1
|
Chen X, Wang YJ, Mu TW. Proteostasis regulation of GABA A receptors in neuronal function and disease. Biomed Pharmacother 2025; 186:117992. [PMID: 40112516 DOI: 10.1016/j.biopha.2025.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAARs) are ligand-gated anion channels that mediate fast inhibitory neurotransmission in the mammalian central nervous system. GABAARs form heteropentameric assemblies comprising two α1, two β2, and one γ2 subunits as the most common subtype in mammalian brains. Proteostasis regulation of GABAARs involves subunit folding within the endoplasmic reticulum, assembling into heteropentamers, receptor trafficking to the cell surface, and degradation of terminally misfolded subunits. As GABAARs are surface proteins, their trafficking to the plasma membrane is critical for proper receptor function. Thus, variants in the genes encoding GABAARs that disrupt proteostasis result in various neurodevelopmental disorders, ranging from intellectual disability to idiopathic generalized epilepsy. This review summarizes recent progress about how the proteostasis network regulates protein folding, assembly, degradation, trafficking, and synaptic clustering of GABAARs. Additionally, emerging pharmacological approaches that restore proteostasis of pathogenic GABAAR variants are presented, providing a promising strategy to treat related neurological diseases.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Chen X, Wang YJ, Mu TW. Missense variants in GABA A receptor beta2 subunit disrupt receptor biogenesis and cause loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642292. [PMID: 40161784 PMCID: PMC11952320 DOI: 10.1101/2025.03.09.642292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gamma-aminobutyric acid type A receptors (GABAARs) are the major inhibitory neurotransmitter-gated channel in the mammalian central nervous system. GABAARs function as heteropentamers, typically composed of two α1, two β2, and one γ2 subunits. Protein homeostasis between GABAAR folding, trafficking, assembly, and degradation is critical to ensure normal physiological functions. Variants in genes encoded for GABAARs lead to numerous neurological disorders, such as genetic epilepsy with or without neurodevelopmental delay. While these variants are associated with severe clinical presentations of epilepsy, the molecular mechanisms driving the disease remain to be elucidated. In this study, we focused on four missense epilepsy-associated variants (EAVs) in the GABRB2 gene: Q209F210delinsH (c. 627_629del), R240T (c. 719G>C), I246T (c. 737T>C), and I299S (c. 896T>G). HEK293T cells exogenously expressing these β2 variants exhibited significantly reduced GABA-induced peak chloride current, indicating their loss of function. However, the four β2 EAVs differed in the degree of proteostasis deficiencies, including increased ER retention, compromised assembly, decreased protein stability, and reduced trafficking and surface expression, with Q209F210delinsH and R240T variants leading to the most severe degradation. Collectively, these results indicate that these epilepsy-linked variants have debilitating effects on the early biogenesis of the β2 subunit, causing misfolding, aggregation, and rapid degradation before it can be assembled with other subunits and transported to the plasma membrane. Overall, our work offers crucial mechanistic insight into how specific β2 missense variants impact the proteostasis maintenance of GABAARs, which could facilitate the development of effective therapeutics for genetic epilepsy by targeting trafficking-deficient GABAAR variants.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
3
|
Kobayashi C, Kitanaka N, Nakai M, Hall FS, Tomita K, Igarashi K, Sato T, Uhl GR, Kitanaka J. Protein phosphatase 2A inhibitors: a possible pharmacotherapy for benzodiazepine dependence. J Pharm Pharmacol 2025; 77:335-340. [PMID: 39546584 DOI: 10.1093/jpp/rgae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES Benzodiazepines (BZDs) activate the γ-aminobutyric acid (GABA) subtype A (GABAA) receptors, and thus are widely used medicines for the treatment of anxiety and insomnia. For chronic use, tolerance to BZDs is a major problem. Patients with chronic insomnia that develop tolerance to BZDs lose therapeutic effects but also potentially suffer from BZD dependence resulting in BZD withdrawal. The development of such treatments is important for the appropriate use of BZDs. METHODS Research articles regarding investigation of BZD dependence were searched on PubMed, Embase, and Scopus databases using keywords "benzodiazepine", "dependence", "treatment". KEY FINDINGS When BZDs are taken chronically, continuous GABAA binding results in up-regulation of α-amino-3-hydroxy-5-methyl-4-lisoxazolepropionic acid (AMPA) glutamate receptor function and release of brain-derived neurotrophic factor (BDNF). Released BDNF binds to its specific receptor tropomyosin-related kinase receptor B (TrkB). Enhanced BDNF-TrkB signaling activates protein phosphatase 2A (PP2A). Activated PP2A dephosphorylates GABAA receptors, resulting in the downregulation of the GABAA receptor function. Reduced GABAA receptor function augments long-term potentiation (LTP), AMPA-mediated glutamatergic neuroplasticity, by reducing LTP inhibition by GABAA receptor function. Augmented LTP enhances extreme anxiety, which leads to BZD dependence. CONCLUSION Therefore, iInhibiting dephosphorylation of the GABAA receptor by PP2A, PP2A inhibitors could reduce LTP and anxiety, restoring BZD effectiveness and resulting in possible therapeutic effects for BZD dependence.
Collapse
Affiliation(s)
- Chisa Kobayashi
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe 650-8530, Japan
| | - Nobue Kitanaka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe 650-8530, Japan
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Masanori Nakai
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe 650-8530, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, United States
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kento Igarashi
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - George R Uhl
- Neurology, VA Maryland Healthcare System, Baltimore, Maryland 21201, United States
- Departments of Neurology and Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Junichi Kitanaka
- Laboratory of Drug Addiction and Experimental Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe 650-8530, Japan
| |
Collapse
|
4
|
Philip AB, Brohan J, Goudra B. The Role of GABA Receptors in Anesthesia and Sedation: An Updated Review. CNS Drugs 2025; 39:39-54. [PMID: 39465449 PMCID: PMC11695389 DOI: 10.1007/s40263-024-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
GABA (γ-aminobutyric acid) receptors are constituents of many inhibitory synapses within the central nervous system. They are formed by 5 subunits out of 19 various subunits: α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3. Two main subtypes of GABA receptors have been identified, namely GABAA and GABAB. The GABAA receptor (GABAAR) is formed by a variety of combinations of five subunits, although both α and β subunits must be included to produce a GABA-gated ion channel. Other subunits are γ, δ, ε, π, and ϴ. GABAAR has many isoforms, that dictate, among other properties, their differing affinities and conductance. Drugs acting on GABAAR form the cornerstone of anesthesia and sedation practice. Some such GABAAR agonists used in anesthesia practice are propofol, etomidate, methohexital, thiopental, isoflurane, sevoflurane, and desflurane. Ketamine, nitrous oxide, and xenon are not GABAR agonists and instead inhibit glutamate receptors-mainly NMDA receptors. Inspite of its many drawbacks such as pain in injection, quick and uncontrolled conversion from sedation to general anesthesia and dose-related cardiovascular depression, propofol remains the most popular GABAR agonist employed by anesthesia providers. In addition, being formulated in a lipid emulsion, contamination and bacterial growth is possible. Literature is rife with newer propofol formulations, aiming to address many of these drawbacks, and with some degree of success. A nonemulsion propofol formulation has been developed with cyclodextrins, which form inclusion complexes with drugs having lipophilic properties while maintaining aqueous solubility. Inhalational anesthetics are also GABA agonists. The binding sites are primarily located within α+/β- and β+/α- subunit interfaces, with residues in the α+/γ- interface. Isoflurane and sevoflurane might have slightly different binding sites providing unexpected degree of selectivity. Methoxyflurane has made a comeback in Europe for rapid provision of analgesia in the emergency departments. Penthrox (Galen, UK) is the special device designed for its administration. With better understanding of pharmacology of GABAAR agonists, newer sedative agents have been developed, which utilize "soft pharmacology," a term pertaining to agents that are rapidly metabolized into inactive metabolites after producing desired therapeutic effect(s). These newer "soft" GABAAR agonists have many properties of ideal sedative agents, as they can offer well-controlled, titratable activity and ultrashort action. Remimazolam, a modified midazolam and methoxycarbonyl-etomidate (MOC-etomidate), an ultrashort-acting etomidate analog are two such examples. Cyclopropyl methoxycarbonyl metomidate is another second-generation soft etomidate analog that has a greater potency and longer half-life than MOC-etomidate. Additionally, it might not cause adrenal axis suppression. Carboetomidate is another soft analog of etomidate with low affinity for 11β-hydroxylase and is, therefore, unlikely to have clinically significant adrenocortical suppressant effects. Alphaxalone, a GABAAR agonist, is recently formulated in combination with 7-sulfobutylether-β-cyclodextrin (SBECD), which has a low hypersensitivity profile.
