1
|
Cohen-Or M, Chapnik N, Froy O. β-Hydroxy-β-methylbutyrate (HMB) increases muscle mass and diminishes weight gain in high-fat-fed mice. J Nutr Biochem 2025:109926. [PMID: 40250490 DOI: 10.1016/j.jnutbio.2025.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a catabolite of leucine, which promotes muscle growth. However, little is known about the effect of HMB on body composition in the context of a high-fat diet. Our aim was to study the circadian metabolic effect of HMB on body weight. C57BL male mice were fed ad libitum chow diet (C), chow diet supplemented with 500mg Ca-HMB per 1 kg body weight (C+HMB), a high-fat diet (HFD) or HFD supplemented with 500mg Ca-HMB per 1 kg body weight (HFD+HMB) for 7 weeks. HMB led to reduced fat weight (30%, p<0.05) and body weight (7%, p<0.05) and increased muscle weight (17%, p<0.05) in the HFD+HMB group. HMB increased glucose oxidation (27%, p<0.0001) and reduced fatty acid oxidation (30%, p<0.0001) in the C group, but increased fatty acid oxidation in the HFD+HMB group (10%, p<0.05). At the molecular level, HMB did not affect metabolic proteins in the liver, but lowered NF-κB levels in adipose tissue (24%, p<0.05). In the muscle, HMB showed no activation of AKT and mTOR, but did show activation of P70S6K (67%, p<0.01) and S6 (42%, p<0.01). The activation of the P70S6K and S6 was independent of AKT and mTOR and was accompanied by increased activation of phospholipase D2 (PLD) (35%, p<0.0001). In addition, HMB led to altered circadian rhythms. In conclusion, mice fed a HFD supplemented with HMB have increased muscle weight and reduced fat mass and body weight presumably due to increased locomotor activity. HMB induces myogenesis by activating P70S6K and S6 via PLD2.
Collapse
Affiliation(s)
- Meytal Cohen-Or
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
2
|
Ramírez-Casas Y, Fernández-Martínez J, Martín-Estebané M, Aranda-Martínez P, López-Rodríguez A, Esquivel-Ruiz S, Yang Y, Escames G, Acuña-Castroviejo D. Melatonin and Exercise Restore Myogenesis and Mitochondrial Dynamics Deficits Associated With Sarcopenia in iMS-Bmal1 -/- Mice. J Pineal Res 2025; 77:e70049. [PMID: 40241474 DOI: 10.1111/jpi.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Sarcopenia, a condition associated with aging, involves progressive loss of muscle mass, strength, and function, leading to impaired mobility, health, and increased mortality. The underlying mechanisms remain unclear, which limits the development of effective therapeutic interventions. Emerging evidence implicates chronodisruption as a key contributor to sarcopenia, emphasizing the role of Bmal1, a circadian clock gene critical for muscle integrity and mitochondrial function. In a skeletal muscle-specific and inducible Bmal1 knockout model (iMS-Bmal1-/-), we observed hallmark features of sarcopenia, including disrupted rhythms, impaired muscle function, and mitochondrial dysfunction. Exercise and melatonin treatment reversed these deficits independently of Bmal1. Building on these findings, the present study elucidates several mechanisms underlying these changes and the pathways by which melatonin and exercise exert their beneficial effects. Our findings indicate that iMS-Bmal1-/- mice exhibit reduced expression of satellite cell and muscle regulatory factors, indicating impaired muscle regeneration. While mitochondrial respiration remained unchanged, notable alterations in mitochondrial dynamics disrupted mitochondria in skeletal muscle. In addition, these mice showed alterations in muscle energy metabolism, compromised antioxidant defense, and inflammatory response. Remarkably, exercise and/or melatonin successfully mitigated these deficits, restoring muscle health in Bmal1-deficient mice. These findings position exercise and melatonin as promising therapeutic candidates for combating sarcopenia and emphasize the need to elucidate the molecular pathways underlying their protective effects.
Collapse
Affiliation(s)
- Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, Granada, Spain
| | - José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, Granada, Spain
| | - María Martín-Estebané
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, Granada, Spain
| | - Alba López-Rodríguez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sergio Esquivel-Ruiz
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, Granada, Spain
- Departamento de Farmacología, Facultad de Ciencias de la Salud de Melilla, Universidad de Granada, Granada, España
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
3
|
Zhu (朱培) P, Chao CL, Steffeck AWT, Dang C, Hamlish NX, Pfrender EM, Jiang B, Peek CB. Circadian Dysfunction in the Skeletal Muscle Impairs Limb Perfusion and Muscle Regeneration in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2025; 45:e30-e47. [PMID: 39633575 PMCID: PMC11753941 DOI: 10.1161/atvbaha.124.321772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Peripheral artery disease (PAD), caused by atherosclerosis, leads to limb ischemia, muscle damage, and impaired mobility in the lower extremities. Recent studies suggest that circadian rhythm disruptions can hinder vascular repair during ischemia, but the specific tissues involved and the impact on muscle health remain unclear. This study investigates the role of the skeletal muscle circadian clock in muscle adaptation to ischemic stress using a surgical mouse model of hindlimb ischemia. METHODS We performed secondary analysis of publicly available RNA-sequencing data sets derived from patients with PAD to identify the differential expression of circadian-related genes in endothelial cells and ischemic limb skeletal muscles. We used mice with specific genetic loss of the circadian clock activator, BMAL1 (brain and muscle ARNT-like 1), in adult skeletal muscle tissues (Bmal1muscle). Bmal1muscle mice and controls underwent femoral artery ligation surgery to induce hindlimb ischemia. Laser Doppler imaging was used to assess limb perfusion at various time points after the surgery. Muscle tissues were analyzed with RNA sequencing and histological examination to investigate PAD-related muscle pathologies. Additionally, we studied the role of BMAL1 in muscle fiber adaptation to hypoxia using RNA and assay for transposase-accessible chromatin with sequencing analyses in primary myotube culture model. RESULTS Disrupted expression of circadian rhythm-related genes was observed in existing RNA-sequencing data sets from endothelial cells and ischemic limb skeletal muscles derived from patients with PAD. Genetic loss of Bmal1 specifically in adult mouse skeletal muscle tissues delayed reperfusion recovery following induction of hindlimb ischemia. Histological examination of muscle tissues showed reduced regenerated myofiber number and a decreased proportion of type IIB fast-twitch myofibers in Bmal1muscle mouse muscles in the ischemic limbs but not in their contralateral nonischemic limbs. Transcriptomic analysis revealed abrogated metabolic, angiogenic, and myogenic pathways relevant to hypoxia adaptation in Bmal1muscle mouse muscles. These changes were corroborated in Bmal1-deficient cultured primary myotubes cultured under hypoxic conditions. CONCLUSIONS Circadian clock in skeletal muscle is crucial for the muscle's response to hypoxia during hindlimb ischemia. Targeting the muscle circadian clock may have therapeutic potential for enhancing muscle response to reduced blood flow and promoting recovery in conditions such as PAD.
Collapse
Affiliation(s)
- Pei Zhu (朱培)
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Calvin L Chao
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam W T Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caitlyn Dang
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Noah X Hamlish
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric M Pfrender
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bin Jiang
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Schiffner E, Schoeps D, Koukos C, Lakomek F, Windolf J, Latz D. Afternoon kick-off, evening kick-off, or night kick-off in the first German Bundesliga - A possible Injury risk factor? SICOT J 2024; 10:52. [PMID: 39589099 PMCID: PMC11590477 DOI: 10.1051/sicotj/2024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Abstract
INTRODUCTION This retrospective cohort study aimed to evaluate the impact of kick-off time on the risk of injury for professional soccer players in the first German Bundesliga. It was hypothesized that late kick-off times would have a negative effect on muscle and ligament injuries to the ankle and knee. METHODS Kick-off times and injury data were collected over 5 consecutive seasons (1530 matches; 2014-2019) from two media-based registries (transfermarkt.de® und kicker.de®). The kick-off times were assorted into three groups: Afternoon kick-off between prior to 3:30 pm (988 matches), evening kick-off between 5:30 to 6:30 pm (303 matches), and night kick-off after 8 pm (239 matches). RESULTS A total of 1327 match injuries were recorded over 5 seasons in 510 different male elite soccer players. The injuries affected muscles in 32.1%, ankle ligaments in 7.8%, and knee ligaments in 5.6%. There was no significant difference in injury rates when comparing different kick-off time groups (p > 0.05), however, the mean of time attributed to muscle and ankle ligament injuries suffered in games with a late kick-off time was significantly longer (p < 0.05). CONCLUSION This study shows that there is no significant (p > 0.05) association between three different kick-off time groups and injury risk in the first German Bundesliga. However, significant (p < 0.05) differences in the lay-off times attributed to muscle and ankle ligament injuries differed with different kick-off times assorted into the three groups. Reasons for this observation could be found in the circadian muscle rhythms and muscle fatigue.
Collapse
Affiliation(s)
- Erik Schiffner
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Duesseldorf Moorenstr. 5 40225 Duesseldorf Germany
| | - Dominique Schoeps
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Duesseldorf Moorenstr. 5 40225 Duesseldorf Germany
| | - Christos Koukos
- Sports Trauma and Pain Institute 196 Vasilissis Olgas Avenue, 27 Ploutonos Street 54655 Thessaloniki Greece
| | - Felix Lakomek
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Duesseldorf Moorenstr. 5 40225 Duesseldorf Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Duesseldorf Moorenstr. 5 40225 Duesseldorf Germany
| | - David Latz
- Department of Orthopedics and Trauma Surgery, Heinrich Heine University Hospital Duesseldorf Moorenstr. 5 40225 Duesseldorf Germany
| |
Collapse
|
5
|
Kim HK, Kimura Y, Takahashi M, Nakaoka T, Yamada Y, Ono R, Shibata S. Morning physical activity may be more beneficial for blood lipids than afternoon physical activity in older adults: a cross-sectional study. Eur J Appl Physiol 2024; 124:3253-3263. [PMID: 38874620 PMCID: PMC11519190 DOI: 10.1007/s00421-024-05526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The effect of differences in daily physical activity patterns on blood lipids has not been determined. This study examines the effects of the differences in free-living daily physical activity patterns (amount and intensity) on blood lipid levels in older adults. METHODS This cross-sectional study included 51 older participants (71.8 ± 0.6 years, men = 8, women = 43). A triaxial accelerometer was used to assess physical activity patterns. The time from awakening to bedtime for each participant was used for group classification based on the amount (number of steps) and intensity (moderate-to-vigorous physical activity, MVPA) of physical activity. The morning step group (M Step) was defined as those who took more steps in the morning, and the afternoon step group (A Step) was defined as those who took more steps in the afternoon. The same method was used for MVPA (morning MVPA: M MVPA; afternoon MVPA: A MVPA). Blood samples were collected at the start of the study to determine blood lipid levels. RESULTS Number of steps taken showed a trend toward lower low-density lipoprotein cholesterol (LDL-C) levels in the M Step group compared with the A Step group. The LDL/high-density lipoprotein (HDL) ratio was significantly lower in the M Step group than the A Step group (p < 0.05). The M MVPA group also had higher HDL-C levels and significantly lower LDL/HDL ratios than the A MVPA group (p < 0.05). CONCLUSIONS These results suggest that compared with afternoon physical activity, daily morning physical activity (amount and intensity) is more effective in improving blood lipid levels.
