1
|
Wang Y, Sun Y, Avestro AJ, McGonigal PR, Zhang H. Supramolecular repair of hydration lubrication surfaces. Chem 2022. [DOI: 10.1016/j.chempr.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Nakano H, Noguchi Y, Kakinoki S, Yamakawa M, Osaka I, Iwasaki Y. Highly Durable Lubricity of Photo-Cross-Linked Zwitterionic Polymer Brushes Supported by Poly(ether ether ketone) Substrate. ACS APPLIED BIO MATERIALS 2020; 3:1071-1078. [DOI: 10.1021/acsabm.9b01040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hiroki Nakano
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| | - Yuri Noguchi
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| | - Sachiro Kakinoki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| | - Mai Yamakawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectual University, 5180 Kurokawa, Imizu-City, Toyama 936-0398, Japan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectual University, 5180 Kurokawa, Imizu-City, Toyama 936-0398, Japan
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-0836, Japan
| |
Collapse
|
3
|
Moro T, Ishihara K, Takatori Y, Tanaka S, Kyomoto M, Hashimoto M, Ishikura H, Hidaka R, Tanaka T, Kawaguchi H, Nakamura K. Effects of a roughened femoral head and the locus of grafting on the wear resistance of the phospholipid polymer-grafted acetabular liner. Acta Biomater 2019; 86:338-349. [PMID: 30590185 DOI: 10.1016/j.actbio.2018.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Although laboratory tests and mid-term clinical outcomes show the clinical safety and remarkable wear resistance of the highly cross-linked polyethylene (HXLPE) acetabular liner with a nanometer-scaled graft layer of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), the wear resistance of the layer under severe abrasive conditions is concerning. We evaluated the effects of a roughened femoral head and the grafting locus on the wear resistance of the PMPC-grafted HXLPE liner and the effect of PMPC grafting on wear resistance of the HXLPE substrate by removing the PMPC-grafted layer using a severely roughened femoral head. Against a moderately roughened femoral head, the PMPC-grafted HXLPE liner showed negative wear, although an untreated HXLPE liner increased the wear by 154.1% compared with wear against a polished femoral head, confirming that PMPC grafts were unaffected. Against a severely roughened femoral head, the PMPC-grafted layer of the head contact area might be removed under severe conditions. However, the wear rate was reduced by 52.5% compared to that of untreated HXLPE liners. Moreover, the head non-contact area-modified PMPC-grafted HXLPE liner against a polished femoral head reduced the wear by 76.8% compared with untreated HXLPE liner; thus, this area may be also important in the development of fluid-film lubrication. STATEMENT OF SIGNIFICANCE: Here we describe effects of a roughened femoral head and the locus of grafting on the wear-resistance of the phospholipid polymer grafted highly cross-linked polyethylene (PMPC-HXLPE) liner. Against a moderately roughened femoral head, the PMPC-HXLPE liner showed negative wear, confirming that PMPC grafts were unaffected. After removing the PMPC layer of the head contact area using a severely roughened femoral head, the wear rate not only exceeded that of untreated HXLPE liners, but was reduced by 52.5%, confirming that PMPC grafting does not affect the wear-resistance of the HXLPE substrate. In addition, the head non-contact area-modified PMPC-HXLPE liner reduced the wear by 76.8%. Thus, this area may also may be important in the development of fluid-film lubrication.