Collapse
Affiliation(s)
| | | | - Basavana Goudra
- Department of Anesthesiology, Jefferson Surgical Center Endoscopy, Sidney Kimmel Medical College, Jefferson Health, 111 S 11th Street, #7132, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Bhowmik N, Cook SR, Croney C, Barnard S, Romaniuk AC, Ekenstedt KJ. Heritability and Genome-Wide Association Study of Dog Behavioral Phenotypes in a Commercial Breeding Cohort. Genes (Basel) 2024; 15:1611. [PMID: 39766878 PMCID: PMC11675989 DOI: 10.3390/genes15121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Canine behavior plays an important role in the success of the human-dog relationship and the dog's overall welfare, making selection for behavior a vital part of any breeding program. While behaviors are complex traits determined by gene × environment interactions, genetic selection for desirable behavioral phenotypes remains possible. Methods: No genomic association studies of dog behavior to date have been reported on a commercial breeding (CB) cohort; therefore, we utilized dogs from these facilities (n = 615 dogs). Behavioral testing followed previously validated protocols, resulting in three phenotypes/variables [social fear (SF), non-social fear (NSF), and startle response (SR)]. Dogs were genotyped on the 710 K Affymetrix Axiom CanineHD SNP array. Results: Inbreeding coefficients indicated that dogs from CB facilities are statistically less inbred than dogs originating from other breeding sources. Heritability estimates for behavioral phenotypes ranged from 0.042 ± 0.045 to 0.354 ± 0.111. A genome-wide association analysis identified genetic loci associated with SF, NSF, and SR; genes near many of these loci have been previously associated with behavioral phenotypes in other populations of dogs. Finally, genetic risk scores demonstrated differences between dogs that were more or less fearful in response to test stimuli, suggesting that these behaviors could be subjected to genetic improvement. Conclusions: This study confirms several canine genetic behavioral loci identified in previous studies. It also demonstrates that inbreeding coefficients of dogs in CB facilities are typically lower than those in dogs originating from other breeding sources. SF and NSF were more heritable than SR. Risk allele and weighted risk scores suggest that fearful behaviors could be subjected to genetic improvement.
Collapse
Affiliation(s)
- Nayan Bhowmik
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA or (N.B.); (S.R.C.)
| | - Shawna R. Cook
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA or (N.B.); (S.R.C.)
| | - Candace Croney
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (C.C.); (S.B.); (A.C.R.)
| | - Shanis Barnard
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (C.C.); (S.B.); (A.C.R.)
| | - Aynsley C. Romaniuk
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (C.C.); (S.B.); (A.C.R.)
| | - Kari J. Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA or (N.B.); (S.R.C.)
| |
Collapse
|
6
|
Kuhn YA, Egger S, Bugnon M, Lehmann N, Taubert M, Taube W. Age-related decline in GABAergic intracortical inhibition can be counteracted by long-term learning of balance skills. J Physiol 2024; 602:3737-3753. [PMID: 38949035 DOI: 10.1113/jp285706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Ageing induces a decline in GABAergic intracortical inhibition, which seems to be associated not only with decremental changes in well-being, sleep quality, cognition and pain management but also with impaired motor control. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. Therefore, the present study investigated whether age-related cortical dis-inhibition could be reversed after 6 months of balance learning and whether improvements in postural control correlated with the extent of reversed dis-inhibition. The results demonstrated that intracortical inhibition can be upregulated in elderly subjects after long-term balance learning and revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition and may therefore be seminal for many pathologies in which the equilibrium between inhibitory and excitatory neurotransmitters is disturbed. KEY POINTS: Ageing induces a decline in GABAergic intracortical inhibition. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. After 6 months of balance learning, intracortical inhibition can be upregulated in elderly subjects. The results of this study also revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition.
Collapse
Affiliation(s)
- Yves-Alain Kuhn
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sven Egger
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Matteo Bugnon
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nico Lehmann
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Magdeburg, Germany
| | - Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Thakur R, Kumar A, Joshi RK, Kumar P. Radiosynthesis of [18F]-flumazenil Using an Isotopic Approach. Indian J Nucl Med 2024; 39:286-291. [PMID: 39790826 PMCID: PMC11708791 DOI: 10.4103/ijnm.ijnm_82_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 01/12/2025] Open
Abstract
Background Fluorine-18 (18F) flumazenil (FMZ) has been synthesized using various precursors, and its role has been explored in imaging Gamma-aminobutyric acid-A receptors. Aim and Objective The main objective was to synthesize (18F) FMZ using isotopic substitution. Materials and Methods Around 18 ± 2 GBq was added to the module, dried, and radiolabeling was standardized with 3.0 mg of the FMZ precursor at various temperatures (110°C -160°C) for 10-30 min. The product was finally eluted with 20% ethanol (in phosphate buffer). The final product was characterized by high-performance liquid chromatography (HPLC). The stability was evaluated in water, saline, and phosphate-buffered saline for 4 h. Results The radiolabelling efficiency of cartridge-based purification was 16 ± 4% (n = 10) with a radiochemical purity of 96.5 ± 1.8%, whereas in HPLC-based purification, the yield was 10 ± 4% (n = 5) with a radiochemical purity of 97.3 ± 1.4%. The specific activity was 120 ± 20 GBq/μmol. Conclusions (18F) FMZ was successfully synthesized using an isotopic approach and could be used as an alternative cheaper option for the synthesis.
Collapse
Affiliation(s)
- Riptee Thakur
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Aishwarya Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Alpay B, Cimen B, Akaydin E, Onat F, Bolay H, Sara Y. Extrasynaptic δGABAA receptors mediate resistance to migraine-like phenotype in rats. J Headache Pain 2024; 25:75. [PMID: 38724972 PMCID: PMC11083752 DOI: 10.1186/s10194-024-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.
Collapse
Affiliation(s)
- Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Bariscan Cimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Filiz Onat
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34752, Türkiye
| | - Hayrunnisa Bolay
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye.
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Besevler, Ankara, 06560, Türkiye.
| | - Yildirim Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye.
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye.
| |
Collapse
|
9
|
Yu X, Gao Z, Gao M, Qiao M. Bibliometric Analysis on GABA-A Receptors Research Based on CiteSpace and VOSviewer. J Pain Res 2023; 16:2101-2114. [PMID: 37361426 PMCID: PMC10289248 DOI: 10.2147/jpr.s409380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Background GABA-A receptors are the primary mediators of brain inhibitory neurotransmission. In the past years, many studies focused on this channel to decipher the pathogenesis of related diseases but lacked bibliometric analysis research. This study aims to explore the research status and identify the research trends of GABA-A receptor channels. Methods Publications related to GABA-A receptor channels were retrieved from the Web of Science Core Collection from 2012 to 2022. After screening, the VOSviewer 1.6.18 and Citespace 5.8 R3 were used for bibliometric analysis from journals, countries, institutions, authors, co-cited references and keywords. Results We included 12,124 publications in the field of GABA-A receptor channels for analysis. The data shows that although there was a slight decrease in annual publications from 2012 to 2021, it remained at a relatively high level. Most publications were in the domain of neuroscience. Additionally, the United States was the most prolific country, followed by China. Univ Toronto was the most productive institution, and James M Cook led essential findings in this field. Furthermore, brain activation, GABAAR subunits expression, modulation mechanism in pain and anxiety behaviors and GABA and dopamine were paid attention to by researchers. And top research frontiers were molecular docking, autoimmune encephalitic series, obesity, sex difference, diagnosis and management, EEG and KCC2. Conclusion Taken together, academic attention on GABA-A receptor channels was never neglected since 2012. Our analysis identified key information, such as core countries, institutions and authors in this field. Molecular docking, autoimmune encephalitic series, obesity, sex difference, diagnosis and management, EEG and KCC2 will be the future research direction.