Collapse
Affiliation(s)
- Hyeon-Ki Kim
- National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senriokashimmachi, Settsu-shi, Osaka, 566-0002, Japan.
| | - Yuga Kimura
- School of Advance Science and Engineering, Waseda University, Tokyo, Japan
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo, Japan
| | - Takashi Nakaoka
- Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Yosuke Yamada
- National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senriokashimmachi, Settsu-shi, Osaka, 566-0002, Japan
| | - Rei Ono
- National Institute of Biomedical Innovation, Health and Nutrition, 3-17 Senriokashimmachi, Settsu-shi, Osaka, 566-0002, Japan
| | - Shigenobu Shibata
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Luo Y, Meng X, Cui L, Wang S. Circadian Regulation of Lipid Metabolism during Pregnancy. Int J Mol Sci 2024; 25:11491. [PMID: 39519044 PMCID: PMC11545986 DOI: 10.3390/ijms252111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
A cluster of metabolic changes occur to provide energy for fetal growth and development during pregnancy. There is a burgeoning body of research highlighting the pivotal role of circadian rhythms in the pathogenesis of metabolic disorders and lipid homeostasis in mammals. Perturbations of the circadian system and lipid metabolism during gestation might be responsible for a variety of adverse reproductive outcomes comprising miscarriage, gestational diabetes mellitus, and preeclampsia. Growing studies have confirmed that resynchronizing circadian rhythms might alleviate metabolic disturbance. However, there is no clear evidence regarding the specific mechanisms by which the diurnal rhythm regulates lipid metabolism during pregnancy. In this review, we summarize previous knowledge on the strong interaction among the circadian clock, lipid metabolism, and pregnancy. Analyzing the circadian clock genes will improve our understanding of how circadian rhythms are implicated in complex lipid metabolic disorders during pregnancy. Exploring the potential of resynchronizing these circadian rhythms to disrupt abnormal lipid metabolism could also result in a breakthrough in reducing adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | | | - Liyuan Cui
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China; (Y.L.); (X.M.)
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China; (Y.L.); (X.M.)
| |
Collapse
|
7
|
Tai Y, Wang H, Dai Y, Yu L. Causal Associations Between Sleep Traits and Low Grip Strength: A Bidirectional Mendelian Randomization Study. Nat Sci Sleep 2024; 16:1699-1711. [PMID: 39464515 PMCID: PMC11512556 DOI: 10.2147/nss.s480491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Background Sleep disorders and low grip strength often co-occur clinically and are geriatric symptoms that cause significant socioeconomic burden. Previous observational studies have found an association between sleep behaviors and grip strength, but the causal relationship remains unclear. Purpose With the Mendelian randomization (MR) approach, the study aimed to determine the causal association between sleep traits (sleep duration, insomnia, daytime napping, sleep-wake disorders, chronotype) and low grip strength. Methods The study used genetic variants from the genome-wide association study (GWAS) archived in UK Biobank and FinnGen. We assessed the potential causal relationship between sleep behaviors and grip strength using inverse variance weighting (IVW), weighted median (WM), and MR-Egger. Additionally, we performed sensitivity analyses using Cochran's Q test, MR Egger Intercept test, funnel plots, and leave-one-out method. Results We found that sleep duration is causally negatively associated with low grip strength (OR = 0.618, 95% CI = 0.424-0.900, P = 0.012). Sleep-wake disorders have a positive association with low grip strength (OR = 1.018, 95% CI = 1.002-1.034, P = 0.029). Reversely, high low grip strength risk was causally associated with increased daytime napping (OR = 1.018, 95% CI = 1.004-1.032, P = 0.011). Conclusion The study revealed causal associations between sleep duration, sleep-wake disorders, and low grip strength. Understanding their relationship helps in early clinical intervention to improve the life quality of the elderly.
Collapse
Affiliation(s)
- Yihong Tai
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing, 100084, People’s Republic of China
| | - Haonan Wang
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing, 100084, People’s Republic of China
| | - Yinghong Dai
- Xiangya School of Medicine, Central South University, Changsha, 410008, People’s Republic of China
| | - Liang Yu
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing, 100084, People’s Republic of China
- Engineering Research Center of Strength and Conditioning Training Key Core Technology Integrated System and Equipment of Ministry of Education, Beijing Sport University, Beijing, 100084, People’s Republic of China
| |
Collapse
|
8
|
Oommen AM, Stafford P, Joshi L. Profiling muscle transcriptome in mice exposed to microgravity using gene set enrichment analysis. NPJ Microgravity 2024; 10:94. [PMID: 39367013 PMCID: PMC11452717 DOI: 10.1038/s41526-024-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Space exploration's advancement toward long-duration missions prompts intensified research on physiological effects. Despite adaptive physiological stability in some variables, persistent changes affect genome integrity, immune response, and cognitive function. Our study, utilizing multi-omics data from GeneLab, provides crucial insights investigating muscle atrophy during space mission. Leveraging NASA GeneLab's data resources, we apply systems biology-based analyses, facilitating comprehensive understanding and enabling meta-analysis. Through transcriptomics, we establish a reference profile of biological processes underlying muscle atrophy, crucial for intervention development. We emphasize the often-overlooked role of glycosylation in muscle atrophy. Our research sheds light on fundamental molecular mechanisms, bridging gaps between space research and terrestrial conditions. This study underscores the importance of interdisciplinary collaboration and data-sharing initiatives like GeneLab in advancing space medicine research.
Collapse
Affiliation(s)
- Anup Mammen Oommen
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, Galway, Ireland
| | - Phillip Stafford
- Arizona State University, School of Life Sciences, Biodesign Institute, Arizona, USA
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, Galway, Ireland.
- Aquila Bioscience, University of Galway, Galway, Ireland.
| |
Collapse
|
9
|
Kahn RE, Lieber RL, Meza G, Dinnunhan F, Lacham-Kaplan O, Dayanidhi S, Hawley JA. Time-of-day effects on ex vivo muscle contractility following short-term satellite cell ablation. Am J Physiol Cell Physiol 2024; 327:C213-C219. [PMID: 38586876 PMCID: PMC11371314 DOI: 10.1152/ajpcell.00157.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Muscle isometric torque fluctuates according to time-of-day with such variation owed to the influence of circadian molecular clock genes. Satellite cells (SCs), the muscle stem cell population, also express molecular clock genes with several contractile-related genes oscillating in a diurnal pattern. Currently, limited evidence exists regarding the relationship between SCs and contractility, although long-term SC ablation alters muscle contractile function. Whether there are acute alterations in contractility following SC ablation and with respect to the time-of-day is unknown. We investigated whether short-term SC ablation affected contractile function at two times of day and whether any such alterations led to different extents of eccentric contraction-induced injury. Using an established mouse model to deplete SCs, we characterized muscle clock gene expression and ex vivo contractility at two times-of-day (morning: 0700 and afternoon: 1500). Morning-SC+ animals demonstrated ∼25%-30% reductions in tetanic/eccentric specific forces and, after eccentric injury, exhibited ∼30% less force-loss and ∼50% less dystrophinnegative fibers versus SC- counterparts; no differences were noted between Afternoon groups (Morning-SC+: -5.63 ± 0.61, Morning-SC-: -7.93 ± 0.61; N/cm2; P < 0.05) (Morning-SC+: 32 ± 2.1, Morning-SC-: 64 ± 10.2; dystrophinnegative fibers; P < 0.05). As Ca++ kinetics underpin force generation, we also evaluated caffeine-induced contracture force as an indirect marker of Ca++ availability and found similar force reductions in Morning-SC+ vs. SC- mice. We conclude that force production is reduced in the presence of SCs in the morning but not in the afternoon, suggesting that SCs may have a time-of-day influence over contractile function.NEW & NOTEWORTHY Muscle isometric torque fluctuates according to time-of-day with such variation owed to molecular clock regulation. Satellite cells (SCs) have recently demonstrated diurnal characteristics related to muscle physiology. In our work, force production was reduced in the presence versus absence of SCs in the morning but, not in the afternoon. Morning-SC+ animals, producing lower force, sustained lesser degrees of injury versus SC- counterparts. One potential mechanism underpinning lower forces produced appears to be lower calcium availability.
Collapse
Affiliation(s)
- Ryan E Kahn
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Hines VA Medical Center, Maywood, Illinois, United States
| | - Guadalupe Meza
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Fawzan Dinnunhan
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Orly Lacham-Kaplan
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - John A Hawley
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Knowles OE, Soria M, Saner NJ, Trewin AJ, Alexander SE, Roberts SSH, Hiam D, Garnham AP, Drinkwater EJ, Aisbett B, Lamon S. The interactive effect of sustained sleep restriction and resistance exercise on skeletal muscle transcriptomics in young females. Physiol Genomics 2024; 56:506-518. [PMID: 38766755 DOI: 10.1152/physiolgenomics.00010.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Both sleep loss and exercise regulate gene expression in skeletal muscle, yet little is known about how the interaction of these stressors affects the transcriptome. The aim of this study was to investigate the effect of nine nights of sleep restriction (SR), with repeated resistance exercise (REx) sessions, on the skeletal muscle transcriptome of young, trained females. Ten healthy females aged 18-35 yr old undertook a randomized cross-over study of nine nights of SR (5 h time in bed) and normal sleep (NS; ≥7 h time in bed) with a minimum 6-wk washout. Participants completed four REx sessions per condition (days 3, 5, 7, and 9). Muscle biopsies were collected both pre- and post-REx on days 3 and 9. Gene and protein expression were assessed by RNA sequencing and Western blot, respectively. Three or nine nights of SR had no effect on the muscle transcriptome independently of exercise. However, close to 3,000 transcripts were differentially regulated (false discovery rate < 0.05) 48 h after the completion of three resistance exercise sessions in both NS and SR conditions. Only 39% of downregulated genes and 18% of upregulated genes were common between both conditions, indicating a moderating effect of SR on the response to exercise. SR and REx interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.NEW & NOTEWORTHY This study investigated the effect of nine nights of sleep restriction, with repeated resistance exercise sessions, on the skeletal muscle transcriptome of young, trained females. Sleep restriction and resistance exercise interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.
Collapse
Affiliation(s)
- Olivia E Knowles
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Megan Soria
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Sarah E Alexander
- Cardiometabolic Health and Exercise Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Spencer S H Roberts
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Danielle Hiam
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew P Garnham
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Eric J Drinkwater
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Brad Aisbett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
11
|
Avital-Cohen N, Chapnik N, Froy O. Resveratrol Induces Myotube Development by Altering Circadian Metabolism via the SIRT1-AMPK-PP2A Axis. Cells 2024; 13:1069. [PMID: 38920697 PMCID: PMC11201382 DOI: 10.3390/cells13121069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.
