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Michael J Weiser
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Laura R Hinds
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
49
|
Lazado CC, Nagasawa K, Babiak I, Kumaratunga HPS, Fernandes JMO. Circadian rhythmicity and photic plasticity of myosin gene transcription in fast skeletal muscle of Atlantic cod (Gadus morhua). Mar Genomics 2014; 18 Pt A:21-9. [PMID: 24856374 DOI: 10.1016/j.margen.2014.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022]
Abstract
The circadian rhythm is a fundamental adaptive mechanism to the daily environmental changes experienced by many organisms, including fish. Myosins constitute a large family of contractile proteins that are essential functional components of skeletal muscle. They are known to display thermal plasticity but the influence of light on myosin expression remains to be investigated in fish. In the present study, we have examined the circadian rhythmicity and photoperiodic plasticity of myosin gene transcription in Atlantic cod (Gadus morhua) fast skeletal muscle. In silico mining of the Atlantic cod genome resulted in the identification of 76 myosins representing different classes, many of which were hitherto uncharacterized. Among the 23 fast skeletal muscle myosin genes, myh_tc, myh_n1, myh_n4, myo18a_2, and myo18b_2 displayed circadian rhythmic expression and contained several circadian-related transcription factor binding sites (Creb, Mef2 and E-box motifs) within their putative promoter regions. Also, the circadian expression of these 5 myosins strongly correlated with the transcription pattern of clock genes in fast skeletal muscle. Under ex vivo conditions, myosin transcript levels lost their circadian rhythmicity. Nonetheless, different photoperiod regimes influenced the mRNA levels of myh_n4, myo18a_2 and myo18b_2 in fast skeletal muscle explants. Photoperiod manipulation in Atlantic cod juveniles revealed that continuous light significantly elevated mRNA levels of several myosins in fast skeletal muscle when compared to natural photoperiod. The daily rhythmicity observed in some fast skeletal muscle myosin genes suggests that they may be under circadian clock regulation. In addition, the influence of photoperiod on their expression implies that myosins may be involved in the photic plasticity of muscle growth observed in Atlantic cod.
Collapse
Affiliation(s)
- Carlo C Lazado
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | - Kazue Nagasawa
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | - Igor Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | | | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway.
| |
Collapse
|
50
|
Rawashdeh O, Jilg A, Jedlicka P, Slawska J, Thomas L, Saade A, Schwarzacher SW, Stehle JH. PERIOD1 coordinates hippocampal rhythms and memory processing with daytime. Hippocampus 2014; 24:712-23. [DOI: 10.1002/hipo.22262] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/26/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Oliver Rawashdeh
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie; Goethe-University; Theodor-Stern-Kai 7 Frankfurt Germany
| | - Antje Jilg
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie; Goethe-University; Theodor-Stern-Kai 7 Frankfurt Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Dr. Senckenbergische Anatomie; Goethe-University; Theodor-Stern-Kai 7 Frankfurt Germany
| | - Jolanta Slawska
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie; Goethe-University; Theodor-Stern-Kai 7 Frankfurt Germany
| | - Lukas Thomas
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie; Goethe-University; Theodor-Stern-Kai 7 Frankfurt Germany
| | - Anastasia Saade
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie; Goethe-University; Theodor-Stern-Kai 7 Frankfurt Germany
| | - Stephan W. Schwarzacher
- Institute of Clinical Neuroanatomy, Dr. Senckenbergische Anatomie; Goethe-University; Theodor-Stern-Kai 7 Frankfurt Germany
| | - Jörg H. Stehle
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie; Goethe-University; Theodor-Stern-Kai 7 Frankfurt Germany
| |
Collapse
|