Collapse
Affiliation(s)
- Xufeng Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People’s Republic of China
| | - Zhan Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People’s Republic of China
| | - Mingzhou Gao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People’s Republic of China
| | - Mingqi Qiao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
10
|
Drag M, Tielemans E, Mitchell E. Safety of oral afoxolaner formulated with or without milbemycin oxime in homozygous MDR1-deficient collie dogs. J Vet Pharmacol Ther 2022; 45:373-379. [PMID: 35536118 PMCID: PMC9543253 DOI: 10.1111/jvp.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/17/2022] [Indexed: 01/20/2023]
Abstract
Afoxolaner, an insecticide and acaricide compound of the isoxazoline class, is available for dogs as an oral ectoparasiticide medicine (NexGard®) and as an oral endectoparasiticide medicine in combination with milbemycin oxime (MO), a macrocyclic lactone (NexGard® Spectra). The safety of these two compounds, alone or in combination, was investigated in homozygous MDR1‐deficient collie dogs, in two studies. Overall, 30 adult collie dogs were treated once orally, 9 with a placebo, 9 with afoxolaner, 6 with MO, and 6 with a combination of afoxolaner and MO. For afoxolaner, the mean investigated dosage corresponded to 3.8 and 4.7 multiples of the maximum recommended therapeutic doses (RTD) in NexGard® and NexGard® Spectra, respectively. For MO, the mean investigated dosage corresponded to 4.7 multiples of the maximum RTD in NexGard® Spectra. Dogs were closely monitored for adverse reactions on the day of treatment and for the following two days. No significant adverse reaction was observed in any dog from the afoxolaner or the afoxolaner + MO groups; in the MO‐only treated group, mild and transient neurological signs were observed during the 4–8 h post‐treatment window. These studies demonstrated a high level of safety of oral afoxolaner, alone or in combination with milbemycin oxime, in homozygous MDR1‐deficient dogs.
Collapse
Affiliation(s)
- Marlene Drag
- Boehringer Ingelheim Animal Health, Missouri Research Center, Fulton, Missouri, USA
| | | | | |
Collapse
|
11
|
Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABA A receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol 2021; 19:123. [PMID: 34417930 PMCID: PMC8380214 DOI: 10.1186/s43141-021-00224-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/08/2021] [Indexed: 02/03/2023]
Abstract
Background γ-Aminobutyric acid sub-type A receptors (GABAARs) are the most prominent inhibitory neurotransmitter receptors in the CNS. They are a family of ligand-gated ion channel with significant physiological and therapeutic implications. Main body GABAARs are heteropentamers formed from a selection of 19 subunits: six α (alpha1-6), three β (beta1-3), three γ (gamma1-3), three ρ (rho1-3), and one each of the δ (delta), ε (epsilon), π (pi), and θ (theta) which result in the production of a considerable number of receptor isoforms. Each isoform exhibits distinct pharmacological and physiological properties. However, the majority of GABAARs are composed of two α subunits, two β subunits, and one γ subunit arranged as γ2β2α1β2α1 counterclockwise around the center. The mature receptor has a central chloride ion channel gated by GABA neurotransmitter and modulated by a variety of different drugs. Changes in GABA synthesis or release may have a significant effect on normal brain function. Furthermore, The molecular interactions and pharmacological effects caused by drugs are extremely complex. This is due to the structural heterogeneity of the receptors, and the existence of multiple allosteric binding sites as well as a wide range of ligands that can bind to them. Notably, dysfunction of the GABAergic system contributes to the development of several diseases. Therefore, understanding the relationship between GABAA receptor deficits and CNS disorders thus has a significant impact on the discovery of disease pathogenesis and drug development. Conclusion To date, few reviews have discussed GABAA receptors in detail. Accordingly, this review aims to summarize the current understanding of the structural, physiological, and pharmacological properties of GABAARs, as well as shedding light on the most common associated disorders.
Collapse
Affiliation(s)
- Amr Ghit
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy. .,Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Dina Assal
- Department of Biotechnology, American University in Cairo (AUC), Cairo, Egypt
| | - Ahmed S Al-Shami
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Diaa Eldin E Hussein
- Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Port of Alexandria, Alexandria, Egypt
| |
Collapse
|
12
|
Excitatory/Inhibitory Synaptic Ratios in Polymicrogyria and Down Syndrome Help Explain Epileptogenesis in Malformations. Pediatr Neurol 2021; 116:41-54. [PMID: 33450624 DOI: 10.1016/j.pediatrneurol.2020.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The ratio between excitatory (glutamatergic) and inhibitory (GABAergic) inputs into maturing individual cortical neurons influences their epileptic potential. Structural factors during development that alter synaptic inputs can be demonstrated neuropathologically. Increased mitochondrial activity identifies neurons with excessive discharge rates. METHODS This study focuses on the neuropathological examinaion of surgical resections for epilepsy and at autopsy, in fetuses, infants, and children, using immunocytochemical markers, and electron microscopy in selected cases. Polymicrogyria and Down syndrome are highlighted. RESULTS Factors influencing afferent synaptic ratios include the following: (1) synaptic short-circuitry in fused molecular zones of adjacent gyri (polymicrogyria); (2) impaired development of dendritic spines decreasing excitation (Down syndrome); (3) extracellular keratan sulfate proteoglycan binding to somatic membranes but not dendritic spines may be focally diminished (cerebral atrophy, schizencephaly, lissencephaly, polymicrogyria) or augmented, ensheathing individual axons (holoprosencephaly), or acting as a barrier to axonal passage in the U-fiber layer. If keratan is diminished, glutamate receptors on the neuronal soma enable ectopic axosomatic excitatory synapses to form; (4) dysplastic, megalocytic neurons and balloon cells in mammalian target of rapamycin disorders; (5) satellitosis of glial cells displacing axosomatic synapses; (6) peri-neuronal inflammation (tuberous sclerosis) and heat-shock proteins. CONCLUSIONS Synaptic ratio of excitatory/inhibitory afferents is a major fundamental basis of epileptogenesis at the neuronal level. Neuropathology can demonstrate subcellular changes that help explain either epilepsy or lack of seizures in immature brains. Synaptic ratios in malformations influence postnatal epileptogenesis. Single neurons can be hypermetabolic and potentially epileptogenic.
Collapse
|
13
|
Behuet S, Cremer JN, Cremer M, Palomero-Gallagher N, Zilles K, Amunts K. Developmental Changes of Glutamate and GABA Receptor Densities in Wistar Rats. Front Neuroanat 2019; 13:100. [PMID: 31920569 PMCID: PMC6933313 DOI: 10.3389/fnana.2019.00100] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
Neurotransmitters and their receptors are key molecules of signal transduction and subject to various changes during pre- and postnatal development. Previous studies addressed ontogeny at the level of neurotransmitters and expression of neurotransmitter receptor subunits. However, developmental changes in receptor densities to this day are not well understood. Here, we analyzed developmental changes in excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) receptors in adjacent sections of the rat brain by means of quantitative in vitro receptor autoradiography. Receptor densities of the ionotropic glutamatergic receptors α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) as well as of the ionotropic GABAA and metabotropic GABAB receptors were investigated using specific high-affinity ligands. For each receptor binding site, significant density differences were demonstrated in the investigated regions of interest [olfactory bulb, striatum, hippocampus, and cerebellum] and developmental stages [postnatal day (P) 0, 10, 20, 30 and 90]. In particular, we showed that the glutamatergic and GABAergic receptor densities were already present between P0 and P10 in all regions of interest, which may indicate the early relevance of these receptors for brain development. A transient increase of glutamatergic receptor densities in the hippocampus was found, indicating their possible involvement in synaptic plasticity. We demonstrated a decline of NMDA receptor densities in the striatum and hippocampus from P30 to P90, which could be due to synapse elimination, a process that redefines neuronal networks in postnatal brains. Furthermore, the highest increase in GABAA receptor densities from P10 to P20 coincides with the developmental shift from excitatory to inhibitory GABA transmission. Moreover, the increase from P10 to P20 in GABAA receptor densities in the cerebellum corresponds to a point in time when functional GABAergic synapses are formed. Taken together, the present data reveal differential changes in glutamate and GABA receptor densities during postnatal rat brain development, which may contribute to their specific functions during ontogenesis, thus providing a deeper understanding of brain ontogenesis and receptor function.