Collapse
Affiliation(s)
| | | | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (N.A.-C.); (N.C.)
| |
Collapse
|
12
|
Mao Z, Cawthon PM, Kritchevsky SB, Toledo FGS, Esser KA, Erickson ML, Newman AB, Farsijani S. The association between chrononutrition behaviors and muscle health among older adults: The study of muscle, mobility and aging. Aging Cell 2024; 23:e14059. [PMID: 38059319 PMCID: PMC11166361 DOI: 10.1111/acel.14059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Emerging studies highlight chrononutrition's impact on body composition through circadian clock entrainment, but its effect on older adults' muscle health remains largely overlooked. To determine the associations between chrononutrition behaviors and muscle health in older adults. Dietary data from 828 older adults (76 ± 5 years) recorded food/beverage amounts and their clock time over the past 24 h. Studied chrononutrition behaviors included: (1) The clock time of the first and last food/beverage intake; (2) Eating window (the time elapsed between the first and last intake); and (3) Eating frequency (Number of self-identified eating events logged with changed meal occasion and clock time). Muscle mass (D3-creatine), leg muscle volume (MRI), grip strength (hand-held dynamometer), and leg power (Keiser) were used as outcomes. We used linear regression to assess the relationships between chrononutrition and muscle health, adjusting for age, sex, race, marital status, education, study site, self-reported health, energy, protein, fiber intake, weight, height, and moderate-to-vigorous physical activity. Average eating window was 11 ± 2 h/day; first and last intake times were at 8:22 and 19:22, respectively. After multivariable adjustment, a longer eating window and a later last intake time were associated with greater muscle mass (β ± SE: 0.18 ± 0.09; 0.27 ± 0.11, respectively, p < 0.05). The longer eating window was also marginally associated with higher leg power (p = 0.058). An earlier intake time was associated with higher grip strength (-0.38 ± 0.15; p = 0.012). Chrononutrition behaviors, including longer eating window, later last intake time, and earlier first intake time were associated with better muscle mass and function in older adults.
Collapse
Affiliation(s)
- Ziling Mao
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for Aging and Population HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Peggy M. Cawthon
- California Pacific Medical Center Research InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Section on Gerontology & Geriatric Medicine and the Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Frederico G. S. Toledo
- Department of Medicine, Division of Endocrinology and MetabolismUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Karyn A. Esser
- Department of Physiology and AgingUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | | | - Anne B. Newman
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for Aging and Population HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Samaneh Farsijani
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for Aging and Population HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Cheng H, Zhong D, Tan Y, Huang M, Xijie S, Pan H, Yang Z, Huang F, Li F, Tang Q. Advancements in research on the association between the biological CLOCK and type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1320605. [PMID: 38872971 PMCID: PMC11169578 DOI: 10.3389/fendo.2024.1320605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Due to the Earth's rotation, the natural environment exhibits a light-dark diurnal cycle close to 24 hours. To adapt to this energy intake pattern, organisms have developed a 24-hour rhythmic diurnal cycle over long periods, known as the circadian rhythm, or biological clock. With the gradual advancement of research on the biological clock, it has become increasingly evident that disruptions in the circadian rhythm are closely associated with the occurrence of type 2 diabetes (T2D). To further understand the progress of research on T2D and the biological clock, this paper reviews the correlation between the biological clock and glucose metabolism and analyzes its potential mechanisms. Based on this, we discuss the potential factors contributing to circadian rhythm disruption and their impact on the risk of developing T2D, aiming to explore new possible intervention measures for the prevention and treatment of T2D in the future. Under the light-dark circadian rhythm, in order to adapt to this change, the human body forms an internal biological clock involving a variety of genes, proteins and other molecules. The main mechanism is the transcription-translation feedback loop centered on the CLOCK/BMAL1 heterodimer. The expression of important circadian clock genes that constitute this loop can regulate T2DM-related blood glucose traits such as glucose uptake, fat metabolism, insulin secretion/glucagon secretion and sensitivity in various peripheral tissues and organs. In addition, sleep, light, and dietary factors under circadian rhythms also affect the occurrence of T2DM.
Collapse
Affiliation(s)
- Hui Cheng
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dayuan Zhong
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
| | - Yimei Tan
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Foshan, China
| | - Menghe Huang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Foshan, China
| | - Sun Xijie
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hong Pan
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zixian Yang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Fangmei Huang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Feifan Li
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qizhi Tang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
| |
Collapse
|
14
|
Xu L, Jia J, Yu J, Miao S, Zhang Y. The impact of aerobic exercise timing on BMAL1 protein expression and antioxidant responses in skeletal muscle of mice. Free Radic Res 2024; 58:311-322. [PMID: 38946540 DOI: 10.1080/10715762.2024.2348789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 07/02/2024]
Abstract
It is well known that the adaptations of muscular antioxidant system to aerobic exercise depend on the frequency, intensity, duration, type of the exercise. Nonetheless, the timing of aerobic exercise, related to circadian rhythms or biological clock, may also affect the antioxidant defense system, but its impact remains uncertain. Bain and muscle ARNT-like 1 (BMAL1) is the core orchestrator of molecular clock, which can maintain cellular redox homeostasis by directly controlling the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2). So, our research objective was to evaluate the impacts of aerobic exercise training at various time points of the day on BMAL1 and NRF2-mediated antioxidant system in skeletal muscle. C57BL/6J mice were assigned to the control group, the group exercising at Zeitgeber Time 12 (ZT12), and the group exercising at ZT24. Control mice were not intervened, while ZT12 and ZT24 mice were trained for four weeks at the early and late time point of their active phase, respectively. We observed that the skeletal muscle of ZT12 mice exhibited higher total antioxidant capacity and lower reactive oxygen species compared to ZT24 mice. Furthermore, ZT12 mice improved the colocalization of BMAL1 with nucleus, the protein expression of BMAL1, NRF2, NAD(P)H quinone oxidoreductase 1, heme oxygenase 1, glutamate-cysteine ligase modifier subunit and glutathione reductase in comparison to those of ZT24 mice. In conclusion, the 4-week aerobic training performed at ZT12 is more effective for enhancing NRF2-mediated antioxidant responses of skeletal muscle, which may be attributed to the specific activation of BMAL1.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jie Jia
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Jingjing Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Shudan Miao
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
| |
Collapse
|
15
|
Challet E, Pévet P. Melatonin in energy control: Circadian time-giver and homeostatic monitor. J Pineal Res 2024; 76:e12961. [PMID: 38751172 DOI: 10.1111/jpi.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.
Collapse
Affiliation(s)
- Etienne Challet
- Centre National de la Recherche Scientifique (CNRS), Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- Centre National de la Recherche Scientifique (CNRS), Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Kiperman T, Ma K. Circadian Clock in Muscle Disease Etiology and Therapeutic Potential for Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:4767. [PMID: 38731986 PMCID: PMC11083552 DOI: 10.3390/ijms25094767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Circadian clock and clock-controlled output pathways exert temporal control in diverse aspects of skeletal muscle physiology, including the maintenance of muscle mass, structure, function, and metabolism. They have emerged as significant players in understanding muscle disease etiology and potential therapeutic avenues, particularly in Duchenne muscular dystrophy (DMD). This review examines the intricate interplay between circadian rhythms and muscle physiology, highlighting how disruptions of circadian regulation may contribute to muscle pathophysiology and the specific mechanisms linking circadian clock dysregulation with DMD. Moreover, we discuss recent advancements in chronobiological research that have shed light on the circadian control of muscle function and its relevance to DMD. Understanding clock output pathways involved in muscle mass and function offers novel insights into the pathogenesis of DMD and unveils promising avenues for therapeutic interventions. We further explore potential chronotherapeutic strategies targeting the circadian clock to ameliorate muscle degeneration which may inform drug development efforts for muscular dystrophy.
Collapse
Affiliation(s)
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|
17
|
Cohen-Or M, Chapnik N, Froy O. β-Hydroxy-β-methylbutyrate (HMB) leads to phospholipase D2 (PLD2) activation and alters circadian rhythms in myotubes. Food Funct 2024; 15:4389-4398. [PMID: 38563085 DOI: 10.1039/d3fo04174c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a breakdown product of leucine, which promotes muscle growth. Although some studies indicate that HMB activates AKT and mTOR, others show activation of the downstream effectors, P70S6K and S6, independent of mTOR. Our aim was to study the metabolic effect of HMB around the circadian clock in order to determine more accurately the signaling pathway involved. C2C12 myotubes were treated with HMB and clock, metabolic and myogenic markers were measured around the clock. HMB-treated C2C12 myotubes showed no activation of AKT and mTOR, but did show activation of P70S6K and S6. Activation of P70S6K and S6 was also found when myotubes were treated with HMB combined with metformin, an indirect mTOR inhibitor, or rapamycin, a direct mTOR inhibitor. The activation of the P70S6K and S6 independent of AKT and mTOR, was accompanied by increased activation of phospholipase D2 (PLD). In addition, HMB led to high amplitude and advanced circadian rhythms. In conclusion, HMB induces myogenesis in C2C12 by activating P70S6K and S6 via PLD2, rather than AKT and mTOR, leading to high amplitude advanced rhythms.
Collapse
Affiliation(s)
- Meytal Cohen-Or
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Lv X, Peng W, Jia B, Lin P, Yang Z. Longitudinal association of sleep duration with possible sarcopenia: evidence from CHARLS. BMJ Open 2024; 14:e079237. [PMID: 38521528 PMCID: PMC10961493 DOI: 10.1136/bmjopen-2023-079237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVES There are limited data on the relationship between sleep duration and possible sarcopenia. Hence, this study aimed to investigate the associations of sleep duration with possible sarcopenia and its defining components based on the China Health and Retirement Longitudinal Study (CHARLS). DESIGN A retrospective cohort study. SETTING This study was conducted on participants aged over 45 years applying the 2011 baseline and 2015 follow-up survey from CHARLS covering 450 villages, 150 counties and 28 provinces. PARTICIPANTS Data from 5036 individuals (2568 men and 2468 women) free of possible sarcopenia at baseline were analysed. PRIMARY AND SECONDARY OUTCOME MEASURES The dose-response relationship between sleep duration and possible sarcopenia. RESULTS During 4 years of follow-up, 964 (19.14%) participants developed possible sarcopenia. Compared with participants who slept 6-8 hours per night, those with shorter sleep duration (<6 hours per night) were independently associated with 22% (OR, 1.22; 95% CI, 1.04 to 1.44) increased risk of developing possible sarcopenia and 27% (OR, 1.27; 95% CI, 1.04 to 1.57) increased risk of developing low handgrip strength after controlling for potential confounders. Long sleep duration (>8 hours per night) was not significantly associated with incident possible sarcopenia. The plots of restricted cubic splines exhibited an atypical inverse J-shaped association between sleep duration and possible sarcopenia. Subgroup analysis showed a stronger association between sleep duration and possible sarcopenia in participants aged 45-59 years and composed of male populations. CONCLUSIONS Short sleep duration was a potential risk factor for possible sarcopenia and low handgrip strength. The improvement of sleep duration should be considered a target in early preventive and administrative strategies against the development of handgrip strength decline and further reduced the occurrence of sarcopenia.