Collapse
Affiliation(s)
- Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshio Takatori
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masayuki Kyomoto
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Corporate R&D Group, KYOCERA Corporation, 800 Ichimiyake, Yasu 520-2362, Japan
| | - Masami Hashimoto
- Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Hisatoshi Ishikura
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryo Hidaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeyuki Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kawaguchi
- Japan Community Health Care Organization, Tokyo Shinjuku Medical Center, Spine Center, 5-1 Tsukudo, Shinjuku-ku, Tokyo 162-8543, Japan
| | - Kozo Nakamura
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
4
|
Kyomoto M, Moro T, Yamane S, Watanabe K, Hashimoto M, Tanaka S, Ishihara K. A phospholipid polymer graft layer affords high resistance for wear and oxidation under load bearing conditions. J Mech Behav Biomed Mater 2018; 79:203-212. [PMID: 29306728 DOI: 10.1016/j.jmbbm.2017.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022]
Abstract
Manipulating the surface and substrate of cross-linked polyethylene (CLPE) is an essential approach for obtaining life-long orthopedic bearings. We therefore proposed a bearing material comprised of an antioxidative substrate generated by vitamin E blending (HD-CLPE[VE]) with a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted surface, and investigated its wear resistance and oxidative stability under accelerated aging and load bearing conditions. Neither the hydration nor friction kinetics of the molecular network structure of the PMPC-grafted surface or the HD-CLPE(VE) substrate were influenced by accelerated aging but rather exhibited high stability even under high oxidation conditions. The characteristics of the PMPC-grafted surface improved the wear and impact fatigue resistance of the HD-CLPE(VE) liner regardless of accelerated aging. Notably, the PMPC-grafted surface was found to affect the potential oxidative stability at the rim part of the acetabular liner. PMPC chains serve several important functions on the surface regardless of load bearing, such as high lubricity or low lipophilicity attributed to phosphorylcholine groups and/or surrounding water-fluid film, and suppression of lipid diffusion attributed to methacrylate main chains on the surface. Together, these results provide preliminary evidence that the PMPC graft layer and vitamin E-blended substrate might positively affect the extent of orthopedic implant durability.
Collapse
Affiliation(s)
- Masayuki Kyomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, 800 Ichimiyake, Yasu 520-2362, Japan
| | - Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Sensory & Motor System Medicine, Faculty of Medicine; The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shihori Yamane
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, 800 Ichimiyake, Yasu 520-2362, Japan
| | - Kenichi Watanabe
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, 800 Ichimiyake, Yasu 520-2362, Japan
| | - Masami Hashimoto
- Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine; The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
5
|
Watanabe K, Moro T, Kyomoto M, Saiga K, Taketomi S, Kadono Y, Takatori Y, Tanaka S, Ishihara K. The effects of presence of a backside screw hole on biotribological behavior of phospholipid polymer-grafted crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2017; 106:610-618. [PMID: 28263442 DOI: 10.1002/jbm.b.33837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
One of the important factors in determining the success of joint replacement is the wear performance of polyethylene. Although highly crosslinked polyethylene (CLPE) is presently used, it is still not adequate. We have developed a surface modification technology using poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) in an attempt to improve wear performance. In this study, we evaluated the wear and creep deformation resistances of 3-mm and 6-mm thick PMPC-grafted CLPE disks, set on a metal back-plate, with and without a sham screw hole. The gravimetric wear and volumetric change of the disks were examined using a multidirectional pin-on-disk tester. PMPC grafting decreased the gravimetric wear of CLPE regardless of the presence of a screw hole, and did not affect the volumetric change. The volumetric change in the bearing and backside surfaces of the 3-mm thick disk with a screw hole was much larger than that of those without a screw hole or those of the 6-mm thick disk, which was caused by creep deformation. PMPC grafting on the bearing surface can be a material engineering approach to reduce the wear without changing the creep deformation resistance, and is a promising surface modification technology that can be used to increase the longevity of various artificial joints. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 610-618, 2018.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan.,Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masayuki Kyomoto
- Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan.,Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenichi Saiga
- Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan.,Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shuji Taketomi
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuho Kadono
- Department of Orthopaedic Surgery, Saitama Medical University School of Medicine, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Yoshio Takatori
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Ghosh S, Abanteriba S. Status of surface modification techniques for artificial hip implants. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:715-735. [PMID: 28228866 PMCID: PMC5278906 DOI: 10.1080/14686996.2016.1240575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants.
Collapse
Affiliation(s)
- Subir Ghosh
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | |
Collapse
|