Collapse
Affiliation(s)
- Sabrina Behuet
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | | | - Markus Cremer
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
14
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
15
|
Sequeira A, Shen K, Gottlieb A, Limon A. Human brain transcriptome analysis finds region- and subject-specific expression signatures of GABA AR subunits. Commun Biol 2019; 2:153. [PMID: 31069263 PMCID: PMC6494906 DOI: 10.1038/s42003-019-0413-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/03/2019] [Indexed: 11/19/2022] Open
Abstract
Altered expression of GABA receptors (GABAARs) has been implicated in neurological and psychiatric disorders, but limited information about region-specific GABAAR subunit expression in healthy human brains, heteromeric assembly of major isoforms, and their collective organization across healthy individuals, are major roadblocks to understanding their role in non-physiological states. Here, by using microarray and RNA-Seq datasets-from single cell nuclei to global brain expression-from the Allen Institute, we find that transcriptional expression of GABAAR subunits is anatomically organized according to their neurodevelopmental origin. The data show a combination of complementary and mutually-exclusive expression patterns that delineate major isoforms, and which is highly stereotypical across brains from control donors. We summarize the region-specific signature of GABAR subunits per subject and its variability in a control population sample that can be used as a reference for remodeling changes during homeostatic rearrangements of GABAAR subunits after physiological, pharmacological or pathological challenges.
Collapse
Affiliation(s)
- Adolfo Sequeira
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA USA
| | - Kevin Shen
- Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX USA
| | - Assaf Gottlieb
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Agenor Limon
- Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
16
|
Benkherouf AY, Taina KR, Meera P, Aalto AJ, Li XG, Soini SL, Wallner M, Uusi-Oukari M. Extrasynaptic δ-GABA A receptors are high-affinity muscimol receptors. J Neurochem 2019; 149:41-53. [PMID: 30565258 PMCID: PMC6438731 DOI: 10.1111/jnc.14646] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Muscimol, the major psychoactive ingredient in the mushroom Amanita muscaria, has been regarded as a universal non‐selective GABA‐site agonist. Deletion of the GABAA receptor (GABAAR) δ subunit in mice (δKO) leads to a drastic reduction in high‐affinity muscimol binding in brain sections and to a lower behavioral sensitivity to muscimol than their wild type counterparts. Here, we use forebrain and cerebellar brain homogenates from WT and δKO mice to show that deletion of the δ subunit leads to a > 50% loss of high‐affinity 5 nM [3H]muscimol‐binding sites despite the relatively low abundance of δ‐containing GABAARs (δ‐GABAAR) in the brain. By subtracting residual high‐affinity binding in δKO mice and measuring the slow association and dissociation rates we show that native δ‐GABAARs in WT mice exhibit high‐affinity [3H]muscimol‐binding sites (KD ~1.6 nM on α4βδ receptors in the forebrain and ~1 nM on α6βδ receptors in the cerebellum at 22°C). Co‐expression of the δ subunit with α6 and β2 or β3 in recombinant (HEK 293) expression leads to the appearance of a slowly dissociating [3H]muscimol component. In addition, we compared muscimol currents in recombinant α4β3δ and α4β3 receptors and show that δ subunit co‐expression leads to highly muscimol‐sensitive currents with an estimated EC50 of around 1–2 nM and slow deactivation kinetics. These data indicate that δ subunit incorporation leads to a dramatic increase in GABAAR muscimol sensitivity. We conclude that biochemical and behavioral low‐dose muscimol selectivity for δ‐subunit‐containing receptors is a result of low nanomolar‐binding affinity on δ‐GABAARs. ![]()
Collapse
Affiliation(s)
- Ali Y Benkherouf
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa-Riitta Taina
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pratap Meera
- Department of Neurobiology, University of California, Los Angeles, California, USA
| | - Asko J Aalto
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku PET Centre, Abo Akademi University, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sanna L Soini
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Mikko Uusi-Oukari
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
17
|
The ontogeny of synaptophysin expression patterns on the GABAergic ciliary band-associated strand during larval development of the sea urchin, Hemicentrotus pulcherrimus A. Agassiz, 1864. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
19
|
Shannonhouse JL, DuBois DW, Fincher AS, Vela AM, Henry MM, Wellman PJ, Frye GD, Morgan C. Fluoxetine disrupts motivation and GABAergic signaling in adolescent female hamsters. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:19-30. [PMID: 27068049 DOI: 10.1016/j.pnpbp.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/03/2016] [Accepted: 04/01/2016] [Indexed: 01/05/2023]
Abstract
Initial antidepressant treatment can paradoxically worsen symptoms in depressed adolescents by undetermined mechanisms. Interestingly, antidepressants modulate GABAA receptors, which mediate paradoxical effects of other therapeutic drugs, particularly in females. Although the neuroanatomic site of action for this paradox is unknown, elevated GABAA receptor signaling in the nucleus accumbens can disrupt motivation. We assessed fluoxetine's effects on motivated behaviors in pubescent female hamsters - anhedonia in the reward investigational preference (RIP) test as well as anxiety in the anxiety-related feeding/exploration conflict (AFEC) test. We also assessed accumbal signaling by RT-PCR and electrophysiology. Fluoxetine initially worsened motivated behaviors at puberty, relative to adulthood. It also failed to improve these behaviors as pubescent hamsters transitioned into adulthood. Low accumbal mRNA levels of multiple GABAA receptor subunits and GABA-synthesizing enzyme, GAD67, assessed by RT-PCR, suggested low GABAergic tone at puberty. Nonetheless, rapid fluoxetine-induced reductions of α5GABAA receptor and BDNF mRNA levels at puberty were consistent with age-related differences in GABAergic responses to fluoxetine and disruption of the motivational state. Whole-cell patch clamping of accumbal slices also suggested low GABAergic tone by the low amplitude of miniature inhibitory postsynaptic currents (mIPSCs) at puberty. It also confirmed age-related differences in GABAergic responses to fluoxetine. Specifically, fluoxetine potentiated mIPSC amplitude and frequency at puberty, but attenuated the amplitude during adulthood. These results implicate GABAergic tone and GABAA receptor plasticity in adverse motivational responses and resistance to fluoxetine during adolescence.
Collapse
Affiliation(s)
- John L Shannonhouse
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - Dustin W DuBois
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States; Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Annette S Fincher
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Alejandra M Vela
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, United States
| | - Morgan M Henry
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, United States
| | - Paul J Wellman
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States; Department of Psychology, Texas A&M University, College Station, TX 77843, United States
| | - Gerald D Frye
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States; Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Caurnel Morgan
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States; Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
20
|
Nair B, Johar K, Priya A, Wong-Riley MTT. Specificity protein 4 (Sp4) transcriptionally regulates inhibitory GABAergic receptors in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1-9. [PMID: 26469128 DOI: 10.1016/j.bbamcr.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/05/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
Abstract
Previous studies in our laboratory have shown that the neuron-specific specificity protein 4 (Sp4) transcriptionally regulates many excitatory neurotransmitter receptor subunit genes, such as those for GluN1, GluN2A, and GluN2B of N-methyl-d-aspartate (NMDA) receptors and Gria2 of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. It also regulates Atp1a1 and Atp1b1 subunit genes of Na(+)/K(+)-ATPase, a major energy-consuming enzyme, as well as all 13 subunits of cytochrome c oxidase (COX), an important energy-generating enzyme. Thus, there is a tight coupling between energy consumption, energy production, and excitatory neuronal activity at the transcriptional level in neurons. The question is whether inhibitory neurotransmitter receptors are also regulated by Sp4. In the present study, we tested our hypothesis that Sp4 regulates receptor subunit genes of a major inhibitory neurotransmitter, GABA, specifically GABAA receptors. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, real-time quantitative PCR, chromatin immunoprecipitation, promoter mutational analysis, over-expression and shRNA of Sp4, functional assays, and western blots, we found that Sp4 functionally regulates the transcription of Gabra1 (GABAA α1) and Gabra2 (GABAA α2), but not Gabra3 (GABAA α3) subunit genes. The binding sites of Sp4 are conserved among rats, humans, and mice. Thus, our results substantiate our hypothesis that Sp4 plays a key role in regulating the transcription of GABAA receptor subunit genes. They also indicate that Sp4 is in a position to transcriptionally regulate the balance between excitatory and inhibitory neurochemical expressions in neurons.
Collapse
Affiliation(s)
- Bindu Nair
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kaid Johar
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anusha Priya
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
21
|
Dihydromyricetin prevents fetal alcohol exposure-induced behavioral and physiological deficits: the roles of GABAA receptors in adolescence. Neurochem Res 2014; 39:1147-61. [PMID: 24676702 DOI: 10.1007/s11064-014-1291-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH's many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH's intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25-32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.