Collapse
Affiliation(s)
- Xiaoling Lv
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Wenjia Peng
- School of Public Health, Fudan University, Shanghai, China
| | - Bingbing Jia
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Ping Lin
- Department of Geriatrics, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Inyushkin AN, Poletaev VS, Inyushkina EM, Kalberdin IS, Inyushkin AA. Irisin/BDNF signaling in the muscle-brain axis and circadian system: A review. J Biomed Res 2023; 38:1-16. [PMID: 38164079 PMCID: PMC10818175 DOI: 10.7555/jbr.37.20230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
In mammals, the timing of physiological, biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms. To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm, environmental zeitgebers are used by the circadian system. This is done primarily by signals from the retina via the retinohypothalamic tract, but other cues like exercise, feeding, temperature, anxiety, and social events have also been shown to act as non-photic zeitgebers. The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise. Irisin is a product of cleavage and modification from its precursor membrane fibronectin type Ⅲ domain-containing protein 5 (FNDC5) in response to exercise. Apart from well-known peripheral effects, such as inducing the "browning" of white adipocytes, irisin can penetrate the blood-brain barrier and display the effects on the brain. Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions. In several brain areas, irisin induces the production of brain-derived neurotrophic factor (BDNF). In the master clock, a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested. However, the brain receptor for irisin remains unknown. In the current review, the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized.
Collapse
Affiliation(s)
- Alexey N. Inyushkin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Vitalii S. Poletaev
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Elena M. Inyushkina
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Igor S. Kalberdin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Andrey A. Inyushkin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| |
Collapse
|
20
|
Mey JT, Vandagmansar B, Dantas WS, Belmont KP, Axelrod CL, Kirwan JP. Ketogenic propensity is differentially related to lipid-induced hepatic and peripheral insulin resistance. Acta Physiol (Oxf) 2023; 239:e14054. [PMID: 37840478 DOI: 10.1111/apha.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
AIM Determine the ketogenic response (β-hydroxybutyrate, a surrogate of hepatic ketogenesis) to a controlled lipid overload in humans. METHODS In total, nineteen young, healthy adults (age: 28.4 ± 1.7 years; BMI: 22.7 ± 0.3 kg/m2 ) received either a 12 h overnight lipid infusion or saline in a randomized, crossover design. Plasma ketones and inflammatory markers were quantified by colorimetric and multiplex assays. Hepatic and peripheral insulin sensitivity was assessed by the hyperinsulinemic-euglycemic clamp. Skeletal muscle biopsies were obtained to quantify gene expression related to ketone body metabolism and inflammation. RESULTS By design, the lipid overload-induced hepatic (50%, p < 0.001) and peripheral insulin resistance (73%, p < 0.01) in healthy adults. Ketones increased with hyperlipidemia and were subsequently reduced with hyperinsulinemia during the clamp procedure (Saline: Basal = 0.22 mM, Insulin = 0.07 mM; Lipid: Basal = 0.78 mM, Insulin = 0.51 mM; 2-way ANOVA: Lipid p < 0.001, Insulin p < 0.001, Interaction p = 0.07). In the saline control condition, ketones did not correlate with hepatic or peripheral insulin sensitivity. Conversely, in the lipid condition, ketones were positively correlated with hepatic insulin sensitivity (r = 0.59, p < 0.01), but inversely related to peripheral insulin sensitivity (r = -0.64, p < 0.01). Hyperlipidemia increased plasma inflammatory markers, but did not impact skeletal muscle inflammatory gene expression. Gene expression related to ketone and fatty acid metabolism in skeletal muscle increased in response to hyperlipidemia. CONCLUSION This work provides important insight into the role of ketones in human health and suggests that ketone body metabolism is altered at the onset of lipid-induced insulin resistance.
Collapse
Affiliation(s)
- J T Mey
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - B Vandagmansar
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - W S Dantas
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - K P Belmont
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - C L Axelrod
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - J P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
21
|
Mao Z, Cawthon PM, Kritchevsky SB, Toledo FGS, Esser KA, Erickson ML, Newman AB, Farsijani S. The association between chrononutrition behaviors and muscle health among older adults: The Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298454. [PMID: 38014276 PMCID: PMC10680884 DOI: 10.1101/2023.11.13.23298454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Emerging studies highlight chrononutrition's impact on body composition through circadian clock entrainment, but its effect on older adults' muscle health remains largely overlooked. Objective To determine the associations between chrononutrition behaviors and muscle health in older adults. Methods Dietary data from 828 older adults (76±5y) recorded food/beverage amounts and their clock time over the past 24 hours. Studied chrononutrition behaviors included: 1) The clock time of the first and last food/beverage intake; 2) Eating window (the time elapsed between the first and last intake); and 3) Eating frequency (Number of self-identified eating events logged with changed meal occasion and clock time). Muscle mass (D 3 -creatine), leg muscle volume (MRI), grip strength (hand-held dynamometer), and leg power (Keiser) were used as outcomes. We used linear regression to assess the relationships between chrononutrition and muscle health, adjusting for age, sex, race, marital status, education, study site, self-reported health, energy, protein, fiber intake, weight, height, and moderate-to-vigorous physical activity. Results Average eating window was 11±2 h/d; first and last intake times were at 8:22 and 19:22, respectively. After multivariable adjustment, a longer eating window and a later last intake time were associated with greater muscle mass (β±SE: 0.18±0.09; 0.27±0.11, respectively, P <0.05). The longer eating window was also marginally associated with higher leg power ( P =0.058). An earlier intake time was associated with higher grip strength (-0.38±0.15; P =0.012). Conclusions Chrononutrition behaviors, including longer eating window, later last intake time, and earlier first intake time were associated with better muscle mass and function in older adults. GRAPHICAL ABSTRACT Key findings Chrononutrition behaviors, including longer eating window, later last intake time, and earlier first intake time were associated with better muscle mass and function in older adults.
Collapse
|
22
|
Xia Y, Yao B, Fu Z, Li L, Jin S, Qu B, Huang Y, Ding H. Clock genes regulate skeletal muscle energy metabolism through NAMPT/NAD +/SIRT1 following heavy-load exercise. Am J Physiol Regul Integr Comp Physiol 2023; 325:R490-R503. [PMID: 37545421 PMCID: PMC11178296 DOI: 10.1152/ajpregu.00261.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The biological clock is an invisible "clock" in the organism, which can regulate behavior, physiology, and biochemical reactions. However, the relationship between clock genes and energy metabolism in postexercise skeletal muscle is not well known. The purpose of this study was to determine the mechanisms through which peripheral clock genes regulate energy metabolism in skeletal muscle. We analyzed the rhythm of mRNA expression of the clock genes Bmal1 and Clock in skeletal muscle following heavy-load exercise and measured related indicators of mitochondrial structure and function. We obtained the following experimental results. First, heavy-load exercise induced loss of circadian rhythm of Bmal1 between ZT0 and ZT24, and the circadian rhythm of Clock was not restored between ZT0 and ZT72. Second, analysis of mitochondrial morphology in group E showed abnormal swelling and ridge structure damage at ZT0, which recovered somewhat at ZT24 and ZT48, and the damage had essentially disappeared by ZT72. Third, the expression of NAMPT/NAD+/SIRT1 signaling axis proteins in group E was abnormal at ZT0, the content of NAMPT and the activity of SIRT1 significantly increased, and the content of NAD+ significantly decreased. Fourth, the expression of BMAL1 and PGC-1α in group E significantly increased, whereas the ATP and ADP content, as well as the activities of COXII and COXIV, were significantly changed. Finally, the colocalization of BMAL1 and SIRT1 in group E was significantly upregulated at ZT0. These results suggest that the skeletal muscle clock gene Bmal1 may regulate the energy metabolism level of skeletal muscle after exercise through the NAMPT/NAD+/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yu Xia
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Binyu Yao
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Zeting Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lunyu Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Songlin Jin
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Bo Qu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ying Huang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Haili Ding
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
23
|
Elowe CR, Babbitt C, Gerson AR. White-throated sparrow ( Zonotrichia albicollis) liver and pectoralis flight muscle transcriptomic changes in preparation for migration. Physiol Genomics 2023; 55:544-556. [PMID: 37694280 DOI: 10.1152/physiolgenomics.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Migratory songbirds undertake challenging journeys to reach their breeding grounds each spring. They accomplish these nonstop flapping feats of endurance through a suite of physiological changes, including the development of substantial fat stores and flight muscle hypertrophy and an increased capacity for fat catabolism. In addition, migratory birds may show large reductions in organ masses during flight, including the flight muscle and liver, which they must rapidly rebuild during their migratory stopover before replenishing their fat stores. However, the molecular basis of this capacity for rapid tissue remodeling and energetic output has not been thoroughly investigated. We performed RNA-sequencing analysis of the liver and pectoralis flight muscle of captive white-throated sparrows in experimentally photostimulated migratory and nonmigratory condition to explore the mechanisms of seasonal change to metabolism and tissue mass regulation that may facilitate these migratory journeys. Based on transcriptional changes, we propose that tissue-specific adjustments in preparation for migration may alleviate the damaging effects of long-duration activity, including a potential increase to the inflammatory response in the muscle. Furthermore, we hypothesize that seasonal hypertrophy balances satellite cell recruitment and apoptosis, while little evidence appeared in the transcriptome to support myostatin-, insulin-like growth factor 1-, and mammalian target of rapamycin-mediated pathways for muscle growth. These findings can encourage more targeted molecular studies on the unique integration of pathways that we find in the development of the migratory endurance phenotype in songbirds.NEW & NOTEWORTHY Migratory songbirds undergo significant physiological changes to accomplish their impressive migratory journeys. However, we have a limited understanding of the regulatory mechanisms underlying these changes. Here, we explore the transcriptomic changes to the flight muscle and liver of white-throated sparrows as they develop the migratory condition. We use these patterns to develop hypotheses about metabolic flexibility and tissue restructuring in preparation for migration.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
24
|
Lee PMY, Liao G, Tsang CYJ, Leung CC, Kwan MP, Tse LA. Sex differences in the associations of sleep-wake characteristics and rest-activity circadian rhythm with specific obesity types among Hong Kong community-dwelling older adults. Arch Gerontol Geriatr 2023; 113:105042. [PMID: 37120916 DOI: 10.1016/j.archger.2023.105042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Sex differences exist in sleep characteristics, circadian rhythm and body composition but the evidence on their associations with obesity risk remains unclear. We aimed to examine sex differences in the associations of sleep-wake cycle and rest-activity circadian rhythm with specific obesity types among aged Chinese population. METHODS This report pooled data from 2 population-based surveys conducted during 4/2018-9/2018 and 7/2019-9/2020. All participants wore actigraphy on wrists for 7 days to measure their objective sleep patterns and rest-activity circadian rhythm. We measured participants' anthropometric data, and obtained their body weight, body fat percentage(fat%), visceral fat rating, muscle mass by calibrated bioelectrical impedance analysis device. Hand-grip strength was assessed by Jamar Hydraulic hand dynamometer. Multinomial logistic regression was performed to assess the odds ratio(OR) and 95% confidence intervals(95%CI). RESULTS We recruited 206 male and 134 female older adults with complete actigraphy data, with obesity prevalence of 36.9% and 31.3%, respectively. Male participants who had delayed sleep-wake cycle(i.e.,sleep-onset-time and wake-up time) was associated with higher risk of obesity(late sleep-onset-time:OR=5.28, 95%CI=2.00-13.94), and the results remained consistent for different types of obesity. Males with late M10(i.e., most active 10-hours) onset had higher adipose outcomes with an adjusted OR of 2.92(fat%:95%CI=1.10-7.71; visceral fat:95%CI=1.12-7.61). Among female participants, those with lower relative amplitude were associated with higher BMI and lower hand-grip strength. CONCLUSIONS This study revealed that circadian rhythm fragmentation was associated with obesity and muscle loss. Promoting good sleep quality and maintaining robust circadian rhythm and physical activity can prevent poor muscle strength among older adults.
Collapse
Affiliation(s)
- Priscilla Ming Yi Lee
- Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark; JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gengze Liao
- JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chun Yuk Jason Tsang
- Pneumoconiosis Mutual Aid Association, Hong Kong Special Administrative Region, China
| | - Chi Chiu Leung
- Stanley Ho Centre for Emerging Infectious Diseases, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mei-Po Kwan
- Department of Geography and Resource Management, Wong Foo Yuan Building, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Space and Earth Information Science, Fok Ying Tung Remote Sensing Science Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
25
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
26
|
Song J, Park SJ, Choi S, Han M, Cho Y, Oh YH, Park SM. Effect of changes in sleeping behavior on skeletal muscle and fat mass: a retrospective cohort study. BMC Public Health 2023; 23:1879. [PMID: 37770876 PMCID: PMC10540406 DOI: 10.1186/s12889-023-16765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND An association between sleep behaviors and muscle-fat mass is continuously interesting topic. METHODS Based on the survey on sleep behaviors (quality and duration), the poor quality of sleep was evaluated when the subject did not feel satisfied after sleep, while the good quality was evaluated as they feel refreshed. A total of 19,770 participants were divided into the four groups according to changes in sleep quality: Good-to-Good (those who continuously maintained good quality), Good-to-Poor (those who reported initial good quality but subsequently reported a poor quality), Poor-to-Poor (those who continuously maintained poor quality), and Poor-to-Good (those who reported improved quality of sleep). As changes in skeletal muscle and fat mass index [kg/m2] were estimated by a validated prediction equation, multiple linear regression was used to calculate adjusted mean (adMean) of muscle and fat mass according to changes in sleep behavior. RESULTS When sleep duration decreased and quality of sleep deteriorated (from good to poor), fat mass index significantly increased (adMean: 0.087 for the Good-to-Good group and 0.210 for the Good-to-Poor group; p-value = 0.006). On the other hand, as the quality of sleep deteriorated, skeletal muscle mass more decreased despite the maintained sleep duration (adMean: -0.024 for the Good-to-Good group and - 0.049 for the Good-to-Poor group; p-value = 0.009). CONCLUSION Our results showed that changes in sleep quality and duration affect changes in muscle and fat mass. Thus, we suggest maintaining a good quality of sleep, even if sleep duration is reduced, to preserve muscle mass and inhibit the accumulation of fat.
Collapse
Affiliation(s)
- Jihun Song
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Seulggie Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Minjung Han
- Department of Family Medicine, Myongji Hospital, Goyang, South Korea
| | - Yoosun Cho
- Total Healthcare Center, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yun Hwan Oh
- Department of Family Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.
- Department of Family Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno- gu, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Dent JR, Stocks B, Campelj DG, Philp A. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Semin Cell Dev Biol 2023; 143:3-16. [PMID: 35351374 DOI: 10.1016/j.semcdb.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.
Collapse
Affiliation(s)
- Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dean G Campelj
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Medical School, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
28
|
Xu L, Jia J, Miao S, Gong L, Wang J, He S, Zhang Y. Aerobic exercise reduced the amount of CHRONO bound to BMAL1 and ameliorated glucose metabolic dysfunction in skeletal muscle of high-fat diet-fed mice. Life Sci 2023; 324:121696. [PMID: 37061124 DOI: 10.1016/j.lfs.2023.121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
AIMS The purpose of this study was to investigate the effects of aerobic exercise on the CHRONO-BMAL1 pathway and glucose metabolism in skeletal muscle of high-fat diet (HFD)-fed mice. MAIN METHODS Male C57BL/6J mice were randomly allocated into four groups: normal chow diet with control (NCD + CON), NCD with exercise (NCD + EXE), HFD with control (HFD + CON) and HFD with exercise (HFD + EXE). The NCD and HFD groups were respectively fed a diet of 10 % and 60 % kilocalories from fat for 12 weeks. During the dietary intervention, EXE groups were subjected to 70 % VO2max intensity of treadmill exercise six times per week for 12 weeks. Body weight, energy intake, fat weight, serum lipid profiles, systemic glucose homeostasis, the amount of CHRONO bound to BMAL1, the enzymatic activity, mRNA and protein expression involved in glucose metabolism of skeletal muscle were measured. KEY FINDINGS The results showed that the 12-week HFD feeding without exercise induced weight gain, serum dyslipidemia and insulin resistance. Furthermore, HFD increased the amount of CHRONO bound to BMAL1 and repressed the glucose metabolism in skeletal muscle. However, aerobic exercise prevented weight gain, serum dyslipidemia and systemic insulin resistance in the HFD-fed mice. Meanwhile, aerobic exercise also decreased the amount of CHRONO bound to BMAL1 and increased the glucose uptake, glucose oxidation and glycogenesis in skeletal muscle of the HFD-fed mice. SIGNIFICANCE These data suggested that aerobic exercise could counterbalance CHRONO interacted with BMAL1 and prevent glucose metabolism dysfunction of skeletal muscle, and finally maintain whole-body insulin sensitivity in the HFD-fed mice.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Jie Jia
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Shudan Miao
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Jin Wang
- College of Sports Science, Tianjin Normal University, Tianjin 300382, China
| | - Shiyi He
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China.
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
29
|
Malhan D, Yalçin M, Schoenrock B, Blottner D, Relógio A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 2023; 9:30. [PMID: 37012297 PMCID: PMC10070655 DOI: 10.1038/s41526-023-00273-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Britt Schoenrock
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Neuromuscular System and Neuromuscular Signaling, Berlin Center of Space Medicine & Extreme Environments, Berlin, 10115, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
30
|
Molinari S, Imbriano C, Moresi V, Renzini A, Belluti S, Lozanoska-Ochser B, Gigli G, Cedola A. Histone deacetylase functions and therapeutic implications for adult skeletal muscle metabolism. Front Mol Biosci 2023; 10:1130183. [PMID: 37006625 PMCID: PMC10050567 DOI: 10.3389/fmolb.2023.1130183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Skeletal muscle is a highly adaptive organ that sustains continuous metabolic changes in response to different functional demands. Healthy skeletal muscle can adjust fuel utilization to the intensity of muscle activity, the availability of nutrients and the intrinsic characteristics of muscle fibers. This property is defined as metabolic flexibility. Importantly, impaired metabolic flexibility has been associated with, and likely contributes to the onset and progression of numerous pathologies, including sarcopenia and type 2 diabetes. Numerous studies involving genetic and pharmacological manipulations of histone deacetylases (HDACs) in vitro and in vivo have elucidated their multiple functions in regulating adult skeletal muscle metabolism and adaptation. Here, we briefly review HDAC classification and skeletal muscle metabolism in physiological conditions and upon metabolic stimuli. We then discuss HDAC functions in regulating skeletal muscle metabolism at baseline and following exercise. Finally, we give an overview of the literature regarding the activity of HDACs in skeletal muscle aging and their potential as therapeutic targets for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Viviana Moresi
- Institute of Nanotechnology, Department of Physics, National Research Council (CNR-NANOTEC), Sapienza University of Rome, Rome, Italy
- *Correspondence: Viviana Moresi,
| | - Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, Department of Physics, National Research Council (CNR-NANOTEC), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Liu J, Zhang T, Luo J, Chen S, Zhang D. Association between Sleep Duration and Grip Strength in U.S. Older Adults: An NHANES Analysis (2011-2014). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3416. [PMID: 36834111 PMCID: PMC9964571 DOI: 10.3390/ijerph20043416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Handgrip strength has been shown an indispensable biomarker for older adults. Furthermore, the association between sleep duration and grip strength in special populations (e.g., type 2 diabetics) has been previously documented. However, the association between sleep duration and grip strength has been less studied in older adults and the dose-response relationship is unclear. Therefore, we drew 1881 participants aged 60 years and older from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 to explore their association and the dose-response relationship. Sleep duration was obtained through self-report. Grip strength data were obtained through a grip test using a handgrip dynamometer and divided into two categories: low grip strength and normal grip strength. Thus, dichotomized grip strength was used as a dependent variable. Poisson regression and restricted cubic spline were used for the main part of the analysis. We found that long sleep duration (≥9 h) was associated with a higher prevalence of low grip strength than the normal sleep duration (7-<9 h) group (IRR: 1.38, 95% CI: 1.12-1.69). Moreover, the gender-stratified analysis did not change the original results. This association was particularly pronounced and further strengthened among participants with normal weight (BMI < 25) (IRR: 2.30, 95% CI: 1.64-3.22) and participants aged 60-70 (IRR: 1.76, 95% CI: 1.40-2.22). In addition, with the increase in sleep duration, the multivariate-adjusted IRRs of low grip strength had a general downward trend at first, followed by a brief period of stability, and then presented an upward trend (p-value for non-linearity = 0.001). According to this study, we found that older adults who had long sleep duration had a higher risk of low grip strength. Muscle insulin utilization and muscle glucose metabolism are closely related to grip strength, so our research emphasizes the importance of maintaining normal sleep duration in older adults and suggests that older adults who sleep for a long period should pay more attention to their muscle health.