Collapse
|
22
|
Katow H, Abe K, Katow T, Zamani A, Abe H. Development of the GABA-ergic signaling system and its role in larval swimming in sea urchin. ACTA ACUST UNITED AC 2013; 216:1704-16. [PMID: 23307803 DOI: 10.1242/jeb.074856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study aimed to elucidate the development and γ-amino butyric acid (GABA)-ergic regulation of larval swimming in the sea urchin Hemicentrotus pulcherrimus by cloning glutamate decarboxylase (Hp-gad), GABAA receptor (Hp-gabrA) and GABAA receptor-associated protein (Hp-gabarap), and by performing immunohistochemistry. The regulation of larval swimming was increasingly dependent on the GABAergic system, which was active from the 2 days post-fertilization (d.p.f.) pluteus stage onwards. GABA-immunoreactive cells were detected as a subpopulation of secondary mesenchyme cells during gastrulation and eventually constituted the ciliary band and a subpopulation of blastocoelar cells during the pluteus stage. Hp-gad transcription was detected by RT-PCR during the period when Hp-Gad-positive cells were seen as a subpopulation of blastocoelar cells and on the apical side of the ciliary band from the 2 d.p.f. pluteus stage. Consistent with these observations, inhibition of GAD with 3-mercaptopropioninc acid inhibited GABA immunoreactivity and larval swimming dose dependently. Hp-gabrA amplimers were detected weakly in unfertilized eggs and 4 d.p.f. plutei but strongly from fertilized eggs to 2 d.p.f. plutei, and Hp-GabrA, together with GABA, was localized at the ciliary band in association with dopamine receptor D1 from the two-arm pluteus stage. Hp-gabarap transcription and protein expression were detected from the swimming blastula stage. Inhibition of the GABAA receptor by bicuculline inhibited larval swimming dose dependently. Inhibition of larval swimming by either 3-mercaptopropionic acid or bicuculline was more severe in older larvae (17 and 34 d.p.f. plutei) than in younger ones (1 d.p.f. prism larvae).
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501, Japan.
| | | | | | | | | |
Collapse
|
23
|
Chua CEL, Lim YS, Lee MG, Tang BL. Non-classical membrane trafficking processes galore. J Cell Physiol 2012; 227:3722-30. [DOI: 10.1002/jcp.24082] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans. J Neurosci 2011; 31:15932-43. [PMID: 22049436 DOI: 10.1523/jneurosci.0742-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Approximately one-fourth of the neurons in Caenorhabditis elegans adults are born during larval development, indicating tremendous plasticity in larval nervous system structure. Larval development shows cyclical expression of sleep-like quiescent behavior during lethargus periods, which occur at larval stage transitions. We studied plasticity at the neuromuscular junction during lethargus using the acetylcholinesterase inhibitor aldicarb. The rate of animal contraction when exposed to aldicarb is controlled by the balance between excitatory cholinergic and inhibitory GABAergic input on the muscle. During lethargus, there is an accelerated rate of contraction on aldicarb. Mutant analysis and optogenetic studies reveal that GABAergic synaptic transmission is reduced during lethargus. Worms in lethargus show partial resistance to GABA(A) receptor agonists, indicating that postsynaptic mechanisms contribute to lethargus-dependent plasticity. Using genetic manipulations that separate the quiescent state from the developmental stage, we show that the synaptic plasticity is dependent on developmental time and not on the behavioral state of the animal. We propose that the synaptic plasticity regulated by a developmental clock in C. elegans is analogous to synaptic plasticity regulated by the circadian clock in other species.
Collapse
|
25
|
Smits A, Allegaert K. Perinatal pharmacology: applications for neonatal neurology. Eur J Paediatr Neurol 2011; 15:478-86. [PMID: 21576027 DOI: 10.1016/j.ejpn.2011.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
The principles of clinical pharmacology also apply to neonates, but their characteristics warrant a tailored approach. We focus on aspects of both developmental pharmacokinetics (concentration/time relationship) and developmental pharmacodynamics (concentration/effect relationship) in neonates. We hereby aimed to link concepts used in clinical pharmacology with compound-specific observations (anti-epileptics, analgosedatives) in the field of neonatal neurology. Although in part anecdotal, we subsequently illustrate the relevance of developmental pharmacology in the field of neonatal neurology by a specific intervention (e.g. whole body cooling), specific clinical presentations (e.g. short and long term outcome following fetal exposure to antidepressive agents, the development of new biomarkers for fetal alcohol syndrome) and specific clinical needs (e.g. analgosedation in neonates, excitocytosis versus neuro-apoptosis/impaired synaptogenesis).
Collapse
Affiliation(s)
- Anne Smits
- Neonatal Intensive Care Unit, Division of Woman and Child, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | |
Collapse
|
26
|
Changeux JP, Lou HC. Emergent pharmacology of conscious experience: new perspectives in substance addiction. FASEB J 2011; 25:2098-108. [PMID: 21719514 DOI: 10.1096/fj.11-0702ufm] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We here review experimental findings relevant for the pharmacology of conscious experience, an issue largely neglected in pharmacological research. First, we focus on self-awareness, a pivotal component of conscious experience and its integration within the global neuronal network (GNW), a theoretical concept that unifies convergent approaches on the neural bases of conscious processing. We report recent evidence to show that self-awareness mobilizes a paralimbic circuitry of γ synchrony, and that such synchrony is, in particular, regulated by GABA interneurons under the control of acetylcholine and dopamine. Recent data illustrate that these neurotransmitters establish a causal relationship with the control of self-awareness. The hypothesis is presented that not only is self-awareness chemically regulated, but the reverse may be true. Long-term deficit in self-control of drug intake would result in compulsive substance use, accompanied, in particular, with lesions of the paralimbic circuitry of self-awareness, leading to aggravation of substance abuse, resulting in addiction in a vicious circle. Finally, we propose that the emergent pharmacology of conscious experience may provide new perspectives, not only in substance addiction but also in the many other pathological conditions with deficient self-awareness.
Collapse
|
27
|
Simeone TA, Wilcox KS, White HS. Topiramate modulation of β1- and β3-homomeric GABAA receptors. Pharmacol Res 2011; 64:44-52. [DOI: 10.1016/j.phrs.2011.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 11/15/2022]
|
28
|
Mohabatkar H, Mohammad Beigi M, Esmaeili A. Prediction of GABAA receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine. J Theor Biol 2011; 281:18-23. [PMID: 21536049 DOI: 10.1016/j.jtbi.2011.04.017] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
The amino acid gamma-aminobutyric-acid receptors (GABA(A)Rs) belong to the ligand-gated ion channels (LGICs) superfamily. GABA(A)Rs are highly diverse in the central nervous system. These channels play a key role in regulating behavior. As a result, the prediction of GABA(A)Rs from the amino acid sequence would be helpful for research on these receptors. We have developed a method to predict these proteins using the features obtained from Chou's pseudo-amino acid composition concept and support vector machine as a powerful machine learning approach. The predictor efficiency was assessed by five-fold cross-validation. This method achieved an overall accuracy and Matthew's correlation coefficient (MCC) of 94.12% and 0.88, respectively. Furthermore, to evaluate the effect and power of each feature, the minimum Redundancy and Maximum Relevance (mRMR) feature selection method was implemented. An interesting finding in this study is the presence of all six characters (hydrophobicity, hydrophilicity, side chain mass, pK1, pK2 and pI) or combination of the characters among the 5 higher ranked features (pk2 and pI, hydrophobicity and mass, pk1, hydrophilicity and mass) obtained from the mRMR feature selection method. The results show a biologically justifiable ranked attributes of pk2 and pI; hydrophobicity, hydrophilicity and mass; mass and pk1; pk2 and mass. Based on our results, using the concept of Chou's pseudo-amino acid composition and support vector machine is an effective approach for the prediction of GABA(A)Rs.