Collapse
Affiliation(s)
| | | | | | | | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Qingdao University Medical College, Qingdao 266071, China
| |
Collapse
|
32
|
Tiwari A, Rathor P, Trivedi PK, Ch R. Multi-Omics Reveal Interplay between Circadian Dysfunction and Type2 Diabetes. BIOLOGY 2023; 12:301. [PMID: 36829576 PMCID: PMC9953493 DOI: 10.3390/biology12020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Type 2 diabetes is one of the leading threats to human health in the 21st century. It is a metabolic disorder characterized by a dysregulated glucose metabolism resulting from impaired insulin secretion or insulin resistance. More recently, accumulated epidemiological and animal model studies have confirmed that circadian dysfunction caused by shift work, late meal timing, and sleep loss leads to type 2 diabetes. Circadian rhythms, 24-h endogenous biological oscillations, are a fundamental feature of nearly all organisms and control many physiological and cellular functions. In mammals, light synchronizes brain clocks and feeding is a main stimulus that synchronizes the peripheral clocks in metabolic tissues, such as liver, pancreas, muscles, and adipose tissues. Circadian arrhythmia causes the loss of synchrony of the clocks of these metabolic tissues and leads to an impaired pancreas β-cell metabolism coupled with altered insulin secretion. In addition to these, gut microbes and circadian rhythms are intertwined via metabolic regulation. Omics approaches play a significant role in unraveling how a disrupted circadian metabolism causes type 2 diabetes. In the present review, we emphasize the discoveries of several genes, proteins, and metabolites that contribute to the emergence of type 2 diabetes mellitus (T2D). The implications of these discoveries for comprehending the circadian clock network in T2D may lead to new therapeutic solutions.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Priya Rathor
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Prabodh Kumar Trivedi
- Department of Biotechnology, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
| | - Ratnasekhar Ch
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
33
|
Telles GD, Libardi CA, Conceição MS, Vechin FC, Lixandrão ME, Mangone FRR, Pavanelli AC, Nagai MA, Camera DM, Hawley JA, Ugrinowitsch C. Interrelated but Not Time-Aligned Response in Myogenic Regulatory Factors Demethylation and mRNA Expression after Divergent Exercise Bouts. Med Sci Sports Exerc 2023; 55:199-208. [PMID: 36136603 DOI: 10.1249/mss.0000000000003049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| | - Cleiton Augusto Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, São Paulo, BRAZIL
| | - Miguel Soares Conceição
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, São Paulo, BRAZIL
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| | | | | | | | | | - Donny Michael Camera
- Department of Health and Medical Sciences, Swinburne University, Melbourne, VIC, AUSTRALIA
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Exercise and Nutrition Research Program, Australian Catholic University, Melbourne, VIC, AUSTRALIA
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| |
Collapse
|
34
|
Shibuki T, Iida M, Harada S, Kato S, Kuwabara K, Hirata A, Sata M, Matsumoto M, Osawa Y, Okamura T, Sugiyama D, Takebayashi T. The association between sleep parameters and sarcopenia in Japanese community-dwelling older adults. Arch Gerontol Geriatr 2023; 109:104948. [PMID: 36764202 DOI: 10.1016/j.archger.2023.104948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE This study aimed to examine the association between sleep duration and quality and sarcopenia, assessed by factors such as low muscle mass (LMM), low muscle strength (LMS), and low physical performance (LPP) among older community-dwellers in Japan. METHODS In this cross-sectional study, a total of 2,069 (men, 902; women, 1,167) participants aged 65 to 80 years were included. Sarcopenia and each low physical function were defined using the definitions of the Asian Working Groups of Sarcopenia 2019. Sleep duration was stratified into three categories: short sleep (<6 h), normal sleep (6-8 h), and long sleep (>8 h). Sleep quality was classified into two groups based on 8-item Athens Insomnia Scale score: insomnia (≥6), and non-insomnia (<6). We analyzed the association between sleep parameters and sarcopenia, including low physical functions, by logistic regression analysis. RESULTS Compared to normal sleepers, long sleepers had a positive association with sarcopenia (odds ratio [OR] 2.11, 95% confidence interval [CI] 1.25-3.58). In particular, long sleep was strongly associated with LMS (OR 1.77, 95%CI 1.07-2.94) and LPP (OR 1.90, 95%CI 1.25-2.88). On the other hand, poor sleep quality was not associated with sarcopenia in long sleepers, but in normal sleepers. CONCLUSIONS Long sleep was associated with sarcopenia, including LMS and LPP. However, in long sleepers, insomnia was not associated with sarcopenia or any of its components.
Collapse
Affiliation(s)
- Takuma Shibuki
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Miho Iida
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata Japan
| | - Suzuka Kato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Kuwabara
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Aya Hirata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Mizuki Sata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Minako Matsumoto
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Osawa
- Graduate School of Health Management, Keio University, Fujisawa, Kanagawa, Japan; Sports Medicine Research Center, Keio University, Yokohama, Kanagawa, Japan
| | - Tomonori Okamura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Sugiyama
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan; Faculty of Nursing and Medical Care, Keio University, Fujisawa, Kanagawa, Japan
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata Japan.
| |
Collapse
|
35
|
Xiong X, Ma K. Methods to Monitor Circadian Clock Function in Skeletal Muscle. Methods Mol Biol 2023; 2640:249-257. [PMID: 36995600 DOI: 10.1007/978-1-0716-3036-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The circadian clock exerts temporal regulation in physiology and behavior. The skeletal muscle possesses cell-autonomous clock circuits that play key roles in diverse tissue growth, remodeling, and metabolic processes. Recent advances reveal the intrinsic properties, molecular regulations, and physiological functions of the molecular clock oscillators in progenitor and mature myocytes in muscle. While various approaches have been applied to examine clock functions in tissue explants or cell culture systems, defining the tissue-intrinsic circadian clock in muscle requires sensitive real-time monitoring using a Period2 promoter-driven luciferase reporter knock-in mouse model. This chapter describes the gold standard of applying the Per2::Luc reporter line to assess clock properties in skeletal muscle. This technique is suitable for the analysis of clock function in ex vivo muscle preps using intact muscle groups, dissected muscle strips, and cell culture systems using primary myoblasts or myotubes.
Collapse
Affiliation(s)
- Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
36
|
Liu S, Zhuang S, Li M, Zhu J, Zhang Y, Hu H. Relationship between sarcopenia and sleep status in female patients with mild to moderate Alzheimer's disease. Psychogeriatrics 2023; 23:94-107. [PMID: 36403982 DOI: 10.1111/psyg.12908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sleep disorders and sarcopenia could contribute to the development of Alzheimer's disease (AD), which are risk factors that rapidly deteriorate cognitive functions. However, few studies have evaluated the relationship between sarcopenia and sleep disorders in female AD patients, who have a higher prevalence than male patients. This study aimed to investigate the relationship between sarcopenia and sleep status in female patients with mild to moderate AD. METHODS This cross-sectional study recruited 112 female outpatients aged between 60 and 85 years. Demographic characteristics, appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were assessed. Sarcopenia was diagnosed according to criteria of the Asian Working Group for Sarcopenia. Pittsburgh Sleep Quality Index (PSQI) assessed sleep variables. Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) assessed cognitive function. Binary logistic regression models explored the relationship between sleep variables and cognitive function and sarcopenia, adjusting for potential cofounders. RESULTS The outpatients were divided into 36 AD patients with sarcopenia (ADSa) and 76 AD patients without sarcopenia (ADNSa), with a prevalence of 32.1%. ADSa had lower ASMI, weaker grip strength, slower gait speed, a higher incidence of poor sleep quality and poorer cognitive function. Multivariate binary logistic regression analysis showed that high total scores of PSQI (odds ratio (OR) = 1.13), poor sleep quality (OR = 2.73), poor subjective sleep quality (OR = 1.83), low MMSE (OR = 0.77) and MoCA (OR = 0.76) scores were associated with high odds of sarcopenia. Compared to sleep time ≤ 15 min, >60 min (OR = 5.01) were associated with sarcopenia. Sleep duration <6 h (OR = 3.99), 8-9 h (OR = 4.48) and ≥9 h (OR = 6.33) were associated with sarcopenia compared to 7-8 h. CONCLUSIONS More sleep symptoms and cognitive impairment exist in female patients with sarcopenia. The higher total scores of PSQI, poorer subjective sleep quality, longer sleep latency, excessive and insufficient sleep duration and poorer cognitive function are associated with higher odds of sarcopenia in female patients with mild to moderate AD.
Collapse
Affiliation(s)
- Shanwen Liu
- Department of Neurology and Suzhou Clinical Research Centre of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Sheng Zhuang
- Department of Neurology and Suzhou Clinical Research Centre of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Meng Li
- Department of Imaging, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Jiangtao Zhu
- Department of Imaging, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Yingchun Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| | - Hua Hu
- Department of Neurology and Suzhou Clinical Research Centre of Neurological Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215004, China
| |
Collapse
|
37
|
Luo X, Yang X, Yang Y, Li H, Cui H, Cao X. The interrelationship between inflammatory cytokines and skeletal muscle decay from the viewpoint of circadian rhythms. Arch Physiol Biochem 2022; 128:1559-1565. [PMID: 32608270 DOI: 10.1080/13813455.2020.1782435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Circadian rhythms affect a variety of physiological processes. Disruption of circadian rhythms causes many diseases, most of which are associated with inflammation. Disruption of circadian rhythms has a detrimental impact on the function of immune system. It is common to find that circulatory LPS are increased. LPS induces immune cells to produce inflammatory cytokines. Inflammatory cytokines play a role in skeletal muscle decay. Rev-erbβ has been identified as a critical regulator of circadian rhythms and a factor in inflammation. Another effect of disruption is a concomitant disturbance of glucose-insulin metabolism, which skeletal muscle likely contributes to considering it is a key metabolic tissue. Disruption of circadian rhythms is also related to obesity. Obesity can cause an increase expression of inflammatory cytokines. Maybe obesity with skeletal muscle decay is one of major characteristics. Future studies are needed to obtain a comprehensive understanding of inflammatory cytokines and skeletal muscle decay from the viewpoint of circadian rhythms.
Collapse
Affiliation(s)
- Xuguang Luo
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, PR China
| | - Xinhua Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Yanping Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Hairong Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Huilin Cui
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Ximei Cao
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| |
Collapse
|
38
|
Lim JY, Kim E, Douglas CM, Wirianto M, Han C, Ono K, Kim SY, Ji JH, Tran CK, Chen Z, Esser KA, Yoo SH. The circadian E3 ligase FBXL21 regulates myoblast differentiation and sarcomere architecture via MYOZ1 ubiquitination and NFAT signaling. PLoS Genet 2022; 18:e1010574. [PMID: 36574402 PMCID: PMC9829178 DOI: 10.1371/journal.pgen.1010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/09/2023] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Numerous molecular and physiological processes in the skeletal muscle undergo circadian time-dependent oscillations in accordance with daily activity/rest cycles. The circadian regulatory mechanisms underlying these cyclic processes, especially at the post-transcriptional level, are not well defined. Previously, we reported that the circadian E3 ligase FBXL21 mediates rhythmic degradation of the sarcomere protein TCAP in conjunction with GSK-3β, and Psttm mice harboring an Fbxl21 hypomorph allele show reduced muscle fiber diameter and impaired muscle function. To further elucidate the regulatory function of FBXL21 in skeletal muscle, we investigated another sarcomere protein, Myozenin1 (MYOZ1), that we identified as an FBXL21-binding protein from yeast 2-hybrid screening. We show that FBXL21 binding to MYOZ1 led to ubiquitination-mediated proteasomal degradation. GSK-3β co-expression and inhibition were found to accelerate and decelerate FBXL21-mediated MYOZ1 degradation, respectively. Previously, MYOZ1 has been shown to inhibit calcineurin/NFAT signaling important for muscle differentiation. In accordance, Fbxl21 KO and MyoZ1 KO in C2C12 cells impaired and enhanced myogenic differentiation respectively compared with control C2C12 cells, concomitant with distinct effects on NFAT nuclear localization and NFAT target gene expression. Importantly, in Psttm mice, both the levels and diurnal rhythm of NFAT2 nuclear localization were significantly diminished relative to wild-type mice, and circadian expression of NFAT target genes associated with muscle differentiation was also markedly dampened. Furthermore, Psttm mice exhibited significant disruption of sarcomere structure with a considerable excess of MYOZ1 accumulation in the Z-line. Taken together, our study illustrates a pivotal role of FBXL21 in sarcomere structure and muscle differentiation by regulating MYOZ1 degradation and NFAT2 signaling.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Collin M. Douglas
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Chorong Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kaori Ono
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Sun Young Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Justin H. Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Celia K. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
39
|
Sleep, circadian biology and skeletal muscle interactions: Implications for metabolic health. Sleep Med Rev 2022; 66:101700. [PMID: 36272396 DOI: 10.1016/j.smrv.2022.101700] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022]
Abstract
There currently exists a modern epidemic of sleep loss, triggered by the changing demands of our 21st century lifestyle that embrace 'round-the-clock' remote working hours, access to energy-dense food, prolonged periods of inactivity, and on-line social activities. Disturbances to sleep patterns impart widespread and adverse effects on numerous cells, tissues, and organs. Insufficient sleep causes circadian misalignment in humans, including perturbed peripheral clocks, leading to disrupted skeletal muscle and liver metabolism, and whole-body energy homeostasis. Fragmented or insufficient sleep also perturbs the hormonal milieu, shifting it towards a catabolic state, resulting in reduced rates of skeletal muscle protein synthesis. The interaction between disrupted sleep and skeletal muscle metabolic health is complex, with the mechanisms underpinning sleep-related disturbances on this tissue often multifaceted. Strategies to promote sufficient sleep duration combined with the appropriate timing of meals and physical activity to maintain circadian rhythmicity are important to mitigate the adverse effects of inadequate sleep on whole-body and skeletal muscle metabolic health. This review summarises the complex relationship between sleep, circadian biology, and skeletal muscle, and discusses the effectiveness of several strategies to mitigate the negative effects of disturbed sleep or circadian rhythms on skeletal muscle health.
Collapse
|
40
|
Yang M, Zhang Y, Zhao WY, Ge ML, Sun XL, Jia SL, Dong BR. Association of sleep duration with sarcopenic obesity in multi-ethnic older adults: findings from the WCHAT Study. BMC Geriatr 2022; 22:899. [PMID: 36434541 PMCID: PMC9701023 DOI: 10.1186/s12877-022-03543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Sarcopenic obesity is a prevalent geriatric syndrome, characterized by concurrence of sarcopenia and obesity. Sleep duration is linked to both obesity and sarcopenia. However, little was known regarding the association of sleep duration with sarcopenic obesity. In this study, we aimed to examine the association of sleep duration with sarcopenic obesity in multi-ethnic community-dwelling older adults. METHODS Sarcopenia was defined according to the criteria established by Asian Working Group for Sarcopenia (AWGS) 2019. Obesity was defined as body fat percentage above the 60th percentile specified by sex. Sarcopenic obesity was defined as concurrence of obesity and sarcopenia. Sleep duration was collected by a self-reported questionnaire and was further divided into 5 groups: "<6 h", "6-7 h", "7-8 h", "8-9 h" (reference group) and "≥9 h" (long sleep). Logistic regressions were adopted to examine the association. RESULTS 2256 multi-ethnic adults aged 60 and over from the West China Health and Aging Trend (WCHAT) study were involved for present study. Overall, 6.25% of the participants were classified as sarcopenic obesity. In the fully adjusted model, long sleep duration (≥ 9 h) was significantly associated with sarcopenic obesity compared with reference group (OR = 1.81, 95%CI = 1.10-2.98, P = 0.019). However, in subgroup analysis, this association can only be observed in male (OR 1.98, 95% CI = 1.02-3.87, P = 0.043) not in female (OR = 1.83, 95%CI = 0.85-3.94, P = 0.118). Regarding ethnic difference, Han older adults with long sleep duration (≥ 9 h) presented increased risk of sarcopenic obesity while ethnic minorities did not. CONCLUSION This study disclosed that long sleep duration significantly increased the risk of sarcopenic obesity among older adults. And our findings highlight the critical role of assessing sleep duration to identify individuals at risk of sarcopenic obesity.
Collapse
Affiliation(s)
- Mei Yang
- grid.13291.380000 0001 0807 1581National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China
| | - Yan Zhang
- grid.13291.380000 0001 0807 1581National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China
| | - Wan-yu Zhao
- grid.13291.380000 0001 0807 1581National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China
| | - Mei-ling Ge
- grid.13291.380000 0001 0807 1581National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China
| | - Xue-lian Sun
- grid.13291.380000 0001 0807 1581National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China
| | - Shu-li Jia
- grid.13291.380000 0001 0807 1581National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China
| | - Bi-rong Dong
- grid.13291.380000 0001 0807 1581National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, GuoXueXiang 37, 610041 Chengdu, China
| |
Collapse
|
41
|
The circadian rhythm regulates branched-chain amino acids metabolism in fast muscle of Chinese perch ( Siniperca chuatsi) during short-term fasting by Clock-KLF15-Bcat2 pathway. Br J Nutr 2022:1-12. [PMID: 36373572 DOI: 10.1017/s0007114522003646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.
Collapse
|
42
|
Tsitsou S, Zacharodimos N, Poulia KA, Karatzi K, Dimitriadis G, Papakonstantinou E. Effects of Time-Restricted Feeding and Ramadan Fasting on Body Weight, Body Composition, Glucose Responses, and Insulin Resistance: A Systematic Review of Randomized Controlled Trials. Nutrients 2022; 14:4778. [PMID: 36432465 PMCID: PMC9696013 DOI: 10.3390/nu14224778] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Time-restricted feeding (TRF) and Ramadan fasting (RF) have been recently associated with several health outcomes. However, it is not yet clear if they are superior to existing treatments in terms of glucose metabolism, insulin action, and weight loss. This review aims to summarize the current data on the effects of these regimes on body weight, body composition, and glycemia. An electronic search was conducted in PUBMED and SCOPUS databases up to August 2022. Twenty-four records met the inclusion criteria and underwent a risk-of-bias assessment. The main outcomes were: (a) TRF may result in moderate weight loss in individuals with overweight/obesity; when TRF is combined with caloric restriction, weight loss is >5% of the initial body weight, (b) 14 h of fasting may be as effective as 16 h in terms of weight loss, and (c) TRF may lead to improved insulin sensitivity and glycemic responses/variability throughout the day in individuals with overweight/obesity. Concerning RF, only two studies were available and thus, conclusions were not drawn. TRF may be an effective nutritional approach for weight loss, and the amelioration of glycemic control and insulin sensitivity in individuals with overweight/obesity. However, more long-term, well-designed studies are needed.
Collapse
Affiliation(s)
- Sofia Tsitsou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Nikolaos Zacharodimos
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Kalliopi-Anna Poulia
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Kalliopi Karatzi
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Emilia Papakonstantinou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
43
|
Bilu C, Einat H, Zimmet P, Kronfeld-Schor N. Circadian rhythms-related disorders in diurnal fat sand rats under modern lifestyle conditions: A review. Front Physiol 2022; 13:963449. [PMID: 36160856 PMCID: PMC9489903 DOI: 10.3389/fphys.2022.963449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Modern lifestyle reduces environmental rhythmicity and may lead to circadian desynchrony. We are exposed to poor day-time lighting indoors and excessive night-time artificial light. We use air-conditioning to reduce ambient temperature cycle, and food is regularly available at all times. These disruptions of daily rhythms may lead to type 2 diabetes mellitus (T2DM), obesity, cardiometabolic diseases (CMD), depression and anxiety, all of which impose major public health and economic burden on societies. Therefore, we need appropriate animal models to gain a better understanding of their etiologic mechanisms, prevention, and management.We argue that the fat sand rat (Psammomys obesus), a diurnal animal model, is most suitable for studying the effects of modern-life conditions. Numerous attributes make it an excellent model to study human health disorders including T2DM, CMD, depression and anxiety. Here we review a comprehensive series of studies we and others conducted, utilizing the fat sand rat to study the underlying interactions between biological rhythms and health. Understanding these interactions will help deciphering the biological basis of these diseases, which often occur concurrently. We found that when kept in the laboratory (compared with natural and semi-wild outdoors conditions where they are diurnal), fat sand rats show low amplitude, nocturnal or arrhythmic activity patterns, dampened daily glucose rhythm, glucose intolerance, obesity and decreased survival rates. Short photoperiod acclimation exacerbates these pathologies and further dampens behavioral and molecular daily rhythms, resulting in CMD, T2DM, obesity, adipocyte dysfunction, cataracts, depression and anxiety. Increasing environmental rhythmicity by morning bright light exposure or by access to running wheels strengthens daily rhythms, and results in higher peak-to-trough difference in activity, better rhythmicity in clock genes expression, lower blood glucose and insulin levels, improved glucose tolerance, lower body and heart weight, and lower anxiety and depression. In summary, we have demonstrated that fat sand rats living under the correspondent of “human modern lifestyle” conditions exhibit dampened behavioral and biological rhythms and develop circadian desynchrony, which leads to what we have named “The Circadian Syndrome”. Environmental manipulations that increase rhythmicity result in improvement or prevention of these pathologies. Similar interventions in human subjects could have the same positive results and further research on this should be undertaken.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
- *Correspondence: Carmel Bilu,
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
44
|
Baishnikova IV, Ilyina TN, Khizhkin EA, Ilyukha VA. Prolonged Light Deprivation Modulates the Age-Related Changes in α-Tocopherol Level in Rats. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Chrono-Aerobic Exercise Optimizes Metabolic State in DB/DB Mice through CLOCK–Mitophagy–Apoptosis. Int J Mol Sci 2022; 23:ijms23169308. [PMID: 36012573 PMCID: PMC9408978 DOI: 10.3390/ijms23169308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Although the benefits of aerobic exercise on obesity and type 2 diabetes are well-documented, the pathogenesis of type 2 diabetes and the intervention mechanism of exercise remain ambiguous. The correlation between mitochondrial quality and metabolic diseases has been identified. Disruption of the central or peripheral molecular clock can also induce chronic metabolic diseases. In addition, the interactive effects of the molecular clock and mitochondrial quality have attracted extensive attention in recent years. Exercise and a high-fat diet have been considered external factors that may change the molecular clock and metabolic state. Therefore, we utilized a DB/DB (BSK.Cg-Dock7m +/+ Leprdb/JNju) mouse model to explore the effect of chrono-aerobic exercise on the metabolic state of type 2 diabetic mice and the effect of timing exercise as an external rhythm cue on liver molecular clock-mitochondrial quality. We found that two differently timed exercises reduced the blood glucose and serum cholesterol levels in DB/DB mice, and compared with night exercise (8:00 p.m., the active period of mice), morning exercise (8:00 a.m., the sleeping period of mice) significantly improved the insulin sensitivity in DB/DB mice. In contrast, type 2 diabetes mellitus (T2DM) increased the expression of CLOCK and impaired the mitochondrial quality (mitochondrial networks, OPA1, Fis1, and mitophagy), as well as induced apoptosis. Both morning and night exercise ameliorated impaired mitochondrial quality and apoptosis induced by diabetes. However, compared with morning exercise, night exercise not only decreased the protein expression of CLOCK but also decreased excessive apoptosis. In addition, the expression of CLOCK was negatively correlated with the expression of OPA1 and Fis1. In summary, our research suggests that morning exercise is more beneficial for increasing insulin sensitivity and promoting glucose transport in T2DM, whereas night exercise may improve lipid infiltration and mitochondrial abnormalities through CLOCK–mitophagy–apoptosis in the liver, thereby downregulating glucose and lipid disorders. In addition, CLOCK-OPA1/Fis1–mitophagy might be novel targets for T2DM treatment.