Collapse
Affiliation(s)
- Hassan Mohabatkar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran.
| | | | | |
Collapse
|
29
|
Piehl E, Foley L, Barron M, D'Ardenne C, Guillod P, Wise-Faberowski L. The effect of sevoflurane on neuronal degeneration and GABAA subunit composition in a developing rat model of organotypic hippocampal slice cultures. J Neurosurg Anesthesiol 2010; 22:220-9. [PMID: 20548169 DOI: 10.1097/ana.0b013e3181e16c89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The GABA(A) receptor subunit composition undergoes a switch from a predominantly alpha2 to a predominantly alpha1 around postnatal day (PND) 7 in a rat pup. This developmental switch in the GABA(A) receptor subunit composition changes the kinetics and pharmacologic properties of the GABA(A) receptor. Using a developmental organotypic hippocampal slice model, we hypothesized that the developmental changes in the GABA(A) receptor subunit composition may promote neurodegeneration after exposure to sevoflurane. DESIGN Organotypic hippocampal slices (OHS) were prepared from rat pups on PND 4, 7, and 14 and exposed to 2.0% sevoflurane or air for 5 hours. Hippocampal CA1, CA3, and dentate gyrus neuronal survival and GABA(A) receptor subunit composition were assessed immediately, 24 and 72 hours after exposure and compared with air. MEASUREMENTS AND RESULTS Early cell death immediately after exposure to sevoflurane was statistically significant in the PND14 (P<0.001). At 24 hours, cell death was not significant for any PND age-examined OHS. However, at 72 hours, cell death was significant in the OHS prepared from the PND7 and 4 rat pups (P<0.001). In further analysis, either a decrease in the alpha1 and/or increase in the alpha2 subunit composition promoted cell survival in the PND 4 and 7 OHS. On PND14, cell survival was promoted by an increase in the alpha1 subunit composition. CONCLUSIONS This in vitro investigation supports an age-dependent and GABA(A) receptor subunit composition relationship between 2.0% sevoflurane exposure and cell death.
Collapse
|
30
|
Cherlyn SYT, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 2010; 34:958-77. [PMID: 20060416 DOI: 10.1016/j.neubiorev.2010.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 01/01/2010] [Accepted: 01/04/2010] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are debilitating neurobehavioural disorders likely influenced by genetic and non-genetic factors and which can be seen as complex disorders of synaptic neurotransmission. The glutamatergic and GABAergic neurotransmission systems have been implicated in both diseases and we have reviewed extensive literature over a decade for evidence to support the association of glutamate and GABA genes in SZ and BD. Candidate-gene based population and family association studies have implicated some ionotrophic glutamate receptor genes (GRIN1, GRIN2A, GRIN2B and GRIK3), metabotropic glutamate receptor genes (such as GRM3), the G72/G30 locus and GABAergic genes (e.g. GAD1 and GABRB2) in both illnesses to varying degrees, but further replication studies are needed to validate these results. There is at present no consensus on specific single nucleotide polymorphisms or haplotypes associated with the particular candidate gene loci in these illnesses. The genetic architecture of glutamate systems in bipolar disorder need to be better studied in view of recent data suggesting an overlap in the genetic aetiology of SZ and BD. There is a pressing need to integrate research platforms in genomics, epistatic models, proteomics, metabolomics, neuroimaging technology and translational studies in order to allow a more integrated understanding of glutamate and GABAergic signalling processes and aberrations in SZ and BD as well as their relationships with clinical presentations and treatment progress over time.
Collapse
Affiliation(s)
- Suat Ying Tan Cherlyn
- Institute of Mental Health/Woodbridge Hospital, 10 Buangkok View, Singapore 539747, Singapore
| | | | | | | | | | | |
Collapse
|
31
|
Gallos G, Gleason NR, Zhang Y, Pak SW, Sonett JR, Yang J, Emala CW. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation. Am J Physiol Lung Cell Mol Physiol 2008; 295:L1040-7. [PMID: 18790991 DOI: 10.1152/ajplung.90330.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.
Collapse
Affiliation(s)
- George Gallos
- Dept. of Anesthesiology, College of Physicians and Surgeons of Columbia Univ., 650 W. 168 St., P&S Box 46, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
O'Dell LE. A psychobiological framework of the substrates that mediate nicotine use during adolescence. Neuropharmacology 2008; 56 Suppl 1:263-78. [PMID: 18723034 DOI: 10.1016/j.neuropharm.2008.07.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/22/2008] [Accepted: 07/29/2008] [Indexed: 01/17/2023]
Abstract
Adolescents are especially likely to initiate tobacco use and are more vulnerable to long-term nicotine dependence. A unifying hypothesis is proposed based largely on animals studies that adolescents, as compared to adults, experience enhanced short-term positive and reduced aversive effects of nicotine, as well as less negative effects during nicotine withdrawal. Thus, during adolescence the strong positive effects of nicotine are inadequately balanced by negative effects that contribute to nicotine dependence in adults. This review provides a neural framework to explain developmental differences within the mesolimbic pathway based on the established role of dopamine in addiction. This pathway originates in the ventral tegmental area (VTA) and terminates in the nucleus accumbens (NAcc) where dopamine is increased by nicotine but decreased during withdrawal. During adolescence, excitatory glutamatergic systems that facilitate dopamine are overdeveloped, whereas inhibitory GABAergic systems are underdeveloped. Thus, it is hypothesized that adolescents display enhanced nicotine reward and reduced withdrawal via enhanced excitation and reduced inhibition of VTA cell bodies that release dopamine in the NAcc. Although this framework focuses on adolescents and adults, it may also apply to the understanding of enhanced vulnerability to nicotine in adults that were previously exposed to nicotine during adolescence. The hypothesis presented in this review suggests that the clinical diagnostic criteria developed for nicotine dependence in adults, based primarily on withdrawal, may be inappropriate during adolescence when nicotine withdrawal does not appear to play a major role in nicotine use. Furthermore, treatment strategies involving nicotine replacement may be harmful for adolescents because it may cause enhanced vulnerability to nicotine dependence later in adulthood.
Collapse
Affiliation(s)
- Laura E O'Dell
- Department of Psychology, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
33
|
Stafstrom CE. Neurobiological mechanisms of developmental epilepsy: translating experimental findings into clinical application. Semin Pediatr Neurol 2007; 14:164-72. [PMID: 18070672 DOI: 10.1016/j.spen.2007.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although seizures are very common during early brain development, consequences of seizures during this age period are less severe than in the mature brain. Reasons for this discrepancy relate to both the sequential development of neural elements (ion channels, neurotransmitters, synapses, and circuits) and the effects of seizures on these ongoing processes at different ages. In this review, I critically discuss 2 recent experimental trends in developmental neurobiology that impact seizures and their consequences. First, the paradoxic excitatory effects of gamma-aminobutyric acid early in life are related to seizure susceptibility in this developmental period. Second, the plasticity of immature neuronal circuits and the effects of seizures on subsequent cognition and behavior as a function of age are considered. These topics are relevant to the pediatric neurologist when evaluating and treating a young child with seizures.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, Section of Pediatric Neurology, University of Wisconsin, Madison 53792, USA
| |
Collapse
|
34
|
Fenoglio KA, Wu J, Kim DY, Simeone TA, Coons SW, Rekate H, Rho JM, Kerrigan JF. Hypothalamic hamartoma: basic mechanisms of intrinsic epileptogenesis. Semin Pediatr Neurol 2007; 14:51-9. [PMID: 17544947 DOI: 10.1016/j.spen.2007.03.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hypothalamic hamartoma (HH) is a rare developmental malformation commonly associated with gelastic seizures that are notoriously refractory to medical therapy. Recent evidence supports the intrinsic seizure propensity of HH. Despite increasing clinical recognition of this condition, the mechanisms of seizure genesis in HH tissue remain unclear. This review summarizes the histochemical and electrophysiological properties of HH neurons, and relates these findings to those characteristics identified in other types of epileptic tissue. Initial studies have revealed two distinct populations of neurons in surgically resected HH tissue. One group consisted of small gamma-aminobutyric acid (GABA)-expressing neurons that occurred principally in clusters and displayed spontaneous rhythmic firing. The second group was composed of large, quiescent, pyramidal-like neurons with more extensive dendritic and axonal arborization. We propose that the small, spontaneously firing GABAergic neurons send inhibitory projections to and drive the synchrony of large output neurons. These observations constitute the basis for future investigations aimed at elucidating the mechanisms of subcortical epileptogenesis.