Collapse
|
46
|
Liu K, Meng T, Chen Q, Hou G, Wang X, Hu S, Gu X, Li H, Li Y, Xiong C, Cao J. Diurnal rhythm of human semen quality: analysis of large-scale human sperm bank data and timing-controlled laboratory study. Hum Reprod 2022; 37:1727-1738. [PMID: 35690928 PMCID: PMC9340113 DOI: 10.1093/humrep/deac135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Can we identify diurnal oscillations in human semen parameters as well as peak times of semen quality? SUMMARY ANSWER Human semen parameters show substantial diurnal oscillation, with most parameters reaching a peak between 1100 and 1500 h. WHAT IS KNOWN ALREADY A circadian clock appears to regulate different physiological functions in various organs, but it remains controversial whether diurnal rhythms occur in human semen parameters. STUDY DESIGN, SIZE, DURATION The medical record of a provincial human sperm bank (HSB) with 33 430 semen samples collected between 0800 and 1700 h from 1 March 2010 to 8 July 2015 was used to analyze variation in semen parameters among time points. A laboratory study was conducted to collect semen samples (n = 36) from six volunteers at six time points with identical time intervals (2 days plus 4 h) between 6 June and 8 July in 2019, in order to investigate the diurnal oscillation of semen parameters in vivo, with a strictly controlled abstinence period. Therefore, the sperm bank study with a large sample size and the in vivo study with a strictly controlled abstinence period in a 24-h time window could be compared to describe the diurnal rhythms in human semen parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS Samples were obtained from potential HSB donors and from participants in the laboratory study who were volunteers, recruited by flyers distributed in the community. Total sperm count, sperm concentration, semen volume, progressive motility and total motility were assessed using computer-aided sperm analysis. In addition, sperm chromatin integrity parameters (DNA fragmentation index and high DNA stainability) were assessed by the sperm chromatin structure assay, and sperm viability was measured with flow cytometry in the laboratory study. MAIN RESULTS AND THE ROLE OF CHANCE The 33 430 samples from the HSB showed a temporal variation in total sperm count, sperm concentration, semen volume, progressive motility and total motility (all P < 0.001) between 0800 and 1700 h. Consequently, the eligibility of semen samples for use in ART, based on bank standards, fluctuated with time point. Each hour earlier/later than 1100 h was associated with 1.14-fold risk of ineligibility. Similarly, the 36 samples taken during the 24-h time window showed diurnal oscillation. With the pre-collection abstinence period strictly controlled, most semen parameters reached the most favorable level between 1100 and 1500 h. LIMITATIONS, REASONS FOR CAUTION Some of the possible confounding factors, such as energy intake, which might influence semen quality or diurnal rhythms, were not adjusted for in the analyses. In addition, the findings should be considered with caution because the study was conducted in a specific population, time and place, while the timing of oscillations could differ with changing conditions. WIDER IMPLICATIONS OF THE FINDINGS The findings could help us to estimate semen quality more precisely and to obtain higher quality sperm for use in ART and in natural conception. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (81871208) and National Key R&D Program of China (2017YFC1002001). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Kun Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
- Center for Disease Control and Prevention, Southern Theater Command, Guangzhou, China
| | - Tianqing Meng
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guizhong Hou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
- Institute for Vaccine Clinical Research, Hebei Province Center for Disease Control and Prevention, Hebei, China
| | - Xiaogang Wang
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Siheng Hu
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Xiuli Gu
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Honggang Li
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Yuyan Li
- Reproductive Medical Center, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengliang Xiong
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
47
|
Vanmunster M, Rojo Garcia AV, Pacolet A, Dalle S, Koppo K, Jonkers I, Lories R, Suhr F. Mechanosensors control skeletal muscle mass, molecular clocks, and metabolism. Cell Mol Life Sci 2022; 79:321. [PMID: 35622133 PMCID: PMC11072145 DOI: 10.1007/s00018-022-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism. METHODS We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes. RESULTS Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model. CONCLUSIONS Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.
Collapse
Affiliation(s)
- Mathias Vanmunster
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Ana Victoria Rojo Garcia
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Alexander Pacolet
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Ilse Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Rik Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, 3000, Leuven, Belgium
| | - Frank Suhr
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
48
|
Fujimoto R, Ohta Y, Masuda K, Taguchi A, Akiyama M, Yamamoto K, Nakabayashi H, Nagao Y, Matsumura T, Hiroshige S, Kajimura Y, Akashi M, Tanizawa Y. Metabolic state switches between morning and evening in association with circadian clock in non‐diabetic humans. J Diabetes Investig 2022; 13:1496-1505. [PMID: 35429128 PMCID: PMC9434593 DOI: 10.1111/jdi.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Aims/Introduction Understanding morning–evening variation in metabolic state is critical for managing metabolic disorders. We aimed to characterize this variation from the viewpoints of insulin secretion and insulin sensitivity, including their relevance to the circadian rhythm. Materials and Methods A total of 14 and 10 people without diabetes were enrolled, and underwent a 75‐g oral glucose tolerance test (OGTT) and hyperinsulinemic‐euglycemic clamp study, respectively. Participants completed the OGTT or hyperinsulinemic‐euglycemic clamp at 08.00 hours and 20.00 hours in random order. Before each study, hair follicles were collected. In mice, phosphorylation levels of protein kinase B were examined in the liver and muscle by western blotting. Results Glucose tolerance was better at 08 .00 hours, which was explained by the higher 1‐h insulin secretion on OGTT and increased skeletal muscle insulin sensitivity on hyperinsulinemic‐euglycemic clamp. Hepatic insulin sensitivity, estimated by the hepatic insulin resistance index on OGTT, was better at 20.00 hours. The 1‐h insulin secretion and hepatic insulin resistance index correlated significantly with Per2 messenger ribonucleic acid expression. The change (evening value – morning value) in the glucose infusion rate correlated significantly with the change in non‐esterified fatty acid, but not with clock gene expressions. The change in non‐esterified fatty acid correlated significantly with E4bp4 messenger ribonucleic acid expression and the change in cortisol. In mice, phosphorylation of protein kinase B was decreased in the liver and increased in muscle in the beginning of the active period as, expected from the human study. Conclusions Glucose metabolism in each tissue differed between the morning and evening, partly reflecting lipid metabolism, clock genes and cortisol levels. Deeper knowledge of these associations might be useful for ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Ruriko Fujimoto
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Ysuharu Ohta
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
- Department of Diabetes Research Yamaguchi University School of Medicine, Ube Yamaguchi Japan
| | - Konosuke Masuda
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Masaru Akiyama
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Kaoru Yamamoto
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Hiroko Nakabayashi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Yuko Nagao
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Takuro Matsumura
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Syunsuke Hiroshige
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Yasuko Kajimura
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Makoto Akashi
- The Research Institute for Time Studies Yamaguchi University Yamaguchi Japan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| |
Collapse
|
49
|
Priyadarsini N, Nanda P, Devi S, Mohapatra S. Sarcopenia: An Age-Related Multifactorial Disorder. Curr Aging Sci 2022; 15:209-217. [PMID: 35249518 DOI: 10.2174/1874609815666220304194539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Sarcopenia is an emerging clinical entity characterized by a gradual decline in skeletal muscle mass and strength that accompanies the normal aging process. It has been noted that sarcopenia is associated with various adverse health outcomes in the geriatric population like prolonged hospital admission, disability, poor quality of life, frailty, and mortality. Factors involved in the development of age-related sarcopenia include anorexia, alteration in the hormone levels, decreased neural innervation, low blood flow to the muscles, cytokine dysregulation, altered mitochondrial activity, genomic instability, intracellular proteolysis, and insulin resistance. Understanding the mechanism may help develop efficient preventive and therapeutic strategies which can improve the quality of life in elderly individuals. Thus, the objective of the present article is to review the literature regarding the mechanism involved in the development of sarcopenia in aged individuals.
Collapse
Affiliation(s)
- Nibedita Priyadarsini
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pranati Nanda
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sujata Devi
- Department of Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subarna Mohapatra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
50
|
Bilu C, Einat H, Zimmet P, Vishnevskia-Dai V, Schwartz WJ, Kronfeld-Schor N. Beneficial effects of voluntary wheel running on activity rhythms, metabolic state, and affect in a diurnal model of circadian disruption. Sci Rep 2022; 12:2434. [PMID: 35165331 PMCID: PMC8844006 DOI: 10.1038/s41598-022-06408-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that disruption of circadian rhythmicity contributes to development of comorbid depression, cardiovascular diseases (CVD), and type 2 diabetes mellitus (T2DM). Physical exercise synchronizes the circadian system and has ameliorating effects on the depression- and anxiety-like phenotype induced by circadian disruption in mice and sand rats. We explored the beneficial effects of voluntary wheel running on daily rhythms, and the development of depression, T2DM, and CVD in a diurnal animal model, the fat sand rat (Psammomys obesus). Voluntary exercise strengthened general activity rhythms, improved memory and lowered anxiety- and depressive-like behaviors, enhanced oral glucose tolerance, and decreased plasma insulin levels and liver weight. Animals with access to a running wheel had larger heart weight and heart/body weight ratio, and thicker left ventricular wall. Our results demonstrate that exercising ameliorates pathological-like daily rhythms in activity and blood glucose levels, glucose tolerance and depressive- and anxiety-like behaviors in the sand rat model, supporting the important role of physical activity in modulating the “circadian syndrome” and circadian rhythm-related diseases. We suggest that the utilization of a diurnal rodent animal model may offer an effective way to further explore metabolic, cardiovascular, and affective-like behavioral changes related to chronodisruption and their underlying mechanisms.
Collapse
|