Collapse
Affiliation(s)
- Kristina A Fenoglio
- Division of Neurology and Pediatric Neurology, Barrow Neurological Institute and Children's Health Center, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu J, Chang Y, Li G, Xue F, DeChon J, Ellsworth K, Liu Q, Yang K, Bahadroani N, Zheng C, Zhang J, Rekate H, Rho JM, Kerrigan JF. Electrophysiological properties and subunit composition of GABAA receptors in patients with gelastic seizures and hypothalamic hamartoma. J Neurophysiol 2007; 98:5-15. [PMID: 17428906 DOI: 10.1152/jn.00165.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormalities in GABA(A) receptor structure and/or function have been associated with various forms of epilepsy in both humans and animals. Whether this is true for patients with gelastic seizures and hypothalamic hamartoma (HH) is unknown. In this study, we characterized the pharmacological properties and native subunit composition of GABA(A) receptors on acutely dissociated single neurons from surgically resected HH tissues using patch-clamp, immunocytochemical, and RT-PCR techniques. We found that 1) GABA induced an inward current (I(GABA)) at a holding potential of -60 mV; 2) I(GABA) was mimicked by the GABA(A) receptor agonist muscimol and blocked by the GABA(A) receptor antagonist bicuculline, suggesting that I(GABA) was mediated principally through the GABA(A) receptor; 3) the EC(50) and Hill coefficient derived from the I(GABA) concentration-response curve were 6.8 muM and 1.9, respectively; 4) the current-voltage curve was linear at a reversal potential close to zero; and 5) I(GABA) exhibited low sensitivity to zinc and diazepam but higher sensitivity to pentobarbital and pregnanolone. Additionally, using Xenopus oocytes microtransplanted with normal human hypothalamic tissue, we confirmed that the functional properties of GABA(A) receptors were similar to those seen in small isolated HH neurons. Finally, the expression profile of GABA(A) receptor subunits obtained from normal control human hypothalamic tissue was identical to that from surgically resected human HH tissue. Taken together, our data indicate that GABA(A) receptors on small HH neurons exhibit normal pharmacosensitivity and subunit composition. These findings bear relevance to a broader understanding of inhibitory neurotransmission in human HH tissue.
Collapse
Affiliation(s)
- Jie Wu
- Neurophysiology Lab, Div of Neurology, Barrow Neurological Inst, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li SP, Lee HY, Park MS, Bahk JY, Chung BC, Kim MO. Prenatal GABAB1 and GABAB2 receptors: cellular and subcellular organelle localization in early fetal rat cortical neurons. Synapse 2006; 60:557-66. [PMID: 16983643 DOI: 10.1002/syn.20332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gamma-aminobutyric acid (GABA)(B) receptors appear to influence developmental events, depending on whether they are found at a synapse or in extrasynaptic areas. Little, if anything, is known as to the cellular and subcellular localization of GABA(B1) and GABA(B2) receptors during early fetal development. We used Western blots, immunohistochemistry, and postembedding immunoelectronmicroscopy to investigate fetal rat brain expression and distribution of these receptor proteins. GABA(B1) is expressed as early as gestational day (GD) 11.5 and 12.5, with immunoreactivity found in the all neuroepithelium, and a high expression in the mantel zone and the cortical area's plate; no immunolabeling for GABA(B2) receptor was observed. Our immunogold studies define a pattern of early GABA(B1) receptor protein in dendrite processes, endoplasmic reticulum, and axon terminals of the cortical neuroepithelium on GD 11.5. On GD 12.5, GABA(B1) receptor immunogold was found in dendrite processes, spines and tree, axon terminals, mitochondria, and intracellular organelles of the cortical neuroepithelium. No synapse formation was apparent as no synaptophysin could be found on either GD 11.5 or 12.5. We suggest that GABA(B1) has a functional role in the early fetal brain during neuronal proliferation and migration, and that it is different from the established functional GABA(B) receptor.
Collapse
Affiliation(s)
- S P Li
- Division of Life Science, College of Natural Sciences and Applied Life Science (Brain Korea 21), Gyeongsang National University, Chinju 660-701, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Asay MJ, Boyd SK. Characterization of the binding of [3H]CGP54626 to GABAB receptors in the male bullfrog (Rana catesbeiana). Brain Res 2006; 1094:76-85. [PMID: 16725130 DOI: 10.1016/j.brainres.2006.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate brain. GABA activates both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors in mammals. Whether non-mammalian vertebrates possess receptors with similar characteristics is not well understood. We used a mammalian GABA(B)-specific antagonist to determine the pharmacology of putative receptors in the brain of an anuran amphibian, the male bullfrog (Rana catesbeiana). Receptor binding assays with the antagonist [(3)H]CGP54626 revealed a single class of high affinity binding sites (with a K(D) of 2.97 nM and a B(max) of 2619 fmol/mg protein). Binding was time- and temperature-dependent, saturable and specific. Specific binding of [(3)H]CGP54626 was inhibited by several mammalian GABA(B) receptor agonists and antagonists. The rank order potency of agonists was: GABA = SKF97541 > (R)-Baclofen > 3-APPA. The rank order for antagonists was: CGP54626 = CGP55845 > CGP52432 > CGP35348. The GABA(A) receptor ligands muscimol and SR95531 had very low affinity for [(3)H]CGP54626 binding sites, while bicuculline compounds had no affinity. Binding of GABA was positively modulated by CGP7930. Taurine did not allosterically modulate GABA binding but did inhibit [(3)H]CGP54626 binding in a linear fashion. Bullfrog brain thus possesses binding sites with significant similarity to mammalian GABA(B) receptors. These receptors differ from mammalian receptors, however, in dissociation kinetics, ligand specificity and allosteric modulation.
Collapse
Affiliation(s)
- Matthew J Asay
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
38
|
Wang G, Ji Y, Lidow MS, Traub RJ. Neonatal hind paw injury alters processing of visceral and somatic nociceptive stimuli in the adult rat. THE JOURNAL OF PAIN 2005; 5:440-9. [PMID: 15501426 DOI: 10.1016/j.jpain.2004.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 06/27/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
UNLABELLED Tissue damage during the first few weeks after birth can have profound effects on sensory processing in the adult. We have recently reported that a short-lasting inflammation of the neonatal rat hind paw produces baseline hypoalgesia and exacerbated hyperalgesia after reinflammation of that hind paw in the adult. Because the contralateral hind paw and forepaws also displayed hypoalgesia, we speculated that effects of the initial injury were not somatotopically restricted and would alter visceral sensory processing as well. In the present study we tested this hypothesis by examining the effects of neonatal hind paw injury at P3 or P14 on visceral and somatic sensitivity in the adult rat. In P3 rats, the visceromotor response evoked by colorectal distention in the absence of colonic inflammation was attenuated in carrageenan-treated neonatal rats compared to naive rats. Colonic inflammation in the adult reversed this hypoalgesia and evoked a level of visceral hyperalgesia similar to naive rats. There were no consequences of the P14 injury observed in the adult. In a second experiment, colonic inflammation in naive rats induced viscerosomatic inhibition to thermal stimulation of the forepaw and hind paw. This inhibition was reversed, and the paw withdrawal latency was slightly decreased in neonatal (P3) carrageenan-treated rats. Rats treated on P14 appeared similar to naive rats. These data support the hypothesis that neonatal hind paw injury during a critical period permanently alters sensory processing of multiple sensory modalities in the adult. Animals develop with greater inhibitory processing of somatic and visceral stimuli throughout the neuraxis. However, inflammation in the adult in previously uninjured tissue reverses the hypoalgesia and evokes development of normal hyperexcitability associated with tissue injury. PERSPECTIVE Trauma experienced by premature infants can lead to alterations in sensory processing throughout life. This study shows that short-term somatic tissue injury to neonatal rats during a well-defined critical period alters several aspects of viscerosensory processing in the adult, demonstrating that injury to one tissue affects sensory processing throughout the body.
Collapse
Affiliation(s)
- Gexin Wang
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
39
|
Bianchi MS, Catalano PN, Bonaventura MM, Silveyra P, Bettler B, Libertun C, Lux-Lantos VAR. Effect of androgens on sexual differentiation of pituitary gamma-aminobutyric acid receptor subunit GABA(B) expression. Neuroendocrinology 2004; 80:129-42. [PMID: 15591793 DOI: 10.1159/000082527] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 09/23/2004] [Indexed: 12/28/2022]
Abstract
Previous work demonstrated a sexually dimorphic ontogenic expression of gamma-aminobutyric acid receptors (GABA(B)R) in rat pituitary. As sex steroids determine sex-specific expression patterns, we now studied the effect of sex hormones on pituitary GABA(B)R expression. GABA(B)R subunits, measured by Western blot and by semi-quantitative RT-PCR and luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone measured by RIA were determined in two experimental designs: First experimental design: 8- and 15-day-old females (8F, 15F); 8F and 15F treated with 100 mug testosterone propionate (TP) on day 1 of life (8F100TP, 15F100TP), 8- and 15-day-old males (8M, 15M) and 8M and 15M castrated on day 1 (8MC, 15MC). Second experimental design: 8-day-old female and male animals: 8F, 8F100TP, 8F treated with 1 mug/day TP on days 1-4 (8F1TP), 8F treated with the androgen antagonist Flutamide (Flut: 2.5 mg/100 g BW of pregnant mother on days E17-E23) (8F-Flut), 8M, 8MC, 8M treated with Flut as above (8M-Flut) and 8MC-Flut. In these animals, in addition, GABA, glutamate, aspartate and taurine were measured by HPLC in hypothalami and cortex. In the first set of experiments, GABA(B1)R mRNA/protein expression was higher in 8F than in 15F, 8M or 15M. In 8F100TP, GABA(B1)R mRNA/protein decreased to male levels. TP treatment did not alter GABA(B1)R expression in 15F. There was no difference in GABA(B1)R expression between 8M and 15M and neonatal castration did not modify its expression. In the second set of experiments, TP (1 mug) or Flut did not modify GABA(B1)R in 8F, while 100 microg TP continued to decrease GABA(B1)R expression. In 8M, Flut, alone or with castration, increased GABA(B1)R mRNA/protein expression to 8F. Hypothalamic GABA content followed the same pattern as pituitary GABA(B)R expression in 8-day-old animals, suggesting a cross-regulation. With regard to hormonal levels, 100 microg, but not 1 microg TP altered gonadotropins at 8 days, although both treatments effectively androgenized females as evidenced by lack of cycling. We conclude that androgens, acting pre- and postnatally, decrease pituitary GABA(B)R subunit expression.
Collapse
Affiliation(s)
- María S Bianchi
- Instituto de Biología y Medicina Experimental-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Mann PE, Babb JA. Disinhibition of maternal behavior following neurotoxic lesions of the hypothalamus in primigravid rats. Brain Res 2004; 1025:51-8. [PMID: 15464744 DOI: 10.1016/j.brainres.2004.07.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2004] [Indexed: 11/18/2022]
Abstract
Virgin female rats do not respond maternally to foster pups due to an endogenous neural circuit that actively inhibits the display of maternal behavior. Once pregnant, primigravid rats will continue to avoid foster pups until just prior to or at parturition. Anosmia or lesions of the olfactory tract, medial amygdala, and areas of the hypothalamus will stimulate virgin females to display maternal behavior rapidly, but little is known of the effect of these lesions in primigravid rats. The objective of the present study was to determine if neurotoxic lesions of the dorsomedial (DMH) and ventromedial nuclei (VMH) of the hypothalamus will advance the onset of maternal behavior in primigravid rats. Nulliparous Sprague-Dawley female rats were mated and then on day 8 of gestation bilaterally infused with N-methyl-d-aspartic acid (NMDA; 8 microg/0.2 microl/side) or vehicle directed toward either the DMH or VMH. Beginning on day 15 of gestation until parturition, females were tested daily for maternal responsiveness. DMH and VMH lesions significantly advanced the onset of maternal behavior (5-6 days vs. 0-1 day before parturition) in first-time pregnant rats. These results indicate that the DMH and VMH are involved in the regulation of maternal behavior and may be part of an endogenous neural circuit that inhibits maternal behavior during pregnancy.
Collapse
Affiliation(s)
- Phyllis E Mann
- Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, 200 Westboro Road, N. Grafton, MA 01536, United States.
| | | |
Collapse
|
41
|
Abstract
The major catastrophic epileptic syndromes of childhood include infantile spasms, Lennox-Gastaut syndrome, and the progressive myoclonus epilepsies (PMEs). Although each of these syndromes manifests in an age-specific manner and is defined by distinct electroclinical features, they are all refractory to medical therapy and are invariably associated with psychomotor deficits, and in the most severe cases, either epileptic encephalopathy or progressive neurodegeneration. While much has been written about the clinical features and natural history of the catastrophic epilepsies, very little is known about the underlying pathophysiology. Progress in our understanding and treatment of these conditions has been hampered by the lack of suitable animal models in which putative mechanisms and novel targets for intervention could be rigorously studied. Nevertheless, recent clinical and basic investigations have identified certain mechanisms that may be relevant to their pathogenesis. In this review, three major hypotheses regarding the pathophysiology of infantile spasms are highlighted: the corticotropin-releasing hormone (CRH) hypothesis, the N-methyl-D-aspartate (NMDA) hypothesis, and the serotonin-kynurenine hypothesis. One or more of these mechanisms may be relevant in part to later-onset catastrophic epilepsies since infantile spasms can persist into later childhood and, like Lennox-Gastaut syndrome, well into adulthood. There is a profound need to develop more relevant animal models of the developmental encephalopathic epilepsies to truly develop better therapeutic strategies for these catastrophic disorders.
Collapse
Affiliation(s)
- Jong M Rho
- Departments of Pediatrics and Neurology, College of Medicine, University of California at Irvine Medical Center, 101 The CityDrive S., Orange, CA 92868, U.S.A.
| |
Collapse
|
42
|
Simeone TA, Sanchez RM, Rho JM. Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J Child Neurol 2004; 19:343-60; discussion 361. [PMID: 15224708 DOI: 10.1177/088307380401900507] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic terminals, glutamate binds to both ionotropic and metabotropic receptors to mediate fast, slow, and persistent effects on synaptic transmission and integrity. There are three types of ionotropic glutamate receptors. N-Methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA), and kainate receptors are principally activated by the agonist bearing its name and are permeable to cationic flux; hence, their activation results in membrane depolarization. All ionotropic glutamate receptors are believed to be composed of four distinct subunits, each of which is topologically arranged with three transmembrane-spanning and one pore-lining (hairpin loop) domain. In contrast, metabotropic glutamate receptors are G protein (guanine nucleotide-binding protein) -coupled receptors linked to second-messenger systems. Group I metabotropic glutamate receptors are linked to phospholipase C, which results in phosphoinositide hydrolysis and release of calcium from intracellular stores. Group II and group III metabotropic glutamate receptors are negatively linked to adenylate cyclase, which catalyzes the production of cyclic adenosine monophosphate. Each metabotropic glutamate receptor is composed of seven transmembrane-spanning domains, similar to other members of the superfamily of metabotropic receptors, which includes noradrenergic, muscarinic acetylcholinergic, dopaminergic, serotonergic (except type 3 receptors), and gamma-aminobutyric acid (GABA) type B receptors. This review summarizes the relevant molecular biology and ontogeny of glutamate receptors in the central nervous system and highlights some of the roles that they can play during brain development and in certain disease states.
Collapse
Affiliation(s)
- Timothy A Simeone
- Department of Pediatrics, University of California at Irvine College of Medicine, Irvine, CA, USA
| | | | | |
Collapse
|
43
|
Martínez-Torres A, Miledi R. Expression of functional receptors by the human gamma-aminobutyric acid A gamma 2 subunit. Proc Natl Acad Sci U S A 2004; 101:3220-3. [PMID: 14981251 PMCID: PMC365770 DOI: 10.1073/pnas.0308682101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
gamma-Aminobutyric acid A (GABA(A)) receptors are heteromeric membrane proteins formed mainly by various combinations of alpha, beta, and gamma subunits; and it is commonly thought that the gamma 2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the gamma 2L subunit of the human GABA(A) receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a "run-up" of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl(-) ions. The homomeric gamma 2L receptors were also activated by beta-alanine > taurine > glycine, and, like some types of heteromeric GABA(A) receptors, the gamma 2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human gamma 2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABA(A) receptors in situ require further clarification.
Collapse
Affiliation(s)
- Ataúlfo Martínez-Torres
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California, McGaugh Hall 1115, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
44
|
Abstract
A number of important drugs act on GABA(A) receptors, pentameric GABA-gated chloride channels assembled from among 19 known subunits. In trying to discover the roles in the brain of the subunits and their combinations, with the goal of developing more selective drugs, one tool has been to reduce expression of the subunits and examine the functional consequences. After briefly examining the properties of GABA(A) receptors, this review surveys the means available for receptor subunit reduction, and some of the observations to which their application has led. The methods discussed include radiation-induced deletion, gene knockout, knock-in mutations, antisense, ribozymes, RNA interference, dominant negative constructs, and transcriptional regulation, e.g., via decoy oligonucleotides.
Collapse
Affiliation(s)
- David R Burt
- Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201-1559, USA.
| |
Collapse
|